#!/usr/bin/perl ## -------------------------------------------------------------------------- ## ## Copyright 1996-2020 The NASM Authors - All Rights Reserved ## See the file AUTHORS included with the NASM distribution for ## the specific copyright holders. ## ## Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following ## conditions are met: ## ## * Redistributions of source code must retain the above copyright ## notice, this list of conditions and the following disclaimer. ## * Redistributions in binary form must reproduce the above ## copyright notice, this list of conditions and the following ## disclaimer in the documentation and/or other materials provided ## with the distribution. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND ## CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, ## INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ## MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ## DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR ## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ## NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ## LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ## HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN ## CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR ## OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, ## EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ## ## -------------------------------------------------------------------------- # # insns.pl # # Parse insns.dat and produce generated source code files # # See x86/bytecode.txt for the defintion of the byte code # output to x86/insnsb.c. # require 'x86/insns-iflags.ph'; # Opcode prefixes which need their own opcode tables # LONGER PREFIXES FIRST! @disasm_prefixes = qw(0F24 0F25 0F38 0F3A 0F7A 0FA6 0FA7 0F); # This should match MAX_OPERANDS from nasm.h $MAX_OPERANDS = 5; # Add VEX/XOP prefixes @vex_class = ( 'vex', 'xop', 'evex' ); $vex_classes = scalar(@vex_class); @vexlist = (); %vexmap = (); for ($c = 0; $c < $vex_classes; $c++) { $vexmap{$vex_class[$c]} = $c; for ($m = 0; $m < 32; $m++) { for ($p = 0; $p < 4; $p++) { push(@vexlist, sprintf("%s%02X%01X", $vex_class[$c], $m, $p)); } } } @disasm_prefixes = (@vexlist, @disasm_prefixes, ''); %disasm_prefixes = map { $_ => 1 } @disasm_prefixes; @bytecode_count = (0) x 256; # Push to an array reference, creating the array if needed sub xpush($@) { my $ref = shift @_; $$ref = [] unless (defined($$ref)); return push(@$$ref, @_); } # Generate relaxed form patterns if applicable sub relaxed_forms(@) { my @field_list = @_; foreach my $fields (@_) { next unless ($fields->[1] =~ /\*/); # This instruction has relaxed form(s) if ($fields->[2] !