2
0
mirror of https://github.com/HDFGroup/hdf5.git synced 2025-01-24 15:25:00 +08:00
hdf5/tools/test/perform/sio_perf.c
Dana Robinson 2090a527c1
Brings the tools getopt(3) replacement into the main library ()
* Moves get_option from the tools library to the C library

* Adds H5 prefix to get_option call and variables

* Renames the H5_get_option long options struct and enum
2021-06-29 15:06:48 -05:00

1438 lines
53 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Serial HDF5 Performance Testing Code
* --------------------------------------
*
* Portable code to test performance on the different platforms we support.
* This is what the report should look like:
*
* nprocs = Max#Procs
* IO API = POSIXIO
* # Files = 1, # of dsets = 1000, Elements per dset = 37000
* Write Results = x MB/s
* Read Results = x MB/s
* # Files = 1, # of dsets = 3000, Elements per dset = 37000
* Write Results = x MB/s
* Read Results = x MB/s
*
* . . .
*
*
* IO API = HDF5
* # Files = 1, # of dsets = 1000, Elements per dset = 37000
* Write Results = x MB/s
* Read Results = x MB/s
* # Files = 1, # of dsets = 3000, Elements per dset = 37000
* Write Results = x MB/s
* Read Results = x MB/s
*
* . . .
*
*
* . . .
*
*/
/* system header files */
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include "hdf5.h"
/* our header files */
#include "sio_perf.h"
/* useful macros */
#define TAB_SPACE 4
#define ONE_KB 1024
#define ONE_MB (ONE_KB * ONE_KB)
#define ONE_GB (ONE_MB * ONE_KB)
#define SIO_POSIX 0x1
#define SIO_HDF5 0x4
/* report 0.0 in case t is zero too */
#define MB_PER_SEC(bytes, t) (H5_DBL_ABS_EQUAL(t, 0.0) ? 0.0 : ((((double)bytes) / (double)ONE_MB) / (t)))
#ifndef TRUE
#define TRUE 1
#endif /* TRUE */
#ifndef FALSE
#define FALSE (!TRUE)
#endif /* FALSE */
/* global variables */
FILE *output; /* output file */
int sio_debug_level = 0; /* The debug level:
* 0 - Off
* 1 - Minimal
* 2 - Some more
* 3 - Maximal
* 4 - Maximal & then some
*/
/* local variables */
static const char *progname = "h5perf_serial";
/*
* Command-line options: The user can specify short or long-named
* parameters. The long-named ones can be partially spelled. When
* adding more, make sure that they don't clash with each other.
*/
/*
* It seems that only the options that accept additional information
* such as dataset size (-e) require the colon next to it.
*/
static const char * s_opts = "a:A:B:c:Cd:D:e:F:ghi:Imno:p:P:r:stT:v:wx:X:";
static struct h5_long_options l_opts[] = {{"align", require_arg, 'a'},
{"alig", require_arg, 'a'},
{"ali", require_arg, 'a'},
{"al", require_arg, 'a'},
{"api", require_arg, 'A'},
{"ap", require_arg, 'A'},
#if 0
/* a sighting of the elusive binary option */
{ "binary", no_arg, 'b' },
{ "binar", no_arg, 'b' },
{ "bina", no_arg, 'b' },
{ "bin", no_arg, 'b' },
{ "bi", no_arg, 'b' },
#endif /* 0 */
{"block-size", require_arg, 'B'},
{"block-siz", require_arg, 'B'},
{"block-si", require_arg, 'B'},
{"block-s", require_arg, 'B'},
{"block-", require_arg, 'B'},
{"block", require_arg, 'B'},
{"bloc", require_arg, 'B'},
{"blo", require_arg, 'B'},
{"bl", require_arg, 'B'},
{"chunk", no_arg, 'c'},
{"chun", no_arg, 'c'},
{"chu", no_arg, 'c'},
{"ch", no_arg, 'c'},
{"collective", no_arg, 'C'},
{"collectiv", no_arg, 'C'},
{"collecti", no_arg, 'C'},
{"collect", no_arg, 'C'},
{"collec", no_arg, 'C'},
{"colle", no_arg, 'C'},
{"coll", no_arg, 'C'},
{"col", no_arg, 'C'},
{"co", no_arg, 'C'},
{"debug", require_arg, 'D'},
{"debu", require_arg, 'D'},
{"deb", require_arg, 'D'},
{"de", require_arg, 'D'},
{"file-driver", require_arg, 'v'},
{"file-drive", require_arg, 'v'},
{"file-driv", require_arg, 'v'},
{"file-dri", require_arg, 'v'},
{"file-dr", require_arg, 'v'},
{"file-d", require_arg, 'v'},
{"file-", require_arg, 'v'},
{"file", require_arg, 'v'},
{"fil", require_arg, 'v'},
{"fi", require_arg, 'v'},
{"geometry", no_arg, 'g'},
{"geometr", no_arg, 'g'},
{"geomet", no_arg, 'g'},
{"geome", no_arg, 'g'},
{"geom", no_arg, 'g'},
{"geo", no_arg, 'g'},
{"ge", no_arg, 'g'},
{"help", no_arg, 'h'},
{"hel", no_arg, 'h'},
{"he", no_arg, 'h'},
{"interleaved", require_arg, 'I'},
{"interleave", require_arg, 'I'},
{"interleav", require_arg, 'I'},
{"interlea", require_arg, 'I'},
{"interle", require_arg, 'I'},
{"interl", require_arg, 'I'},
{"inter", require_arg, 'I'},
{"inte", require_arg, 'I'},
{"int", require_arg, 'I'},
{"in", require_arg, 'I'},
{"max-num-processes", require_arg, 'P'},
{"max-num-processe", require_arg, 'P'},
{"max-num-process", require_arg, 'P'},
{"max-num-proces", require_arg, 'P'},
{"max-num-proce", require_arg, 'P'},
{"max-num-proc", require_arg, 'P'},
{"max-num-pro", require_arg, 'P'},
{"max-num-pr", require_arg, 'P'},
