hdf5/testpar/t_cache.c
Dana Robinson 44a00ef876
Strip HD prefix from string/char C API calls (#3540)
* Strip HD prefix from string/char C API calls

* HD(f)(put|get)(s|c)
* HDstr*
* HDv*printf
* HD(s)(print|scan)f
* HDperror

But NOT:

* HDstrcase*
* HDvasprintf
* HDstrtok_r
* HDstrndup

As those are not C99 and have portability work-around
implementations. They will be handled later.

* Fix th5_system.c screwup
2023-09-15 15:13:18 -07:00

6873 lines
209 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Parallel metadata cache tests.
*
*/
#include "testpar.h"
#define H5AC_FRIEND /*suppress error about including H5ACpkg */
#define H5C_FRIEND /*suppress error about including H5Cpkg */
#define H5F_FRIEND /*suppress error about including H5Fpkg */
#include "H5ACpkg.h"
#include "H5Cpkg.h"
#include "H5CXprivate.h"
#include "H5Fpkg.h"
#include "H5Iprivate.h"
#include "H5MFprivate.h"
#include "H5private.h"
#define BASE_ADDR (haddr_t)1024
int nerrors = 0;
int failures = 0;
bool verbose = true; /* used to control error messages */
#define NFILENAME 2
const char *FILENAME[NFILENAME] = {"CacheTestDummy", NULL};
#ifndef PATH_MAX
#define PATH_MAX 512
#endif /* !PATH_MAX */
char *filenames[NFILENAME];
hid_t fapl; /* file access property list */
haddr_t max_addr = 0; /* used to store the end of
* the address space used by
* the data array (see below).
*/
bool callbacks_verbose = false; /* flag used to control whether
* the callback functions are in
* verbose mode.
*/
int world_mpi_size = -1;
int world_mpi_rank = -1;
int world_server_mpi_rank = -1;
MPI_Comm world_mpi_comm = MPI_COMM_NULL;
int file_mpi_size = -1;
int file_mpi_rank = -1;
MPI_Comm file_mpi_comm = MPI_COMM_NULL;
/* the following globals are used to maintain rudementary statistics
* to check the validity of the statistics maintained by H5C.c
*/
long datum_clears = 0;
long datum_pinned_clears = 0;
long datum_destroys = 0;
long datum_flushes = 0;
long datum_pinned_flushes = 0;
long datum_loads = 0;
long global_pins = 0;
long global_dirty_pins = 0;
long local_pins = 0;
/* the following fields are used by the server process only */
int total_reads = 0;
int total_writes = 0;
/*****************************************************************************
* struct datum
*
* Instances of struct datum are used to store information on entries
* that may be loaded into the cache. The individual fields are
* discussed below:
*
* header: Instance of H5C_cache_entry_t used by the for its data.
* This field is only used on the file processes, not on the
* server process.
*
* This field MUST be the first entry in this structure.
*
* base_addr: Base address of the entry.
*
* len: Length of the entry.
*
* local_len: Length of the entry according to the cache. This
* value must be positive, and may not be larger than len.
*
* The field exists to allow us change the sizes of entries
* in the cache without upsetting the server. This value
* is only used locally, and is never sent to the server.
*
* ver: Version number of the entry. This number is initialize
* to zero, and incremented each time the entry is modified.
*
* dirty: Boolean flag indicating whether the entry is dirty.
*
* For current purposes, an entry is clean until it is
* modified, and dirty until written to the server (cache
* on process 0) or until it is marked clean (all other
* caches).
*
* valid: Boolean flag indicating whether the entry contains
* valid data. Attempts to read an entry whose valid
* flag is not set should trigger an error.
*
* locked: Boolean flag that is set to true iff the entry is in
* the cache and locked.
*
* global_pinned: Boolean flag that is set to true iff the entry has
* been pinned collectively in all caches. Since writes must
* be collective across all processes, only entries pinned
* in this fashion may be marked dirty.
*
* local_pinned: Boolean flag that is set to true iff the entry
* has been pinned in the local cache, but probably not all
* caches. Such pins will typically not be consistent across
* processes, and thus cannot be marked as dirty unless they
* happen to overlap some collective operation.
*
* cleared: Boolean flag that is set to true whenever the entry is
* dirty, and is cleared via a call to datum_notify with the
* "entry cleaned" action.
*
* flushed: Boolean flag that is set to true whenever the entry is
* dirty, and is flushed by the metadata cache.
*
* reads: Integer field used to maintain a count of the number of
* times this entry has been read from the server since
* the last time the read and write counts were reset.
*
* writes: Integer field used to maintain a count of the number of
* times this entry has been written to the server since
* the last time the read and write counts were reset.
*
* index: Index of this instance of datum in the data_index[] array
* discussed below.
*
* aux_ptr: Pointer to the instance of H5AC_aux_t associated with the
* instance of the metadata cache within which this entry
* resides. This field was added to allow us to pass this
* value to the notify callback from the serialize callback.
* It should be NULL when not in use.
*
*****************************************************************************/
struct datum {
H5C_cache_entry_t header;
haddr_t base_addr;
size_t len;
size_t local_len;
int ver;
bool dirty;
bool valid;
bool locked;
bool global_pinned;
bool local_pinned;
bool cleared;
bool flushed;
int reads;
int writes;
int index;
struct H5AC_aux_t *aux_ptr;
};
/*****************************************************************************
* data array
*
* The data array is an array of instances of datum of size
* NUM_DATA_ENTRIES that is used to track the particulars of all
* the entries that may be loaded into the cache.
*
* It exists on all processes, although the master copy is maintained
* by the server process. If the cache is performing correctly, all
* versions should be effectively identical. By that I mean that
* the data received from the server should always match that in
* the local version of the data array.
*
*****************************************************************************/
#define NUM_DATA_ENTRIES 100000
struct datum *data = NULL;
/* Many tests use the size of data array as the size of test loops.
* On some machines, this results in unacceptably long test runs.
*
* To deal with this issue, I have introduced the virt_num_data_entries
* global, which can be set to a lower value to throtle the length of
* tests.
*
* Note that this value must always be divisible by 40, and must be an
* even divisor of NUM_DATA_ENTRIES. So far, all tests have been with
* powers of 10 that meet these criteria.
*
* Further, this value must be consistent across all processes.
*/
#define STD_VIRT_NUM_DATA_ENTRIES NUM_DATA_ENTRIES
#define EXPRESS_VIRT_NUM_DATA_ENTRIES (NUM_DATA_ENTRIES / 10)
int virt_num_data_entries = NUM_DATA_ENTRIES;
/*****************************************************************************
* data_index array
*
* The data_index array is an array of integer used to maintain a list
* of instances of datum in the data array in increasing base_addr order.
*
* This array is necessary, as move operations can swap the values
* of the base_addr fields of two instances of datum. Without this
* array, we would no longer be able to use a binary search on a sorted
* list to find the indexes of instances of datum given the values of
* their base_addr fields.
*
*****************************************************************************/
int *data_index = NULL;
/*****************************************************************************
* The following two #defines are used to control code that is in turn used
* to force "POSIX" semantics on the server process used to simulate metadata
* reads and writes. Without some such mechanism, the test code contains
* race conditions that will frequently cause spurious failures.
*
* When set to true, DO_WRITE_REQ_ACK forces the server to send an ack after
* each write request, and the client to wait until the ack is received
* before proceeding. This was my first solution to the problem, and at
* first glance, it would seem to have a lot of unnecessary overhead.
*
* In an attempt to reduce the overhead, I implemented a second solution
* in which no acks are sent after writes. Instead, the metadata cache is
* provided with a callback function to call after each sequence of writes.
* This callback simply causes the client to send the server process a
* "sync" message and await an ack in reply.
*
* Strangely, at least on Phoenix, the first solution runs faster by a
* rather large margin. However, I can imagine this changing with
* different OS's and MPI implementations.
*
* Thus I have left code supporting the second solution in place.
*
* Note that while one of these two #defines must be set to true, there
* should never be any need to set both of them to true (although the
* tests will still function with this setting).
*****************************************************************************/
#define DO_WRITE_REQ_ACK true
#define DO_SYNC_AFTER_WRITE false
/*****************************************************************************
* struct mssg
*
* The mssg structure is used as a generic container for messages to
* and from the server. Not all fields are used in all cases.
*
* req: Integer field containing the type of the message.
*
* src: World communicator MPI rank of the sending process.
*
* dest: World communicator MPI rank of the destination process.
*
* mssg_num: Serial number assigned to the message by the sender.
*
* base_addr: Base address of a datum. Not used in all mssgs.
*
* len: Length of a datum (in bytes). Not used in all mssgs.
*
* ver: Version number of a datum. Not used in all mssgs.
*
* count: Reported number of total/entry reads/writes. Not used
* in all mssgs.
*
* magic: Magic number for error detection. Must be set to
* MSSG_MAGIC.
*
*****************************************************************************/
#define WRITE_REQ_CODE 0
#define WRITE_REQ_ACK_CODE 1
#define READ_REQ_CODE 2
#define READ_REQ_REPLY_CODE 3
#define SYNC_REQ_CODE 4
#define SYNC_ACK_CODE 5
#define REQ_TTL_WRITES_CODE 6
#define REQ_TTL_WRITES_RPLY_CODE 7
#define REQ_TTL_READS_CODE 8
#define REQ_TTL_READS_RPLY_CODE 9
#define REQ_ENTRY_WRITES_CODE 10
#define REQ_ENTRY_WRITES_RPLY_CODE 11
#define REQ_ENTRY_READS_CODE 12
#define REQ_ENTRY_READS_RPLY_CODE 13
#define REQ_RW_COUNT_RESET_CODE 14
#define REQ_RW_COUNT_RESET_RPLY_CODE 15
#define DONE_REQ_CODE 16
#define MAX_REQ_CODE 16
#define MSSG_MAGIC 0x1248
struct mssg_t {
int req;
int src;
int dest;
long int mssg_num;
haddr_t base_addr;
unsigned len;
int ver;
unsigned count;
unsigned magic;
};
MPI_Datatype mpi_mssg_t = MPI_DATATYPE_NULL; /* for MPI derived type created from mssg */
/*****************************************************************************/
/************************** function declarations ****************************/
/*****************************************************************************/
/* stats functions */
static void reset_stats(void);
/* MPI setup functions */
static bool set_up_file_communicator(void);
/* data array manipulation functions */
static int addr_to_datum_index(haddr_t base_addr);
static void init_data(void);
/* test coodination related functions */
static int do_express_test(void);
static void do_sync(void);
static int get_max_nerrors(void);
/* mssg xfer related functions */
static bool recv_mssg(struct mssg_t *mssg_ptr, int mssg_tag_offset);
static bool send_mssg(struct mssg_t *mssg_ptr, bool add_req_to_tag);
static bool setup_derived_types(void);
static bool takedown_derived_types(void);
/* server functions */
static bool reset_server_counters(void);
static bool server_main(void);
static bool serve_read_request(struct mssg_t *mssg_ptr);
static bool serve_sync_request(struct mssg_t *mssg_ptr);
static bool serve_write_request(struct mssg_t *mssg_ptr);
static bool serve_total_writes_request(struct mssg_t *mssg_ptr);
static bool serve_total_reads_request(struct mssg_t *mssg_ptr);
static bool serve_entry_writes_request(struct mssg_t *mssg_ptr);
static bool serve_entry_reads_request(struct mssg_t *mssg_ptr);
static bool serve_rw_count_reset_request(struct mssg_t *mssg_ptr);
/* call back functions & related data structures */
static herr_t datum_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static void *datum_deserialize(const void *image_ptr, size_t len, void *udata_ptr, bool *dirty_ptr);
static herr_t datum_image_len(const void *thing, size_t *image_len_ptr);
static herr_t datum_serialize(const H5F_t *f, void *image_ptr, size_t len, void *thing_ptr);
static herr_t datum_notify(H5C_notify_action_t action, void *thing);
static herr_t datum_free_icr(void *thing);
/* Masquerade as object header entries to the cache */
#define DATUM_ENTRY_TYPE H5AC_OHDR_ID
#define NUMBER_OF_ENTRY_TYPES 1
/* Note the use of the H5AC__CLASS_SKIP_READS and H5AC__CLASS_SKIP_WRITES
* flags. As a result of these flags, the metadata cache does no file I/O
* on metadata of the datum type.
*
* Instead, this test uses a server process to keep track of who has
* written and read what, and to verify that there are no messages from
* the past / future.
*
* In the callbacks for the version 2 cache, this activity was hidden in
* the load and flush callbacks. However, now we handle this function in
* notify callbacks for the after load and after flush events.
*
* JRM -- 1/13/15
*/
const H5C_class_t types[NUMBER_OF_ENTRY_TYPES] = {{
/* id */ DATUM_ENTRY_TYPE,
/* name */ "datum",
/* mem_type */ H5FD_MEM_OHDR,
/* flags */ H5AC__CLASS_SKIP_READS | H5AC__CLASS_SKIP_WRITES,
/* get_initial_load_size */ datum_get_initial_load_size,
/* get_final_load_size */ NULL,
/* verify_chksum */ NULL,
/* deserialize */ datum_deserialize,
/* image_len */ datum_image_len,
/* pre_serialize */ NULL,
/* serialize */ datum_serialize,
/* notify */ datum_notify,
/* free_icr */ datum_free_icr,
/* fsf_size */ NULL,
}};
/* test utility functions */
static void expunge_entry(H5F_t *file_ptr, int32_t idx);
static void insert_entry(H5C_t *cache_ptr, H5F_t *file_ptr, int32_t idx, unsigned int flags);
static void local_pin_and_unpin_random_entries(H5F_t *file_ptr, int min_idx, int max_idx, int min_count,
int max_count);
static void local_pin_random_entry(H5F_t *file_ptr, int min_idx, int max_idx);
static void local_unpin_all_entries(H5F_t *file_ptr, bool via_unprotect);
static int local_unpin_next_pinned_entry(H5F_t *file_ptr, int start_idx, bool via_unprotect);
static void lock_and_unlock_random_entries(H5F_t *file_ptr, int min_idx, int max_idx, int min_count,
int max_count);
static void lock_and_unlock_random_entry(H5F_t *file_ptr, int min_idx, int max_idx);
static void lock_entry(H5F_t *file_ptr, int32_t idx);
static void mark_entry_dirty(int32_t idx);
static void pin_entry(H5F_t *file_ptr, int32_t idx, bool global, bool dirty);
static void pin_protected_entry(int32_t idx, bool global);
static void move_entry(H5F_t *file_ptr, int32_t old_idx, int32_t new_idx);
static bool reset_server_counts(void);
static void resize_entry(int32_t idx, size_t new_size);
static bool setup_cache_for_test(hid_t *fid_ptr, H5F_t **file_ptr_ptr, H5C_t **cache_ptr_ptr,
int metadata_write_strategy);
static void setup_rand(void);
static bool take_down_cache(hid_t fid, H5C_t *cache_ptr);
static bool verify_entry_reads(haddr_t addr, int expected_entry_reads);
static bool verify_entry_writes(haddr_t addr, int expected_entry_writes);
static bool verify_total_reads(int expected_total_reads);
static bool verify_total_writes(unsigned expected_total_writes);
static void verify_writes(unsigned num_writes, haddr_t *written_entries_tbl);
static void unlock_entry(H5F_t *file_ptr, int32_t type, unsigned int flags);
static void unpin_entry(H5F_t *file_ptr, int32_t idx, bool global, bool dirty, bool via_unprotect);
/* test functions */
static bool server_smoke_check(void);
static bool smoke_check_1(int metadata_write_strategy);
static bool smoke_check_2(int metadata_write_strategy);
static bool smoke_check_3(int metadata_write_strategy);
static bool smoke_check_4(int metadata_write_strategy);
static bool smoke_check_5(int metadata_write_strategy);
static bool smoke_check_6(int metadata_write_strategy);
static bool trace_file_check(int metadata_write_strategy);
/*****************************************************************************/
/****************************** stats functions ******************************/
/*****************************************************************************/
#ifdef NOT_USED
/*****************************************************************************
*
* Function: print_stats()
*
* Purpose: Print the rudementary stats maintained by t_cache.
*
* This is a debugging function, which will not normally
* be run as part of t_cache.
*
* Return: void
*
*****************************************************************************/
static void
print_stats(void)
{
fprintf(stdout, "%d: datum clears / pinned clears / destroys = %ld / %ld / %ld\n", world_mpi_rank,
datum_clears, datum_pinned_clears, datum_destroys);
fprintf(stdout, "%d: datum flushes / pinned flushes / loads = %ld / %ld / %ld\n", world_mpi_rank,
datum_flushes, datum_pinned_flushes, datum_loads);
fprintf(stdout, "%d: pins: global / global dirty / local = %ld / %ld / %ld\n", world_mpi_rank,
global_pins, global_dirty_pins, local_pins);
fflush(stdout);
return;
} /* print_stats() */
#endif /* NOT_USED */
/*****************************************************************************
*
* Function: reset_stats()
*
* Purpose: Reset the rudementary stats maintained by t_cache.
*
* Return: void
*
*****************************************************************************/
static void
reset_stats(void)
{
datum_clears = 0;
datum_pinned_clears = 0;
datum_destroys = 0;
datum_flushes = 0;
datum_pinned_flushes = 0;
datum_loads = 0;
global_pins = 0;
global_dirty_pins = 0;
local_pins = 0;
return;
} /* reset_stats() */
/*****************************************************************************/
/**************************** MPI setup functions ****************************/
/*****************************************************************************/
/*****************************************************************************
*
* Function: set_up_file_communicator()
*
* Purpose: Create the MPI communicator used to open a HDF5 file with.
* In passing, also initialize the file_mpi... globals.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
set_up_file_communicator(void)
{
bool success = true;
int mpi_result;
int num_excluded_ranks;
int excluded_ranks[1];
MPI_Group file_group = MPI_GROUP_NULL;
MPI_Group world_group = MPI_GROUP_NULL;
if (success) {
mpi_result = MPI_Comm_group(world_mpi_comm, &world_group);
if (mpi_result != MPI_SUCCESS) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: MPI_Comm_group() failed with error %d.\n", world_mpi_rank, __func__,
mpi_result);
}
}
}
if (success) {
num_excluded_ranks = 1;
excluded_ranks[0] = world_server_mpi_rank;
mpi_result = MPI_Group_excl(world_group, num_excluded_ranks, excluded_ranks, &file_group);
if (mpi_result != MPI_SUCCESS) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: MPI_Group_excl() failed with error %d.\n", world_mpi_rank, __func__,
mpi_result);
}
}
}
if (success) {
mpi_result = MPI_Comm_create(world_mpi_comm, file_group, &file_mpi_comm);
if (mpi_result != MPI_SUCCESS) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: MPI_Comm_create() failed with error %d.\n", world_mpi_rank, __func__,
mpi_result);
}
}
else {
if (world_mpi_rank != world_server_mpi_rank) {
if (file_mpi_comm == MPI_COMM_NULL) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: file_mpi_comm == MPI_COMM_NULL.\n", world_mpi_rank, __func__);
}
}
}
else {
file_mpi_size = world_mpi_size - 1; /* needed by the server */
if (file_mpi_comm != MPI_COMM_NULL) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: file_mpi_comm != MPI_COMM_NULL.\n", world_mpi_rank, __func__);
}
}
}
}
}
if ((success) && (world_mpi_rank != world_server_mpi_rank)) {
mpi_result = MPI_Comm_size(file_mpi_comm, &file_mpi_size);
if (mpi_result != MPI_SUCCESS) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: MPI_Comm_size() failed with error %d.\n", world_mpi_rank, __func__,
mpi_result);
}
}
}
if ((success) && (world_mpi_rank != world_server_mpi_rank)) {
mpi_result = MPI_Comm_rank(file_mpi_comm, &file_mpi_rank);
if (mpi_result != MPI_SUCCESS) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: MPI_Comm_rank() failed with error %d.\n", world_mpi_rank, __func__,
mpi_result);
}
}
}
if (file_group != MPI_GROUP_NULL)
MPI_Group_free(&file_group);
if (world_group != MPI_GROUP_NULL)
MPI_Group_free(&world_group);
return (success);
} /* set_up_file_communicator() */
/*****************************************************************************/
/******************** data array manipulation functions **********************/
/*****************************************************************************/
/*****************************************************************************
*
* Function: addr_to_datum_index()
*
* Purpose: Given the base address of a datum, find and return its index
* in the data array.