~ /^\[/) { warn "$fname:$line: has an * operand but uses raw bytecodes\n"; next; } my $opmask = 0; my @ops = split(/,/, $fields->[1]); for (my $oi = 0; $oi < scalar @ops; $oi++) { if ($ops[$oi] =~ /\*$/) { if ($oi == 0) { warn "$fname:$line: has a first operand with a *\n"; next; } $opmask |= 1 << $oi; } } for (my $oi = 1; $oi < (1 << scalar @ops); $oi++) { if (($oi & ~$opmask) == 0) { my @xops = (); my $omask = ~$oi; for ($oj = 0; $oj < scalar(@ops); $oj++) { if ($omask & 1) { push(@xops, $ops[$oj]); } $omask >>= 1; } my @ff = @$fields; $ff[1] = join(',', @xops); $ff[4] = $oi; push(@field_list, [@ff]); } } } return @field_list; } # Condition codes used by the disassembler my %condd = ( 'o' => 0, 'no' => 1, 'c' => 2, 'nc' => 3, 'z' => 4, 'nz' => 5, 'na' => 6, 'a' => 7, 's' => 8, 'ns' => 9, 'pe' => 10, 'po' => 11, 'l' => 12, 'nl' => 13, 'ng' => 14, 'g' => 15 ); # All condition code aliases my %conds = ( %condd, 'ae' => 3, 'b' => 2, 'be' => 6, 'e' => 4, 'ge' => 13, 'le' => 14, 'nae' => 2, 'nb' => 3, 'nbe' => 7, 'ne' => 5, 'nge' => 12, 'nle' => 15, 'np' => 11, 'p' => 10 ); my @conds = sort keys(%conds); # Generate conditional form patterns if applicable sub conditional_forms(@) { my @field_list = (); foreach my $fields (@_) { # This is a case sensitive match! if ($fields->[0] !~ /cc/) { # Not a conditional instruction pattern push(@field_list, $fields); next; } if ($fields->[2] !~ /^\[/) { warn "$fname:$line: conditional instruction using raw bytecodes\n"; next; } foreach my $cc (@conds) { my @ff = @$fields; $ff[0] =~ s/cc/\U$cc/; unless ($ff[2] =~ /^(\[.*?)\b([0-9a-f]{2})\+c\b(.*\])$/) { warn "$fname:$line: invalid conditional encoding"; next; } $ff[2] = $1.sprintf('%02x', hex($2)^$conds{$cc}).$3; unless (defined($condd{$cc}) || $ff[3] =~ /\bND\b/) { $ff[3] .= ',ND'; } push(@field_list, [@ff]); } } return @field_list; } print STDERR "Reading insns.dat...\n"; @args = (); undef $output; foreach $arg ( @ARGV ) { if ( $arg =~ /^\-/ ) { if ( $arg =~ /^\-([abdin]|f[hc])$/ ) { $output = $1; } else { die "$0: Unknown option: ${arg}\n"; } } else { push (@args, $arg); } } die if (scalar(@args) != 2); # input output ($fname, $oname) = @args; open(F, '<', $fname) || die "unable to open $fname"; %dinstables = (); @bytecode_list = (); %aname = (); $line = 0; $insns = 0; $n_opcodes = 0; my @allpatterns = (); while () { $line++; chomp; next if ( /^\s*(\;.*|)$/ ); # comments or blank lines unless (/^\s*(\S+)\s+(\S+)\s+(\S+|\[.*\])\s+(\S+)\s*$/) { warn "line $line does not contain four fields\n"; next; } my @field_list = ([$1, $2, $3, $4, 0]); @field_list = relaxed_forms(@field_list); @field_list = conditional_forms(@field_list); foreach my $fields (@field_list) { ($formatted, $nd) = format_insn(@$fields); if ($formatted) { $insns++; xpush(\$aname{$fields->[0]}, $formatted); } if (!defined($k_opcodes{$fields->[0]})) { $k_opcodes{$fields->[0]} = $n_opcodes++; } if ($formatted && !$nd) { push @big, $formatted; my @sseq = startseq($fields->[2], $fields->[4]); foreach my $i (@sseq) { xpush(\$dinstables{$i}, $#big); } } } } close F; # # Generate the bytecode array. At this point, @bytecode_list contains # the full set of bytecodes. # # Sort by descending length @bytecode_list = sort { scalar(@$b) <=> scalar(@$a) } @bytecode_list; @bytecode_array = (); %bytecode_pos = (); $bytecode_next = 0; foreach $bl (@bytecode_list) { my $h = hexstr(@$bl); next if (defined($bytecode_pos{$h})); push(@bytecode_array, $bl); while ($h ne '') { $bytecode_pos{$h} = $bytecode_next; $h = substr($h, 2); $bytecode_next++; } } undef @bytecode_list; @opcodes = sort { $k_opcodes{$a} <=> $k_opcodes{$b} } keys(%k_opcodes); if ( $output eq 'b') { print STDERR "Writing $oname...