{"max-num-p", require_arg, 'P'},
{"min-num-processes", require_arg, 'p'},
{"min-num-processe", require_arg, 'p'},
{"min-num-process", require_arg, 'p'},
{"min-num-proces", require_arg, 'p'},
{"min-num-proce", require_arg, 'p'},
{"min-num-proc", require_arg, 'p'},
{"min-num-pro", require_arg, 'p'},
{"min-num-pr", require_arg, 'p'},
{"min-num-p", require_arg, 'p'},
{"max-xfer-size", require_arg, 'X'},
{"max-xfer-siz", require_arg, 'X'},
{"max-xfer-si", require_arg, 'X'},
{"max-xfer-s", require_arg, 'X'},
{"max-xfer", require_arg, 'X'},
{"max-xfe", require_arg, 'X'},
{"max-xf", require_arg, 'X'},
{"max-x", require_arg, 'X'},
{"min-xfer-size", require_arg, 'x'},
{"min-xfer-siz", require_arg, 'x'},
{"min-xfer-si", require_arg, 'x'},
{"min-xfer-s", require_arg, 'x'},
{"min-xfer", require_arg, 'x'},
{"min-xfe", require_arg, 'x'},
{"min-xf", require_arg, 'x'},
{"min-x", require_arg, 'x'},
{"num-bytes", require_arg, 'e'},
{"num-byte", require_arg, 'e'},
{"num-byt", require_arg, 'e'},
{"num-by", require_arg, 'e'},
{"num-b", require_arg, 'e'},
{"num-dsets", require_arg, 'd'},
{"num-dset", require_arg, 'd'},
{"num-dse", require_arg, 'd'},
{"num-ds", require_arg, 'd'},
{"num-d", require_arg, 'd'},
{"num-files", require_arg, 'F'},
{"num-file", require_arg, 'F'},
{"num-fil", require_arg, 'F'},
{"num-fi", require_arg, 'F'},
{"num-f", require_arg, 'F'},
{"num-iterations", require_arg, 'i'},
{"num-iteration", require_arg, 'i'},
{"num-iteratio", require_arg, 'i'},
{"num-iterati", require_arg, 'i'},
{"num-iterat", require_arg, 'i'},
{"num-itera", require_arg, 'i'},
{"num-iter", require_arg, 'i'},
{"num-ite", require_arg, 'i'},
{"num-it", require_arg, 'i'},
{"num-i", require_arg, 'i'},
{"order", require_arg, 'r'},
{"orde", require_arg, 'r'},
{"ord", require_arg, 'r'},
{"or", require_arg, 'r'},
{"output", require_arg, 'o'},
{"outpu", require_arg, 'o'},
{"outp", require_arg, 'o'},
{"out", require_arg, 'o'},
{"ou", require_arg, 'o'},
{"extendable", no_arg, 't'},
{"extendabl", no_arg, 't'},
{"extendab", no_arg, 't'},
{"extenda", no_arg, 't'},
{"extend", no_arg, 't'},
{"exten", no_arg, 't'},
{"exte", no_arg, 't'},
{"ext", no_arg, 't'},
{"ex", no_arg, 't'},
{"threshold", require_arg, 'T'},
{"threshol", require_arg, 'T'},
{"thresho", require_arg, 'T'},
{"thresh", require_arg, 'T'},
{"thres", require_arg, 'T'},
{"thre", require_arg, 'T'},
{"thr", require_arg, 'T'},
{"th", require_arg, 'T'},
{"write-only", require_arg, 'w'},
{"write-onl", require_arg, 'w'},
{"write-on", require_arg, 'w'},
{"write-o", require_arg, 'w'},
{"write", require_arg, 'w'},
{"writ", require_arg, 'w'},
{"wri", require_arg, 'w'},
{"wr", require_arg, 'w'},
{NULL, 0, '\0'}};
struct options {
long io_types; /* bitmask of which I/O types to test */
const char *output_file; /* file to print report to */
long num_dsets; /* number of datasets */
long num_files; /* number of files */
off_t num_bpp; /* number of bytes per proc per dset */
int num_iters; /* number of iterations */
hsize_t dset_size[MAX_DIMS]; /* Dataset size */
size_t buf_size[MAX_DIMS]; /* Buffer size */
size_t chk_size[MAX_DIMS]; /* Chunk size */
int order[MAX_DIMS]; /* Dimension access order */
int dset_rank; /* Rank */
int buf_rank; /* Rank */
int order_rank; /* Rank */
int chk_rank; /* Rank */
int print_times; /* print times as well as throughputs */
int print_raw; /* print raw data throughput info */
hsize_t h5_alignment; /* alignment in HDF5 file */
hsize_t h5_threshold; /* threshold for alignment in HDF5 file */
int h5_use_chunks; /* Make HDF5 dataset chunked */
int h5_write_only; /* Perform the write tests only */
int h5_extendable; /* Perform the write tests only */
int verify; /* Verify data correctness */
vfdtype vfd; /* File driver */
size_t page_buffer_size;
size_t page_size;
};
typedef struct {
double min;
double max;
double sum;
int num;
} minmax;
/* local functions */
static hsize_t parse_size_directive(const char *size);
static struct options *parse_command_line(int argc, const char *argv[]);
static void run_test_loop(struct options *options);
static int run_test(iotype iot, parameters parms, struct options *opts);
static void output_all_info(minmax *mm, int count, int indent_level);
static void get_minmax(minmax *mm, double val);
static void accumulate_minmax_stuff(const minmax *mm, int count, minmax *total_mm);
static void output_results(const struct options *options, const char *name, minmax *table, int table_size,
off_t data_size);
static void output_report(const char *fmt, ...);
static void print_indent(register int indent);
static void usage(const char *prog);
static void report_parameters(struct options *opts);
/*
* Function: main
* Purpose: Start things up.
