hdf5/test/cache_common.c
Mike McGreevy 9dc5ebd07b [svn-r16292] Purpose:
Bug Fix

Descriotion: 

    Removing problematic debugging code, and switching a leftover TRUE verbose
    statement to FALSE in cache_common.c

Tested:

    jam, liberty
2009-01-10 09:57:31 -05:00

4670 lines
127 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the files COPYING and Copyright.html. COPYING can be found at the root *
* of the source code distribution tree; Copyright.html can be found at the *
* root level of an installed copy of the electronic HDF5 document set and *
* is linked from the top-level documents page. It can also be found at *
* http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have *
* access to either file, you may request a copy from help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* Programmer: John Mainzer
* 10/27/05
*
* This file contains common code for tests of the cache
* implemented in H5C.c
*/
#include "h5test.h"
#include "H5Iprivate.h"
#include "H5ACprivate.h"
#include "cache_common.h"
/* global variable declarations: */
hbool_t write_permitted = TRUE;
hbool_t pass = TRUE; /* set to false on error */
hbool_t skip_long_tests = TRUE;
hbool_t run_full_test = TRUE;
const char *failure_mssg = NULL;
test_entry_t pico_entries[NUM_PICO_ENTRIES];
test_entry_t nano_entries[NUM_NANO_ENTRIES];
test_entry_t micro_entries[NUM_MICRO_ENTRIES];
test_entry_t tiny_entries[NUM_TINY_ENTRIES];
test_entry_t small_entries[NUM_SMALL_ENTRIES];
test_entry_t medium_entries[NUM_MEDIUM_ENTRIES];
test_entry_t large_entries[NUM_LARGE_ENTRIES];
test_entry_t huge_entries[NUM_HUGE_ENTRIES];
test_entry_t monster_entries[NUM_MONSTER_ENTRIES];
test_entry_t variable_entries[NUM_VARIABLE_ENTRIES];
test_entry_t * entries[NUMBER_OF_ENTRY_TYPES] =
{
pico_entries,
nano_entries,
micro_entries,
tiny_entries,
small_entries,
medium_entries,
large_entries,
huge_entries,
monster_entries,
variable_entries
};
const int32_t max_indices[NUMBER_OF_ENTRY_TYPES] =
{
NUM_PICO_ENTRIES - 1,
NUM_NANO_ENTRIES - 1,
NUM_MICRO_ENTRIES - 1,
NUM_TINY_ENTRIES - 1,
NUM_SMALL_ENTRIES - 1,
NUM_MEDIUM_ENTRIES - 1,
NUM_LARGE_ENTRIES - 1,
NUM_HUGE_ENTRIES - 1,
NUM_MONSTER_ENTRIES - 1,
NUM_VARIABLE_ENTRIES - 1
};
const size_t entry_sizes[NUMBER_OF_ENTRY_TYPES] =
{
PICO_ENTRY_SIZE,
NANO_ENTRY_SIZE,
MICRO_ENTRY_SIZE,
TINY_ENTRY_SIZE,
SMALL_ENTRY_SIZE,
MEDIUM_ENTRY_SIZE,
LARGE_ENTRY_SIZE,
HUGE_ENTRY_SIZE,
MONSTER_ENTRY_SIZE,
VARIABLE_ENTRY_SIZE
};
const haddr_t base_addrs[NUMBER_OF_ENTRY_TYPES] =
{
PICO_BASE_ADDR,
NANO_BASE_ADDR,
MICRO_BASE_ADDR,
TINY_BASE_ADDR,
SMALL_BASE_ADDR,
MEDIUM_BASE_ADDR,
LARGE_BASE_ADDR,
HUGE_BASE_ADDR,
MONSTER_BASE_ADDR,
VARIABLE_BASE_ADDR
};
const haddr_t alt_base_addrs[NUMBER_OF_ENTRY_TYPES] =
{
PICO_ALT_BASE_ADDR,
NANO_ALT_BASE_ADDR,
MICRO_ALT_BASE_ADDR,
TINY_ALT_BASE_ADDR,
SMALL_ALT_BASE_ADDR,
MEDIUM_ALT_BASE_ADDR,
LARGE_ALT_BASE_ADDR,
HUGE_ALT_BASE_ADDR,
MONSTER_ALT_BASE_ADDR,
VARIABLE_ALT_BASE_ADDR
};
const char * entry_type_names[NUMBER_OF_ENTRY_TYPES] =
{
"pico entries -- 1 B",
"nano entries -- 4 B",