\n"; open(B, '>', $oname); print B "/* This file auto-generated from insns.dat by insns.pl" . " - don't edit it */\n\n"; print B "#include \"nasm.h\"\n"; print B "#include \"insns.h\"\n\n"; print B "const uint8_t nasm_bytecodes[$bytecode_next] = {\n"; $p = 0; foreach $bl (@bytecode_array) { printf B " /* %5d */ ", $p; foreach $d (@$bl) { printf B "%#o,", $d; $p++; } printf B "\n"; } print B "};\n"; print B "\n"; print B "/*\n"; print B " * Bytecode frequencies (including reuse):\n"; print B " *\n"; for ($i = 0; $i < 32; $i++) { print B " *"; for ($j = 0; $j < 256; $j += 32) { print B " |" if ($j); printf B " %3o:%4d", $i+$j, $bytecode_count[$i+$j]; } print B "\n"; } print B " */\n"; close B; } if ( $output eq 'a' ) { print STDERR "Writing $oname...\n"; open(A, '>', $oname); print A "/* This file auto-generated from insns.dat by insns.pl" . " - don't edit it */\n\n"; print A "#include \"nasm.h\"\n"; print A "#include \"insns.h\"\n\n"; foreach $i (@opcodes) { print A "static const struct itemplate instrux_${i}[] = {\n"; foreach $j (@{$aname{$i}}) { print A " ", codesubst($j), "\n"; } print A " ITEMPLATE_END\n};\n\n"; } print A "const struct itemplate * const nasm_instructions[] = {\n"; foreach $i (@opcodes) { print A " instrux_${i},\n"; } print A "};\n"; close A; } if ( $output eq 'd' ) { print STDERR "Writing $oname...\n"; open(D, '>', $oname); print D "/* This file auto-generated from insns.dat by insns.pl" . " - don't edit it */\n\n"; print D "#include \"nasm.h\"\n"; print D "#include \"insns.h\"\n\n"; print D "static const struct itemplate instrux[] = {\n"; $n = 0; foreach $j (@big) { printf D " /* %4d */ %s\n", $n++, codesubst($j); } print D "};\n"; foreach $h (sort(keys(%dinstables))) { next if ($h eq ''); # Skip pseudo-instructions print D "\nstatic const struct itemplate * const itable_${h}[] = {\n"; foreach $j (@{$dinstables{$h}}) { print D " instrux + $j,\n"; } print D "};\n"; } @prefix_list = (); foreach $h (@disasm_prefixes) { for ($c = 0; $c < 256; $c++) { $nn = sprintf("%s%02X", $h, $c); if ($is_prefix{$nn} || defined($dinstables{$nn})) { # At least one entry in this prefix table push(@prefix_list, $h); $is_prefix{$h} = 1; last; } } } foreach $h (@prefix_list) { print D "\n"; print D "static " unless ($h eq ''); print D "const struct disasm_index "; print D ($h eq '') ? 'itable' : "itable_$h"; print D "[256] = {\n"; for ($c = 0; $c < 256; $c++) { $nn = sprintf("%s%02X", $h, $c); if ($is_prefix{$nn}) { if ($dinstables{$nn}) { print STDERR "$fname: ambiguous decoding, prefix $nn aliases:\n"; foreach my $dc (@{$dinstables{$nn}}) { print STDERR codesubst($big[$dc]), "\n"; } exit 1; } printf D " /* 0x%02x */ { itable_%s, -1 },\n", $c, $nn; } elsif ($dinstables{$nn}) { printf D " /* 0x%02x */ { itable_%s, %u },\n", $c, $nn, scalar(@{$dinstables{$nn}}); } else { printf D " /* 0x%02x */ { NULL, 0 },\n", $c; } } print D "};\n"; } printf D "\nconst struct disasm_index * const itable_vex[NASM_VEX_CLASSES][32][4] =\n"; print D "{\n"; for ($c = 0; $c < $vex_classes; $c++) { print D " {\n"; for ($m = 0; $m < 32; $m++) { print D " { "; for ($p = 0; $p < 4; $p++) { $vp = sprintf("%s%02X%01X", $vex_class[$c], $m, $p); printf D "%-15s", ($is_prefix{$vp} ? sprintf("itable_%s,", $vp) : 'NULL,'); } print D "},\n"; } print D " },\n"; } print D "};\n"; close D; } if ( $output eq 'i' ) { print STDERR "Writing $oname...