* Return: EXIT_SUCCESS or EXIT_FAILURE
* Programmer: Bill Wendling, 30. October 2001
* Modifications:
*/
int
main(int argc, const char *argv[])
{
int exit_value = EXIT_SUCCESS;
struct options *opts = NULL;
#ifndef STANDALONE
/* Initialize h5tools lib */
h5tools_init();
#endif
output = stdout;
opts = parse_command_line(argc, argv);
if (!opts) {
exit_value = EXIT_FAILURE;
goto finish;
}
if (opts->output_file) {
if ((output = HDfopen(opts->output_file, "w")) == NULL) {
HDfprintf(stderr, "%s: cannot open output file\n", progname);
HDperror(opts->output_file);
goto finish;
}
}
report_parameters(opts);
run_test_loop(opts);
finish:
HDfree(opts);
return exit_value;
}
/*
* Function: run_test_loop
* Purpose: Run the I/O tests. Write the results to OUTPUT.
*
* - The slowest changing part of the test is the number of
* processors to use. For each loop iteration, we divide that
* number by 2 and rerun the test.
*
* - The second slowest is what type of IO API to perform. We have
* three choices: POSIXIO, and HDF5.
*
* - Then we change the size of the buffer. This information is
* inferred from the number of datasets to create and the number
* of integers to put into each dataset. The backend code figures
* this out.
*
* Return: Nothing
* Programmer: Bill Wendling, 30. October 2001
* Modifications:
* Added multidimensional testing (Christian Chilan, April, 2008)
*/
static void
run_test_loop(struct options *opts)
{
parameters parms;
int i;
size_t buf_bytes;
/* load options into parameter structure */
parms.num_files = opts->num_files;
parms.num_dsets = opts->num_dsets;
parms.num_iters = opts->num_iters;
parms.rank = opts->dset_rank;
parms.h5_align = opts->h5_alignment;
parms.h5_thresh = opts->h5_threshold;
parms.h5_use_chunks = opts->h5_use_chunks;
parms.h5_extendable = opts->h5_extendable;
parms.h5_write_only = opts->h5_write_only;
parms.verify = opts->verify;
parms.vfd = opts->vfd;
parms.page_buffer_size = opts->page_buffer_size;
parms.page_size = opts->page_size;
/* load multidimensional options */
parms.num_bytes = 1;
buf_bytes = 1;
for (i = 0; i < parms.rank; i++) {
parms.buf_size[i] = opts->buf_size[i];
parms.dset_size[i] = opts->dset_size[i];
parms.chk_size[i] = opts->chk_size[i];
parms.order[i] = opts->order[i];
parms.num_bytes *= opts->dset_size[i];
buf_bytes *= opts->buf_size[i];
}
/* print size information */
output_report("Transfer Buffer Size (bytes): %d\n", buf_bytes);
output_report("File Size(MB): %.2f\n", ((double)parms.num_bytes) / ONE_MB);
print_indent(0);
if (opts->io_types & SIO_POSIX)
run_test(POSIXIO, parms, opts);
print_indent(0);
if (opts->io_types & SIO_HDF5)
run_test(HDF5, parms, opts);
}
/*
* Function: run_test
* Purpose: Inner loop call to actually run the I/O test.