*
* Return: Success: index of target datum.
*
* Failure: -1.
*
*****************************************************************************/
static int
addr_to_datum_index(haddr_t base_addr)
{
int top = NUM_DATA_ENTRIES - 1;
int bottom = 0;
int middle = (NUM_DATA_ENTRIES - 1) / 2;
int ret_value = -1;
while (top >= bottom) {
if (base_addr < data[data_index[middle]].base_addr) {
top = middle - 1;
middle = (top + bottom) / 2;
}
else if (base_addr > data[data_index[middle]].base_addr) {
bottom = middle + 1;
middle = (top + bottom) / 2;
}
else /* ( base_addr == data[data_index[middle]].base_addr ) */ {
ret_value = data_index[middle];
bottom = top + 1; /* to force exit from while loop */
}
}
return (ret_value);
} /* addr_to_datum_index() */
/*****************************************************************************
*
* Function: init_data()
*
* Purpose: Initialize the data array, from which cache entries are
* loaded.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static void
init_data(void)
{
/* The set of address offsets is chosen so as to avoid allowing the
* base addresses to fall in a pattern of that will annoy the hash
* table, and to give a good range of entry sizes.
*
* At present, I am using the first 20 entries of the Fibonacci
* sequence multiplied by 2. We will see how it works.
*/
const int num_addr_offsets = 20;
const haddr_t addr_offsets[20] = {2, 2, 4, 6, 10, 16, 26, 42, 68, 110,
178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13539};
int i;
int j = 0;
haddr_t addr = BASE_ADDR;
/* this must hold so moves don't change entry size. */
assert((NUM_DATA_ENTRIES / 2) % 20 == 0);
assert((virt_num_data_entries / 2) % 20 == 0);
for (i = 0; i < NUM_DATA_ENTRIES; i++) {
data[i].base_addr = addr;
data[i].len = (size_t)(addr_offsets[j]);
data[i].local_len = (size_t)(addr_offsets[j]);
data[i].ver = 0;
data[i].dirty = false;
data[i].valid = false;
data[i].locked = false;
data[i].global_pinned = false;
data[i].local_pinned = false;
data[i].cleared = false;
data[i].flushed = false;
data[i].reads = 0;
data[i].writes = 0;
data[i].index = i;
data[i].aux_ptr = NULL;
data_index[i] = i;
addr += addr_offsets[j];
assert(addr > data[i].base_addr);
j = (j + 1) % num_addr_offsets;
}
/* save the end of the address space used by the data array */
max_addr = addr;
return;
} /* init_data() */
/*****************************************************************************/
/******************** test coodination related functions *********************/
/*****************************************************************************/
/*****************************************************************************
*
* Function: do_express_test()
*
* Purpose: Do an MPI_Allreduce to obtain the maximum value returned
* by GetTestExpress() across all processes. Return this
* value.
*
* Envirmoment variables can be different across different
* processes. This function ensures that all processes agree
* on whether to do an express test.
*
* Return: Success: Maximum of the values returned by
* GetTestExpress() across all processes.
*
* Failure: -1
*
*****************************************************************************/
static int
do_express_test(void)
{
int express_test;
int max_express_test;
int result;
express_test = GetTestExpress();
result =
MPI_Allreduce((void *)&express_test, (void *)&max_express_test, 1, MPI_INT, MPI_MAX, world_mpi_comm);
if (result != MPI_SUCCESS) {
nerrors++;
max_express_test = -1;
if (verbose) {
fprintf(stdout, "%d:%s: MPI_Allreduce() failed.\n", world_mpi_rank, __func__);
}
}
return (max_express_test);
} /* do_express_test() */
/*****************************************************************************
*
* Function: do_sync()
*
* Purpose: Ensure that all messages sent by this process have been
* processed before proceeding.
*
* Do this by exchanging sync req / sync ack messages with
* the server.
*
* Do nothing if nerrors is greater than zero.
*
* Return: void
*
*****************************************************************************/
static void
do_sync(void)
{
struct mssg_t mssg;
if (nerrors <= 0) {
/* compose the message */
mssg.req = SYNC_REQ_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = 0;
mssg.len = 0;
mssg.ver = 0;
mssg.count = 0;
mssg.magic = MSSG_MAGIC;
if (!send_mssg(&mssg, false)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__);
}
}
}
if (nerrors <= 0) {
if (!recv_mssg(&mssg, SYNC_ACK_CODE)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__);
}
}
else if ((mssg.req != SYNC_ACK_CODE) || (mssg.src != world_server_mpi_rank) ||
(mssg.dest != world_mpi_rank) || (mssg.magic != MSSG_MAGIC)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Bad data in sync ack.\n", world_mpi_rank, __func__);
}
}
}
return;
} /* do_sync() */
/*****************************************************************************
*
* Function: get_max_nerrors()
*
* Purpose: Do an MPI_Allreduce to obtain the maximum value of nerrors
* across all processes. Return this value.
*
* Return: Success: Maximum of the nerrors global variables across
* all processes.
*
* Failure: -1
*
*****************************************************************************/
static int
get_max_nerrors(void)
{
int max_nerrors;
int result;
result = MPI_Allreduce((void *)&nerrors, (void *)&max_nerrors, 1, MPI_INT, MPI_MAX, world_mpi_comm);
if (result != MPI_SUCCESS) {
nerrors++;
max_nerrors = -1;
if (verbose) {
fprintf(stdout, "%d:%s: MPI_Allreduce() failed.\n", world_mpi_rank, __func__);
}
}
return (max_nerrors);
} /* get_max_nerrors() */
/*****************************************************************************/
/************************ mssg xfer related functions ************************/
/*****************************************************************************/
/*****************************************************************************
*
* Function: recv_mssg()
*
* Purpose: Receive a message from any process in the provided instance
* of struct mssg.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
#define CACHE_TEST_TAG 99 /* different from any used by the library */
static bool
recv_mssg(struct mssg_t *mssg_ptr, int mssg_tag_offset)
{
bool success = true;
int mssg_tag = CACHE_TEST_TAG;
int result;
MPI_Status status;
if ((mssg_ptr == NULL) || (mssg_tag_offset < 0) || (mssg_tag_offset > MAX_REQ_CODE)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: bad param(s) on entry.\n", world_mpi_rank, __func__);
}
}
else {
mssg_tag += mssg_tag_offset;
}
if (success) {
result = MPI_Recv((void *)mssg_ptr, 1, mpi_mssg_t, MPI_ANY_SOURCE, mssg_tag, world_mpi_comm, &status);
if (result != MPI_SUCCESS) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: MPI_Recv() failed.\n", world_mpi_rank, __func__);
}
}
else if (mssg_ptr->magic != MSSG_MAGIC) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: invalid magic.\n", world_mpi_rank, __func__);
}
}
else if (mssg_ptr->src != status.MPI_SOURCE) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: mssg_ptr->src != status.MPI_SOURCE.\n", world_mpi_rank, __func__);
}
}
}
return (success);
} /* recv_mssg() */
/*****************************************************************************
*
* Function: send_mssg()
*
* Purpose: Send the provided instance of mssg to the indicated target.
*
* Note that all source and destination ranks are in the
* global communicator.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
send_mssg(struct mssg_t *mssg_ptr, bool add_req_to_tag)
{
bool success = true;
int mssg_tag = CACHE_TEST_TAG;
int result;
static long mssg_num = 0;
if ((mssg_ptr == NULL) || (mssg_ptr->src != world_mpi_rank) || (mssg_ptr->dest < 0) ||
(mssg_ptr->dest == mssg_ptr->src) || (mssg_ptr->dest >= world_mpi_size) || (mssg_ptr->req < 0) ||
(mssg_ptr->req > MAX_REQ_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: Invalid mssg on entry.\n", world_mpi_rank, __func__);
}
}
if (success) {
mssg_ptr->mssg_num = mssg_num++;
if (add_req_to_tag) {
mssg_tag += mssg_ptr->req;
}
result = MPI_Send((void *)mssg_ptr, 1, mpi_mssg_t, mssg_ptr->dest, mssg_tag, world_mpi_comm);
if (result != MPI_SUCCESS) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: MPI_Send() failed.\n", world_mpi_rank, __func__);
}
}
}
return (success);
} /* send_mssg() */
/*****************************************************************************
*
* Function: setup_derived_types()
*
* Purpose: Set up the derived types used by the test bed. At present,
* only the mpi_mssg derived type is needed.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
setup_derived_types(void)
{
bool success = true;
int i;
int result;
MPI_Datatype mpi_types[9] = {MPI_INT, MPI_INT, MPI_INT, MPI_LONG, HADDR_AS_MPI_TYPE,
MPI_INT, MPI_INT, MPI_UNSIGNED, MPI_UNSIGNED};
int block_len[9] = {1, 1, 1, 1, 1, 1, 1, 1, 1};
MPI_Aint displs[9];
struct mssg_t sample; /* used to compute displacements */
memset(&sample, 0, sizeof(struct mssg_t));
/* setup the displacements array */
if ((MPI_SUCCESS != MPI_Get_address(&sample.req, &displs[0])) ||
(MPI_SUCCESS != MPI_Get_address(&sample.src, &displs[1])) ||
(MPI_SUCCESS != MPI_Get_address(&sample.dest, &displs[2])) ||
(MPI_SUCCESS != MPI_Get_address(&sample.mssg_num, &displs[3])) ||
(MPI_SUCCESS != MPI_Get_address(&sample.base_addr, &displs[4])) ||
(MPI_SUCCESS != MPI_Get_address(&sample.len, &displs[5])) ||
(MPI_SUCCESS != MPI_Get_address(&sample.ver, &displs[6])) ||
(MPI_SUCCESS != MPI_Get_address(&sample.count, &displs[7])) ||
(MPI_SUCCESS != MPI_Get_address(&sample.magic, &displs[8]))) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: MPI_Get_address() call failed.\n", world_mpi_rank, __func__);
}
}
else {
/* Now calculate the actual displacements */
for (i = 8; i >= 0; --i) {
displs[i] -= displs[0];
}
}
if (success) {
result = MPI_Type_create_struct(9, block_len, displs, mpi_types, &mpi_mssg_t);
if (result != MPI_SUCCESS) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: MPI_Type_create_struct() call failed.\n", world_mpi_rank, __func__);
}
}
}
if (success) {
result = MPI_Type_commit(&mpi_mssg_t);
if (result != MPI_SUCCESS) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: MPI_Type_commit() call failed.\n", world_mpi_rank, __func__);
}
}
}
return (success);
} /* setup_derived_types */
/*****************************************************************************
*
* Function: takedown_derived_types()
*
* Purpose: take down the derived types used by the test bed. At present,
* only the mpi_mssg derived type is needed.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
takedown_derived_types(void)
{
bool success = true;
int result;
if (mpi_mssg_t == MPI_DATATYPE_NULL)
return (success);
result = MPI_Type_free(&mpi_mssg_t);
if (result != MPI_SUCCESS) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: MPI_Type_free() call failed.\n", world_mpi_rank, __func__);
}
}
return (success);
} /* takedown_derived_types() */
/*****************************************************************************/
/***************************** server functions ******************************/
/*****************************************************************************/
/*****************************************************************************
*
* Function: reset_server_counters()
*
* Purpose: Reset the counters maintained by the server, doing a
* sanity check in passing.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
reset_server_counters(void)
{
bool success = true;
int i;
long actual_total_reads = 0;
long actual_total_writes = 0;
for (i = 0; i < NUM_DATA_ENTRIES; i++) {
if (data[i].reads > 0) {
actual_total_reads += data[i].reads;
data[i].reads = 0;
}
if (data[i].writes > 0) {
actual_total_writes += data[i].writes;
data[i].writes = 0;
}
}
if (actual_total_reads != total_reads) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: actual/total reads mismatch (%ld/%d).\n", world_mpi_rank, __func__,
actual_total_reads, total_reads);
}
}
if (actual_total_writes != total_writes) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: actual/total writes mismatch (%ld/%d).\n", world_mpi_rank, __func__,
actual_total_writes, total_writes);
}
}
total_reads = 0;
total_writes = 0;
return (success);
} /* reset_server_counters() */
/*****************************************************************************
*
* Function: server_main()
*
* Purpose: Main function for the server process. This process exists
* to provide an independent view of the data array.
*
* The function handles request from the other processes in
* the test until the count of done messages received equals
* the number of client processes.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
server_main(void)
{
bool done = false;
bool success = true;
int done_count = 0;
struct mssg_t mssg;
if (world_mpi_rank != world_server_mpi_rank) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: This isn't the server process?!?!?\n", world_mpi_rank, __func__);
}
}
while ((success) && (!done)) {
success = recv_mssg(&mssg, 0);
if (success) {
switch (mssg.req) {
case WRITE_REQ_CODE:
success = serve_write_request(&mssg);
break;
case WRITE_REQ_ACK_CODE:
success = false;
if (verbose)
fprintf(stdout, "%s: Received write ack?!?.\n", __func__);
break;
case READ_REQ_CODE:
success = serve_read_request(&mssg);
break;
case READ_REQ_REPLY_CODE:
success = false;
if (verbose)
fprintf(stdout, "%s: Received read req reply?!?.\n", __func__);
break;
case SYNC_REQ_CODE:
success = serve_sync_request(&mssg);
break;
case SYNC_ACK_CODE:
success = false;
if (verbose)
fprintf(stdout, "%s: Received sync ack?!?.\n", __func__);
break;
case REQ_TTL_WRITES_CODE:
success = serve_total_writes_request(&mssg);
break;
case REQ_TTL_WRITES_RPLY_CODE:
success = false;
if (verbose)
fprintf(stdout, "%s: Received total writes reply?!?.\n", __func__);
break;
case REQ_TTL_READS_CODE:
success = serve_total_reads_request(&mssg);
break;
case REQ_TTL_READS_RPLY_CODE:
success = false;
if (verbose)
fprintf(stdout, "%s: Received total reads reply?!?.\n", __func__);
break;
case REQ_ENTRY_WRITES_CODE:
success = serve_entry_writes_request(&mssg);
break;
case REQ_ENTRY_WRITES_RPLY_CODE:
success = false;
if (verbose)
fprintf(stdout, "%s: Received entry writes reply?!?.\n", __func__);
break;
case REQ_ENTRY_READS_CODE:
success = serve_entry_reads_request(&mssg);
break;
case REQ_ENTRY_READS_RPLY_CODE:
success = false;
if (verbose)
fprintf(stdout, "%s: Received entry reads reply?!?.\n", __func__);
break;
case REQ_RW_COUNT_RESET_CODE:
success = serve_rw_count_reset_request(&mssg);
break;
case REQ_RW_COUNT_RESET_RPLY_CODE:
success = false;
if (verbose)
fprintf(stdout, "%s: Received RW count reset reply?!?.\n", __func__);
break;
case DONE_REQ_CODE:
done_count++;
if (done_count >= file_mpi_size)
done = true;
break;
default:
nerrors++;
success = false;
if (verbose)
fprintf(stdout, "%d:%s: Unknown request code.\n", world_mpi_rank, __func__);
break;
}
}
}
return (success);
} /* server_main() */
/*****************************************************************************
*
* Function: serve_read_request()
*
* Purpose: Serve a read request.
*
* The function accepts a pointer to an instance of struct
* mssg_t as input. If all sanity checks pass, it sends
* a copy of the indicated datum from the data array to
* the requesting process.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
serve_read_request(struct mssg_t *mssg_ptr)
{
bool report_mssg = false;
bool success = true;
int target_index;
haddr_t target_addr;
struct mssg_t reply;
if ((mssg_ptr == NULL) || (mssg_ptr->req != READ_REQ_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__);
}
}
if (success) {
target_addr = mssg_ptr->base_addr;
target_index = addr_to_datum_index(target_addr);
if (target_index < 0) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: addr lookup failed for %" PRIuHADDR ".\n", world_mpi_rank, __func__,
target_addr);
}
}
else if (data[target_index].len != mssg_ptr->len) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: data[i].len = %zu != mssg->len = %d.\n", world_mpi_rank, __func__,
data[target_index].len, mssg_ptr->len);
}
}
else if (!(data[target_index].valid)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout,
"%d:%s: proc %d read invalid entry. "
"idx/base_addr = %d/%" PRIuHADDR ".\n",
world_mpi_rank, __func__, mssg_ptr->src, target_index, data[target_index].base_addr);
}
}
else {
/* compose the reply message */
reply.req = READ_REQ_REPLY_CODE;
reply.src = world_mpi_rank;
reply.dest = mssg_ptr->src;
reply.mssg_num = -1; /* set by send function */
reply.base_addr = data[target_index].base_addr;
H5_CHECKED_ASSIGN(reply.len, unsigned, data[target_index].len, size_t);
reply.ver = data[target_index].ver;
reply.count = 0;
reply.magic = MSSG_MAGIC;
/* and update the counters */
total_reads++;
(data[target_index].reads)++;
}
}
if (success) {
success = send_mssg(&reply, true);
}
if (report_mssg) {
if (success) {
fprintf(stdout, "%d read 0x%llx. len = %d. ver = %d.\n", (int)(mssg_ptr->src),
(long long)(data[target_index].base_addr), (int)(data[target_index].len),
(int)(data[target_index].ver));
}
else {
fprintf(stdout, "%d read 0x%llx FAILED. len = %d. ver = %d.\n", (int)(mssg_ptr->src),
(long long)(data[target_index].base_addr), (int)(data[target_index].len),
(int)(data[target_index].ver));
}
}
return (success);
} /* serve_read_request() */
/*****************************************************************************
*
* Function: serve_sync_request()
*
* Purpose: Serve a sync request.
*
* The function accepts a pointer to an instance of struct
* mssg_t as input. If all sanity checks pass, it sends a
* sync ack to the requesting process.
*
* This service exist to allow the sending process to ensure
* that all previous messages have been processed before
* proceeding.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
serve_sync_request(struct mssg_t *mssg_ptr)
{
bool report_mssg = false;
bool success = true;
struct mssg_t reply;
if ((mssg_ptr == NULL) || (mssg_ptr->req != SYNC_REQ_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__);
}
}
if (success) {
/* compose the reply message */
reply.req = SYNC_ACK_CODE;
reply.src = world_mpi_rank;
reply.dest = mssg_ptr->src;
reply.mssg_num = -1; /* set by send function */
reply.base_addr = 0;
reply.len = 0;
reply.ver = 0;
reply.count = 0;
reply.magic = MSSG_MAGIC;
}
if (success) {
success = send_mssg(&reply, true);
}
if (report_mssg) {
if (success) {
fprintf(stdout, "%d sync.\n", (int)(mssg_ptr->src));
}
else {
fprintf(stdout, "%d sync FAILED.\n", (int)(mssg_ptr->src));
}
}
return (success);
} /* serve_sync_request() */
/*****************************************************************************
*
* Function: serve_write_request()
*
* Purpose: Serve a write request.