\n"; open(I, '>', $oname); print I "/* This file is auto-generated from insns.dat by insns.pl" . " - don't edit it */\n\n"; print I "/* This file in included by nasm.h */\n\n"; print I "/* Instruction names */\n\n"; print I "#ifndef NASM_INSNSI_H\n"; print I "#define NASM_INSNSI_H 1\n\n"; print I "enum opcode {\n"; $maxlen = 0; foreach $i (@opcodes) { print I "\tI_${i},\n"; $len = length($i); $maxlen = $len if ( $len > $maxlen ); } print I "\tI_none = -1\n"; print I "};\n\n"; print I "#define MAX_INSLEN ", $maxlen, "\n"; print I "#define NASM_VEX_CLASSES ", $vex_classes, "\n"; print I "#define NO_DECORATOR\t{", join(',',(0) x $MAX_OPERANDS), "}\n"; print I "#endif /* NASM_INSNSI_H */\n"; close I; } if ( $output eq 'n' ) { print STDERR "Writing $oname...\n"; open(N, '>', $oname); print N "/* This file is auto-generated from insns.dat by insns.pl" . " - don't edit it */\n\n"; print N "#include \"tables.h\"\n\n"; print N "const char * const nasm_insn_names[] = {"; foreach $i (@opcodes) { print N "\n\t\"\L$i\""; print N ',' if ($i < $#opcodes); } print N "\n};\n"; close N; } if ( $output eq 'fh') { write_iflaggen_h(); } if ( $output eq 'fc') { write_iflag_c(); } printf STDERR "Done: %d instructions\n", $insns; # Count primary bytecodes, for statistics sub count_bytecodes(@) { my $skip = 0; foreach my $bc (@_) { if ($skip) { $skip--; next; } $bytecode_count[$bc]++; if ($bc >= 01 && $bc <= 04) { $skip = $bc; } elsif (($bc & ~03) == 010) { $skip = 1; } elsif (($bc & ~013) == 0144) { $skip = 1; } elsif ($bc == 0172 || $bc == 0173) { $skip = 1; } elsif (($bc & ~3) == 0260 || $bc == 0270) { # VEX $skip = 2; } elsif (($bc & ~3) == 0240 || $bc == 0250) { # EVEX $skip = 3; } elsif ($bc == 0330) { $skip = 1; } } } sub format_insn($$$$$) { my ($opcode, $operands, $codes, $flags, $relax) = @_; my $nd = 0; my ($num, $flagsindex); my @bytecode; my ($op, @ops, @opsize, $opp, @opx, @oppx, @decos, @opevex); return (undef, undef) if $operands eq "ignore"; # format the operands $operands =~ s/\*//g; $operands =~ s/:/|colon,/g; @ops = (); @opsize = (); @decos = (); if ($operands ne 'void') { foreach $op (split(/,/, $operands)) { my $opsz = 0; @opx = (); @opevex = (); foreach $opp (split(/\|/, $op)) { @oppx = (); if ($opp =~ s/^(b(16|32|64)|mask|z|er|sae)$//) { push(@opevex, $1); } if ($opp =~ s/(? 8, 'SW' => 16, 'SD' => 32, 'SQ' => 64, 'SO' => 128, 'SY' => 256, 'SZ' => 512 ); my $s = defined($arx) ? $arx : 0; my $e = defined($arx) ? $arx : $MAX_OPERANDS - 1; foreach my $sf (keys(%sflags)) { next if (!$flags{$sf}); for (my $i = $s; $i <= $e; $i++) { if ($opsize[$i] && $ops[$i] !