"micro entries -- 16 B",
"tiny entries -- 64 B",
"small entries -- 256 B",
"medium entries -- 1 KB",
"large entries -- 4 KB",
"huge entries -- 16 KB",
"monster entries -- 64 KB",
"variable entries -- 1B - 10KB"
};
/* callback table declaration */
const H5C_class_t types[NUMBER_OF_ENTRY_TYPES] =
{
{
PICO_ENTRY_TYPE,
(H5C_load_func_t)pico_load,
(H5C_flush_func_t)pico_flush,
(H5C_dest_func_t)pico_dest,
(H5C_clear_func_t)pico_clear,
(H5C_size_func_t)pico_size
},
{
NANO_ENTRY_TYPE,
(H5C_load_func_t)nano_load,
(H5C_flush_func_t)nano_flush,
(H5C_dest_func_t)nano_dest,
(H5C_clear_func_t)nano_clear,
(H5C_size_func_t)nano_size
},
{
MICRO_ENTRY_TYPE,
(H5C_load_func_t)micro_load,
(H5C_flush_func_t)micro_flush,
(H5C_dest_func_t)micro_dest,
(H5C_clear_func_t)micro_clear,
(H5C_size_func_t)micro_size
},
{
TINY_ENTRY_TYPE,
(H5C_load_func_t)tiny_load,
(H5C_flush_func_t)tiny_flush,
(H5C_dest_func_t)tiny_dest,
(H5C_clear_func_t)tiny_clear,
(H5C_size_func_t)tiny_size
},
{
SMALL_ENTRY_TYPE,
(H5C_load_func_t)small_load,
(H5C_flush_func_t)small_flush,
(H5C_dest_func_t)small_dest,
(H5C_clear_func_t)small_clear,
(H5C_size_func_t)small_size
},
{
MEDIUM_ENTRY_TYPE,
(H5C_load_func_t)medium_load,
(H5C_flush_func_t)medium_flush,
(H5C_dest_func_t)medium_dest,
(H5C_clear_func_t)medium_clear,
(H5C_size_func_t)medium_size
},
{
LARGE_ENTRY_TYPE,
(H5C_load_func_t)large_load,
(H5C_flush_func_t)large_flush,
(H5C_dest_func_t)large_dest,
(H5C_clear_func_t)large_clear,
(H5C_size_func_t)large_size
},
{
HUGE_ENTRY_TYPE,
(H5C_load_func_t)huge_load,
(H5C_flush_func_t)huge_flush,
(H5C_dest_func_t)huge_dest,
(H5C_clear_func_t)huge_clear,
(H5C_size_func_t)huge_size
},
{
MONSTER_ENTRY_TYPE,
(H5C_load_func_t)monster_load,
(H5C_flush_func_t)monster_flush,
(H5C_dest_func_t)monster_dest,
(H5C_clear_func_t)monster_clear,
(H5C_size_func_t)monster_size
},
{
VARIABLE_ENTRY_TYPE,
(H5C_load_func_t)variable_load,
(H5C_flush_func_t)variable_flush,
(H5C_dest_func_t)variable_dest,
(H5C_clear_func_t)variable_clear,
(H5C_size_func_t)variable_size
}
};
static herr_t clear(H5F_t * f, void * thing, hbool_t dest);
static herr_t destroy(H5F_t * f, void * thing);
static herr_t flush(H5F_t *f, hid_t dxpl_id, hbool_t dest,
haddr_t addr, void *thing, unsigned UNUSED * flags_ptr);
static void * load(H5F_t *f, hid_t dxpl_id, haddr_t addr,
const void *udata1, void *udata2);
static herr_t size(H5F_t * f, void * thing, size_t * size_ptr);
/* address translation funtions: */
/*-------------------------------------------------------------------------
* Function: addr_to_type_and_index
*
* Purpose: Given an address, compute the type and index of the
* associated entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/10/04
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
addr_to_type_and_index(haddr_t addr,
int32_t * type_ptr,
int32_t * index_ptr)
{
int i;
int32_t type;
int32_t idx;
HDassert( type_ptr );
HDassert( index_ptr );
/* we only have a small number of entry types, so just do a
* linear search. If NUMBER_OF_ENTRY_TYPES grows, we may want
* to do a binary search instead.