*
* The function accepts a pointer to an instance of struct
* mssg_t as input. If all sanity checks pass, it updates
* the version number of the target data array entry as
* specified in the message.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
serve_write_request(struct mssg_t *mssg_ptr)
{
bool report_mssg = false;
bool success = true;
int target_index;
int new_ver_num = 0;
haddr_t target_addr;
#if DO_WRITE_REQ_ACK
struct mssg_t reply;
#endif /* DO_WRITE_REQ_ACK */
if ((mssg_ptr == NULL) || (mssg_ptr->req != WRITE_REQ_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__);
}
}
if (success) {
target_addr = mssg_ptr->base_addr;
target_index = addr_to_datum_index(target_addr);
if (target_index < 0) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: addr lookup failed for %" PRIuHADDR ".\n", world_mpi_rank, __func__,
target_addr);
}
}
else if (data[target_index].len != mssg_ptr->len) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: data[i].len = %zu != mssg->len = %d.\n", world_mpi_rank, __func__,
data[target_index].len, mssg_ptr->len);
}
}
}
if (success) {
new_ver_num = mssg_ptr->ver;
/* this check should catch duplicate writes */
if (new_ver_num <= data[target_index].ver) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: new ver = %d <= old ver = %d.\n", world_mpi_rank, __func__,
new_ver_num, data[target_index].ver);
}
}
}
if (success) {
/* process the write */
data[target_index].ver = new_ver_num;
data[target_index].valid = true;
/* and update the counters */
total_writes++;
(data[target_index].writes)++;
#if DO_WRITE_REQ_ACK
/* compose the reply message */
reply.req = WRITE_REQ_ACK_CODE;
reply.src = world_mpi_rank;
reply.dest = mssg_ptr->src;
reply.mssg_num = -1; /* set by send function */
reply.base_addr = data[target_index].base_addr;
H5_CHECKED_ASSIGN(reply.len, unsigned, data[target_index].len, size_t);
reply.ver = data[target_index].ver;
reply.count = 0;
reply.magic = MSSG_MAGIC;
/* and send it */
success = send_mssg(&reply, true);
#endif /* DO_WRITE_REQ_ACK */
}
if (report_mssg) {
if (success) {
fprintf(stdout, "%d write 0x%llx. len = %d. ver = %d.\n", (int)(mssg_ptr->src),
(long long)(data[target_index].base_addr), (int)(data[target_index].len),
(int)(data[target_index].ver));
}
else {
fprintf(stdout, "%d write 0x%llx FAILED. len = %d. ver = %d.\n", (int)(mssg_ptr->src),
(long long)(data[target_index].base_addr), (int)(data[target_index].len),
(int)(data[target_index].ver));
}
}
return (success);
} /* serve_write_request() */
/*****************************************************************************
*
* Function: serve_total_writes_request()
*
* Purpose: Serve a request for the total number of writes recorded since
* the last reset.
*
* The function accepts a pointer to an instance of struct
* mssg_t as input. If all sanity checks pass, it sends
* the current value of the total_writes global variable to
* the requesting process.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
serve_total_writes_request(struct mssg_t *mssg_ptr)
{
bool report_mssg = false;
bool success = true;
struct mssg_t reply;
if ((mssg_ptr == NULL) || (mssg_ptr->req != REQ_TTL_WRITES_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__);
}
}
if (success) {
/* compose the reply message */
reply.req = REQ_TTL_WRITES_RPLY_CODE;
reply.src = world_mpi_rank;
reply.dest = mssg_ptr->src;
reply.mssg_num = -1; /* set by send function */
reply.base_addr = 0;
reply.len = 0;
reply.ver = 0;
reply.count = (unsigned)total_writes;
reply.magic = MSSG_MAGIC;
}
if (success) {
success = send_mssg(&reply, true);
}
if (report_mssg) {
if (success) {
fprintf(stdout, "%d request total writes %d.\n", (int)(mssg_ptr->src), total_writes);
}
else {
fprintf(stdout, "%d request total writes %d -- FAILED.\n", (int)(mssg_ptr->src), total_writes);
}
}
return (success);
} /* serve_total_writes_request() */
/*****************************************************************************
*
* Function: serve_total_reads_request()
*
* Purpose: Serve a request for the total number of reads recorded since
* the last reset.
*
* The function accepts a pointer to an instance of struct
* mssg_t as input. If all sanity checks pass, it sends
* the current value of the total_reads global variable to
* the requesting process.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
serve_total_reads_request(struct mssg_t *mssg_ptr)
{
bool report_mssg = false;
bool success = true;
struct mssg_t reply;
if ((mssg_ptr == NULL) || (mssg_ptr->req != REQ_TTL_READS_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__);
}
}
if (success) {
/* compose the reply message */
reply.req = REQ_TTL_READS_RPLY_CODE;
reply.src = world_mpi_rank;
reply.dest = mssg_ptr->src;
reply.mssg_num = -1; /* set by send function */
reply.base_addr = 0;
reply.len = 0;
reply.ver = 0;
reply.count = (unsigned)total_reads;
reply.magic = MSSG_MAGIC;
}
if (success) {
success = send_mssg(&reply, true);
}
if (report_mssg) {
if (success) {
fprintf(stdout, "%d request total reads %d.\n", (int)(mssg_ptr->src), total_reads);
}
else {
fprintf(stdout, "%d request total reads %d -- FAILED.\n", (int)(mssg_ptr->src), total_reads);
}
}
return (success);
} /* serve_total_reads_request() */
/*****************************************************************************
*
* Function: serve_entry_writes_request()
*
* Purpose: Serve an entry writes request.
*
* The function accepts a pointer to an instance of struct
* mssg_t as input. If all sanity checks pass, it sends
* the number of times that the indicated datum has been
* written since the last counter reset to the requesting
* process.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
serve_entry_writes_request(struct mssg_t *mssg_ptr)
{
bool report_mssg = false;
bool success = true;
int target_index;
haddr_t target_addr;
struct mssg_t reply;
if ((mssg_ptr == NULL) || (mssg_ptr->req != REQ_ENTRY_WRITES_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__);
}
}
if (success) {
target_addr = mssg_ptr->base_addr;
target_index = addr_to_datum_index(target_addr);
if (target_index < 0) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: addr lookup failed for %" PRIuHADDR ".\n", world_mpi_rank, __func__,
target_addr);
}
}
else {
/* compose the reply message */
reply.req = REQ_ENTRY_WRITES_RPLY_CODE;
reply.src = world_mpi_rank;
reply.dest = mssg_ptr->src;
reply.mssg_num = -1; /* set by send function */
reply.base_addr = target_addr;
reply.len = 0;
reply.ver = 0;
reply.count = (unsigned)data[target_index].writes;
reply.magic = MSSG_MAGIC;
}
}
if (success) {
success = send_mssg(&reply, true);
}
if (report_mssg) {
if (success) {
fprintf(stdout, "%d request entry 0x%llx writes = %ld.\n", (int)(mssg_ptr->src),
(long long)(data[target_index].base_addr), (long)(data[target_index].writes));
}
else {
fprintf(stdout, "%d request entry 0x%llx writes = %ld FAILED.\n", (int)(mssg_ptr->src),
(long long)(data[target_index].base_addr), (long)(data[target_index].writes));
}
}
return (success);
} /* serve_entry_writes_request() */
/*****************************************************************************
*
* Function: serve_entry_reads_request()
*
* Purpose: Serve an entry reads request.
*
* The function accepts a pointer to an instance of struct
* mssg_t as input. If all sanity checks pass, it sends
* the number of times that the indicated datum has been
* read since the last counter reset to the requesting
* process.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
serve_entry_reads_request(struct mssg_t *mssg_ptr)
{
bool report_mssg = false;
bool success = true;
int target_index;
haddr_t target_addr;
struct mssg_t reply;
if ((mssg_ptr == NULL) || (mssg_ptr->req != REQ_ENTRY_READS_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__);
}
}
if (success) {
target_addr = mssg_ptr->base_addr;
target_index = addr_to_datum_index(target_addr);
if (target_index < 0) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: addr lookup failed for %" PRIuHADDR ".\n", world_mpi_rank, __func__,
target_addr);
}
}
else {
/* compose the reply message */
reply.req = REQ_ENTRY_READS_RPLY_CODE;
reply.src = world_mpi_rank;
reply.dest = mssg_ptr->src;
reply.mssg_num = -1; /* set by send function */
reply.base_addr = target_addr;
reply.len = 0;
reply.ver = 0;
reply.count = (unsigned)(data[target_index].reads);
reply.magic = MSSG_MAGIC;
}
}
if (success) {
success = send_mssg(&reply, true);
}
if (report_mssg) {
if (success) {
fprintf(stdout, "%d request entry 0x%llx reads = %ld.\n", (int)(mssg_ptr->src),
(long long)(data[target_index].base_addr), (long)(data[target_index].reads));
}
else {
fprintf(stdout, "%d request entry 0x%llx reads = %ld FAILED.\n", (int)(mssg_ptr->src),
(long long)(data[target_index].base_addr), (long)(data[target_index].reads));
}
}
return (success);
} /* serve_entry_reads_request() */
/*****************************************************************************
*
* Function: serve_rw_count_reset_request()
*
* Purpose: Serve read/write count reset request.
*
* The function accepts a pointer to an instance of struct
* mssg_t as input. If all sanity checks pass, it resets the
* read/write counters, and sends a confirmation message to
* the calling process.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
serve_rw_count_reset_request(struct mssg_t *mssg_ptr)
{
bool report_mssg = false;
bool success = true;
struct mssg_t reply;
if ((mssg_ptr == NULL) || (mssg_ptr->req != REQ_RW_COUNT_RESET_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__);
}
}
if (success) {
success = reset_server_counters();
}
if (success) {
/* compose the reply message */
reply.req = REQ_RW_COUNT_RESET_RPLY_CODE;
reply.src = world_mpi_rank;
reply.dest = mssg_ptr->src;
reply.mssg_num = -1; /* set by send function */
reply.base_addr = 0;
reply.len = 0;
reply.ver = 0;
reply.count = 0;
reply.magic = MSSG_MAGIC;
}
if (success) {
success = send_mssg(&reply, true);
}
if (report_mssg) {
if (success) {
fprintf(stdout, "%d request R/W counter reset.\n", (int)(mssg_ptr->src));
}
else {
fprintf(stdout, "%d request R/w counter reset FAILED.\n", (int)(mssg_ptr->src));
}
}
return (success);
} /* serve_rw_count_reset_request() */
/*****************************************************************************/
/**************************** Call back functions ****************************/
/*****************************************************************************/
/*-------------------------------------------------------------------------
* Function: datum_get_initial_load_size
*
* Purpose: Query the image size for an entry before deserializing it
*
* Return: SUCCEED
*
*-------------------------------------------------------------------------
*/
static herr_t
datum_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr)
{
haddr_t addr = *(haddr_t *)udata_ptr;
int idx;
struct datum *entry_ptr;
assert(udata_ptr);
assert(image_len_ptr);
idx = addr_to_datum_index(addr);
assert(idx >= 0);
assert(idx < NUM_DATA_ENTRIES);
assert(idx < virt_num_data_entries);
entry_ptr = &(data[idx]);
assert(addr == entry_ptr->base_addr);
assert(!entry_ptr->global_pinned);
assert(!entry_ptr->local_pinned);
if (callbacks_verbose) {
fprintf(stdout, "%d: get_initial_load_size() idx = %d, addr = %ld, len = %d.\n", world_mpi_rank, idx,
(long)addr, (int)entry_ptr->local_len);
fflush(stdout);
}
/* Set image length size */
*image_len_ptr = entry_ptr->local_len;
return (SUCCEED);
} /* get_initial_load_size() */
/*-------------------------------------------------------------------------
* Function: datum_deserialize
*
* Purpose: deserialize the entry.
*
* Return: void * (pointer to the in core representation of the entry)
*
*-------------------------------------------------------------------------
*/
static void *
datum_deserialize(const void H5_ATTR_NDEBUG_UNUSED *image_ptr, H5_ATTR_UNUSED size_t len, void *udata_ptr,
bool *dirty_ptr)
{
haddr_t addr = *(haddr_t *)udata_ptr;
bool success = true;
int idx;
struct datum *entry_ptr = NULL;
assert(image_ptr != NULL);
idx = addr_to_datum_index(addr);
assert(idx >= 0);
assert(idx < NUM_DATA_ENTRIES);
assert(idx < virt_num_data_entries);
entry_ptr = &(data[idx]);
assert(addr == entry_ptr->base_addr);
assert(!entry_ptr->global_pinned);
assert(!entry_ptr->local_pinned);
assert(dirty_ptr);
if (callbacks_verbose) {
fprintf(stdout, "%d: deserialize() idx = %d, addr = %ld, len = %d, is_dirty = %d.\n", world_mpi_rank,
idx, (long)addr, (int)len, (int)(entry_ptr->header.is_dirty));
fflush(stdout);
}
*dirty_ptr = false;
if (!success) {
entry_ptr = NULL;
}
return (entry_ptr);
} /* deserialize() */
/*-------------------------------------------------------------------------
* Function: datum_image_len
*
* Purpose: Return the real (and possibly reduced) length of the image.
* The helper functions verify that the correct version of
* deserialize is being called, and then call deserialize
* proper.
*
* Return: SUCCEED
*
*-------------------------------------------------------------------------
*/
static herr_t
datum_image_len(const void *thing, size_t *image_len)
{
int idx;
const struct datum *entry_ptr;
assert(thing);
assert(image_len);
entry_ptr = (const struct datum *)thing;
idx = addr_to_datum_index(entry_ptr->base_addr);
assert(idx >= 0);
assert(idx < NUM_DATA_ENTRIES);
assert(idx < virt_num_data_entries);
assert(&(data[idx]) == entry_ptr);
assert(entry_ptr->local_len > 0);
assert(entry_ptr->local_len <= entry_ptr->len);
if (callbacks_verbose) {
fprintf(stdout, "%d: image_len() idx = %d, addr = %ld, len = %d.\n", world_mpi_rank, idx,
(long)(entry_ptr->base_addr), (int)(entry_ptr->local_len));
fflush(stdout);
}
assert(entry_ptr->header.addr == entry_ptr->base_addr);
*image_len = entry_ptr->local_len;
return (SUCCEED);
} /* datum_image_len() */
/*-------------------------------------------------------------------------
* Function: datum_serialize
*
* Purpose: Serialize the supplied entry.
*
* Return: SUCCEED if successful, FAIL otherwise.
*
*-------------------------------------------------------------------------
*/
static herr_t
datum_serialize(const H5F_t *f, void H5_ATTR_NDEBUG_UNUSED *image_ptr, size_t len, void *thing_ptr)
{
herr_t ret_value = SUCCEED;
int idx;
struct datum *entry_ptr;
struct H5AC_aux_t *aux_ptr;
assert(thing_ptr);
assert(image_ptr);
entry_ptr = (struct datum *)thing_ptr;
assert(f);
assert(f->shared);
assert(f->shared->cache);
assert(f->shared->cache->aux_ptr);
aux_ptr = (H5AC_aux_t *)(f->shared->cache->aux_ptr);
assert(aux_ptr);
entry_ptr->aux_ptr = aux_ptr;
idx = addr_to_datum_index(entry_ptr->base_addr);
assert(idx >= 0);
assert(idx < NUM_DATA_ENTRIES);
assert(idx < virt_num_data_entries);
assert(&(data[idx]) == entry_ptr);
if (callbacks_verbose) {
fprintf(stdout, "%d: serialize() idx = %d, addr = %ld, len = %d.\n", world_mpi_rank, idx,
(long)entry_ptr->header.addr, (int)len);
fflush(stdout);
}
assert(entry_ptr->header.addr == entry_ptr->base_addr);
assert((entry_ptr->header.size == entry_ptr->len) || (entry_ptr->header.size == entry_ptr->local_len));
assert(entry_ptr->header.is_dirty == entry_ptr->dirty);
datum_flushes++;
if (entry_ptr->header.is_pinned) {
datum_pinned_flushes++;
assert(entry_ptr->global_pinned || entry_ptr->local_pinned);
}
return (ret_value);
} /* datum_serialize() */
/*-------------------------------------------------------------------------
* Function: datum_notify
*
* Purpose: Do the communication with the server we used to do in the
* flush and load callbacks in the version 2 cache.