~ /\breg_(gpr|[cdts]reg)\b/) { die "$fname:$line: inconsistent $sf flag for argument $i ($ops[$i])\n" if ($opsize[$i] != $sflags{$sf}); } } } $flagsindex = insns_flag_index(keys %flags); die "$fname:$line: error in flags $flags\n" unless (defined($flagsindex)); @bytecode = (decodify($codes, $relax), 0); push(@bytecode_list, [@bytecode]); $codes = hexstr(@bytecode); count_bytecodes(@bytecode); ("{I_$opcode, $num, {$operands}, $decorators, \@\@CODES-$codes\@\@, $flagsindex},", $nd); } # # Look for @@CODES-xxx@@ sequences and replace them with the appropriate # offset into nasm_bytecodes # sub codesubst($) { my($s) = @_; my $n; while ($s =~ /\@\@CODES-([0-9A-F]+)\@\@/) { my $pos = $bytecode_pos{$1}; if (!defined($pos)) { die "$fname:$line: no position assigned to byte code $1\n"; } $s = $` . "nasm_bytecodes+${pos}" . "$'"; } return $s; } sub addprefix ($@) { my ($prefix, @list) = @_; my $x; my @l = (); foreach $x (@list) { push(@l, sprintf("%s%02X", $prefix, $x)); } return @l; } # # Turn a code string into a sequence of bytes # sub decodify($$) { # Although these are C-syntax strings, by convention they should have # only octal escapes (for directives) and hexadecimal escapes # (for verbatim bytes) my($codestr, $relax) = @_; if ($codestr =~ /^\s*\[([^\]]*)\]\s*$/) { return byte_code_compile($1, $relax); } my $c = $codestr; my @codes = (); unless ($codestr eq 'ignore') { while ($c ne '') { if ($c =~ /^\\x([0-9a-f]+)(.*)$/i) { push(@codes, hex $1); $c = $2; next; } elsif ($c =~ /^\\([0-7]{1,3})(.*)$/) { push(@codes, oct $1); $c = $2; next; } else { die "$fname:$line: unknown code format in \"$codestr\"\n"; } } } return @codes; } # Turn a numeric list into a hex string sub hexstr(@) { my $s = ''; my $c; foreach $c (@_) { $s .= sprintf("%02X", $c); } return $s; } # Here we determine the range of possible starting bytes for a given # instruction. We need only consider the codes: # \[1234] mean literal bytes, of course # \1[0123] mean byte plus register value # \0 or \340 mean give up and return empty set # \34[4567] mean PUSH/POP of segment registers: special case # \17[234] skip is4 control byte # \26x \270 skip VEX control bytes # \24x \250 skip EVEX control bytes sub startseq($$) { my ($codestr, $relax) = @_; my $word; my @codes = (); my $c = $codestr; my($c0, $c1, $i); my $prefix = ''; @codes = decodify($codestr, $relax); while (defined($c0 = shift(@codes))) { $c1 = $codes[0]; if ($c0 >= 01 && $c0 <= 04) { # Fixed byte string my $fbs = $prefix; while (defined($c0)) { if ($c0 >= 01 && $c0 <= 04) { while ($c0--) { $fbs .= sprintf("%02X", shift(@codes)); } } else { last; } $c0 = shift(@codes); } foreach $pfx (@disasm_prefixes) { my $len = length($pfx); if (substr($fbs, 0, $len) eq $pfx) { $prefix = $pfx; $fbs = substr($fbs, $len, 2); last; } } if ($fbs ne '') { return ($prefix.$fbs); } unshift(@codes, $c0); } elsif ($c0 >= 010 && $c0 <= 013) { return addprefix($prefix, $c1..($c1+7)); } elsif (($c0 & ~013) == 0144) { return addprefix($prefix, $c1, $c1|2); } elsif ($c0 == 0 || $c0 == 0340) { return $prefix; } elsif (($c0 & ~3) == 0260 || $c0 == 0270 || ($c0 & ~3) == 0240 || $c0 == 0250) { my($c,$m,$wlp); $m = shift(@codes); $wlp = shift(@codes); $c = ($m >> 6); $m = $m & 31; $prefix .