* Return: Nothing
* Programmer: Bill Wendling, 18. December 2001
* Modifications:
*/
static int
run_test(iotype iot, parameters parms, struct options *opts)
{
results res;
register int i, ret_value = SUCCESS;
off_t raw_size;
minmax * write_sys_mm_table = NULL;
minmax * write_mm_table = NULL;
minmax * write_gross_mm_table = NULL;
minmax * write_raw_mm_table = NULL;
minmax * read_sys_mm_table = NULL;
minmax * read_mm_table = NULL;
minmax * read_gross_mm_table = NULL;
minmax * read_raw_mm_table = NULL;
minmax write_sys_mm = {0.0F, 0.0F, 0.0F, 0};
minmax write_mm = {0.0F, 0.0F, 0.0F, 0};
minmax write_gross_mm = {0.0F, 0.0F, 0.0F, 0};
minmax write_raw_mm = {0.0F, 0.0F, 0.0F, 0};
minmax read_sys_mm = {0.0F, 0.0F, 0.0F, 0};
minmax read_mm = {0.0F, 0.0F, 0.0F, 0};
minmax read_gross_mm = {0.0F, 0.0F, 0.0F, 0};
minmax read_raw_mm = {0.0F, 0.0F, 0.0F, 0};
raw_size = (off_t)parms.num_bytes;
parms.io_type = iot;
print_indent(2);
output_report("IO API = ");
switch (iot) {
case POSIXIO:
output_report("POSIX\n");
break;
case HDF5:
output_report("HDF5\n");
break;
default:
/* unknown request */
HDfprintf(stderr, "Unknown IO type request (%d)\n", (int)iot);
HDassert(0 && "Unknown IO tpe");
break;
}
/* allocate space for tables minmax and that it is sufficient */
/* to initialize all elements to zeros by calloc. */
write_sys_mm_table = (minmax *)calloc((size_t)parms.num_iters, sizeof(minmax));
write_mm_table = (minmax *)calloc((size_t)parms.num_iters, sizeof(minmax));
write_gross_mm_table = (minmax *)calloc((size_t)parms.num_iters, sizeof(minmax));
write_raw_mm_table = (minmax *)calloc((size_t)parms.num_iters, sizeof(minmax));
if (!parms.h5_write_only) {
read_sys_mm_table = (minmax *)calloc((size_t)parms.num_iters, sizeof(minmax));
read_mm_table = (minmax *)calloc((size_t)parms.num_iters, sizeof(minmax));
read_gross_mm_table = (minmax *)calloc((size_t)parms.num_iters, sizeof(minmax));
read_raw_mm_table = (minmax *)calloc((size_t)parms.num_iters, sizeof(minmax));
}
/* Do IO iteration times, collecting statistics each time */
for (i = 0; i < parms.num_iters; ++i) {
double t;
do_sio(parms, &res);
/* gather all of the "sys write" times */
t = io_time_get(res.timers, HDF5_MPI_WRITE);
get_minmax(&write_sys_mm, t);
write_sys_mm_table[i] = write_sys_mm;
/* gather all of the "write" times */
t = io_time_get(res.timers, HDF5_FINE_WRITE_FIXED_DIMS);
get_minmax(&write_mm, t);
write_mm_table[i] = write_mm;
/* gather all of the "write" times from open to close */
t = io_time_get(res.timers, HDF5_GROSS_WRITE_FIXED_DIMS);
get_minmax(&write_gross_mm, t);
write_gross_mm_table[i] = write_gross_mm;
/* gather all of the raw "write" times */
t = io_time_get(res.timers, HDF5_RAW_WRITE_FIXED_DIMS);
get_minmax(&write_raw_mm, t);
write_raw_mm_table[i] = write_raw_mm;
if (!parms.h5_write_only) {
/* gather all of the "mpi read" times */
t = io_time_get(res.timers, HDF5_MPI_READ);
get_minmax(&read_sys_mm, t);
read_sys_mm_table[i] = read_sys_mm;
/* gather all of the "read" times */
t = io_time_get(res.timers, HDF5_FINE_READ_FIXED_DIMS);
get_minmax(&read_mm, t);
read_mm_table[i] = read_mm;
/* gather all of the "read" times from open to close */
t = io_time_get(res.timers, HDF5_GROSS_READ_FIXED_DIMS);
get_minmax(&read_gross_mm, t);
read_gross_mm_table[i] = read_gross_mm;
/* gather all of the raw "read" times */
t = io_time_get(res.timers, HDF5_RAW_READ_FIXED_DIMS);
get_minmax(&read_raw_mm, t);
read_raw_mm_table[i] = read_gross_mm;
}
io_time_destroy(res.timers);
}
/*
* Show various statistics
*/
/* Write statistics */
/* Print the raw data throughput if desired */
if (opts->print_raw) {
/* accumulate and output the max, min, and average "raw write" times */
if (sio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Raw Data Write details:\n");
output_all_info(write_raw_mm_table, parms.num_iters, 4);
}
output_results(opts, "Raw Data Write", write_raw_mm_table, parms.num_iters, raw_size);
} /* end if */
/* show sys write statics */
#if 0
if (sio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("MPI Write details:\n");
output_all_info(write_sys_mm_table, parms.num_iters, 4);
}
#endif
/* We don't currently output the MPI write results */
/* accumulate and output the max, min, and average "write" times */
if (sio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Write details:\n");
output_all_info(write_mm_table, parms.num_iters, 4);
}
output_results(opts, "Write", write_mm_table, parms.num_iters, raw_size);
/* accumulate and output the max, min, and average "gross write" times */
if (sio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Write Open-Close details:\n");
output_all_info(write_gross_mm_table, parms.num_iters, 4);
}
output_results(opts, "Write Open-Close", write_gross_mm_table, parms.num_iters, raw_size);
if (!parms.h5_write_only) {
/* Read statistics */
/* Print the raw data throughput if desired */
if (opts->print_raw) {
/* accumulate and output the max, min, and average "raw read" times */
if (sio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Raw Data Read details:\n");
output_all_info(read_raw_mm_table, parms.num_iters, 4);
}
output_results(opts, "Raw Data Read", read_raw_mm_table, parms.num_iters, raw_size);
} /* end if */
/* show mpi read statics */
#if 0
if (sio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("MPI Read details:\n");
output_all_info(read_sys_mm_table, parms.num_iters, 4);
}
#endif
/* We don't currently output the MPI read results */
/* accumulate and output the max, min, and average "read" times */
if (sio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Read details:\n");
output_all_info(read_mm_table, parms.num_iters, 4);
}
output_results(opts, "Read", read_mm_table, parms.num_iters, raw_size);
/* accumulate and output the max, min, and average "gross read" times */
if (sio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Read Open-Close details:\n");
output_all_info(read_gross_mm_table, parms.num_iters, 4);
}
output_results(opts, "Read Open-Close", read_gross_mm_table, parms.num_iters, raw_size);
}
/* clean up our mess */
HDfree(write_sys_mm_table);
HDfree(write_mm_table);
HDfree(write_gross_mm_table);
HDfree(write_raw_mm_table);
if (!parms.h5_write_only) {
HDfree(read_sys_mm_table);
HDfree(read_mm_table);
HDfree(read_gross_mm_table);
HDfree(read_raw_mm_table);
}
return ret_value;
}
/*
* Function: output_all_info
* Purpose:
* Return: Nothing
* Programmer: Bill Wendling, 29. January 2002
* Modifications:
*/
static void
output_all_info(minmax *mm, int count, int indent_level)
{
int i;
for (i = 0; i < count; ++i) {
print_indent(indent_level);
output_report("Iteration %d:\n", i + 1);
print_indent(indent_level + 1);
output_report("Minimum Time: %.2fs\n", mm[i].min);
print_indent(indent_level + 1);
output_report("Maximum Time: %.2fs\n", mm[i].max);
}
}
/*
* Function: get_minmax
* Purpose: Gather all the min, max and total of val.
