# -*- perl -*- # # Perfect Minimal Hash Generator written in Perl, which produces # C output. # require 'random_sv_vectors.ph'; require 'crc64.ph'; # # Compute the prehash for a key # # prehash(key, sv, N) # sub prehash($$$) { my($key, $n, $sv) = @_; my @c = crc64($sv, $key); # Create a bipartite graph... $k1 = (($c[1] & ($n-1)) << 1) + 0; # low word $k2 = (($c[0] & ($n-1)) << 1) + 1; # high word return ($k1, $k2); } # # Walk the assignment graph, return true on success # sub walk_graph($$$$) { my($nodeval,$nodeneigh,$n,$v) = @_; my $nx; # print STDERR "Vertex $n value $v\n"; $$nodeval[$n] = $v; foreach $nx (@{$$nodeneigh[$n]}) { # $nx -> [neigh, hash] my ($o, $e) = @$nx; # print STDERR "Edge $n,$o value $e: "; my $ov; if (defined($ov = $$nodeval[$o])) { if ($v+$ov != $e) { # Cyclic graph with collision # print STDERR "error, should be ", $v+$ov, "\n"; return 0; } else { # print STDERR "ok\n"; } } else { return 0 unless (walk_graph($nodeval, $nodeneigh, $o, $e-$v)); } } return 1; } # # Generate the function assuming a given N. # # gen_hash_n(N, sv, \%data, run) # sub gen_hash_n($$$$) { my($n, $sv, $href, $run) = @_; my @keys = keys(%{$href}); my $i; my $gr; my ($k, $v); my $gsize = 2*$n; my @nodeval; my @nodeneigh; my %edges; for ($i = 0; $i < $gsize; $i++) { $nodeneigh[$i] = []; } %edges = (); foreach $k (@keys) { my ($pf1, $pf2) = prehash($k, $n, $sv); ($pf1,$pf2) = ($pf2,$pf1) if ($pf1 > $pf2); # Canonicalize order my $pf = "$pf1,$pf2"; my $e = ${$href}{$k}; my $xkey; if (defined($xkey = $edges{$pf})) { next if ($e == ${$href}{$xkey}); # Duplicate hash, safe to ignore if (defined($run)) { print STDERR "$run: Collision: $pf: $k with $xkey\n"; } return; } # print STDERR "Edge $pf value $e from $k\n"; $edges{$pf} = $k; push(@{$nodeneigh[$pf1]}, [$pf2, $e]); push(@{$nodeneigh[$pf2]}, [$pf1, $e]); } # Now we need to assign values to each vertex, so that for each # edge, the sum of the values for the two vertices give the value # for the edge (which is our hash index.) If we find an impossible # sitation, the graph was cyclic. @nodeval = (undef) x $gsize; for ($i = 0; $i < $gsize; $i++) { if (scalar(@{$nodeneigh[$i]})) { # This vertex has neighbors (is used) if (!defined($nodeval[$i])) { # First vertex in a cluster unless (walk_graph(\@nodeval, \@nodeneigh, $i, 0)) { if (defined($run)) { print STDERR "$run: Graph is cyclic\n"; } return; } } } } # for ($i = 0; $i < $n; $i++) { # print STDERR "Vertex ", $i, ": ", $g[$i], "\n"; # } if (defined($run)) { printf STDERR "$run: Done: n = $n, sv = [0x%08x, 0x%08x]\n", $$sv[0], $$sv[1]; } return ($n, $sv, \@nodeval); } # # Driver for generating the function # # gen_perfect_hash(\%data) # sub gen_perfect_hash($) { my($href) = @_; my @keys = keys(%{$href}); my @hashinfo; my ($n, $i, $j, $sv, $maxj); my $run = 1; # Minimal power of 2 value for N with enough wiggle room. # The scaling constant must be larger than 0.5 in order for the # algorithm to ever terminate. my $room = int(scalar(@keys)*0.8); $n = 1; while ($n < $room) { $n <<= 1; } # Number of times to try... $maxj = scalar @random_sv_vectors; for ($i = 0; $i < 4; $i++) { printf STDERR "%d vectors, trying n = %d...\n", scalar @keys, $n; for ($j = 0; $j < $maxj; $j++) { $sv = $random_sv_vectors[$j]; @hashinfo = gen_hash_n($n, $sv, $href, $run++); return @hashinfo if (@hashinfo); } $n <<= 1; } return; } # # Verify that the hash table is actually correct... # sub verify_hash_table($$) { my ($href, $hashinfo) = @_; my ($n, $sv, $g) = @{$hashinfo}; my $k; my $err = 0; foreach $k (keys(%$href)) { my ($pf1, $pf2) = prehash($k, $n, $sv); my $g1 = ${$g}[$pf1]; my $g2 = ${$g}[$pf2]; if ($g1+$g2 != ${$href}{$k}) { printf STDERR "%s(%d,%d): %d+%d = %d != %d\n", $k, $pf1, $pf2, $g1, $g2, $g1+$g2, ${$href}{$k}; $err = 1; } else { # printf STDERR "%s: %d+%d = %d ok\n", # $k, $g1, $g2, $g1+$g2; } } die "$0: hash validation error\n" if ($err); } 1;