*
* Return: SUCCEED
*
*-------------------------------------------------------------------------
*/
static herr_t
datum_notify(H5C_notify_action_t action, void *thing)
{
bool was_dirty = false;
herr_t ret_value = SUCCEED;
struct datum *entry_ptr;
struct H5AC_aux_t *aux_ptr;
struct mssg_t mssg;
int idx;
assert(thing);
entry_ptr = (struct datum *)thing;
idx = addr_to_datum_index(entry_ptr->base_addr);
assert(idx >= 0);
assert(idx < NUM_DATA_ENTRIES);
assert(idx < virt_num_data_entries);
assert(&(data[idx]) == entry_ptr);
if (callbacks_verbose) {
fprintf(stdout, "%d: notify() action = %d, idx = %d, addr = %ld.\n", world_mpi_rank, (int)action, idx,
(long)entry_ptr->header.addr);
fflush(stdout);
}
assert(entry_ptr->header.addr == entry_ptr->base_addr);
/* Skip this check when the entry is being dirtied, since the resize
* operation sends the message before the len/local_len is updated
* (after the resize operation completes successfully) (QAK - 2016/10/19)
*/
if (H5AC_NOTIFY_ACTION_ENTRY_DIRTIED != action)
assert((entry_ptr->header.size == entry_ptr->len) ||
(entry_ptr->header.size == entry_ptr->local_len));
switch (action) {
case H5AC_NOTIFY_ACTION_AFTER_INSERT:
if (callbacks_verbose) {
fprintf(stdout, "%d: notify() action = insert, idx = %d, addr = %ld.\n", world_mpi_rank, idx,
(long)entry_ptr->header.addr);
fflush(stdout);
}
/* do nothing */
break;
case H5AC_NOTIFY_ACTION_AFTER_LOAD:
if (callbacks_verbose) {
fprintf(stdout, "%d: notify() action = load, idx = %d, addr = %ld.\n", world_mpi_rank, idx,
(long)entry_ptr->header.addr);
fflush(stdout);
}
/* compose the read message */
mssg.req = READ_REQ_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = entry_ptr->base_addr;
H5_CHECKED_ASSIGN(mssg.len, unsigned, entry_ptr->len, size_t);
mssg.ver = 0; /* bogus -- should be corrected by server */
mssg.count = 0; /* not used */
mssg.magic = MSSG_MAGIC;
if (!send_mssg(&mssg, false)) {
nerrors++;
ret_value = FAIL;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__);
}
}
if (ret_value == SUCCEED) {
if (!recv_mssg(&mssg, READ_REQ_REPLY_CODE)) {
nerrors++;
ret_value = FAIL;
if (verbose) {
fprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__);
}
}
}
if (ret_value == SUCCEED) {
if ((mssg.req != READ_REQ_REPLY_CODE) || (mssg.src != world_server_mpi_rank) ||
(mssg.dest != world_mpi_rank) || (mssg.base_addr != entry_ptr->base_addr) ||
(mssg.len != entry_ptr->len) || (mssg.ver < entry_ptr->ver) ||
(mssg.magic != MSSG_MAGIC)) {
nerrors++;
ret_value = FAIL;
if (verbose) {
fprintf(stdout, "%d:%s: Bad data in read req reply.\n", world_mpi_rank, __func__);
}
#if 0 /* This has been useful debugging code -- keep it for now. */
if ( mssg.req != READ_REQ_REPLY_CODE ) {
fprintf(stdout,
"%d:%s: mssg.req != READ_REQ_REPLY_CODE.\n",
world_mpi_rank, __func__);
fprintf(stdout, "%d:%s: mssg.req = %d.\n",
world_mpi_rank, __func__, (int)(mssg.req));
}
if ( mssg.src != world_server_mpi_rank ) {
fprintf(stdout,
"%d:%s: mssg.src != world_server_mpi_rank.\n",
world_mpi_rank, __func__);
}
if ( mssg.dest != world_mpi_rank ) {
fprintf(stdout,
"%d:%s: mssg.dest != world_mpi_rank.\n",
world_mpi_rank, __func__);
}
if ( mssg.base_addr != entry_ptr->base_addr ) {
fprintf(stdout,
"%d:%s: mssg.base_addr != entry_ptr->base_addr.\n",
world_mpi_rank, __func__);
fprintf(stdout, "%d:%s: mssg.base_addr = %" PRIuHADDR ".\n",
world_mpi_rank, __func__, mssg.base_addr);
fprintf(stdout,
"%d:%s: entry_ptr->base_addr = %" PRIuHADDR ".\n",
world_mpi_rank, __func__,
entry_ptr->base_addr);
}
if ( mssg.len != entry_ptr->len ) {
fprintf(stdout,
"%d:%s: mssg.len != entry_ptr->len.\n",
world_mpi_rank, __func__);
fprintf(stdout, "%d:%s: mssg.len = %" PRIuHADDR ".\n",
world_mpi_rank, __func__, mssg.len);
}
if ( mssg.ver < entry_ptr->ver ) {
fprintf(stdout,
"%d:%s: mssg.ver < entry_ptr->ver.\n",
world_mpi_rank, __func__);
}
if ( mssg.magic != MSSG_MAGIC ) {
fprintf(stdout, "%d:%s: mssg.magic != MSSG_MAGIC.\n",
world_mpi_rank, __func__);
}
#endif /* JRM */
}
else {
entry_ptr->ver = mssg.ver;
entry_ptr->dirty = false;
datum_loads++;
}
}
break;
case H5C_NOTIFY_ACTION_AFTER_FLUSH:
if (callbacks_verbose) {
fprintf(stdout, "%d: notify() action = flush, idx = %d, addr = %ld.\n", world_mpi_rank, idx,
(long)entry_ptr->header.addr);
fflush(stdout);
}
assert(entry_ptr->aux_ptr);
aux_ptr = entry_ptr->aux_ptr;
entry_ptr->aux_ptr = NULL;
assert(entry_ptr->header.is_dirty); /* JRM */
if ((file_mpi_rank != 0) && (entry_ptr->dirty) &&
(aux_ptr->metadata_write_strategy == H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY)) {
ret_value = FAIL;
fprintf(stdout, "%d:%s: Flushed dirty entry from non-zero file process.", world_mpi_rank,
__func__);
}
if (ret_value == SUCCEED) {
if (entry_ptr->header.is_dirty) {
was_dirty = true; /* so we will receive the ack
* if requested
*/
/* compose the message */
mssg.req = WRITE_REQ_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = entry_ptr->base_addr;
H5_CHECKED_ASSIGN(mssg.len, unsigned, entry_ptr->len, size_t);
mssg.ver = entry_ptr->ver;
mssg.count = 0;
mssg.magic = MSSG_MAGIC;
if (!send_mssg(&mssg, false)) {
nerrors++;
ret_value = FAIL;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__);
}
}
else {
entry_ptr->dirty = false;
entry_ptr->flushed = true;
}
}
}
#if DO_WRITE_REQ_ACK
if ((ret_value == SUCCEED) && (was_dirty)) {
if (!recv_mssg(&mssg, WRITE_REQ_ACK_CODE)) {
nerrors++;
ret_value = FAIL;
if (verbose) {
fprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__);
}
}
else if ((mssg.req != WRITE_REQ_ACK_CODE) || (mssg.src != world_server_mpi_rank) ||
(mssg.dest != world_mpi_rank) || (mssg.base_addr != entry_ptr->base_addr) ||
(mssg.len != entry_ptr->len) || (mssg.ver != entry_ptr->ver) ||
(mssg.magic != MSSG_MAGIC)) {
nerrors++;
ret_value = FAIL;
if (verbose) {
fprintf(stdout, "%d:%s: Bad data in write req ack.\n", world_mpi_rank, __func__);
}
}
}
#endif /* DO_WRITE_REQ_ACK */
datum_flushes++;
if (entry_ptr->header.is_pinned) {
datum_pinned_flushes++;
assert(entry_ptr->global_pinned || entry_ptr->local_pinned);
}
break;
case H5AC_NOTIFY_ACTION_BEFORE_EVICT:
if (callbacks_verbose) {
fprintf(stdout, "%d: notify() action = evict, idx = %d, addr = %ld.\n", world_mpi_rank, idx,
(long)entry_ptr->header.addr);
fflush(stdout);
}
/* do nothing */
break;
case H5AC_NOTIFY_ACTION_ENTRY_DIRTIED:
if (callbacks_verbose) {
fprintf(stdout, "%d: notify() action = entry dirty, idx = %d, addr = %ld.\n", world_mpi_rank,
idx, (long)entry_ptr->header.addr);
fflush(stdout);
}
/* do nothing */
break;
case H5AC_NOTIFY_ACTION_ENTRY_CLEANED:
if (callbacks_verbose) {
fprintf(stdout, "%d: notify() action = entry clean, idx = %d, addr = %ld.\n", world_mpi_rank,
idx, (long)entry_ptr->header.addr);
fflush(stdout);
}
entry_ptr->cleared = true;
entry_ptr->dirty = false;
datum_clears++;
if (entry_ptr->header.is_pinned) {
datum_pinned_clears++;
assert(entry_ptr->global_pinned || entry_ptr->local_pinned);
} /* end if */
break;
case H5AC_NOTIFY_ACTION_CHILD_DIRTIED:
if (callbacks_verbose) {
fprintf(stdout, "%d: notify() action = child entry dirty, idx = %d, addr = %ld.\n",
world_mpi_rank, idx, (long)entry_ptr->header.addr);
fflush(stdout);
}
/* do nothing */
break;
case H5AC_NOTIFY_ACTION_CHILD_CLEANED:
if (callbacks_verbose) {
fprintf(stdout, "%d: notify() action = child entry clean, idx = %d, addr = %ld.\n",
world_mpi_rank, idx, (long)entry_ptr->header.addr);
fflush(stdout);
}
/* do nothing */
break;
case H5AC_NOTIFY_ACTION_CHILD_UNSERIALIZED:
if (callbacks_verbose) {
fprintf(stdout, "%d: notify() action = child entry unserialized, idx = %d, addr = %ld.\n",
world_mpi_rank, idx, (long)entry_ptr->header.addr);
fflush(stdout);
}
/* do nothing */
break;
case H5AC_NOTIFY_ACTION_CHILD_SERIALIZED:
if (callbacks_verbose) {
fprintf(stdout, "%d: notify() action = child entry serialized, idx = %d, addr = %ld.\n",
world_mpi_rank, idx, (long)entry_ptr->header.addr);
fflush(stdout);
}
/* do nothing */
break;
default:
nerrors++;
ret_value = FAIL;
if (verbose) {
fprintf(stdout, "%d:%s: Unknown notify action.\n", world_mpi_rank, __func__);
}
break;
}
return (ret_value);
} /* datum_notify() */
/*-------------------------------------------------------------------------
* Function: datum_free_icr
*
* Purpose: Nominally, this callback is supposed to free the
* in core representation of the entry.
*
* In the context of this test bed, we use it to do
* do all the processing we used to do on a destroy.
*
* Return: SUCCEED
*
*-------------------------------------------------------------------------
*/
static herr_t
datum_free_icr(void *thing)
{
int idx;
struct datum *entry_ptr;
assert(thing);
entry_ptr = (struct datum *)thing;
idx = addr_to_datum_index(entry_ptr->base_addr);
assert(idx >= 0);
assert(idx < NUM_DATA_ENTRIES);
assert(idx < virt_num_data_entries);
assert(&(data[idx]) == entry_ptr);
if (callbacks_verbose) {
fprintf(stdout, "%d: free_icr() idx = %d, dirty = %d.\n", world_mpi_rank, idx,
(int)(entry_ptr->dirty));
fflush(stdout);
}
assert(entry_ptr->header.addr == entry_ptr->base_addr);
assert((entry_ptr->header.size == entry_ptr->len) || (entry_ptr->header.size == entry_ptr->local_len));
assert(!(entry_ptr->header.is_dirty));
assert(!(entry_ptr->global_pinned));
assert(!(entry_ptr->local_pinned));
assert(!(entry_ptr->header.is_pinned));
datum_destroys++;
return (SUCCEED);
} /* datum_free_icr() */
/*****************************************************************************/
/************************** test utility functions ***************************/
/*****************************************************************************/
/*****************************************************************************
* Function: expunge_entry()
*
* Purpose: Expunge the entry indicated by the type and index, mark it
* as clean, and don't increment its version number.
*
* Do nothing if nerrors is non-zero on entry.
*
* Return: void
*
*****************************************************************************/
static void
expunge_entry(H5F_t *file_ptr, int32_t idx)
{
bool in_cache;
herr_t result;
struct datum *entry_ptr;
assert(file_ptr);
assert((0 <= idx) && (idx < NUM_DATA_ENTRIES));
assert(idx < virt_num_data_entries);
entry_ptr = &(data[idx]);
assert(!(entry_ptr->locked));
assert(!(entry_ptr->global_pinned));
assert(!(entry_ptr->local_pinned));
entry_ptr->dirty = false;
if (nerrors == 0) {
result = H5AC_expunge_entry(file_ptr, &(types[0]), entry_ptr->header.addr, H5AC__NO_FLAGS_SET);
if (result < 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Error in H5AC_expunge_entry().\n", world_mpi_rank, __func__);
}
}
assert(((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE);
assert(!((entry_ptr->header).is_dirty));
result = H5C_get_entry_status(file_ptr, entry_ptr->base_addr, NULL, &in_cache, NULL, NULL, NULL, NULL,
NULL, NULL, NULL);
if (result < 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Error in H5C_get_entry_status().\n", world_mpi_rank, __func__);
}
}
else if (in_cache) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Expunged entry still in cache?!?\n", world_mpi_rank, __func__);
}
}
}
return;
} /* expunge_entry() */
/*****************************************************************************
* Function: insert_entry()
*
* Purpose: Insert the entry indicated by the type and index, mark it
* as dirty, and increment its version number.
*
* Do nothing if nerrors is non-zero on entry.
*
* Return: void
*
*****************************************************************************/
static void
insert_entry(H5C_t *cache_ptr, H5F_t *file_ptr, int32_t idx, unsigned int flags)
{
bool insert_pinned;
herr_t result;
struct datum *entry_ptr;
assert(cache_ptr);
assert(file_ptr);
assert((0 <= idx) && (idx < NUM_DATA_ENTRIES));
assert(idx < virt_num_data_entries);
entry_ptr = &(data[idx]);
assert(!(entry_ptr->locked));
insert_pinned = ((flags & H5C__PIN_ENTRY_FLAG) != 0);
if (nerrors == 0) {
(entry_ptr->ver)++;
entry_ptr->dirty = true;
result = H5AC_insert_entry(file_ptr, &(types[0]), entry_ptr->base_addr,
(void *)(&(entry_ptr->header)), flags);
if ((result < 0) || (entry_ptr->header.type != &(types[0])) ||
(entry_ptr->len != entry_ptr->header.size) || (entry_ptr->base_addr != entry_ptr->header.addr)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Error in H5AC_insert_entry().\n", world_mpi_rank, __func__);
}
}
if (!(entry_ptr->header.is_dirty)) {
/* it is possible that we just exceeded the dirty bytes
* threshold, triggering a write of the newly inserted
* entry. Test for this, and only flag an error if this
* is not the case.
*/
struct H5AC_aux_t *aux_ptr;
aux_ptr = ((H5AC_aux_t *)(cache_ptr->aux_ptr));
if (!(aux_ptr != NULL && aux_ptr->dirty_bytes == 0)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: data[%d].header.is_dirty = %d.\n", world_mpi_rank, __func__, idx,
(int)(data[idx].header.is_dirty));
}
}
}
if (insert_pinned) {
assert(entry_ptr->header.is_pinned);
entry_ptr->global_pinned = true;
global_pins++;
}
else {
assert(!(entry_ptr->header.is_pinned));
entry_ptr->global_pinned = false;
}
/* assert( entry_ptr->header.is_dirty ); */
assert(((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE);
}
return;
} /* insert_entry() */
/*****************************************************************************
* Function: local_pin_and_unpin_random_entries()
*
* Purpose: Pin a random number of randomly selected entries in cache, and
* then unpin a random number of entries.
*
* Do nothing if nerrors is non-zero on entry.
*
* Return: void
*
*****************************************************************************/
static void
local_pin_and_unpin_random_entries(H5F_t *file_ptr, int min_idx, int max_idx, int min_count, int max_count)
{
if (nerrors == 0) {
bool via_unprotect;
int count;
int i;
int idx;
assert(file_ptr);
assert(0 <= min_idx);
assert(min_idx < max_idx);
assert(max_idx < NUM_DATA_ENTRIES);
assert(max_idx < virt_num_data_entries);
assert(0 <= min_count);
assert(min_count < max_count);
count = (HDrand() % (max_count - min_count)) + min_count;
assert(min_count <= count);
assert(count <= max_count);
for (i = 0; i < count; i++) {
local_pin_random_entry(file_ptr, min_idx, max_idx);
}
count = (HDrand() % (max_count - min_count)) + min_count;
assert(min_count <= count);
assert(count <= max_count);
i = 0;
idx = 0;
while ((i < count) && (idx >= 0)) {
via_unprotect = ((((unsigned)i) & 0x0001) == 0);
idx = local_unpin_next_pinned_entry(file_ptr, idx, via_unprotect);
i++;
}
}
return;
} /* local_pin_and_unpin_random_entries() */
/*****************************************************************************
* Function: local_pin_random_entry()
*
* Purpose: Pin a randomly selected entry in cache, and mark the entry
* as being locally pinned. Since this entry will not in
* general be pinned in any other cache, we can't mark it
* dirty.
*
* Do nothing if nerrors is non-zero on entry.
*
* Return: void
*
*****************************************************************************/
static void
local_pin_random_entry(H5F_t *file_ptr, int min_idx, int max_idx)
{
int idx;
if (nerrors == 0) {
assert(file_ptr);
assert(0 <= min_idx);
assert(min_idx < max_idx);
assert(max_idx < NUM_DATA_ENTRIES);
assert(max_idx < virt_num_data_entries);
do {
idx = (HDrand() % (max_idx - min_idx)) + min_idx;
assert(min_idx <= idx);
assert(idx <= max_idx);
} while (data[idx].global_pinned || data[idx].local_pinned);
pin_entry(file_ptr, idx, false, false);
}
return;
} /* local_pin_random_entry() */
/*****************************************************************************
* Function: local_unpin_all_entries()
*
* Purpose: Unpin all local pinned entries.
*
* Do nothing if nerrors is non-zero on entry.
*
* Return: void
*
*****************************************************************************/
static void
local_unpin_all_entries(H5F_t *file_ptr, bool via_unprotect)
{
if (nerrors == 0) {
int idx;
assert(file_ptr);
idx = 0;
while (idx >= 0) {
idx = local_unpin_next_pinned_entry(file_ptr, idx, via_unprotect);
}
}
return;
} /* local_unpin_all_entries() */
/*****************************************************************************
* Function: local_unpin_next_pinned_entry()
*
* Purpose: Find the next locally pinned entry after the specified
* starting point, and unpin it.
*
* Do nothing if nerrors is non-zero on entry.
*
* Return: Index of the unpinned entry if there is one, or -1 if
* nerrors is non-zero on entry, or if there is no locally
* pinned entry.
*
*****************************************************************************/
static int
local_unpin_next_pinned_entry(H5F_t *file_ptr, int start_idx, bool via_unprotect)
{
int i = 0;
int idx = -1;
if (nerrors == 0) {
assert(file_ptr);
assert(0 <= start_idx);
assert(start_idx < NUM_DATA_ENTRIES);
assert(start_idx < virt_num_data_entries);
idx = start_idx;
while ((i < virt_num_data_entries) && (!(data[idx].local_pinned))) {
i++;
idx++;
if (idx >= virt_num_data_entries) {
idx = 0;
}
}
if (data[idx].local_pinned) {
unpin_entry(file_ptr, idx, false, false, via_unprotect);
}
else {
idx = -1;
}
}
return (idx);
} /* local_unpin_next_pinned_entry() */
/*****************************************************************************
* Function: lock_and_unlock_random_entries()
*
* Purpose: Obtain a random number in the closed interval [min_count,
* max_count]. Then protect and unprotect that number of
* random entries.
*
* Do nothing if nerrors is non-zero on entry.
*
* Return: void
*
*****************************************************************************/
static void
lock_and_unlock_random_entries(H5F_t *file_ptr, int min_idx, int max_idx, int min_count, int max_count)
{
int count;
int i;
if (nerrors == 0) {
assert(file_ptr);
assert(0 <= min_count);
assert(min_count < max_count);
count = (HDrand() % (max_count - min_count)) + min_count;
assert(min_count <= count);
assert(count <= max_count);
for (i = 0; i < count; i++) {
lock_and_unlock_random_entry(file_ptr, min_idx, max_idx);
}
}
return;
} /* lock_and_unlock_random_entries() */
/*****************************************************************************
* Function: lock_and_unlock_random_entry()
*
* Purpose: Protect and then unprotect a random entry with index in
* the data[] array in the close interval [min_idx, max_idx].
*
* Do nothing if nerrors is non-zero on entry.
*
* Return: void
*
*****************************************************************************/
static void
lock_and_unlock_random_entry(H5F_t *file_ptr, int min_idx, int max_idx)
{
int idx;
if (nerrors == 0) {
assert(file_ptr);
assert(0 <= min_idx);
assert(min_idx < max_idx);
assert(max_idx < NUM_DATA_ENTRIES);
assert(max_idx < virt_num_data_entries);
idx = (HDrand() % (max_idx - min_idx)) + min_idx;
assert(min_idx <= idx);
assert(idx <= max_idx);
lock_entry(file_ptr, idx);
unlock_entry(file_ptr, idx, H5AC__NO_FLAGS_SET);
}
return;
} /* lock_and_unlock_random_entry() */
/*****************************************************************************
* Function: lock_entry()
*
* Purpose: Protect the entry indicated by the index.
*
* Do nothing if nerrors is non-zero on entry.
*
* Return: void
*
*****************************************************************************/
static void
lock_entry(H5F_t *file_ptr, int32_t idx)
{
struct datum *entry_ptr;
H5C_cache_entry_t *cache_entry_ptr;
if (nerrors == 0) {
assert((0 <= idx) && (idx < NUM_DATA_ENTRIES));
assert(idx < virt_num_data_entries);
entry_ptr = &(data[idx]);
assert(!(entry_ptr->locked));
cache_entry_ptr = (H5C_cache_entry_t *)H5AC_protect(file_ptr, &(types[0]), entry_ptr->base_addr,
&entry_ptr->base_addr, H5AC__NO_FLAGS_SET);
if ((cache_entry_ptr != (void *)(&(entry_ptr->header))) || (entry_ptr->header.type != &(types[0])) ||
((entry_ptr->len != entry_ptr->header.size) &&
(entry_ptr->local_len != entry_ptr->header.size)) ||
(entry_ptr->base_addr != entry_ptr->header.addr)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: error in H5AC_protect().\n", world_mpi_rank, __func__);
}
}
else {
entry_ptr->locked = true;
}
assert(((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE);
}
return;
} /* lock_entry() */
/*****************************************************************************
* Function: mark_entry_dirty()
*
* Purpose: Mark dirty the entry indicated by the index,
*
* Do nothing if nerrors is non-zero on entry.
*
* Return: void
*
*****************************************************************************/
static void
mark_entry_dirty(int32_t idx)
{
herr_t result;
struct datum *entry_ptr;
if (nerrors == 0) {
assert((0 <= idx) && (idx < NUM_DATA_ENTRIES));
assert(idx < virt_num_data_entries);
entry_ptr = &(data[idx]);
assert(entry_ptr->locked || entry_ptr->global_pinned);
assert(!(entry_ptr->local_pinned));
(entry_ptr->ver)++;
entry_ptr->dirty = true;
result = H5AC_mark_entry_dirty((void *)entry_ptr);
if (result < 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: error in H5AC_mark_entry_dirty().\n", world_mpi_rank, __func__);
}
}
else if (!(entry_ptr->locked)) {
global_dirty_pins++;
}
}
return;
} /* mark_entry_dirty() */
/*****************************************************************************
* Function: pin_entry()
*
* Purpose: Pin the entry indicated by the index.