*/
i = 1;
if ( addr >= PICO_ALT_BASE_ADDR ) {
while ( ( i < NUMBER_OF_ENTRY_TYPES ) &&
( addr >= alt_base_addrs[i] ) )
{
i++;
}
} else {
while ( ( i < NUMBER_OF_ENTRY_TYPES ) &&
( addr >= base_addrs[i] ) )
{
i++;
}
}
type = i - 1;
HDassert( ( type >= 0 ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
if ( addr >= PICO_ALT_BASE_ADDR ) {
idx = (int32_t)((addr - alt_base_addrs[type]) / entry_sizes[type]);
HDassert( ( idx >= 0 ) && ( idx <= max_indices[type] ) );
HDassert( !((entries[type])[idx].at_main_addr) );
HDassert( addr == (entries[type])[idx].alt_addr );
} else {
idx = (int32_t)((addr - base_addrs[type]) / entry_sizes[type]);
HDassert( ( idx >= 0 ) && ( idx <= max_indices[type] ) );
HDassert( (entries[type])[idx].at_main_addr );
HDassert( addr == (entries[type])[idx].main_addr );
}
HDassert( addr == (entries[type])[idx].addr );
*type_ptr = type;
*index_ptr = idx;
return;
} /* addr_to_type_and_index() */
#if 0 /* This function has never been used, but we may want it
* some time. Lets keep it for now.
*/
/*-------------------------------------------------------------------------
* Function: type_and_index_to_addr
*
* Purpose: Given a type and index of an entry, compute the associated
* addr and return that value.
*
* Return: computed addr
*
* Programmer: John Mainzer
* 6/10/04
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
haddr_t
type_and_index_to_addr(int32_t type,
int32_t idx)
{
haddr_t addr;
HDassert( ( type >= 0 ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( idx >= 0 ) && ( idx <= max_indices[type] ) );
addr = base_addrs[type] + (((haddr_t)idx) * entry_sizes[type]);
HDassert( addr == (entries[type])[idx].addr );
if ( (entries[type])[idx].at_main_addr ) {
HDassert( addr == (entries[type])[idx].main_addr );
} else {
HDassert( addr == (entries[type])[idx].alt_addr );
}
return(addr);
} /* type_and_index_to_addr() */
#endif
/* Call back functions: */
/*-------------------------------------------------------------------------
*
* Function: check_if_write_permitted
*
* Purpose: Determine if a write is permitted under the current
* circumstances, and set *write_permitted_ptr accordingly.
* As a general rule it is, but when we are running in parallel
* mode with collective I/O, we must ensure that a read cannot
* cause a write.
*
* In the event of failure, the value of *write_permitted_ptr
* is undefined.
*
* Return: Non-negative on success/Negative on failure.
*
* Programmer: John Mainzer, 5/15/04
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
check_write_permitted(const H5F_t UNUSED * f,
hid_t UNUSED dxpl_id,
hbool_t * write_permitted_ptr)
{
HDassert( write_permitted_ptr );
*write_permitted_ptr = write_permitted;
return(SUCCEED);
} /* check_write_permitted() */
/*-------------------------------------------------------------------------
* Function: clear & friends
*
* Purpose: clear the entry. The helper functions verify that the
* correct version of clear is being called, and then call
* clear proper.