* Return: Nothing
* Programmer: Bill Wendling, 21. December 2001
* Modifications:
* Use MPI_Allreduce to do it. -akc, 2002/01/11
*/
static void
get_minmax(minmax *mm, double val)
{
mm->max = val;
mm->min = val;
mm->sum = val;
}
/*
* Function: accumulate_minmax_stuff
* Purpose: Accumulate the minimum, maximum, and average of the times
* across all processes.
* Return: TOTAL_MM - the total of all of these.
* Programmer: Bill Wendling, 21. December 2001
* Modifications:
* Changed to use seconds instead of MB/s - QAK, 5/9/02
*/
static void
accumulate_minmax_stuff(const minmax *mm, int count, minmax *total_mm)
{
int i;
total_mm->sum = 0.0F;
total_mm->max = -DBL_MAX;
total_mm->min = DBL_MAX;
total_mm->num = count;
for (i = 0; i < count; ++i) {
double m = mm[i].max;
total_mm->sum += m;
if (m < total_mm->min)
total_mm->min = m;
if (m > total_mm->max)
total_mm->max = m;
}
}
/*
* Function: output_results
* Purpose: Print information about the time & bandwidth for a given
* minmax & # of iterations.
* Return: Nothing
* Programmer: Quincey Koziol, 9. May 2002
* Modifications:
*/
static void
output_results(const struct options *opts, const char *name, minmax *table, int table_size, off_t data_size)
{
minmax total_mm;
accumulate_minmax_stuff(table, table_size, &total_mm);
print_indent(3);
output_report("%s (%d iteration(s)):\n", name, table_size);
/* Note: The maximum throughput uses the minimum amount of time & vice versa */
print_indent(4);
output_report("Maximum Throughput: %6.2f MB/s", MB_PER_SEC(data_size, total_mm.min));
if (opts->print_times)
output_report(" (%7.3f s)\n", total_mm.min);
else
output_report("\n");
print_indent(4);
output_report("Average Throughput: %6.2f MB/s", MB_PER_SEC(data_size, total_mm.sum / total_mm.num));
if (opts->print_times)
output_report(" (%7.3f s)\n", (total_mm.sum / total_mm.num));
else
output_report("\n");
print_indent(4);
output_report("Minimum Throughput: %6.2f MB/s", MB_PER_SEC(data_size, total_mm.max));
if (opts->print_times)
output_report(" (%7.3f s)\n", total_mm.max);
else
output_report("\n");
}
/*
* Function: output_report
* Purpose: Print a line of the report. Only do so if I'm the 0 process.
* Return: Nothing
* Programmer: Bill Wendling, 19. December 2001
* Modifications:
*/
static void
output_report(const char *fmt, ...)
{
va_list ap;
HDva_start(ap, fmt);
HDvfprintf(output, fmt, ap);
HDva_end(ap);
}
/*
* Function: print_indent
* Purpose: Print spaces to indent a new line of text for pretty printing
* things.
* Return: Nothing
* Programmer: Bill Wendling, 29. October 2001
* Modifications:
*/
static void
print_indent(register int indent)
{
indent *= TAB_SPACE;
for (; indent > 0; --indent)
HDfputc(' ', output);
}
static void
recover_size_and_print(long long val, const char *end)
{
if (val >= ONE_KB && (val % ONE_KB) == 0) {
if (val >= ONE_MB && (val % ONE_MB) == 0) {
if (val >= ONE_GB && (val % ONE_GB) == 0)
HDfprintf(output,
"%" H5_PRINTF_LL_WIDTH "d"
"GB%s",
val / ONE_GB, end);
else
HDfprintf(output,
"%" H5_PRINTF_LL_WIDTH "d"
"MB%s",
val / ONE_MB, end);
}
else {
HDfprintf(output,
"%" H5_PRINTF_LL_WIDTH "d"
"KB%s",
val / ONE_KB, end);
}
}
else {
HDfprintf(output,
"%" H5_PRINTF_LL_WIDTH "d"
"%s",
val, end);
}
}
static void
print_io_api(long io_types)
{
if (io_types & SIO_POSIX)
HDfprintf(output, "posix ");
if (io_types & SIO_HDF5)
HDfprintf(output, "hdf5 ");
HDfprintf(output, "\n");
}
static void
report_parameters(struct options *opts)
{
int i, rank;
rank = opts->dset_rank;
print_version("HDF5 Library"); /* print library version */
HDfprintf(output, "==== Parameters ====\n");
HDfprintf(output, "IO API=");
print_io_api(opts->io_types);
HDfprintf(output, "Number of iterations=%d\n", opts->num_iters);
HDfprintf(output, "Dataset size=");
for (i = 0; i < rank; i++)
recover_size_and_print((long long)opts->dset_size[i], " ");
HDfprintf(output, "\n");
HDfprintf(output, "Transfer buffer size=");
for (i = 0; i < rank; i++)
recover_size_and_print((long long)opts->buf_size[i], " ");
HDfprintf(output, "\n");
if (opts->page_size) {
HDfprintf(output, "Page Aggregation Enabled. Page size = %zu\n", opts->page_size);
if (opts->page_buffer_size)
HDfprintf(output, "Page Buffering Enabled. Page Buffer size = %zu\n", opts->page_buffer_size);
else