= sprintf('%s%02X%01X', $vex_class[$c], $m, $wlp & 3); if ($c0 < 0260) { my $tuple = shift(@codes); } } elsif ($c0 >= 0172 && $c0 <= 173) { shift(@codes); # Skip is4 control byte } else { # We really need to be able to distinguish "forbidden" # and "ignorable" codes here } } return (); } # EVEX tuple types offset is 0300. e.g. 0301 is for full vector(fv). sub tupletype($) { my ($tuplestr) = @_; my %tuple_codes = ( '' => 000, 'fv' => 001, 'hv' => 002, 'fvm' => 003, 't1s8' => 004, 't1s16' => 005, 't1s' => 006, 't1f32' => 007, 't1f64' => 010, 't2' => 011, 't4' => 012, 't8' => 013, 'hvm' => 014, 'qvm' => 015, 'ovm' => 016, 'm128' => 017, 'dup' => 020, ); if (defined $tuple_codes{$tuplestr}) { return 0300 + $tuple_codes{$tuplestr}; } else { die "$fname:$line: undefined tuple type : $tuplestr\n"; } } # # This function takes a series of byte codes in a format which is more # typical of the Intel documentation, and encode it. # # The format looks like: # # [operands: opcodes] # # The operands word lists the order of the operands: # # r = register field in the modr/m # m = modr/m # v = VEX "v" field # i = immediate # s = register field of is4/imz2 field # - = implicit (unencoded) operand # x = indeX register of mib. 014..017 bytecodes are used. # # For an operand that should be filled into more than one field, # enter it as e.g. "r+v". # sub byte_code_compile($$) { my($str, $relax) = @_; my $opr; my $opc; my @codes = (); my $litix = undef; my %oppos = (); my $i; my ($op, $oq); my $opex; my %imm_codes = ( 'ib' => 020, # imm8 'ib,u' => 024, # Unsigned imm8 'iw' => 030, # imm16 'ib,s' => 0274, # imm8 sign-extended to opsize or bits 'iwd' => 034, # imm16 or imm32, depending on opsize 'id' => 040, # imm32 'id,s' => 0254, # imm32 sign-extended to 64 bits 'iwdq' => 044, # imm16/32/64, depending on addrsize 'rel8' => 050, 'iq' => 054, 'rel16' => 060, 'rel' => 064, # 16 or 32 bit relative operand 'rel32' => 070, 'seg' => 074, ); my %plain_codes = ( 'o16' => 0320, # 16-bit operand size 'o32' => 0321, # 32-bit operand size 'odf' => 0322, # Operand size is default 'o64' => 0324, # 64-bit operand size requiring REX.W 'o64nw' => 0323, # Implied 64-bit operand size (no REX.W) 'a16' => 0310, 'a32' => 0311, 'adf' => 0312, # Address size is default 'a64' => 0313, '!osp' => 0364, '!asp' => 0365, 'f2i' => 0332, # F2 prefix, but 66 for operand size is OK 'f3i' => 0333, # F3 prefix, but 66 for operand size is OK 'mustrep' => 0336, 'mustrepne' => 0337, 'rex.l' => 0334, 'norexb' => 0314, 'norexx' => 0315, 'norexr' => 0316, 'norexw' => 0317, 'repe' => 0335, 'nohi' => 0325, # Use spl/bpl/sil/dil even without REX 'nof3' => 0326, # No REP 0xF3 prefix permitted 'norep' => 0331, # No REP prefix permitted 'wait' => 0341, # Needs a wait prefix 'resb' => 0340, 'np' => 0360, # No prefix 'jcc8' => 0370, # Match only if Jcc possible with single byte 'jmp8' => 0371, # Match only if JMP possible with single byte 'jlen' => 0373, # Length of jump 'hlexr' => 0271, 'hlenl' => 0272, 'hle' => 0273, # This instruction takes XMM VSIB 'vsibx' => 0374, 'vm32x' => 0374, 'vm64x' => 0374, # This instruction takes YMM VSIB 'vsiby' => 0375, 'vm32y' => 0375, 'vm64y' => 0375, # This instruction takes ZMM VSIB 'vsibz' => 0376, 'vm32z' => 0376, 'vm64z' => 0376, ); unless ($str =~ /^(([^\s:]*)\:*([^\s:]*)\:|)\s*(.