*
* Return: SUCCEED
*
* Programmer: John Mainzer
* 6/10/04
*
* Modifications:
*
* Added variable_clear. -- JRM 8/30/06
*
*-------------------------------------------------------------------------
*/
herr_t
clear(H5F_t * f,
void * thing,
hbool_t dest)
{
test_entry_t * entry_ptr;
test_entry_t * base_addr;
HDassert( thing );
entry_ptr = (test_entry_t *)thing;
base_addr = entries[entry_ptr->type];
HDassert( entry_ptr->index >= 0 );
HDassert( entry_ptr->index <= max_indices[entry_ptr->type] );
HDassert( entry_ptr == &(base_addr[entry_ptr->index]) );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->header.addr == entry_ptr->addr );
HDassert( entry_ptr->header.size == entry_ptr->size );
HDassert( ( entry_ptr->type == VARIABLE_ENTRY_TYPE ) ||
( entry_ptr->size == entry_sizes[entry_ptr->type] ) );
entry_ptr->header.is_dirty = FALSE;
entry_ptr->is_dirty = FALSE;
entry_ptr->cleared = TRUE;
if ( dest ) {
destroy(f, thing);
}
return(SUCCEED);
} /* clear() */
herr_t
pico_clear(H5F_t * f, void * thing, hbool_t dest)
{
HDassert ( ((test_entry_t *)thing)->type == PICO_ENTRY_TYPE );
return(clear(f, thing, dest));
}
herr_t
nano_clear(H5F_t * f, void * thing, hbool_t dest)
{
HDassert ( ((test_entry_t *)thing)->type == NANO_ENTRY_TYPE );
return(clear(f, thing, dest));
}
herr_t
micro_clear(H5F_t * f, void * thing, hbool_t dest)
{
HDassert ( ((test_entry_t *)thing)->type == MICRO_ENTRY_TYPE );
return(clear(f, thing, dest));
}
herr_t
tiny_clear(H5F_t * f, void * thing, hbool_t dest)
{
HDassert ( ((test_entry_t *)thing)->type == TINY_ENTRY_TYPE );
return(clear(f, thing, dest));
}
herr_t
small_clear(H5F_t * f, void * thing, hbool_t dest)
{
HDassert ( ((test_entry_t *)thing)->type == SMALL_ENTRY_TYPE );
return(clear(f, thing, dest));
}
herr_t
medium_clear(H5F_t * f, void * thing, hbool_t dest)
{
HDassert ( ((test_entry_t *)thing)->type == MEDIUM_ENTRY_TYPE );
return(clear(f, thing, dest));
}
herr_t
large_clear(H5F_t * f, void * thing, hbool_t dest)
{
HDassert ( ((test_entry_t *)thing)->type == LARGE_ENTRY_TYPE );
return(clear(f, thing, dest));
}
herr_t
huge_clear(H5F_t * f, void * thing, hbool_t dest)
{
HDassert ( ((test_entry_t *)thing)->type == HUGE_ENTRY_TYPE );
return(clear(f, thing, dest));
}
herr_t
monster_clear(H5F_t * f, void * thing, hbool_t dest)
{
HDassert ( ((test_entry_t *)thing)->type == MONSTER_ENTRY_TYPE );
return(clear(f, thing, dest));
}
herr_t
variable_clear(H5F_t * f, void * thing, hbool_t dest)
{
HDassert ( ((test_entry_t *)thing)->type == VARIABLE_ENTRY_TYPE );
return(clear(f, thing, dest));
}
/*-------------------------------------------------------------------------
* Function: dest & friends
*
* Purpose: Destroy the entry. The helper functions verify that the
* correct version of dest is being called, and then call
* dest proper.
*
* Return: SUCCEED
*
* Programmer: John Mainzer
* 6/10/04
*
* Modifications:
*
* JRM -- 4/4/06
* Added code to decrement the pinning_ref_count s of entries
* pinned by the target entry, and to unpin those entries
* if the reference count drops to zero.
*
* JRM -- 8/30/06
* Added variable_destroy().