*
* Do nothing if nerrors is non-zero on entry.
*
* Return: void
*
*****************************************************************************/
static void
pin_entry(H5F_t *file_ptr, int32_t idx, bool global, bool dirty)
{
unsigned int flags = H5AC__PIN_ENTRY_FLAG;
struct datum *entry_ptr;
if (nerrors == 0) {
assert(file_ptr);
assert((0 <= idx) && (idx < NUM_DATA_ENTRIES));
assert(idx < virt_num_data_entries);
entry_ptr = &(data[idx]);
assert(!(entry_ptr->global_pinned));
assert(!(entry_ptr->local_pinned));
assert(!(dirty && (!global)));
lock_entry(file_ptr, idx);
if (dirty) {
flags |= H5AC__DIRTIED_FLAG;
}
unlock_entry(file_ptr, idx, flags);
assert((entry_ptr->header).is_pinned);
assert((!dirty) || ((entry_ptr->header).is_dirty));
if (global) {
entry_ptr->global_pinned = true;
global_pins++;
}
else {
entry_ptr->local_pinned = true;
local_pins++;
}
}
return;
} /* pin_entry() */
/*****************************************************************************
* Function: pin_protected_entry()
*
* Purpose: Insert the entry indicated by the type and index, mark it
* as dirty, and increment its version number.
*
* Do nothing if nerrors is non-zero on entry.
*
* Return: void
*
*****************************************************************************/
static void
pin_protected_entry(int32_t idx, bool global)
{
herr_t result;
struct datum *entry_ptr;
assert((0 <= idx) && (idx < NUM_DATA_ENTRIES));
assert(idx < virt_num_data_entries);
entry_ptr = &(data[idx]);
assert(entry_ptr->locked);
if (nerrors == 0) {
result = H5AC_pin_protected_entry((void *)entry_ptr);
if ((result < 0) || (entry_ptr->header.type != &(types[0])) ||
((entry_ptr->len != entry_ptr->header.size) &&
(entry_ptr->local_len != entry_ptr->header.size)) ||
(entry_ptr->base_addr != entry_ptr->header.addr) || (!((entry_ptr->header).is_pinned))) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Error in H5AC_pin_protected entry().\n", world_mpi_rank, __func__);
}
}
if (global) {
entry_ptr->global_pinned = true;
global_pins++;
}
else {
entry_ptr->local_pinned = true;
local_pins++;
}
assert(((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE);
}
return;
} /* pin_protected_entry() */
/*****************************************************************************
* Function: move_entry()
*
* Purpose: Move the entry indicated old_idx to the entry indicated
* by new_idex. Touch up the data array so that flush will
* not choke.
*
* Do nothing if nerrors isn't zero, or if old_idx equals
* new_idx.
*
* Return: void
*
*****************************************************************************/
static void
move_entry(H5F_t *file_ptr, int32_t old_idx, int32_t new_idx)
{
herr_t result;
int tmp;
size_t tmp_len;
haddr_t old_addr = HADDR_UNDEF;
haddr_t new_addr = HADDR_UNDEF;
struct datum *old_entry_ptr;
struct datum *new_entry_ptr;
if ((nerrors == 0) && (old_idx != new_idx)) {
assert(file_ptr);
assert((0 <= old_idx) && (old_idx < NUM_DATA_ENTRIES));
assert(old_idx < virt_num_data_entries);
assert((0 <= new_idx) && (new_idx < NUM_DATA_ENTRIES));
assert(new_idx < virt_num_data_entries);
old_entry_ptr = &(data[old_idx]);
new_entry_ptr = &(data[new_idx]);
assert(((old_entry_ptr->header).type)->id == DATUM_ENTRY_TYPE);
assert(!(old_entry_ptr->header.is_protected));
assert(!(old_entry_ptr->locked));
assert(old_entry_ptr->len == new_entry_ptr->len);
old_addr = old_entry_ptr->base_addr;
new_addr = new_entry_ptr->base_addr;
/* Moving will mark the entry dirty if it is not already */
old_entry_ptr->dirty = true;
/* touch up versions, base_addrs, and data_index. Do this
* now as it is possible that the rename will trigger a
* sync point.
*/
if (old_entry_ptr->ver < new_entry_ptr->ver)
old_entry_ptr->ver = new_entry_ptr->ver;
else
(old_entry_ptr->ver)++;
old_entry_ptr->base_addr = new_addr;
new_entry_ptr->base_addr = old_addr;
data_index[old_entry_ptr->index] = new_idx;
data_index[new_entry_ptr->index] = old_idx;
tmp = old_entry_ptr->index;
old_entry_ptr->index = new_entry_ptr->index;
new_entry_ptr->index = tmp;
if (old_entry_ptr->local_len != new_entry_ptr->local_len) {
tmp_len = old_entry_ptr->local_len;
old_entry_ptr->local_len = new_entry_ptr->local_len;
new_entry_ptr->local_len = tmp_len;
} /* end if */
result = H5AC_move_entry(file_ptr, &(types[0]), old_addr, new_addr);
if ((result < 0) || (old_entry_ptr->header.addr != new_addr)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5AC_move_entry() failed.\n", world_mpi_rank, __func__);
}
}
else {
assert(((old_entry_ptr->header).type)->id == DATUM_ENTRY_TYPE);
if (!(old_entry_ptr->header.is_dirty)) {
/* it is possible that we just exceeded the dirty bytes
* threshold, triggering a write of the newly inserted
* entry. Test for this, and only flag an error if this
* is not the case.
*/
struct H5AC_aux_t *aux_ptr;
aux_ptr = ((H5AC_aux_t *)(file_ptr->shared->cache->aux_ptr));
if (!(aux_ptr != NULL && aux_ptr->dirty_bytes == 0)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: data[%d].header.is_dirty = %d.\n", world_mpi_rank, __func__,
new_idx, (int)(data[new_idx].header.is_dirty));
}
}
}
else {
assert(old_entry_ptr->header.is_dirty);
}
}
}
} /* move_entry() */
/*****************************************************************************
*
* Function: reset_server_counts()
*
* Purpose: Send a message to the server process requesting it to reset
* its counters. Await confirmation message.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
reset_server_counts(void)
{
bool success = true; /* will set to false if appropriate. */
struct mssg_t mssg;
if (success) {
/* compose the message */
mssg.req = REQ_RW_COUNT_RESET_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = 0;
mssg.len = 0;
mssg.ver = 0;
mssg.count = 0;
mssg.magic = MSSG_MAGIC;
if (!send_mssg(&mssg, false)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__);
}
}
}
if (success) {
if (!recv_mssg(&mssg, REQ_RW_COUNT_RESET_RPLY_CODE)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__);
}
}
else if ((mssg.req != REQ_RW_COUNT_RESET_RPLY_CODE) || (mssg.src != world_server_mpi_rank) ||
(mssg.dest != world_mpi_rank) || (mssg.base_addr != 0) || (mssg.len != 0) ||
(mssg.ver != 0) || (mssg.count != 0) || (mssg.magic != MSSG_MAGIC)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: Bad data in req r/w counter reset reply.\n", world_mpi_rank,
__func__);
}
}
}
return (success);
} /* reset_server_counts() */
/*****************************************************************************
* Function: resize_entry()
*
* Purpose: Resize the pinned entry indicated by idx to the new_size.
* Note that new_size must be greater than 0, and must be
* less than or equal to the original size of the entry.
*
* Do nothing if nerrors isn't zero.
*
* Return: void
*
*****************************************************************************/
static void
resize_entry(int32_t idx, size_t new_size)
{
herr_t result;
struct datum *entry_ptr;
if (nerrors == 0) {
assert((0 <= idx) && (idx < NUM_DATA_ENTRIES));
assert(idx < virt_num_data_entries);
entry_ptr = &(data[idx]);
assert(((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE);
assert(!(entry_ptr->locked));
assert((entry_ptr->global_pinned) && (!entry_ptr->local_pinned));
assert((entry_ptr->header.size == entry_ptr->len) ||
(entry_ptr->header.size == entry_ptr->local_len));
assert(new_size > 0);
assert(new_size <= entry_ptr->len);
result = H5AC_resize_entry((void *)entry_ptr, new_size);
if (result < 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5AC_resize_entry() failed.\n", world_mpi_rank, __func__);
}
}
else {
assert(((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE);
assert(entry_ptr->header.is_dirty);
assert(entry_ptr->header.size == new_size);
entry_ptr->dirty = true;
entry_ptr->local_len = new_size;
/* touch up version. */
(entry_ptr->ver)++;
}
}
return;
} /* resize_entry() */
/*****************************************************************************
*
* Function: setup_cache_for_test()
*
* Purpose: Setup the parallel cache for a test, and return the file id
* and a pointer to the cache's internal data structures.
*
* To do this, we must create a file, flush it (so that we
* don't have to worry about entries in the metadata cache),
* look up the address of the metadata cache, and then instruct
* the cache to omit sanity checks on dxpl IDs.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
setup_cache_for_test(hid_t *fid_ptr, H5F_t **file_ptr_ptr, H5C_t **cache_ptr_ptr, int metadata_write_strategy)
{
bool success = false; /* will set to true if appropriate. */
bool enable_rpt_fcn = false;
hid_t fid = H5I_INVALID_HID;
H5AC_cache_config_t config;
H5AC_cache_config_t test_config;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
haddr_t actual_base_addr;
assert(fid_ptr != NULL);
assert(file_ptr_ptr != NULL);
assert(cache_ptr_ptr != NULL);
fid = H5Fcreate(filenames[0], H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
/* Push API context */
H5CX_push();
if (fid < 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5Fcreate() failed.\n", world_mpi_rank, __func__);
}
}
else if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, __func__);
}
}
else {
file_ptr = (H5F_t *)H5VL_object_verify(fid, H5I_FILE);
}
if (file_ptr == NULL) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Can't get file_ptr.\n", world_mpi_rank, __func__);
}
}
else {
cache_ptr = file_ptr->shared->cache;
}
if (cache_ptr == NULL) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Can't get cache_ptr.\n", world_mpi_rank, __func__);
}
}
else {
cache_ptr->ignore_tags = true;
*fid_ptr = fid;
*file_ptr_ptr = file_ptr;
*cache_ptr_ptr = cache_ptr;
H5C_stats__reset(cache_ptr);
success = true;
}
if (success) {
config.version = H5AC__CURR_CACHE_CONFIG_VERSION;
if (H5AC_get_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) {
fprintf(stdout, "%d:%s: H5AC_get_cache_auto_resize_config(1) failed.\n", world_mpi_rank,
__func__);
}
else {
config.rpt_fcn_enabled = enable_rpt_fcn;
config.metadata_write_strategy = metadata_write_strategy;
if (H5AC_set_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) {
fprintf(stdout, "%d:%s: H5AC_set_cache_auto_resize_config() failed.\n", world_mpi_rank,
__func__);
}
else if (enable_rpt_fcn) {
fprintf(stdout, "%d:%s: rpt_fcn enabled.\n", world_mpi_rank, __func__);
}
}
}
/* verify that the metadata write strategy is set as expected. Must
* do this here, as this field is only set in the parallel case. Hence
* we can't do our usual checks in the serial case.
*/
if (success) /* verify that the metadata write strategy is as expected */
{
if (cache_ptr->aux_ptr == NULL) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: cache_ptr->aux_ptr == NULL.\n", world_mpi_rank, __func__);
}
}
else if (((H5AC_aux_t *)(cache_ptr->aux_ptr))->metadata_write_strategy != metadata_write_strategy) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: bad cache_ptr->aux_ptr->metadata_write_strategy\n", world_mpi_rank,
__func__);
}
}
}
/* also verify that the expected metadata write strategy is reported
* when we get the current configuration.
*/
if (success) {
test_config.version = H5AC__CURR_CACHE_CONFIG_VERSION;
if (H5AC_get_cache_auto_resize_config(cache_ptr, &test_config) != SUCCEED) {
fprintf(stdout, "%d:%s: H5AC_get_cache_auto_resize_config(2) failed.\n", world_mpi_rank,
__func__);
}
else if (test_config.metadata_write_strategy != metadata_write_strategy) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: unexpected metadata_write_strategy.\n", world_mpi_rank, __func__);
}
}
}
/* allocate space for test entries -- do this before we set the
* sync point done callback as it will dirty the superblock, requiring
* another flush. If the sync point done callback is set, this will
* cause a spurious failure.
*/
if (success) { /* allocate space for test entries */
actual_base_addr = H5MF_alloc(file_ptr, H5FD_MEM_DEFAULT, (hsize_t)(max_addr + BASE_ADDR));
if (actual_base_addr == HADDR_UNDEF) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5MF_alloc() failed.\n", world_mpi_rank, __func__);
}
}
else if (actual_base_addr > BASE_ADDR) {
/* If this happens, must increase BASE_ADDR so that the
* actual_base_addr is <= BASE_ADDR. This should only happen
* if the size of the superblock is increase.
*/
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: actual_base_addr > BASE_ADDR.\n", world_mpi_rank, __func__);
}
}
}
/* flush the file again -- space allocation dirtied superblock */
if (success) {
if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: second H5Fflush() failed.\n", world_mpi_rank, __func__);
}
}
}
#if DO_SYNC_AFTER_WRITE
if (success) {
if (H5AC__set_write_done_callback(cache_ptr, do_sync) != SUCCEED) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5C_set_write_done_callback failed.\n", world_mpi_rank, __func__);
}
}
}
#endif /* DO_SYNC_AFTER_WRITE */
if (success) {
if (H5AC__set_sync_point_done_callback(cache_ptr, verify_writes) != SUCCEED) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5AC__set_sync_point_done_callback failed.\n", world_mpi_rank,
__func__);
}
}
}
return (success);
} /* setup_cache_for_test() */
/*****************************************************************************
*
* Function: verify_writes()
*
* Purpose: Verify that the indicated entries have been written exactly
* once each, and that the indicated total number of writes
* has been processed by the server process. Flag an error if
* discrepancy is noted. Finally reset the counters maintained
* by the server process.
*
* This function should only be called by the metadata cache
* as the "sync point done" function, as it must do some
* synchronization to avoid false positives.
*
* Note that at present, this function does not allow for the
* case in which one or more of the indicated entries should
* have been written more than once since the last time the
* server process's counters were reset. That is fine for now,
* as with the current metadata write strategies, no entry
* should be written more than once per sync point. If this
* changes this limitation will have to be revisited.
*
* Return: void.
*
*****************************************************************************/
static void
verify_writes(unsigned num_writes, haddr_t *written_entries_tbl)
{
const bool report = false;
bool proceed = true;
unsigned u = 0;
assert(world_mpi_rank != world_server_mpi_rank);
assert((num_writes == 0) || (written_entries_tbl != NULL));
/* barrier to ensure that all other processes are ready to leave
* the sync point as well.
*/
if (proceed) {
if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) {
proceed = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: barrier 1 failed.\n", world_mpi_rank, __func__);
}
}
}
if (proceed)
proceed = verify_total_writes(num_writes);
while (proceed && u < num_writes) {
proceed = verify_entry_writes(written_entries_tbl[u], 1);
u++;
}
/* barrier to ensure that all other processes have finished verifying
* the number of writes before we reset the counters.
*/
if (proceed) {
if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) {
proceed = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: barrier 2 failed.\n", world_mpi_rank, __func__);
}
}
}
if (proceed) {
proceed = reset_server_counts();
}
/* if requested, display status of check to stdout */
if ((report) && (file_mpi_rank == 0)) {
if (proceed) {
fprintf(stdout, "%d:%s: verified %u writes.\n", world_mpi_rank, __func__, num_writes);
}
else {
fprintf(stdout, "%d:%s: FAILED to verify %u writes.\n", world_mpi_rank, __func__, num_writes);
}
}
/* final barrier to ensure that all processes think that the server
* counters have been reset before we leave the sync point. This
* barrier is probably not necessary at this point in time (5/9/10),
* but I can think of at least one likely change to the metadata write
* strategies that will require it -- hence its insertion now.
*/
if (proceed) {
if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) {
proceed = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: barrier 3 failed.\n", world_mpi_rank, __func__);
}
}
}
return;
} /* verify_writes() */
/*****************************************************************************
*
* Function: setup_rand()
*
* Purpose: Use gettimeofday() to obtain a seed for rand(), print the
* seed to stdout, and then pass it to srand().
*
* Increment nerrors if any errors are detected.
*
* Return: void.
*
*****************************************************************************/
static void
setup_rand(void)
{
bool use_predefined_seeds = false;
int num_predefined_seeds = 3;
unsigned predefined_seeds[3] = {18669, 89925, 12577};
unsigned seed;
struct timeval tv;
if ((use_predefined_seeds) && (world_mpi_size == num_predefined_seeds)) {
assert(world_mpi_rank >= 0);
assert(world_mpi_rank < world_mpi_size);
seed = predefined_seeds[world_mpi_rank];
fprintf(stdout, "%d:%s: predefined_seed = %d.\n", world_mpi_rank, __func__, seed);
fflush(stdout);
HDsrand(seed);
}
else {
if (HDgettimeofday(&tv, NULL) != 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: gettimeofday() failed.\n", world_mpi_rank, __func__);
}
}
else {
seed = (unsigned)tv.tv_usec;
if (verbose) {
fprintf(stdout, "%d:%s: seed = %d.\n", world_mpi_rank, __func__, seed);
fflush(stdout);
}
HDsrand(seed);
}
}
return;
} /* setup_rand() */
/*****************************************************************************
*
* Function: take_down_cache()
*
* Purpose: Take down the parallel cache after a test.
*
* To do this, we must close the file, and delete if if
* possible.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
take_down_cache(hid_t fid, H5C_t *cache_ptr)
{
bool success = true; /* will set to false if appropriate. */
/* flush the file -- this should write out any remaining test
* entries in the cache.
*/
if ((success) && (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0)) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, __func__);
}
}
/* Now reset the sync point done callback. Must do this as with
* the SWMR mods, the cache will do additional I/O on file close
* un-related to the test entries, and thereby corrupt our counts
* of entry writes.
*/
if (success) {
if (H5AC__set_sync_point_done_callback(cache_ptr, NULL) != SUCCEED) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5AC__set_sync_point_done_callback failed.\n", world_mpi_rank,
__func__);
}
}
}
/* close the file */
if ((success) && (H5Fclose(fid) < 0)) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5Fclose() failed.\n", world_mpi_rank, __func__);
}
}
/* Pop API context */
H5CX_pop(false);
if (success) {
if (world_mpi_rank == world_server_mpi_rank) {
if (HDremove(filenames[0]) < 0) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: HDremove() failed.\n", world_mpi_rank, __func__);
}
}
}
else {
/* verify that there have been no further writes of test
* entries during the close
*/
success = verify_total_writes(0);
}
}
return (success);
} /* take_down_cache() */
/*****************************************************************************
* Function: verify_entry_reads
*
* Purpose: Query the server to determine the number of times the
* indicated entry has been read since the last time the
* server counters were reset.
*
* Return true if successful, and if the supplied expected
* number of reads matches the number of reads reported by
* the server process.
*
* Return false and flag an error otherwise.
*
* Return: true if successful, false otherwise.