HDfprintf(output, "Page Buffering Disabled\n");
}
else
HDfprintf(output, "Page Aggregation Disabled\n");
HDfprintf(output, "Dimension access order=");
for (i = 0; i < rank; i++)
recover_size_and_print((long long)opts->order[i], " ");
HDfprintf(output, "\n");
if (opts->io_types & SIO_HDF5) {
HDfprintf(output, "HDF5 data storage method=");
if (opts->h5_use_chunks) {
HDfprintf(output, "Chunked\n");
HDfprintf(output, "HDF5 chunk size=");
for (i = 0; i < rank; i++)
recover_size_and_print((long long)opts->chk_size[i], " ");
HDfprintf(output, "\n");
HDfprintf(output, "HDF5 dataset dimensions=");
if (opts->h5_extendable) {
HDfprintf(output, "Extendable\n");
}
else {
HDfprintf(output, "Fixed\n");
}
}
else {
HDfprintf(output, "Contiguous\n");
}
HDfprintf(output, "HDF5 file driver=");
if (opts->vfd == sec2) {
HDfprintf(output, "sec2\n");
}
else if (opts->vfd == stdio) {
HDfprintf(output, "stdio\n");
}
else if (opts->vfd == core) {
HDfprintf(output, "core\n");
}
else if (opts->vfd == split) {
HDfprintf(output, "split\n");
}
else if (opts->vfd == multi) {
HDfprintf(output, "multi\n");
}
else if (opts->vfd == family) {
HDfprintf(output, "family\n");
}
else if (opts->vfd == direct) {
HDfprintf(output, "direct\n");
}
}
{
char *prefix = HDgetenv("HDF5_PREFIX");
HDfprintf(output, "Env HDF5_PREFIX=%s\n", (prefix ? prefix : "not set"));
}
HDfprintf(output, "==== End of Parameters ====\n");
HDfprintf(output, "\n");
}
/*
* Function: parse_command_line
* Purpose: Parse the command line options and return a STRUCT OPTIONS
* structure which will need to be freed by the calling function.
* Return: Pointer to an OPTIONS structure
* Programmer: Bill Wendling, 31. October 2001
* Modifications:
* Added multidimensional testing (Christian Chilan, April, 2008)
*/
static struct options *
parse_command_line(int argc, const char *argv[])
{
int opt;
struct options *cl_opts;
int i, default_rank, actual_rank, ranks[4];
cl_opts = (struct options *)HDmalloc(sizeof(struct options));
cl_opts->page_buffer_size = 0;
cl_opts->page_size = 0;
cl_opts->output_file = NULL;
cl_opts->io_types = 0; /* will set default after parsing options */
cl_opts->num_iters = 1;
default_rank = 2;
cl_opts->dset_rank = 0;
cl_opts->buf_rank = 0;
cl_opts->chk_rank = 0;
cl_opts->order_rank = 0;
for (i = 0; i < MAX_DIMS; i++) {
cl_opts->buf_size[i] = (size_t)((i + 1) * 10);
cl_opts->dset_size[i] = (hsize_t)((i + 1) * 100);
cl_opts->chk_size[i] = (size_t)((i + 1) * 10);
cl_opts->order[i] = i + 1;
}
cl_opts->vfd = sec2;
cl_opts->print_times = FALSE; /* Printing times is off by default */
cl_opts->print_raw = FALSE; /* Printing raw data throughput is off by default */
cl_opts->h5_alignment = 1; /* No alignment for HDF5 objects by default */
cl_opts->h5_threshold = 1; /* No threshold for aligning HDF5 objects by default */
cl_opts->h5_use_chunks = FALSE; /* Don't chunk the HDF5 dataset by default */
cl_opts->h5_write_only = FALSE; /* Do both read and write by default */
cl_opts->h5_extendable = FALSE; /* Use extendable dataset */
cl_opts->verify = FALSE; /* No Verify data correctness by default */
while ((opt = H5_get_option(argc, argv, s_opts, l_opts)) != EOF) {
switch ((char)opt) {
case 'a':
cl_opts->h5_alignment = parse_size_directive(H5_optarg);
break;
case 'G':
cl_opts->page_size = parse_size_directive(H5_optarg);
break;
case 'b':
cl_opts->page_buffer_size = parse_size_directive(H5_optarg);
break;
case 'A': {
const char *end = H5_optarg;
while (end && *end != '\0') {
char buf[10];
HDmemset(buf, '\0', sizeof(buf));
for (i = 0; *end != '\0' && *end != ','; ++end)
if (HDisalnum(*end) && i < 10)
buf[i++] = *end;
if (!HDstrcasecmp(buf, "hdf5")) {
cl_opts->io_types |= SIO_HDF5;
}
else if (!HDstrcasecmp(buf, "posix")) {
cl_opts->io_types |= SIO_POSIX;
}
else {
HDfprintf(stderr, "sio_perf: invalid --api option %s\n", buf);
HDexit(EXIT_FAILURE);
}
if (*end == '\0')
break;
end++;
}
}
break;
#if 0
case 'b':
/* the future "binary" option */
break;
#endif /* 0 */
case 'c':
/* Turn on chunked HDF5 dataset creation */
cl_opts->h5_use_chunks = 1;
{
const char *end = H5_optarg;
int j = 0;
while (end && *end != '\0') {
char buf[10];
HDmemset(buf, '\0', sizeof(buf));
for (i = 0; *end != '\0' && *end != ','; ++end)
if (HDisalnum(*end) && i < 10)
buf[i++] = *end;
