More consistent handling of radix letters

Allow any radix letter from the set [bydtoqhx] to be used either
"Intel-style" (0...x) or "C-style" (0x...).  In Intel style, the
leading 0 remains optional as long as the first digit is in the range
0-9.

As a consequence, allow the prefix "0h" for hexadecimal floating
point.
This commit is contained in:
H. Peter Anvin 2007-10-22 16:53:48 -07:00
parent 3b2ad1bc37
commit bea0bbb62c
5 changed files with 235 additions and 23 deletions

View File

@ -656,7 +656,8 @@ static int to_float(const char *str, int sign, uint8_t * result,
break;
}
} else {
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
if (str[0] == '0' &&
(str[1] == 'x' || str[1] == 'X' || str[1] == 'h' || str[1] == 'H'))
ok = ieee_flconvert_hex(str + 2, mant, &exponent);
else if (str[0] == '$')
ok = ieee_flconvert_hex(str + 1, mant, &exponent);

View File

@ -196,6 +196,26 @@ char *nasm_strsep(char **stringp, const char *delim)
#define lib_isnumchar(c) (isalnum(c) || (c) == '$' || (c) == '_')
#define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
static int radix_letter(char c)
{
switch (c) {
case 'b': case 'B':
case 'y': case 'Y':
return 2; /* Binary */
case 'o': case 'O':
case 'q': case 'Q':
return 8; /* Octal */
case 'h': case 'H':
case 'x': case 'X':
return 16; /* Hexadecimal */
case 'd': case 'D':
case 't': case 'T':
return 10; /* Decimal */
default:
return 0; /* Not a known radix letter */
}
}
int64_t readnum(char *str, bool *error)
{
char *r = str, *q;
@ -225,22 +245,18 @@ int64_t readnum(char *str, bool *error)
q++; /* find end of number */
/*
* If it begins 0x, 0X or $, or ends in H, it's in hex. if it
* ends in Q, it's octal. if it ends in B, it's binary.
* Otherwise, it's ordinary decimal.
* Handle radix formats:
*
* 0<radix-letter><string>
* $<string> (hexadecimal)
* <string><radix-letter>
*/
if (*r == '0' && (r[1] == 'x' || r[1] == 'X'))
radix = 16, r += 2;
if (*r == '0' && (radix = radix_letter(r[1])))
r += 2;
else if (*r == '$')
radix = 16, r++;
else if (q[-1] == 'H' || q[-1] == 'h')
radix = 16, q--;
else if (q[-1] == 'Q' || q[-1] == 'q' || q[-1] == 'O' || q[-1] == 'o')
radix = 8, q--;
else if (q[-1] == 'B' || q[-1] == 'b' || q[-1] == 'Y' || q[-1] == 'y')
radix = 2, q--;
else if (q[-1] == 'D' || q[-1] == 'd' || q[-1] == 'T' || q[-1] == 't')
radix = 10, q--;
else if ((radix = radix_letter(q[-1])) != 0)
q--;
else
radix = 10;

View File

@ -119,13 +119,14 @@ int stdscan(void *private_data, struct tokenval *tv)
bool is_hex = false;
bool is_float = false;
bool has_e = false;
bool has_h = false;
char c;
r = stdscan_bufptr++;
r = stdscan_bufptr;
if (r[0] == '$' || (r[0] == '0' || (r[1] == 'x' || r[1] == 'X')))
if (*stdscan_bufptr == '$') {
stdscan_bufptr++;
is_hex = true;
}
for (;;) {
c = *stdscan_bufptr++;
@ -138,9 +139,9 @@ int stdscan(void *private_data, struct tokenval *tv)
is_float = true;
stdscan_bufptr++;
}
} else if (c == 'H' || c == 'h') {
has_h = true;
} else if (is_hex & (c == 'P' || c == 'p')) {
} else if (c == 'H' || c == 'h' || c == 'X' || c == 'x') {
is_hex = true;
} else if (is_hex && (c == 'P' || c == 'p')) {
is_float = true;
if (*stdscan_bufptr == '+' || *stdscan_bufptr == '-')
stdscan_bufptr++;
@ -153,7 +154,7 @@ int stdscan(void *private_data, struct tokenval *tv)
}
stdscan_bufptr--; /* Point to first character beyond number */
if (has_e && !has_h) {
if (has_e && !is_hex) {
/* 1e13 is floating-point, but 1e13h is not */
is_float = true;
}