*
*-------------------------------------------------------------------------
*/
static bool
verify_entry_reads(haddr_t addr, int expected_entry_reads)
{
bool success = true;
int reported_entry_reads = 0;
struct mssg_t mssg;
if (success) {
/* compose the message */
mssg.req = REQ_ENTRY_READS_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = addr;
mssg.len = 0; /* not used */
mssg.ver = 0; /* not used */
mssg.count = 0; /* not used */
mssg.magic = MSSG_MAGIC;
if (!send_mssg(&mssg, false)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__);
}
}
}
if (success) {
if (!recv_mssg(&mssg, REQ_ENTRY_READS_RPLY_CODE)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__);
}
}
}
if (success) {
if ((mssg.req != REQ_ENTRY_READS_RPLY_CODE) || (mssg.src != world_server_mpi_rank) ||
(mssg.dest != world_mpi_rank) || (mssg.base_addr != addr) || (mssg.len != 0) || (mssg.ver != 0) ||
(mssg.magic != MSSG_MAGIC)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: Bad data in req entry reads reply.\n", world_mpi_rank, __func__);
}
}
else {
H5_CHECKED_ASSIGN(reported_entry_reads, int, mssg.count, unsigned);
}
}
if (success) {
if (reported_entry_reads != expected_entry_reads) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: rep/exp entry 0x%" PRIxHADDR " reads mismatch (%d/%d).\n",
world_mpi_rank, __func__, addr, reported_entry_reads, expected_entry_reads);
}
}
}
return (success);
} /* verify_entry_reads() */
/*****************************************************************************
* Function: verify_entry_writes
*
* Purpose: Query the server to determine the number of times the
* indicated entry has been written since the last time the
* server counters were reset.
*
* Return true if successful, and if the supplied expected
* number of reads matches the number of reads reported by
* the server process.
*
* Return false and flag an error otherwise.
*
* Return: true if successful, false otherwise.
*
*-------------------------------------------------------------------------
*/
static bool
verify_entry_writes(haddr_t addr, int expected_entry_writes)
{
bool success = true;
int reported_entry_writes = 0;
struct mssg_t mssg;
if (success) {
/* compose the message */
mssg.req = REQ_ENTRY_WRITES_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = addr;
mssg.len = 0; /* not used */
mssg.ver = 0; /* not used */
mssg.count = 0; /* not used */
mssg.magic = MSSG_MAGIC;
if (!send_mssg(&mssg, false)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__);
}
}
}
if (success) {
if (!recv_mssg(&mssg, REQ_ENTRY_WRITES_RPLY_CODE)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__);
}
}
}
if (success) {
if ((mssg.req != REQ_ENTRY_WRITES_RPLY_CODE) || (mssg.src != world_server_mpi_rank) ||
(mssg.dest != world_mpi_rank) || (mssg.base_addr != addr) || (mssg.len != 0) || (mssg.ver != 0) ||
(mssg.magic != MSSG_MAGIC)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: Bad data in req entry writes reply.\n", world_mpi_rank, __func__);
}
}
else {
H5_CHECKED_ASSIGN(reported_entry_writes, int, mssg.count, unsigned);
}
}
if (success) {
if (reported_entry_writes != expected_entry_writes) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: rep/exp entry 0x%llx writes mismatch (%d/%d).\n", world_mpi_rank,
__func__, (long long)addr, reported_entry_writes, expected_entry_writes);
}
}
}
return (success);
} /* verify_entry_writes() */
/*****************************************************************************
*
* Function: verify_total_reads()
*
* Purpose: Query the server to obtain the total reads since the last
* server counter reset, and compare this value with the supplied
* expected value.
*
* If the values match, return true.
*
* If the values don't match, flag an error and return false.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
verify_total_reads(int expected_total_reads)
{
bool success = true; /* will set to false if appropriate. */
long reported_total_reads;
struct mssg_t mssg;
if (success) {
/* compose the message */
mssg.req = REQ_TTL_READS_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = 0;
mssg.len = 0;
mssg.ver = 0;
mssg.count = 0;
mssg.magic = MSSG_MAGIC;
if (!send_mssg(&mssg, false)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__);
}
}
}
if (success) {
if (!recv_mssg(&mssg, REQ_TTL_READS_RPLY_CODE)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__);
}
}
else if ((mssg.req != REQ_TTL_READS_RPLY_CODE) || (mssg.src != world_server_mpi_rank) ||
(mssg.dest != world_mpi_rank) || (mssg.base_addr != 0) || (mssg.len != 0) ||
(mssg.ver != 0) || (mssg.magic != MSSG_MAGIC)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: Bad data in req total reads reply.\n", world_mpi_rank, __func__);
}
}
else {
reported_total_reads = mssg.count;
}
}
if (success) {
if (reported_total_reads != expected_total_reads) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: reported/expected total reads mismatch (%ld/%d).\n", world_mpi_rank,
__func__, reported_total_reads, expected_total_reads);
}
}
}
return (success);
} /* verify_total_reads() */
/*****************************************************************************
*
* Function: verify_total_writes()
*
* Purpose: Query the server to obtain the total writes since the last
* server counter reset, and compare this value with the supplied
* expected value.
*
* If the values match, return true.
*
* If the values don't match, flag an error and return false.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
verify_total_writes(unsigned expected_total_writes)
{
bool success = true; /* will set to false if appropriate. */
unsigned reported_total_writes;
struct mssg_t mssg;
if (success) {
/* compose the message */
mssg.req = REQ_TTL_WRITES_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = 0;
mssg.len = 0;
mssg.ver = 0;
mssg.count = 0;
mssg.magic = MSSG_MAGIC;
if (!send_mssg(&mssg, false)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__);
}
}
}
if (success) {
if (!recv_mssg(&mssg, REQ_TTL_WRITES_RPLY_CODE)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__);
}
}
else if ((mssg.req != REQ_TTL_WRITES_RPLY_CODE) || (mssg.src != world_server_mpi_rank) ||
(mssg.dest != world_mpi_rank) || (mssg.base_addr != 0) || (mssg.len != 0) ||
(mssg.ver != 0) || (mssg.magic != MSSG_MAGIC)) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: Bad data in req total reads reply.\n", world_mpi_rank, __func__);
}
}
else {
reported_total_writes = mssg.count;
}
}
if (success) {
if (reported_total_writes != expected_total_writes) {
nerrors++;
success = false;
if (verbose) {
fprintf(stdout, "%d:%s: reported/expected total writes mismatch (%u/%u).\n", world_mpi_rank,
__func__, reported_total_writes, expected_total_writes);
}
}
}
return (success);
} /* verify_total_writes() */
/*****************************************************************************
* Function: unlock_entry()
*
* Purpose: Unprotect the entry indicated by the index.
*
* Do nothing if nerrors is non-zero on entry.
*
* Return: void
*
*****************************************************************************/
static void
unlock_entry(H5F_t *file_ptr, int32_t idx, unsigned int flags)
{
herr_t dirtied;
herr_t result;
struct datum *entry_ptr;
if (nerrors == 0) {
assert(file_ptr);
assert((0 <= idx) && (idx < NUM_DATA_ENTRIES));
assert(idx < virt_num_data_entries);
entry_ptr = &(data[idx]);
assert(entry_ptr->locked);
dirtied = ((flags & H5AC__DIRTIED_FLAG) == H5AC__DIRTIED_FLAG);
if (dirtied) {
(entry_ptr->ver)++;
entry_ptr->dirty = true;
}
result = H5AC_unprotect(file_ptr, &(types[0]), entry_ptr->base_addr, (void *)(&(entry_ptr->header)),
flags);
if ((result < 0) || (entry_ptr->header.type != &(types[0])) ||
((entry_ptr->len != entry_ptr->header.size) &&
(entry_ptr->local_len != entry_ptr->header.size)) ||
(entry_ptr->base_addr != entry_ptr->header.addr)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: error in H5AC_unprotect().\n", world_mpi_rank, __func__);
}
}
else {
entry_ptr->locked = false;
}
assert(((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE);
if (((flags & H5AC__DIRTIED_FLAG) != 0) && ((flags & H5C__DELETED_FLAG) == 0) &&
(!(((world_mpi_rank == 0) && (entry_ptr->flushed)) ||
((world_mpi_rank != 0) && (entry_ptr->cleared))))) {
assert(entry_ptr->header.is_dirty);
assert(entry_ptr->dirty);
}
}
return;
} /* unlock_entry() */
/*****************************************************************************
* Function: unpin_entry()
*
* Purpose: Unpin the entry indicated by the index.
*
* Do nothing if nerrors is non-zero on entry.
*
* Return: void
*
*****************************************************************************/
static void
unpin_entry(H5F_t *file_ptr, int32_t idx, bool global, bool dirty, bool via_unprotect)
{
herr_t result;
unsigned int flags = H5AC__UNPIN_ENTRY_FLAG;
struct datum *entry_ptr;
if (nerrors == 0) {
assert(file_ptr);
assert((0 <= idx) && (idx < NUM_DATA_ENTRIES));
assert(idx < virt_num_data_entries);
entry_ptr = &(data[idx]);
assert((entry_ptr->header).is_pinned);
assert(!(entry_ptr->global_pinned && entry_ptr->local_pinned));
assert((global && entry_ptr->global_pinned) || (!global && entry_ptr->local_pinned));
assert(!(dirty && (!global)));
if (via_unprotect) {
lock_entry(file_ptr, idx);
if (dirty) {
flags |= H5AC__DIRTIED_FLAG;
}
unlock_entry(file_ptr, idx, flags);
}
else {
if (dirty) {
mark_entry_dirty(idx);
}
result = H5AC_unpin_entry(entry_ptr);
if (result < 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: error in H5AC_unpin_entry().\n", world_mpi_rank, __func__);
}
}
}
assert(!((entry_ptr->header).is_pinned));
if (global) {
entry_ptr->global_pinned = false;
}
else {
entry_ptr->local_pinned = false;
}
}
return;
} /* unpin_entry() */
/*****************************************************************************/
/****************************** test functions *******************************/
/*****************************************************************************/
/*****************************************************************************
*
* Function: server_smoke_check()
*
* Purpose: Quick smoke check for the server process.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
server_smoke_check(void)
{
bool success = true;
int max_nerrors;
struct mssg_t mssg;
if (world_mpi_rank == 0) {
TESTING("server smoke check");
}
nerrors = 0;
init_data();
reset_stats();
if (world_mpi_rank == world_server_mpi_rank) {
if (!server_main()) {
/* some error occurred in the server -- report failure */
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__);
}
}
}
else /* run the clients */
{
/* compose the write message */
mssg.req = WRITE_REQ_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = data[world_mpi_rank].base_addr;
H5_CHECKED_ASSIGN(mssg.len, unsigned, data[world_mpi_rank].len, size_t);
mssg.ver = ++(data[world_mpi_rank].ver);
mssg.count = 0;
mssg.magic = MSSG_MAGIC;
if (!(success = send_mssg(&mssg, false))) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed on write.\n", world_mpi_rank, __func__);
}
}
#if DO_WRITE_REQ_ACK
/* try to receive the write ack from the server */
if (success) {
success = recv_mssg(&mssg, WRITE_REQ_ACK_CODE);
if (!success) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__);
}
}
}
/* verify that we received the expected ack message */
if (success) {
if ((mssg.req != WRITE_REQ_ACK_CODE) || (mssg.src != world_server_mpi_rank) ||
(mssg.dest != world_mpi_rank) || (mssg.base_addr != data[world_mpi_rank].base_addr) ||
(mssg.len != data[world_mpi_rank].len) || (mssg.ver != data[world_mpi_rank].ver) ||
(mssg.magic != MSSG_MAGIC)) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Bad data in write req ack.\n", world_mpi_rank, __func__);
}
}
}
#endif /* DO_WRITE_REQ_ACK */
do_sync();
/* barrier to allow all writes to complete */
if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: barrier 1 failed.\n", world_mpi_rank, __func__);
}
}
/* verify that the expected entries have been written, the total */
if (success) {
success = verify_entry_writes(data[world_mpi_rank].base_addr, 1);
}
if (success) {
success = verify_entry_reads(data[world_mpi_rank].base_addr, 0);
}
if (success) {
success = verify_total_writes((unsigned)(world_mpi_size - 1));
}
if (success) {
success = verify_total_reads(0);
}
/* barrier to allow all writes to complete */
if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: barrier 2 failed.\n", world_mpi_rank, __func__);
}
}
/* compose the read message */
mssg.req = READ_REQ_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = data[world_mpi_rank].base_addr;
H5_CHECKED_ASSIGN(mssg.len, unsigned, data[world_mpi_rank].len, size_t);
mssg.ver = 0; /* bogus -- should be corrected by server */
mssg.count = 0;
mssg.magic = MSSG_MAGIC;
if (success) {
success = send_mssg(&mssg, false);
if (!success) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed on write.\n", world_mpi_rank, __func__);
}
}
}
/* try to receive the reply from the server */
if (success) {
success = recv_mssg(&mssg, READ_REQ_REPLY_CODE);
if (!success) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__);
}
}
}
/* verify that we got the expected result */
if (success) {
if ((mssg.req != READ_REQ_REPLY_CODE) || (mssg.src != world_server_mpi_rank) ||
(mssg.dest != world_mpi_rank) || (mssg.base_addr != data[world_mpi_rank].base_addr) ||
(mssg.len != data[world_mpi_rank].len) || (mssg.ver != data[world_mpi_rank].ver) ||
(mssg.magic != MSSG_MAGIC)) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Bad data in read req reply.\n", world_mpi_rank, __func__);
}
}
}
/* barrier to allow all writes to complete */
if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: barrier 3 failed.\n", world_mpi_rank, __func__);
}
}
/* verify that the expected entries have been read, and the total */
if (success) {
success = verify_entry_writes(data[world_mpi_rank].base_addr, 1);
}
if (success) {
success = verify_entry_reads(data[world_mpi_rank].base_addr, 1);
}
if (success) {
success = verify_total_writes((unsigned)(world_mpi_size - 1));
}
if (success) {
success = verify_total_reads(world_mpi_size - 1);
}
if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: barrier 4 failed.\n", world_mpi_rank, __func__);
}
}
/* reset the counters */
if (success) {
success = reset_server_counts();
}
if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: barrier 5 failed.\n", world_mpi_rank, __func__);
}
}
/* verify that the counters have been reset */
if (success) {
success = verify_entry_writes(data[world_mpi_rank].base_addr, 0);
}
if (success) {
success = verify_entry_reads(data[world_mpi_rank].base_addr, 0);
}
if (success) {
success = verify_total_writes(0);
}
if (success) {
success = verify_total_reads(0);
}
if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) {
success = false;
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: barrier 6 failed.\n", world_mpi_rank, __func__);
}
}
/* compose the done message */
mssg.req = DONE_REQ_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = 0; /* not used */
mssg.len = 0; /* not used */
mssg.ver = 0; /* not used */
mssg.count = 0;
mssg.magic = MSSG_MAGIC;
if (success) {
success = send_mssg(&mssg, false);
if (!success) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__);
}
}
}
}
max_nerrors = get_max_nerrors();
if (world_mpi_rank == 0) {
if (max_nerrors == 0) {
PASSED();
}
else {
failures++;
H5_FAILED();
}
}
success = ((success) && (max_nerrors == 0));
return (success);
} /* server_smoke_check() */
/*****************************************************************************
*
* Function: smoke_check_1()
*
* Purpose: First smoke check for the parallel cache.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
smoke_check_1(int metadata_write_strategy)
{
bool success = true;
int i;
int max_nerrors;
hid_t fid = H5I_INVALID_HID;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
struct mssg_t mssg;
switch (metadata_write_strategy) {
case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY:
if (world_mpi_rank == 0) {
TESTING("smoke check #1 -- process 0 only md write strategy");
}
break;
case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED:
if (world_mpi_rank == 0) {
TESTING("smoke check #1 -- distributed md write strategy");
}
break;
default:
if (world_mpi_rank == 0) {
TESTING("smoke check #1 -- unknown md write strategy");
}
break;
}
nerrors = 0;
init_data();
reset_stats();
if (world_mpi_rank == world_server_mpi_rank) {
if (!server_main()) {
/* some error occurred in the server -- report failure */
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__);
}
}
}
else /* run the clients */
{
if (!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy)) {
nerrors++;
fid = -1;
cache_ptr = NULL;
if (verbose) {
fprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, __func__);
}
}
for (i = 0; i < (virt_num_data_entries / 2); i++) {
insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET);
}
for (i = (virt_num_data_entries / 2) - 1; i >= 0; i--) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET);
}
/* Move the first half of the entries... */
for (i = 0; i < (virt_num_data_entries / 2); i++) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET);
move_entry(file_ptr, i, (i + (virt_num_data_entries / 2)));
}
/* ...and then move them back. */
for (i = (virt_num_data_entries / 2) - 1; i >= 0; i--) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET);
move_entry(file_ptr, i, (i + (virt_num_data_entries / 2)));
}
if (fid >= 0) {
if (!take_down_cache(fid, cache_ptr)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, __func__);
}
}
}
/* verify that all instance of datum are back where the started
* and are clean.
*/
for (i = 0; i < NUM_DATA_ENTRIES; i++) {
assert(data_index[i] == i);
assert(!(data[i].dirty));
}
/* compose the done message */
mssg.req = DONE_REQ_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = 0; /* not used */
mssg.len = 0; /* not used */
mssg.ver = 0; /* not used */
mssg.count = 0; /* not used */
mssg.magic = MSSG_MAGIC;
if (success) {
success = send_mssg(&mssg, false);
if (!success) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__);
}
}
}
}
max_nerrors = get_max_nerrors();
if (world_mpi_rank == 0) {
if (max_nerrors == 0) {
PASSED();
}
else {
failures++;
H5_FAILED();
}
}
success = ((success) && (max_nerrors == 0));
return (success);
} /* smoke_check_1() */
/*****************************************************************************
*
* Function: smoke_check_2()
*
* Purpose: Second smoke check for the parallel cache.
*
* Introduce random reads, but keep all processes with roughly
* the same work load.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
smoke_check_2(int metadata_write_strategy)
{
bool success = true;
int i;
int max_nerrors;
hid_t fid = H5I_INVALID_HID;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
struct mssg_t mssg;
switch (metadata_write_strategy) {
case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY:
if (world_mpi_rank == 0) {
TESTING("smoke check #2 -- process 0 only md write strategy");
}
break;
case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED:
if (world_mpi_rank == 0) {
TESTING("smoke check #2 -- distributed md write strategy");
}
break;
default:
if (world_mpi_rank == 0) {
TESTING("smoke check #2 -- unknown md write strategy");
}
break;
}
nerrors = 0;
init_data();
reset_stats();
if (world_mpi_rank == world_server_mpi_rank) {
if (!server_main()) {
/* some error occurred in the server -- report failure */
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__);
}
}
}
else /* run the clients */
{
if (!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy)) {
nerrors++;
fid = -1;
cache_ptr = NULL;
if (verbose) {
fprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, __func__);
}
}
for (i = 0; i < (virt_num_data_entries / 2); i++) {
insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET);
if (i > 100) {
lock_and_unlock_random_entries(file_ptr, (i - 100), i, 0, 10);
}
}
for (i = 0; i < (virt_num_data_entries / 2); i += 61) {
/* Make sure we don't step on any locally pinned entries */
if (data[i].local_pinned) {
unpin_entry(file_ptr, i, false, false, false);
}
pin_entry(file_ptr, i, true, false);
}
for (i = (virt_num_data_entries / 2) - 1; i >= 0; i -= 2) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET);
lock_and_unlock_random_entries(file_ptr, 0, (virt_num_data_entries / 20), 0, 100);
local_pin_and_unpin_random_entries(file_ptr, 0, (virt_num_data_entries / 4), 0, 3);
}
for (i = 0; i < (virt_num_data_entries / 2); i += 2) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG);
lock_and_unlock_random_entries(file_ptr, 0, (virt_num_data_entries / 10), 0, 100);
}
/* we can't move pinned entries, so release any local pins now. */
local_unpin_all_entries(file_ptr, false);
/* Move the first half of the entries... */
for (i = 0; i < (virt_num_data_entries / 2); i++) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET);
move_entry(file_ptr, i, (i + (virt_num_data_entries / 2)));
lock_and_unlock_random_entries(file_ptr, 0, ((virt_num_data_entries / 50) - 1), 0, 100);
}
/* ...and then move them back. */
for (i = (virt_num_data_entries / 2) - 1; i >= 0; i--) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG);
move_entry(file_ptr, i, (i + (virt_num_data_entries / 2)));
lock_and_unlock_random_entries(file_ptr, 0, (virt_num_data_entries / 100), 0, 100);
}
for (i = 0; i < (virt_num_data_entries / 2); i += 61) {
bool via_unprotect = ((((unsigned)i) & 0x01) == 0);
bool dirty = ((((unsigned)i) & 0x02) == 0);
unpin_entry(file_ptr, i, true, dirty, via_unprotect);
}
if (fid >= 0) {
if (!take_down_cache(fid, cache_ptr)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, __func__);
}
}
}
/* verify that all instance of datum are back where the started
* and are clean.