cl_opts->chk_size[j] = parse_size_directive(buf);
j++;
if (*end == '\0')
break;
end++;
}
cl_opts->chk_rank = j;
}
break;
case 'D': {
const char *end = H5_optarg;
while (end && *end != '\0') {
char buf[10];
HDmemset(buf, '\0', sizeof(buf));
for (i = 0; *end != '\0' && *end != ','; ++end)
if (HDisalnum(*end) && i < 10)
buf[i++] = *end;
if (HDstrlen(buf) > 1 || HDisdigit(buf[0])) {
size_t j;
for (j = 0; j < 10 && buf[j] != '\0'; ++j)
if (!HDisdigit(buf[j])) {
HDfprintf(stderr, "sio_perf: invalid --debug option %s\n", buf);
HDexit(EXIT_FAILURE);
}
sio_debug_level = atoi(buf);
if (sio_debug_level > 4)
sio_debug_level = 4;
else if (sio_debug_level < 0)
sio_debug_level = 0;
}
else {
switch (*buf) {
case 'r':
/* Turn on raw data throughput info */
cl_opts->print_raw = TRUE;
break;
case 't':
/* Turn on time printing */
cl_opts->print_times = TRUE;
break;
case 'v':
/* Turn on verify data correctness*/
cl_opts->verify = TRUE;
break;
default:
HDfprintf(stderr, "sio_perf: invalid --debug option %s\n", buf);
HDexit(EXIT_FAILURE);
}
}
if (*end == '\0')
break;
end++;
}
}
break;
case 'e': {
const char *end = H5_optarg;
int j = 0;
while (end && *end != '\0') {
char buf[10];
HDmemset(buf, '\0', sizeof(buf));
for (i = 0; *end != '\0' && *end != ','; ++end)
if (HDisalnum(*end) && i < 10)
buf[i++] = *end;
cl_opts->dset_size[j] = parse_size_directive(buf);
j++;
if (*end == '\0')
break;
end++;
}
cl_opts->dset_rank = j;
}
break;
case 'i':
cl_opts->num_iters = HDatoi(H5_optarg);
break;
case 'o':
cl_opts->output_file = H5_optarg;
break;
case 'T':
cl_opts->h5_threshold = parse_size_directive(H5_optarg);
break;
case 'v':
if (!HDstrcasecmp(H5_optarg, "sec2")) {
cl_opts->vfd = sec2;
}
else if (!HDstrcasecmp(H5_optarg, "stdio")) {
cl_opts->vfd = stdio;
}
else if (!HDstrcasecmp(H5_optarg, "core")) {
cl_opts->vfd = core;
}
else if (!HDstrcasecmp(H5_optarg, "split")) {
cl_opts->vfd = split;
}
else if (!HDstrcasecmp(H5_optarg, "multi")) {
cl_opts->vfd = multi;
}
else if (!HDstrcasecmp(H5_optarg, "family")) {
cl_opts->vfd = family;
}
else if (!HDstrcasecmp(H5_optarg, "direct")) {
cl_opts->vfd = direct;
}
else {
HDfprintf(stderr, "sio_perf: invalid --api option %s\n", H5_optarg);
HDexit(EXIT_FAILURE);
}
break;
case 'w':
cl_opts->h5_write_only = TRUE;
break;
case 't':
cl_opts->h5_extendable = TRUE;
break;
case 'x': {
const char *end = H5_optarg;
int j = 0;
while (end && *end != '\0') {
char buf[10];
HDmemset(buf, '\0', sizeof(buf));
for (i = 0; *end != '\0' && *end != ','; ++end)
if (HDisalnum(*end) && i < 10)
buf[i++] = *end;
cl_opts->buf_size[j] = parse_size_directive(buf);
j++;
if (*end == '\0')
break;
end++;
}
cl_opts->buf_rank = j;
}
break;
case 'r': {
const char *end = H5_optarg;
int j = 0;
while (end && *end != '\0') {
char buf[10];
HDmemset(buf, '\0', sizeof(buf));
for (i = 0; *end != '\0' && *end != ','; ++end)
if (HDisalnum(*end) && i < 10)
buf[i++] = *end;
cl_opts->order[j] = (int)parse_size_directive(buf);
j++;
if (*end == '\0')
break;
end++;
}
cl_opts->order_rank = j;
}
break;
case 'h':
case '?':
default:
usage(progname);
HDfree(cl_opts);
return NULL;
}
}
/* perform rank consistency analysis */
actual_rank = 0;
ranks[0] = cl_opts->dset_rank;
ranks[1] = cl_opts->buf_rank;
ranks[2] = cl_opts->order_rank;
ranks[3] = cl_opts->chk_rank;
for (i = 0; i < 4; i++) {
if (ranks[i] > 0) {
if (!actual_rank) {
actual_rank = ranks[i];
}
else {
if (actual_rank != ranks[i])
exit(EXIT_FAILURE);
}
}
}
if (!actual_rank)
actual_rank = default_rank;
cl_opts->dset_rank = actual_rank;
cl_opts->buf_rank = actual_rank;
cl_opts->order_rank = actual_rank;
cl_opts->chk_rank = actual_rank;
for (i = 0; i < actual_rank; i++) {
if (cl_opts->order[i] > actual_rank) {
exit(EXIT_FAILURE);
}
}
/* set default if none specified yet */
if (!cl_opts->io_types)
cl_opts->io_types = SIO_HDF5 | SIO_POSIX; /* run all API */
/* verify parameters sanity. Adjust if needed. */
/* cap xfer_size with bytes per process */
if (cl_opts->num_iters <= 0)
cl_opts->num_iters = 1;
return cl_opts;
}
/*
* Function: parse_size_directive
* Purpose: Parse the size directive passed on the commandline. The size
* directive is an integer followed by a size indicator:
*
* K, k - Kilobyte
* M, m - Megabyte
* G, g - Gigabyte
*
* Return: The size as a off_t because this is related to file size.