View File

@ -177,6 +177,177 @@
do Inf ; Infinity
do NaN
; 16-bit
dw 1.0
dw 0h1.0
dw 2.0
dw 0h2.0
dw 0h1.0p+1
dw 0h1.0p-1
dw 0h0.0
dw 0h1.23456789
dw 0h0.123456789
dw 0h0.0000123456789
dw 0h1.23456789p10
dw 0h1.23456789p+10
dw 0h1.23456789p-10
dw 0h0.123456789p10
dw 0h0.123456789p+10
dw 0h0.123456789abcdef0123456789abcdef012345p-10
dw 0h0.0000123456789
dw 0h0.0000123456789p+10
dw 0h0.0000123456789p-10
dw 0h1.0p-25 ; Underflow
dw 0h1.0p-24 ; Smallest denorm
dw 0h1.ffffffffffffffffffffffffffffp-16 ; Rounds to denorm
dw 0h1.0p-15 ; Denorm
dw 0h1.ffffffffffffffffffffffffffffp-15 ; Rounds to normal
dw 0h1.0p-14 ; Smallest non-denorm
dw 0h1.0p+15 ; Biggest possible exponent
dw 0h1.ffffffffffffffffffffffffffffp+15 ; Rounds to infinity
dw Inf ; Infinity
dw NaN
; 32-bit
dd 1.0
dd 0h1.0
dd 2.0
dd 0h2.0
dd 0h1.0p+1
dd 0h1.0p-1
dd 0h0.0
dd 0h1.23456789
dd 0h0.123456789
dd 0h0.0000123456789
dd 0h1.23456789p10
dd 0h1.23456789p+10
dd 0h1.23456789p-10
dd 0h0.123456789p10
dd 0h0.123456789p+10
dd 0h0.123456789abcdef0123456789abcdef012345p-10
dd 0h0.0000123456789
dd 0h0.0000123456789p+10
dd 0h0.0000123456789p-10
dd 0h123456789.0
dd 0h0000123456789.0
dd 0h123456789.0p+0
dd 0h123456789.0p+64
dd 0h1.0p-150 ; Underflow
dd 0h1.0p-149 ; Smallest denorm
dd 0h1.ffffffffffffffffffffffffffffp-128 ; Rounds to denorm
dd 0h1.0p-127 ; Denorm
dd 0h1.ffffffffffffffffffffffffffffp-127 ; Rounds to normal
dd 0h1.0p-126 ; Smallest non-denorm
dd 0h1.0p+127 ; Biggest possible exponent
dd 0h1.ffffffffffffffffffffffffffffp+127 ; Rounds to infinity
dd Inf ; Infinity
dd NaN
; 64-bit
dq 1.0
dq 0h1.0
dq 2.0
dq 0h2.0
dq 0h1.0p+1
dq 0h1.0p-1
dq 0h0.0
dq 0h1.23456789
dq 0h0.123456789
dq 0h0.0000123456789
dq 0h1.23456789p10
dq 0h1.23456789p+10
dq 0h1.23456789p-10
dq 0h0.123456789p10
dq 0h0.123456789p+10
dq 0h0.123456789abcdef0123456789abcdef012345p-10
dq 0h0.0000123456789
dq 0h0.0000123456789p+10
dq 0h0.0000123456789p-10
dq 0h123456789.0
dq 0h0000123456789.0
dq 0h123456789.0p+0
dq 0h123456789.0p+300
dq 0h1.0p-1075 ; Underflow
dq 0h1.0p-1074 ; Smallest denorm
dq 0h1.ffffffffffffffffffffffffffffp-1024 ; Rounds to denorm
dq 0h1.0p-1023 ; Denorm
dq 0h1.ffffffffffffffffffffffffffffp-1023 ; Rounds to normal
dq 0h1.0p-1022 ; Smallest non-denorm
dq 0h1.0p+1023 ; Biggest possible exponent