*/
for (i = 0; i < NUM_DATA_ENTRIES; i++) {
assert(data_index[i] == i);
assert(!(data[i].dirty));
}
/* compose the done message */
mssg.req = DONE_REQ_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = 0; /* not used */
mssg.len = 0; /* not used */
mssg.ver = 0; /* not used */
mssg.count = 0; /* not used */
mssg.magic = MSSG_MAGIC;
if (success) {
success = send_mssg(&mssg, false);
if (!success) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__);
}
}
}
}
max_nerrors = get_max_nerrors();
if (world_mpi_rank == 0) {
if (max_nerrors == 0) {
PASSED();
}
else {
failures++;
H5_FAILED();
}
}
success = ((success) && (max_nerrors == 0));
return (success);
} /* smoke_check_2() */
/*****************************************************************************
*
* Function: smoke_check_3()
*
* Purpose: Third smoke check for the parallel cache.
*
* Use random reads to vary the loads on the different
* processors. Also force different cache size adjustments.
*
* In this test, load process 0 heavily, and the other
* processes lightly.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
smoke_check_3(int metadata_write_strategy)
{
bool success = true;
int i;
int max_nerrors;
int min_count;
int max_count;
int min_idx;
int max_idx;
hid_t fid = H5I_INVALID_HID;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
struct mssg_t mssg;
switch (metadata_write_strategy) {
case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY:
if (world_mpi_rank == 0) {
TESTING("smoke check #3 -- process 0 only md write strategy");
}
break;
case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED:
if (world_mpi_rank == 0) {
TESTING("smoke check #3 -- distributed md write strategy");
}
break;
default:
if (world_mpi_rank == 0) {
TESTING("smoke check #3 -- unknown md write strategy");
}
break;
}
nerrors = 0;
init_data();
reset_stats();
if (world_mpi_rank == world_server_mpi_rank) {
if (!server_main()) {
/* some error occurred in the server -- report failure */
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__);
}
}
}
else /* run the clients */
{
if (!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy)) {
nerrors++;
fid = -1;
cache_ptr = NULL;
if (verbose) {
fprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, __func__);
}
}
min_count = 100 / ((file_mpi_rank + 1) * (file_mpi_rank + 1));
max_count = min_count + 50;
for (i = 0; i < (virt_num_data_entries / 4); i++) {
insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET);
if (i > 100) {
lock_and_unlock_random_entries(file_ptr, (i - 100), i, min_count, max_count);
}
}
min_count = 100 / ((file_mpi_rank + 2) * (file_mpi_rank + 2));
max_count = min_count + 50;
for (i = (virt_num_data_entries / 4); i < (virt_num_data_entries / 2); i++) {
insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET);
if (i % 59 == 0) {
bool dirty = ((i % 2) == 0);
if (data[i].local_pinned) {
unpin_entry(file_ptr, i, false, false, false);
}
pin_entry(file_ptr, i, true, dirty);
assert(!dirty || data[i].header.is_dirty);
assert(data[i].header.is_pinned);
assert(data[i].global_pinned);
assert(!data[i].local_pinned);
}
if (i > 100) {
lock_and_unlock_random_entries(file_ptr, (i - 100), i, min_count, max_count);
}
local_pin_and_unpin_random_entries(file_ptr, 0, virt_num_data_entries / 4, 0,
(file_mpi_rank + 2));
}
/* flush the file to be sure that we have no problems flushing
* pinned entries
*/
if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, __func__);
}
}
min_idx = 0;
max_idx = ((virt_num_data_entries / 10) / ((file_mpi_rank + 1) * (file_mpi_rank + 1))) - 1;
if (max_idx <= min_idx) {
max_idx = min_idx + 10;
}
for (i = (virt_num_data_entries / 2) - 1; i >= 0; i--) {
if ((i >= (virt_num_data_entries / 4)) && (i % 59 == 0)) {
bool via_unprotect = ((((unsigned)i) & 0x02) == 0);
bool dirty = ((((unsigned)i) & 0x04) == 0);
assert(data[i].global_pinned);
assert(!data[i].local_pinned);
unpin_entry(file_ptr, i, true, dirty, via_unprotect);
}
if (i % 2 == 0) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET);
local_pin_and_unpin_random_entries(file_ptr, 0, virt_num_data_entries / 2, 0, 2);
lock_and_unlock_random_entries(file_ptr, min_idx, max_idx, 0, 100);
}
}
min_idx = 0;
max_idx = ((virt_num_data_entries / 10) / ((file_mpi_rank + 3) * (file_mpi_rank + 3))) - 1;
if (max_idx <= min_idx) {
max_idx = min_idx + 10;
}
for (i = 0; i < (virt_num_data_entries / 2); i += 2) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG);
lock_and_unlock_random_entries(file_ptr, min_idx, max_idx, 0, 100);
}
/* we can't move pinned entries, so release any local pins now. */
local_unpin_all_entries(file_ptr, false);
min_count = 10 / (file_mpi_rank + 1);
max_count = min_count + 100;
/* move the first half of the entries... */
for (i = 0; i < (virt_num_data_entries / 2); i++) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET);
move_entry(file_ptr, i, (i + (virt_num_data_entries / 2)));
lock_and_unlock_random_entries(file_ptr, 0, (virt_num_data_entries / 20), min_count, max_count);
}
/* ...and then move them back. */
for (i = (virt_num_data_entries / 2) - 1; i >= 0; i--) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG);
move_entry(file_ptr, i, (i + (virt_num_data_entries / 2)));
lock_and_unlock_random_entries(file_ptr, 0, (virt_num_data_entries / 40), min_count, max_count);
}
/* finally, do some dirty lock/unlocks while we give the cache
* a chance t reduce its size.
*/
min_count = 200 / ((file_mpi_rank + 1) * (file_mpi_rank + 1));
max_count = min_count + 100;
for (i = 0; i < (virt_num_data_entries / 2); i += 2) {
local_pin_and_unpin_random_entries(file_ptr, 0, (virt_num_data_entries / 2), 0, 5);
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG);
if (i > 100) {
lock_and_unlock_random_entries(file_ptr, (i - 100), i, min_count, max_count);
}
}
/* release any local pins before we take down the cache. */
local_unpin_all_entries(file_ptr, false);
if (fid >= 0) {
if (!take_down_cache(fid, cache_ptr)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, __func__);
}
}
}
/* verify that all instances of datum are back where the started
* and are clean.
*/
for (i = 0; i < NUM_DATA_ENTRIES; i++) {
assert(data_index[i] == i);
assert(!(data[i].dirty));
}
/* compose the done message */
mssg.req = DONE_REQ_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = 0; /* not used */
mssg.len = 0; /* not used */
mssg.ver = 0; /* not used */
mssg.count = 0; /* not used */
mssg.magic = MSSG_MAGIC;
if (success) {
success = send_mssg(&mssg, false);
if (!success) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__);
}
}
}
}
max_nerrors = get_max_nerrors();
if (world_mpi_rank == 0) {
if (max_nerrors == 0) {
PASSED();
}
else {
failures++;
H5_FAILED();
}
}
success = ((success) && (max_nerrors == 0));
return (success);
} /* smoke_check_3() */
/*****************************************************************************
*
* Function: smoke_check_4()
*
* Purpose: Fourth smoke check for the parallel cache.
*
* Use random reads to vary the loads on the different
* processors. Also force different cache size adjustments.
*
* In this test, load process 0 lightly, and the other
* processes heavily.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
smoke_check_4(int metadata_write_strategy)
{
bool success = true;
int i;
int max_nerrors;
int min_count;
int max_count;
int min_idx;
int max_idx;
hid_t fid = H5I_INVALID_HID;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
struct mssg_t mssg;
switch (metadata_write_strategy) {
case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY:
if (world_mpi_rank == 0) {
TESTING("smoke check #4 -- process 0 only md write strategy");
}
break;
case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED:
if (world_mpi_rank == 0) {
TESTING("smoke check #4 -- distributed md write strategy");
}
break;
default:
if (world_mpi_rank == 0) {
TESTING("smoke check #4 -- unknown md write strategy");
}
break;
}
nerrors = 0;
init_data();
reset_stats();
if (world_mpi_rank == world_server_mpi_rank) {
if (!server_main()) {
/* some error occurred in the server -- report failure */
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__);
}
}
}
else /* run the clients */
{
if (!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy)) {
nerrors++;
fid = -1;
cache_ptr = NULL;
if (verbose) {
fprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, __func__);
}
}
min_count = 100 * (file_mpi_rank % 4);
max_count = min_count + 50;
for (i = 0; i < (virt_num_data_entries / 4); i++) {
insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET);
if (i > 100) {
lock_and_unlock_random_entries(file_ptr, (i - 100), i, min_count, max_count);
}
}
min_count = 10 * (file_mpi_rank % 4);
max_count = min_count + 100;
for (i = (virt_num_data_entries / 4); i < (virt_num_data_entries / 2); i++) {
if (i % 2 == 0) {
insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET);
}
else {
/* Insert some entries pinned, and then unpin them
* immediately. We have tested pinned entries elsewhere,
* so it should be sufficient to verify that the
* entries are in fact pinned (which unpin_entry() should do).
*/
insert_entry(cache_ptr, file_ptr, i, H5C__PIN_ENTRY_FLAG);
unpin_entry(file_ptr, i, true, false, false);
}
if (i % 59 == 0) {
bool dirty = ((i % 2) == 0);
if (data[i].local_pinned) {
unpin_entry(file_ptr, i, false, false, false);
}
pin_entry(file_ptr, i, true, dirty);
assert(!dirty || data[i].header.is_dirty);
assert(data[i].header.is_pinned);
assert(data[i].global_pinned);
assert(!data[i].local_pinned);
}
if (i > 100) {
lock_and_unlock_random_entries(file_ptr, (i - 100), i, min_count, max_count);
}
local_pin_and_unpin_random_entries(file_ptr, 0, (virt_num_data_entries / 4), 0,
(file_mpi_rank + 2));
}
/* flush the file to be sure that we have no problems flushing
* pinned entries
*/
if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, __func__);
}
}
min_idx = 0;
max_idx = (((virt_num_data_entries / 10) / 4) * ((file_mpi_rank % 4) + 1)) - 1;
for (i = (virt_num_data_entries / 2) - 1; i >= 0; i--) {
if ((i >= (virt_num_data_entries / 4)) && (i % 59 == 0)) {
bool via_unprotect = ((((unsigned)i) & 0x02) == 0);
bool dirty = ((((unsigned)i) & 0x04) == 0);
assert(data[i].global_pinned);
assert(!data[i].local_pinned);
unpin_entry(file_ptr, i, true, dirty, via_unprotect);
}
if (i % 2 == 0) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET);
lock_and_unlock_random_entries(file_ptr, min_idx, max_idx, 0, 100);
}
}
min_idx = 0;
max_idx = (((virt_num_data_entries / 10) / 8) * ((file_mpi_rank % 4) + 1)) - 1;
for (i = 0; i < (virt_num_data_entries / 2); i += 2) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG);
lock_and_unlock_random_entries(file_ptr, min_idx, max_idx, 0, 100);
}
/* we can't move pinned entries, so release any local pins now. */
local_unpin_all_entries(file_ptr, false);
min_count = 10 * (file_mpi_rank % 4);
max_count = min_count + 100;
/* move the first half of the entries... */
for (i = 0; i < (virt_num_data_entries / 2); i++) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET);
move_entry(file_ptr, i, (i + (virt_num_data_entries / 2)));
lock_and_unlock_random_entries(file_ptr, 0, (virt_num_data_entries / 20), min_count, max_count);
}
/* ...and then move them back. */
for (i = (virt_num_data_entries / 2) - 1; i >= 0; i--) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG);
move_entry(file_ptr, i, (i + (virt_num_data_entries / 2)));
lock_and_unlock_random_entries(file_ptr, 0, (virt_num_data_entries / 40), min_count, max_count);
}
/* finally, do some dirty lock/unlocks while we give the cache
* a chance t reduce its size.
*/
min_count = 100 * (file_mpi_rank % 4);
max_count = min_count + 100;
for (i = 0; i < (virt_num_data_entries / 2); i += 2) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG);
if (i > 100) {
lock_and_unlock_random_entries(file_ptr, (i - 100), i, min_count, max_count);
}
}
if (fid >= 0) {
if (!take_down_cache(fid, cache_ptr)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, __func__);
}
}
}
/* verify that all instance of datum are back where the started
* and are clean.
*/
for (i = 0; i < NUM_DATA_ENTRIES; i++) {
assert(data_index[i] == i);
assert(!(data[i].dirty));
}
/* compose the done message */
mssg.req = DONE_REQ_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = 0; /* not used */
mssg.len = 0; /* not used */
mssg.ver = 0; /* not used */
mssg.count = 0; /* not used */
mssg.magic = MSSG_MAGIC;
if (success) {
success = send_mssg(&mssg, false);
if (!success) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__);
}
}
}
}
max_nerrors = get_max_nerrors();
if (world_mpi_rank == 0) {
if (max_nerrors == 0) {
PASSED();
}
else {
failures++;
H5_FAILED();
}
}
success = ((success) && (max_nerrors == 0));
return (success);
} /* smoke_check_4() */
/*****************************************************************************
*
* Function: smoke_check_5()
*
* Purpose: Similar to smoke check 1, but modified to verify that
* H5AC_mark_entry_dirty() works in the parallel case.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
smoke_check_5(int metadata_write_strategy)
{
bool success = true;
int i;
int max_nerrors;
hid_t fid = H5I_INVALID_HID;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
struct mssg_t mssg;
switch (metadata_write_strategy) {
case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY:
if (world_mpi_rank == 0) {
TESTING("smoke check #5 -- process 0 only md write strategy");
}
break;
case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED:
if (world_mpi_rank == 0) {
TESTING("smoke check #5 -- distributed md write strategy");
}
break;
default:
if (world_mpi_rank == 0) {
TESTING("smoke check #5 -- unknown md write strategy");
}
break;
}
nerrors = 0;
init_data();
reset_stats();
if (world_mpi_rank == world_server_mpi_rank) {
if (!server_main()) {
/* some error occurred in the server -- report failure */
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__);
}
}
}
else /* run the clients */
{
if (!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy)) {
nerrors++;
fid = -1;
cache_ptr = NULL;
if (verbose) {
fprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, __func__);
}
}
for (i = 0; i < (virt_num_data_entries / 2); i++) {
insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET);
}
/* flush the file so we can lock known clean entries. */
if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, __func__);
}
}
for (i = 0; i < (virt_num_data_entries / 4); i++) {
lock_entry(file_ptr, i);
if (i % 2 == 0) {
mark_entry_dirty(i);
}
unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET);
if (i % 2 == 1) {
if (i % 4 == 1) {
lock_entry(file_ptr, i);
unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG);
}
expunge_entry(file_ptr, i);
}
}
for (i = (virt_num_data_entries / 2) - 1; i >= (virt_num_data_entries / 4); i--) {
pin_entry(file_ptr, i, true, false);
if (i % 2 == 0) {
if (i % 8 <= 4) {
resize_entry(i, data[i].len / 2);
}
mark_entry_dirty(i);
if (i % 8 <= 4) {
resize_entry(i, data[i].len);
}
}
unpin_entry(file_ptr, i, true, false, false);
}
if (fid >= 0) {
if (!take_down_cache(fid, cache_ptr)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, __func__);
}
}
}
/* verify that all instance of datum are back where the started
* and are clean.
*/
for (i = 0; i < NUM_DATA_ENTRIES; i++) {
assert(data_index[i] == i);
assert(!(data[i].dirty));
}
/* compose the done message */
mssg.req = DONE_REQ_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = 0; /* not used */
mssg.len = 0; /* not used */
mssg.ver = 0; /* not used */
mssg.count = 0; /* not used */
mssg.magic = MSSG_MAGIC;
if (success) {
success = send_mssg(&mssg, false);
if (!success) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__);
}
}
}
}
max_nerrors = get_max_nerrors();
if (world_mpi_rank == 0) {
if (max_nerrors == 0) {
PASSED();
}
else {
failures++;
H5_FAILED();
}
}
success = ((success) && (max_nerrors == 0));
return (success);
} /* smoke_check_5() */
/*****************************************************************************
*
* Function: trace_file_check()
*
* Purpose: A basic test of the trace file capability. In essence,
* we invoke all operations that generate trace file output,
* and then verify that the expected output was generated.
*
* Note that the trace file is currently implemented at the
* H5AC level, so all calls have to go through H5AC. Thus it
* is more convenient to test trace file capabilities in the
* parallel cache test which works at the H5AC level, instead
* of in the serial test code which does everything at the
* H5C level.
*
* The function must test trace file output in the following
* functions:
*
* - H5AC_flush()
* - H5AC_insert_entry()
* - H5AC_mark_entry_dirty()
* - H5AC_move_entry()
* - H5AC_pin_protected_entry()
* - H5AC_protect()
* - H5AC_unpin_entry()
* - H5AC_unprotect()
* - H5AC_set_cache_auto_resize_config()
* - H5AC_expunge_entry()
* - H5AC_resize_entry()
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
trace_file_check(int metadata_write_strategy)
{
bool success = true;
const char *((*expected_output)[]) = NULL;
const char *expected_output_0[] = {"### HDF5 metadata cache trace file version 1 ###\n",
"H5AC_set_cache_auto_resize_config",
"H5AC_insert_entry",
"H5AC_insert_entry",
"H5AC_insert_entry",
"H5AC_insert_entry",
"H5AC_protect",
"H5AC_mark_entry_dirty",
"H5AC_unprotect",
"H5AC_protect",
"H5AC_pin_protected_entry",
"H5AC_unprotect",
"H5AC_unpin_entry",
"H5AC_expunge_entry",
"H5AC_protect",
"H5AC_pin_protected_entry",
"H5AC_unprotect",
"H5AC_mark_entry_dirty",
"H5AC_resize_entry",
"H5AC_resize_entry",
"H5AC_unpin_entry",
"H5AC_move_entry",
"H5AC_move_entry",
"H5AC_flush",
"H5AC_flush",
NULL};
const char *expected_output_1[] = {"### HDF5 metadata cache trace file version 1 ###\n",
"H5AC_set_cache_auto_resize_config",
"H5AC_insert_entry",
"H5AC_insert_entry",
"H5AC_insert_entry",
"H5AC_insert_entry",
"H5AC_protect",
"H5AC_mark_entry_dirty",
"H5AC_unprotect",
"H5AC_protect",
"H5AC_pin_protected_entry",
"H5AC_unprotect",
"H5AC_unpin_entry",
"H5AC_expunge_entry",
"H5AC_protect",
"H5AC_pin_protected_entry",
"H5AC_unprotect",
"H5AC_mark_entry_dirty",
"H5AC_resize_entry",
"H5AC_resize_entry",
"H5AC_unpin_entry",
"H5AC_move_entry",
"H5AC_move_entry",
"H5AC_flush",
"H5AC_flush",
NULL};
char buffer[256];
char trace_file_name[64];
bool done = false;
int i;
int max_nerrors;
size_t expected_line_len;
size_t actual_line_len;
hid_t fid = H5I_INVALID_HID;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
FILE *trace_file_ptr = NULL;
H5AC_cache_config_t config;
struct mssg_t mssg;
switch (metadata_write_strategy) {
case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY:
expected_output = &expected_output_0;
if (world_mpi_rank == 0)
TESTING("trace file collection -- process 0 only md write strategy");
break;
case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED:
expected_output = &expected_output_1;
if (world_mpi_rank == 0)
TESTING("trace file collection -- distributed md write strategy");
break;
default:
/* this will almost certainly cause a failure, but it keeps us
* from de-referenceing a NULL pointer.