*\S)\s*$/) { die "$fname:$line: cannot parse: [$str]\n"; } $opr = lc($2); $tuple = lc($3); # Tuple type for AVX512 $opc = lc($4); $op = 0; for ($i = 0; $i < length($opr); $i++) { my $c = substr($opr,$i,1); if ($c eq '+') { $op--; } else { if ($relax & 1) { $op--; } $relax >>= 1; $oppos{$c} = $op++; } } $tup = tupletype($tuple); my $last_imm = 'h'; my $prefix_ok = 1; foreach $op (split(/\s*(?:\s|(?=[\/\\]))/, $opc)) { my $pc = $plain_codes{$op}; if (defined $pc) { # Plain code push(@codes, $pc); } elsif ($prefix_ok && $op =~ /^(66|f2|f3)$/) { # 66/F2/F3 prefix used as an opcode extension if ($op eq '66') { push(@codes, 0361); } elsif ($op eq 'f2') { push(@codes, 0332); } else { push(@codes, 0333); } } elsif ($op =~ /^[0-9a-f]{2}$/) { if (defined($litix) && $litix+$codes[$litix]+1 == scalar @codes && $codes[$litix] < 4) { $codes[$litix]++; push(@codes, hex $op); } else { $litix = scalar(@codes); push(@codes, 01, hex $op); } $prefix_ok = 0; } elsif ($op eq '/r') { if (!defined($oppos{'r'}) || !defined($oppos{'m'})) { die "$fname:$line: $op requires r and m operands\n"; } $opex = (($oppos{'m'} & 4) ? 06 : 0) | (($oppos{'r'} & 4) ? 05 : 0); push(@codes, $opex) if ($opex); # if mib is composed with two separate operands - ICC style push(@codes, 014 + ($oppos{'x'} & 3)) if (defined($oppos{'x'})); push(@codes, 0100 + (($oppos{'m'} & 3) << 3) + ($oppos{'r'} & 3)); $prefix_ok = 0; } elsif ($op =~ m:^/([0-7])$:) { if (!defined($oppos{'m'})) { die "$fname:$line: $op requires an m operand\n"; } push(@codes, 06) if ($oppos{'m'} & 4); push(@codes, 0200 + (($oppos{'m'} & 3) << 3) + $1); $prefix_ok = 0; } elsif ($op =~ m:^/([0-3]?)r([0-7])$:) { if (!defined($oppos{'r'})) { die "$fname:$line: $op requires an r operand\n"; } push(@codes, 05) if ($oppos{'r'} & 4); push(@codes, 0171); push(@codes, (($1+0) << 6) + (($oppos{'r'} & 3) << 3) + $2); $prefix_ok = 0; } elsif ($op =~ /^(vex|xop)(|\..*)$/) { my $vexname = $1; my $c = $vexmap{$vexname}; my ($m,$w,$l,$p) = (undef,2,undef,0); my $has_nds = 0; my @subops = split(/\./, $op); shift @subops; # Drop prefix foreach $oq (@subops) { if ($oq eq '128' || $oq eq 'l0' || $oq eq 'lz') { $l = 0; } elsif ($oq eq '256' || $oq eq 'l1') { $l = 1; } elsif ($oq eq 'lig') { $l = 2; } elsif ($oq eq 'w0') { $w = 0; } elsif ($oq eq 'w1') { $w = 1; } elsif ($oq eq 'wig') { $w = 2; } elsif ($oq eq 'ww') { $w = 3; } elsif ($oq eq 'np' || $oq eq 'p0') { $p = 0; } elsif ($oq eq '66' || $oq eq 'p1') { $p = 1; } elsif ($oq eq 'f3' || $oq eq 'p2') { $p = 2; } elsif ($oq eq 'f2' || $oq eq 'p3') { $p = 3; } elsif ($oq eq '0f') { $m = 1; } elsif ($oq eq '0f38') { $m = 2; } elsif ($oq eq '0f3a') { $m = 3; } elsif ($oq =~ /^(m|map)([0-9]+)$/) { $m = $2+0; } elsif ($oq eq 'nds' || $oq eq 'ndd' || $oq eq 'dds') { if (!defined($oppos{'v'})) { die "$fname:$line: $vexname.$oq without 'v' operand\n"; } $has_nds = 1; } else { die "$fname:$line: undefined \U$vexname\E subcode: $oq\n"; } } if (!defined($m) || !defined($w) || !defined($l) || !defined($p)) { die "$fname:$line: missing fields in \U$vexname\E specification\n"; } my $minmap = ($c == 1) ? 