dq 0h1.ffffffffffffffffffffffffffffp+1023 ; Rounds to infinity
dq Inf ; Infinity
dq NaN
; 80-bit
dt 1.0
dt 0h1.0
dt 2.0
dt 0h2.0
dt 0h1.0p+1
dt 0h1.0p-1
dt 0h0.0
dt 0h1.23456789
dt 0h0.123456789
dt 0h0.0000123456789
dt 0h1.23456789p10
dt 0h1.23456789p+10
dt 0h1.23456789p-10
dt 0h0.123456789p10
dt 0h0.123456789p+10
dt 0h0.123456789abcdef0123456789abcdef012345p-10
dt 0h0.0000123456789
dt 0h0.0000123456789p+10
dt 0h0.0000123456789p-10
dt 0h123456789.0
dt 0h0000123456789.0
dt 0h123456789.0p+0
dt 0h123456789.0p+1024
dt 0h1.0p-16446 ; Underflow
dt 0h1.0p-16445 ; Smallest denorm
dt 0h1.ffffffffffffffffffffffffffffp-16384 ; Rounds to denorm
dt 0h1.0p-16383 ; Denorm
dt 0h1.ffffffffffffffffffffffffffffp-16383 ; Rounds to normal
dt 0h1.0p-16382 ; Smallest non-denorm
dt 0h1.0p+16383 ; Biggest possible exponent
dt 0h1.ffffffffffffffffffffffffffffp+16383 ; Rounds to infinity
dt Inf ; Infinity
dt NaN
; 128-bit
do 1.0
do 0h1.0
do 2.0
do 0h2.0
do 0h1.0p+1
do 0h1.0p-1
do 0h0.0
do 0h1.23456789
do 0h0.123456789
do 0h0.0000123456789
do 0h1.23456789p10
do 0h1.23456789p+10
do 0h1.23456789p-10
do 0h0.123456789p10
do 0h0.123456789p+10
do 0h0.123456789abcdef0123456789abcdef012345p-10
do 0h0.0000123456789
do 0h0.0000123456789p+10
do 0h0.0000123456789p-10
do 0h123456789.0
do 0h0000123456789.0
do 0h123456789.0p+0
do 0h123456789.0p+1024
do 0h1.0p-16495 ; Underflow
do 0h1.0p-16494 ; Smallest denorm
do 0h1.ffffffffffffffffffffffffffffffffp-16384 ; Rounds to denorm
do 0h1.0p-16383 ; Denorm
do 0h1.ffffffffffffffffffffffffffffffffp-16383 ; Rounds to normal
do 0h1.0p-16382 ; Smallest non-denorm
do 0h1.0p+16383 ; Biggest possible exponent
do 0h1.ffffffffffffffffffffffffffffffffp+16383 ; Rounds to infinity
do Inf ; Infinity
do NaN
; 16-bit
dw 1.0
dw $1.0

23
test/radix.asm Normal file
View File

@ -0,0 +1,23 @@
dd 1010_0101 ; Decimal
dd 01010_0101 ; Decimal (*not* octal!)
dd 0d1010_0101 ; Decimal
dd 0t1010_0101 ; Decimal
dd 1010_0101d ; Decimal
dd 1010_0101t ; Decimal
dd 0b1010_0101 ; Binary
dd 0y1010_0101 ; Binary
dd 1010_0101b ; Binary
dd 1010_0101y ; Binary
dd 0o1010_0101 ; Octal
dd 0q1010_0101 ; Octal
dd 1010_0101o ; Octal
dd 1010_0101q ; Octal
dd 0h1010_0101 ; Hex
dd 0x1010_0101 ; Hex
dd 1010_0101h ; Hex
dd 1010_0101x ; Hex
dd $1010_0101 ; Hex