*/
expected_output = &expected_output_0;
if (world_mpi_rank == 0)
TESTING("trace file collection -- unknown md write strategy");
break;
} /* end switch */
nerrors = 0;
init_data();
reset_stats();
if (world_mpi_rank == world_server_mpi_rank) {
if (!server_main()) {
/* some error occurred in the server -- report failure */
nerrors++;
if (verbose)
fprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__);
}
}
else {
/* run the clients */
if (!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy)) {
nerrors++;
fid = -1;
cache_ptr = NULL;
if (verbose)
fprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, __func__);
}
if (nerrors == 0) {
config.version = H5AC__CURR_CACHE_CONFIG_VERSION;
if (H5AC_get_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) {
nerrors++;
fprintf(stdout, "%d:%s: H5AC_get_cache_auto_resize_config() failed.\n", world_mpi_rank,
__func__);
}
else {
config.open_trace_file = true;
strcpy(config.trace_file_name, "t_cache_trace.txt");
if (H5AC_set_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) {
nerrors++;
fprintf(stdout, "%d:%s: H5AC_set_cache_auto_resize_config() failed.\n", world_mpi_rank,
__func__);
}
}
} /* end if */
insert_entry(cache_ptr, file_ptr, 0, H5AC__NO_FLAGS_SET);
insert_entry(cache_ptr, file_ptr, 1, H5AC__NO_FLAGS_SET);
insert_entry(cache_ptr, file_ptr, 2, H5AC__NO_FLAGS_SET);
insert_entry(cache_ptr, file_ptr, 3, H5AC__NO_FLAGS_SET);
lock_entry(file_ptr, 0);
mark_entry_dirty(0);
unlock_entry(file_ptr, 0, H5AC__NO_FLAGS_SET);
lock_entry(file_ptr, 1);
pin_protected_entry(1, true);
unlock_entry(file_ptr, 1, H5AC__NO_FLAGS_SET);
unpin_entry(file_ptr, 1, true, false, false);
expunge_entry(file_ptr, 1);
lock_entry(file_ptr, 2);
pin_protected_entry(2, true);
unlock_entry(file_ptr, 2, H5AC__NO_FLAGS_SET);
mark_entry_dirty(2);
resize_entry(2, data[2].len / 2);
resize_entry(2, data[2].len);
unpin_entry(file_ptr, 2, true, false, false);
move_entry(file_ptr, 0, 20);
move_entry(file_ptr, 0, 20);
if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) {
nerrors++;
if (verbose)
fprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, __func__);
}
if (nerrors == 0) {
config.version = H5AC__CURR_CACHE_CONFIG_VERSION;
if (H5AC_get_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) {
nerrors++;
fprintf(stdout, "%d:%s: H5AC_get_cache_auto_resize_config() failed.\n", world_mpi_rank,
__func__);
}
else {
config.open_trace_file = false;
config.close_trace_file = true;
config.trace_file_name[0] = '\0';
if (H5AC_set_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) {
nerrors++;
fprintf(stdout, "%d:%s: H5AC_set_cache_auto_resize_config() failed.\n", world_mpi_rank,
__func__);
}
}
} /* end if */
if (fid >= 0) {
if (!take_down_cache(fid, cache_ptr)) {
nerrors++;
if (verbose)
fprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, __func__);
}
} /* end if */
/* verify that all instance of datum are back where the started
* and are clean.
*/
for (i = 0; i < NUM_DATA_ENTRIES; i++) {
assert(data_index[i] == i);
assert(!(data[i].dirty));
}
/* compose the done message */
mssg.req = DONE_REQ_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = 0; /* not used */
mssg.len = 0; /* not used */
mssg.ver = 0; /* not used */
mssg.count = 0; /* not used */
mssg.magic = MSSG_MAGIC;
if (success) {
success = send_mssg(&mssg, false);
if (!success) {
nerrors++;
if (verbose)
fprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__);
}
} /* end if */
if (nerrors == 0) {
snprintf(trace_file_name, sizeof(trace_file_name), "t_cache_trace.txt.%d", (int)file_mpi_rank);
if ((trace_file_ptr = fopen(trace_file_name, "r")) == NULL) {
nerrors++;
if (verbose)
fprintf(stdout, "%d:%s: fopen failed.\n", world_mpi_rank, __func__);
}
} /* end if */
i = 0;
while ((nerrors == 0) && (!done)) {
/* Get lines of actual and expected data */
if ((*expected_output)[i] == NULL)
expected_line_len = (size_t)0;
else
expected_line_len = strlen((*expected_output)[i]);
if (fgets(buffer, 255, trace_file_ptr) != NULL)
actual_line_len = strlen(buffer);
else
actual_line_len = (size_t)0;
/* Compare the lines */
/* Handle running out of data */
if ((actual_line_len == 0) || (expected_line_len == 0)) {
if ((actual_line_len == 0) && (expected_line_len == 0)) {
/* Both ran out at the same time - we're done */
done = true;
}
else {
/* One ran out before the other - BADNESS */
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Unexpected data in trace file line %d.\n", world_mpi_rank,
__func__, i);
if (expected_line_len == 0) {
fprintf(stdout, "%d:%s: expected = \"%s\" %zu\n", world_mpi_rank, __func__,
"<EMPTY>", expected_line_len);
fprintf(stdout, "%d:%s: actual = \"%s\" %zu\n", world_mpi_rank, __func__,
buffer, actual_line_len);
}
if (actual_line_len == 0) {
fprintf(stdout, "%d:%s: expected = \"%s\" %zu\n", world_mpi_rank, __func__,
(*expected_output)[i], expected_line_len);
fprintf(stdout, "%d:%s: actual = \"%s\" %zu\n", world_mpi_rank, __func__,
"<EMPTY>", actual_line_len);
}
}
fprintf(stdout, "BADNESS BADNESS BADNESS\n");
}
}
/* We directly compare the header line (line 0) */
else if (0 == i) {
if ((actual_line_len != expected_line_len) || (strcmp(buffer, (*expected_output)[i]) != 0)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Unexpected data in trace file line %d.\n", world_mpi_rank,
__func__, i);
fprintf(stdout, "%d:%s: expected = \"%s\" %zu\n", world_mpi_rank, __func__,
(*expected_output)[i], expected_line_len);
fprintf(stdout, "%d:%s: actual = \"%s\" %zu\n", world_mpi_rank, __func__, buffer,
actual_line_len);
}
}
}
/* All other lines we tokenize and just compare the function name. This
* keeps the test from being too fragile.
*/
else {
char *tok = NULL; /* token for actual line */
tok = strtok(buffer, " ");
if (strcmp(tok, (*expected_output)[i]) != 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Unexpected data in trace file line %d.\n", world_mpi_rank,
__func__, i);
fprintf(stdout, "%d:%s: expected = \"%s\"\n", world_mpi_rank, __func__,
(*expected_output)[i]);
fprintf(stdout, "%d:%s: actual = \"%s\"\n", world_mpi_rank, __func__, tok);
}
}
} /* end else */
i++;
} /* end while */
/* Clean up the trace file */
if (trace_file_ptr != NULL) {
fclose(trace_file_ptr);
trace_file_ptr = NULL;
HDremove(trace_file_name);
}
} /* end giant else that runs clients */
max_nerrors = get_max_nerrors();
if (world_mpi_rank == 0) {
if (max_nerrors == 0) {
PASSED();
}
else {
failures++;
H5_FAILED();
}
}
success = ((success) && (max_nerrors == 0));
return (success);
} /* trace_file_check() */
/*****************************************************************************
*
* Function: smoke_check_6()
*
* Purpose: Sixth smoke check for the parallel cache.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
smoke_check_6(int metadata_write_strategy)
{
H5P_coll_md_read_flag_t md_reads_file_flag;
bool md_reads_context_flag;
bool success = true;
int i;
int max_nerrors;
hid_t fid = H5I_INVALID_HID;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
struct mssg_t mssg;
switch (metadata_write_strategy) {
case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY:
if (world_mpi_rank == 0) {
TESTING("smoke check #6 -- process 0 only md write strategy");
}
break;
case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED:
if (world_mpi_rank == 0) {
TESTING("smoke check #6 -- distributed md write strategy");
}
break;
default:
if (world_mpi_rank == 0) {
TESTING("smoke check #6 -- unknown md write strategy");
}
break;
}
nerrors = 0;
init_data();
reset_stats();
if (world_mpi_rank == world_server_mpi_rank) {
if (!server_main()) {
/* some error occurred in the server -- report failure */
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__);
}
}
}
else /* run the clients */
{
int temp;
if (!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy)) {
nerrors++;
fid = -1;
cache_ptr = NULL;
if (verbose) {
fprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, __func__);
}
}
temp = virt_num_data_entries;
virt_num_data_entries = NUM_DATA_ENTRIES;
/* insert the first half collectively */
md_reads_file_flag = H5P_USER_TRUE;
md_reads_context_flag = true;
H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag);
for (i = 0; i < virt_num_data_entries / 2; i++) {
struct datum *entry_ptr;
entry_ptr = &(data[i]);
insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET);
if (true != entry_ptr->header.coll_access) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Entry inserted not marked as collective.\n", world_mpi_rank,
__func__);
}
}
/* Make sure coll entries do not cross the 80% threshold */
H5_CHECK_OVERFLOW(cache_ptr->max_cache_size, size_t, double);
assert((double)cache_ptr->max_cache_size * 0.8 > cache_ptr->coll_list_size);
}
/* Restore collective metadata reads state */
H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag);
/* insert the other half independently */
md_reads_file_flag = H5P_USER_FALSE;
md_reads_context_flag = false;
H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag);
for (i = virt_num_data_entries / 2; i < virt_num_data_entries; i++) {
struct datum *entry_ptr;
entry_ptr = &(data[i]);
insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET);
if (false != entry_ptr->header.coll_access) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Entry inserted independently marked as collective.\n",
world_mpi_rank, __func__);
}
}
/* Make sure coll entries do not cross the 80% threshold */
assert((double)cache_ptr->max_cache_size * 0.8 > cache_ptr->coll_list_size);
}
/* Restore collective metadata reads state */
H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag);
/* flush the file */
if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, __func__);
}
}
/* Protect the first half of the entries collectively */
md_reads_file_flag = H5P_USER_TRUE;
md_reads_context_flag = true;
H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag);
for (i = 0; i < (virt_num_data_entries / 2); i++) {
struct datum *entry_ptr;
entry_ptr = &(data[i]);
lock_entry(file_ptr, i);
if (true != entry_ptr->header.coll_access) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Entry protected not marked as collective.\n", world_mpi_rank,
__func__);
}
}
/* Make sure coll entries do not cross the 80% threshold */
assert((double)cache_ptr->max_cache_size * 0.8 > cache_ptr->coll_list_size);
}
/* Restore collective metadata reads state */
H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag);
/* protect the other half independently */
md_reads_file_flag = H5P_USER_FALSE;
md_reads_context_flag = false;
H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag);
for (i = virt_num_data_entries / 2; i < virt_num_data_entries; i++) {
struct datum *entry_ptr;
entry_ptr = &(data[i]);
lock_entry(file_ptr, i);
if (false != entry_ptr->header.coll_access) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: Entry inserted independently marked as collective.\n",
world_mpi_rank, __func__);
}
}
/* Make sure coll entries do not cross the 80% threshold */
assert((double)cache_ptr->max_cache_size * 0.8 > cache_ptr->coll_list_size);
}
/* Restore collective metadata reads state */
H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag);
for (i = 0; i < (virt_num_data_entries); i++) {
unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET);
}
if (fid >= 0) {
if (!take_down_cache(fid, cache_ptr)) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, __func__);
}
}
}
/* verify that all instances of datum are back where the started
* and are clean.
*/
for (i = 0; i < NUM_DATA_ENTRIES; i++) {
assert(data_index[i] == i);
assert(!(data[i].dirty));
}
/* compose the done message */
mssg.req = DONE_REQ_CODE;
mssg.src = world_mpi_rank;
mssg.dest = world_server_mpi_rank;
mssg.mssg_num = -1; /* set by send function */
mssg.base_addr = 0; /* not used */
mssg.len = 0; /* not used */
mssg.ver = 0; /* not used */
mssg.count = 0; /* not used */
mssg.magic = MSSG_MAGIC;
if (success) {
success = send_mssg(&mssg, false);
if (!success) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__);
}
}
}
virt_num_data_entries = temp;
}
max_nerrors = get_max_nerrors();
if (world_mpi_rank == 0) {
if (max_nerrors == 0) {
PASSED();
}
else {
failures++;
H5_FAILED();
}
}
success = ((success) && (max_nerrors == 0));
return (success);
} /* smoke_check_6() */
/*****************************************************************************
*
* Function: main()
*
* Purpose: Main function for the parallel cache test.
*
* Return: Success: 0
*
* Failure: 1
*
*****************************************************************************/
int
main(int argc, char **argv)
{
int express_test;
unsigned u;
int mpi_size;
int mpi_rank;
int max_nerrors;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
world_mpi_size = mpi_size;
world_mpi_rank = mpi_rank;
world_server_mpi_rank = mpi_size - 1;
world_mpi_comm = MPI_COMM_WORLD;
/* Attempt to turn off atexit post processing so that in case errors
* happen during the test and the process is aborted, it will not get
* hung in the atexit post processing in which it may try to make MPI
* calls. By then, MPI calls may not work.
*/
if (H5dont_atexit() < 0)
printf("%d:Failed to turn off atexit processing. Continue.\n", mpi_rank);
H5open();
express_test = do_express_test();
if (express_test)
virt_num_data_entries = EXPRESS_VIRT_NUM_DATA_ENTRIES;
else
virt_num_data_entries = STD_VIRT_NUM_DATA_ENTRIES;
if (MAINPROCESS) {
printf("===================================\n");
printf("Parallel metadata cache tests\n");
printf(" mpi_size = %d\n", mpi_size);
printf(" express_test = %d\n", express_test);
printf("===================================\n");
}
if (mpi_size < 3) {
if (MAINPROCESS)
printf(" Need at least 3 processes. Exiting.\n");
goto finish;
}
if (NULL == (data = malloc(NUM_DATA_ENTRIES * sizeof(*data)))) {
printf(" Couldn't allocate data array. Exiting.\n");
MPI_Abort(MPI_COMM_WORLD, -1);
}
if (NULL == (data_index = malloc(NUM_DATA_ENTRIES * sizeof(*data_index)))) {
printf(" Couldn't allocate data index array. Exiting.\n");
MPI_Abort(MPI_COMM_WORLD, -1);
}
memset(filenames, 0, sizeof(filenames));
for (int i = 0; i < NFILENAME; i++) {
if (NULL == (filenames[i] = malloc(PATH_MAX))) {
printf("couldn't allocate filename array\n");
MPI_Abort(MPI_COMM_WORLD, -1);
}
}
set_up_file_communicator();
setup_derived_types();
/* h5_fixname() will hang some processes don't participate.
*
* Thus we set up the fapl global with the world communicator,
* make our calls to h5_fixname(), discard the fapl, and then
* create it again with the file communicator.
*/
/* setup file access property list with the world communicator */
if (FAIL == (fapl = H5Pcreate(H5P_FILE_ACCESS))) {
nerrors++;
if (verbose)
fprintf(stdout, "%d:%s: H5Pcreate() failed 1.\n", world_mpi_rank, __func__);
}
if (H5Pset_fapl_mpio(fapl, world_mpi_comm, MPI_INFO_NULL) < 0) {
nerrors++;
if (verbose)
fprintf(stdout, "%d:%s: H5Pset_fapl_mpio() failed 1.\n", world_mpi_rank, __func__);
}
/* fix the file names */
for (u = 0; u < sizeof(FILENAME) / sizeof(FILENAME[0]) - 1; ++u) {
if (h5_fixname(FILENAME[u], fapl, filenames[u], PATH_MAX) == NULL) {
nerrors++;
if (verbose)
fprintf(stdout, "%d:%s: h5_fixname() failed.\n", world_mpi_rank, __func__);
break;
}
}
/* close the fapl before we set it up again */
if (H5Pclose(fapl) < 0) {
nerrors++;
if (verbose)
fprintf(stdout, "%d:%s: H5Pclose() failed.\n", world_mpi_rank, __func__);
}
/* now create the fapl again, excluding the server process. */
if (world_mpi_rank != world_server_mpi_rank) {
/* setup file access property list */
if (FAIL == (fapl = H5Pcreate(H5P_FILE_ACCESS))) {
nerrors++;
if (verbose)
fprintf(stdout, "%d:%s: H5Pcreate() failed 2.\n", world_mpi_rank, __func__);
}
if (H5Pset_fapl_mpio(fapl, file_mpi_comm, MPI_INFO_NULL) < 0) {
nerrors++;
if (verbose)
fprintf(stdout, "%d:%s: H5Pset_fapl_mpio() failed 2.\n", world_mpi_rank, __func__);
}
}
setup_rand();
max_nerrors = get_max_nerrors();
if (max_nerrors != 0) {
/* errors in setup -- no point in continuing */
if (world_mpi_rank == 0)
fprintf(stdout, "Errors in test initialization. Exiting.\n");
goto finish;
}
/* run the tests */
#if 1
server_smoke_check();
#endif
#if 1
smoke_check_1(H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY);
smoke_check_1(H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED);
#endif
#if 1
smoke_check_2(H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY);
smoke_check_2(H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED);
#endif
#if 1
smoke_check_3(H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY);
smoke_check_3(H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED);
#endif
#if 1
smoke_check_4(H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY);
smoke_check_4(H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED);
#endif
#if 1
smoke_check_5(H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY);
smoke_check_5(H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED);
#endif
/* enable the collective metadata read property */
if (world_mpi_rank != world_server_mpi_rank) {
if (H5Pset_all_coll_metadata_ops(fapl, true) < 0) {
nerrors++;
if (verbose) {
fprintf(stdout, "%d:%s: H5Pset_all_coll_metadata_ops() failed 1.\n", world_mpi_rank,
__func__);
}
}
}
#if 1
smoke_check_6(H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY);
smoke_check_6(H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED);
#endif
#if 1
trace_file_check(H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY);
trace_file_check(H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED);
#endif
finish:
if (data_index)
free(data_index);
if (data)
free(data);
/* make sure all processes are finished before final report, cleanup
* and exit.
*/
if (file_mpi_comm != MPI_COMM_NULL)
MPI_Comm_free(&file_mpi_comm);
MPI_Barrier(MPI_COMM_WORLD);
if (MAINPROCESS) { /* only process 0 reports */
printf("===================================\n");
if (nerrors || failures) {
printf("***metadata cache tests detected %d failures***\n", nerrors + failures);
}
else {
printf("metadata cache tests finished with no failures\n");
}
printf("===================================\n");
}
takedown_derived_types();
/* close HDF5 library */
H5close();
/* MPI_Finalize must be called AFTER H5close which may use MPI calls */
MPI_Finalize();
/* cannot just return (failures) because exit code is limited to 1byte */
return (nerrors != 0 || failures != 0);
}