* If an unknown size indicator is used, then the program will
* exit with EXIT_FAILURE as the return value.
* Programmer: Bill Wendling, 18. December 2001
* Modifications:
*/
static hsize_t
parse_size_directive(const char *size)
{
hsize_t s;
char * endptr;
s = HDstrtoull(size, &endptr, 10);
if (endptr && *endptr) {
while (*endptr != '\0' && (*endptr == ' ' || *endptr == '\t'))
++endptr;
switch (*endptr) {
case 'K':
case 'k':
s *= ONE_KB;
break;
case 'M':
case 'm':
s *= ONE_MB;
break;
case 'G':
case 'g':
s *= ONE_GB;
break;
default:
HDfprintf(stderr, "Illegal size specifier '%c'\n", *endptr);
HDexit(EXIT_FAILURE);
}
}
return s;
}
/*
* Function: usage
* Purpose: Print a usage message and then exit.
* Return: Nothing
* Programmer: Bill Wendling, 31. October 2001
* Modifications:
*/
static void
usage(const char *prog)
{
print_version(prog);
HDprintf("usage: %s [OPTIONS]\n", prog);
HDprintf(" OPTIONS\n");
HDprintf(" -h Print an usage message and exit\n");
HDprintf(" -A AL Which APIs to test\n");
HDprintf(" [default: all of them]\n");
HDprintf(" -c SL Selects chunked storage and defines chunks dimensions\n");
HDprintf(" and sizes\n");
HDprintf(" [default: Off]\n");
HDprintf(" -e SL Dimensions and sizes of dataset\n");
HDprintf(" [default: 100,200]\n");
HDprintf(" -i N Number of iterations to perform\n");
HDprintf(" [default: 1]\n");
HDprintf(" -r NL Dimension access order (see below for description)\n");
HDprintf(" [default: 1,2]\n");
HDprintf(" -t Selects extendable dimensions for HDF5 dataset\n");
HDprintf(" [default: Off]\n");
HDprintf(" -v VFD Selects file driver for HDF5 access\n");
HDprintf(" [default: sec2]\n");
HDprintf(" -w Perform write tests, not the read tests\n");
HDprintf(" [default: Off]\n");
HDprintf(" -x SL Dimensions and sizes of the transfer buffer\n");
HDprintf(" [default: 10,20]\n");
HDprintf("\n");
HDprintf(" N - is an integer > 0.\n");
HDprintf("\n");
HDprintf(" S - is a size specifier, an integer > 0 followed by a size indicator:\n");
HDprintf(" K - Kilobyte (%d)\n", ONE_KB);
HDprintf(" M - Megabyte (%d)\n", ONE_MB);
HDprintf(" G - Gigabyte (%d)\n", ONE_GB);
HDprintf("\n");
HDprintf(" Example: '37M' is 37 megabytes or %d bytes\n", 37 * ONE_MB);
HDprintf("\n");
HDprintf(" AL - is an API list. Valid values are:\n");
HDprintf(" hdf5 - HDF5\n");
HDprintf(" posix - POSIX\n");
HDprintf("\n");
HDprintf(" Example: -A posix,hdf5\n");
HDprintf("\n");
HDprintf(" NL - is list of integers (N) separated by commas.\n");
HDprintf("\n");
HDprintf(" Example: 1,2,3\n");
HDprintf("\n");
HDprintf(" SL - is list of size specifiers (S) separated by commas.\n");
HDprintf("\n");
HDprintf(" Example: 2K,2K,3K\n");
HDprintf("\n");
HDprintf(" The example defines an object (dataset, tranfer buffer) with three\n");
HDprintf(" dimensions. Be aware that as the number of dimensions increases, the\n");
HDprintf(" the total size of the object increases exponentially.\n");
HDprintf("\n");
HDprintf(" VFD - is an HDF5 file driver specifier. Valid values are:\n");
HDprintf(" sec2, stdio, core, split, multi, family, direct\n");
HDprintf("\n");
HDprintf(" Dimension access order:\n");
HDprintf(" Data access starts at the cardinal origin of the dataset using the\n");
HDprintf(" transfer buffer. The next access occurs on a dataset region next to\n");
HDprintf(" the previous one. For a multidimensional dataset, there are several\n");
HDprintf(" directions as to where to proceed. This can be specified in the dimension\n");
HDprintf(" access order. For example, -r 1,2 states that the tool should traverse\n");
HDprintf(" dimension 1 first, and then dimension 2.\n");
HDprintf("\n");
HDprintf(" Environment variables:\n");
HDprintf(" HDF5_NOCLEANUP Do not remove data files if set [default remove]\n");
HDprintf(" HDF5_PREFIX Data file prefix\n");
HDprintf("\n");
HDfflush(stdout);
} /* end usage() */