8 : 0; # 0-31 for VEX, 8-31 for XOP if ($m < $minmap || $m > 31) { die "$fname:$line: Only maps ${minmap}-31 are valid for \U${vexname}\n"; } push(@codes, defined($oppos{'v'}) ? 0260+($oppos{'v'} & 3) : 0270, ($c << 6)+$m, ($w << 4)+($l << 2)+$p); $prefix_ok = 0; } elsif ($op =~ /^(evex)(|\..*)$/) { my $c = $vexmap{$1}; my ($m,$w,$l,$p) = (undef,2,undef,0); my $has_nds = 0; my @subops = split(/\./, $op); shift @subops; # Drop prefix foreach $oq (@subops) { if ($oq eq '128' || $oq eq 'l0' || $oq eq 'lz' || $oq eq 'lig') { $l = 0; } elsif ($oq eq '256' || $oq eq 'l1') { $l = 1; } elsif ($oq eq '512' || $oq eq 'l2') { $l = 2; } elsif ($oq eq 'w0') { $w = 0; } elsif ($oq eq 'w1') { $w = 1; } elsif ($oq eq 'wig') { $w = 2; } elsif ($oq eq 'ww') { $w = 3; } elsif ($oq eq 'np' || $oq eq 'p0') { $p = 0; } elsif ($oq eq '66' || $oq eq 'p1') { $p = 1; } elsif ($oq eq 'f3' || $oq eq 'p2') { $p = 2; } elsif ($oq eq 'f2' || $oq eq 'p3') { $p = 3; } elsif ($oq eq '0f') { $m = 1; } elsif ($oq eq '0f38') { $m = 2; } elsif ($oq eq '0f3a') { $m = 3; } elsif ($oq eq 'map5') { $m = 5; } elsif ($oq eq 'map6') { $m = 6; } elsif ($oq =~ /^m([0-9]+)$/) { $m = $1+0; } elsif ($oq eq 'nds' || $oq eq 'ndd' || $oq eq 'dds') { if (!defined($oppos{'v'})) { die "$fname:$line: evex.$oq without 'v' operand\n"; } $has_nds = 1; } else { die "$fname:$line: undefined EVEX subcode: $oq\n"; } } if (!defined($m) || !defined($w) || !defined($l) || !defined($p)) { die "$fname:$line: missing fields in EVEX specification\n"; } if ($m > 15) { die "$fname:$line: Only maps 0-15 are valid for EVEX\n"; } push(@codes, defined($oppos{'v'}) ? 0240+($oppos{'v'} & 3) : 0250, ($c << 6)+$m, ($w << 4)+($l << 2)+$p, $tup); $prefix_ok = 0; } elsif (defined $imm_codes{$op}) { if ($op eq 'seg') { if ($last_imm lt 'i') { die "$fname:$line: seg without an immediate operand\n"; } } else { $last_imm++; if ($last_imm gt 'j') { die "$fname:$line: too many immediate operands\n"; } } if (!defined($oppos{$last_imm})) { die "$fname:$line: $op without '$last_imm' operand\n"; } push(@codes, 05) if ($oppos{$last_imm} & 4); push(@codes, $imm_codes{$op} + ($oppos{$last_imm} & 3)); $prefix_ok = 0; } elsif ($op eq '/is4') { if (!defined($oppos{'s'})) { die "$fname:$line: $op without 's' operand\n"; } if (defined($oppos{'i'})) { push(@codes, 0172, ($oppos{'s'} << 3)+$oppos{'i'}); } else { push(@codes, 05) if ($oppos{'s'} & 4); push(@codes, 0174+($oppos{'s'} & 3)); } $prefix_ok = 0; } elsif ($op =~ /^\/is4\=([0-9]+)$/) { my $imm = $1; if (!defined($oppos{'s'})) { die "$fname:$line: $op without 's' operand\n"; } if ($imm < 0 || $imm > 15) { die "$fname:$line: invalid imm4 value for $op: $imm\n"; } push(@codes, 0173, ($oppos{'s'} << 4) + $imm); $prefix_ok = 0; } elsif ($op =~ /^([0-9a-f]{2})\+r$/) { if (!defined($oppos{'r'})) { die "$fname:$line: $op without 'r' operand\n"; } push(@codes, 05) if ($oppos{'r'} & 4); push(@codes, 010 + ($oppos{'r'} & 3), hex $1); $prefix_ok = 0; } elsif ($op =~ /^\\([0-7]+|x[0-9a-f]{2})$/) { # Escape to enter literal bytecodes push(@codes, oct $1); } else { die "$fname:$line: unknown operation: $op\n"; } } return @codes; }