*
*-------------------------------------------------------------------------
*/
herr_t
destroy(H5F_t UNUSED * f,
void * thing)
{
int i;
test_entry_t * entry_ptr;
test_entry_t * base_addr;
test_entry_t * pinned_entry_ptr;
test_entry_t * pinned_base_addr;
HDassert( thing );
entry_ptr = (test_entry_t *)thing;
base_addr = entries[entry_ptr->type];
HDassert( entry_ptr->index >= 0 );
HDassert( entry_ptr->index <= max_indices[entry_ptr->type] );
HDassert( entry_ptr == &(base_addr[entry_ptr->index]) );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->cache_ptr != NULL );
HDassert( entry_ptr->cache_ptr->magic == H5C__H5C_T_MAGIC );
HDassert( ( entry_ptr->header.destroy_in_progress ) ||
( entry_ptr->header.addr == entry_ptr->addr ) );
HDassert( entry_ptr->header.size == entry_ptr->size );
HDassert( ( entry_ptr->type == VARIABLE_ENTRY_TYPE ) ||
( entry_ptr->size == entry_sizes[entry_ptr->type] ) );
HDassert( !(entry_ptr->is_dirty) );
HDassert( !(entry_ptr->header.is_dirty) );
if ( entry_ptr->num_pins > 0 ) {
for ( i = 0; i < entry_ptr->num_pins; i++ )
{
pinned_base_addr = entries[entry_ptr->pin_type[i]];
pinned_entry_ptr = &(pinned_base_addr[entry_ptr->pin_idx[i]]);
HDassert( 0 <= pinned_entry_ptr->type );
HDassert( pinned_entry_ptr->type < NUMBER_OF_ENTRY_TYPES );
HDassert( pinned_entry_ptr->type == entry_ptr->pin_type[i] );
HDassert( pinned_entry_ptr->index >= 0 );
HDassert( pinned_entry_ptr->index <=
max_indices[pinned_entry_ptr->type] );
HDassert( pinned_entry_ptr->index == entry_ptr->pin_idx[i] );
HDassert( pinned_entry_ptr == pinned_entry_ptr->self );
HDassert( pinned_entry_ptr->header.is_pinned );
HDassert( pinned_entry_ptr->is_pinned );
HDassert( pinned_entry_ptr->pinning_ref_count > 0 );
pinned_entry_ptr->pinning_ref_count--;
if ( pinned_entry_ptr->pinning_ref_count <= 0 ) {
unpin_entry(pinned_entry_ptr->cache_ptr,
pinned_entry_ptr->type,
pinned_entry_ptr->index);
}
entry_ptr->pin_type[i] = -1;
entry_ptr->pin_idx[i] = -1;
}
entry_ptr->num_pins = 0;
}
entry_ptr->destroyed = TRUE;
entry_ptr->cache_ptr = NULL;
return(SUCCEED);
} /* dest() */
herr_t
pico_dest(H5F_t * f, void * thing)
{
HDassert ( ((test_entry_t *)thing)->type == PICO_ENTRY_TYPE );
return(destroy(f, thing));
}
herr_t
nano_dest(H5F_t * f, void * thing)
{
HDassert ( ((test_entry_t *)thing)->type == NANO_ENTRY_TYPE );
return(destroy(f, thing));
}
herr_t
micro_dest(H5F_t * f, void * thing)
{
HDassert ( ((test_entry_t *)thing)->type == MICRO_ENTRY_TYPE );
return(destroy(f, thing));
}
herr_t
tiny_dest(H5F_t * f, void * thing)
{
HDassert ( ((test_entry_t *)thing)->type == TINY_ENTRY_TYPE );
return(destroy(f, thing));
}
herr_t
small_dest(H5F_t * f, void * thing)
{
HDassert ( ((test_entry_t *)thing)->type == SMALL_ENTRY_TYPE );
return(destroy(f, thing));
}
herr_t
medium_dest(H5F_t * f, void * thing)
{
HDassert ( ((test_entry_t *)thing)->type == MEDIUM_ENTRY_TYPE );
return(destroy(f, thing));
}
herr_t
large_dest(H5F_t * f, void * thing)
{
HDassert ( ((test_entry_t *)thing)->type == LARGE_ENTRY_TYPE );
return(destroy(f, thing));
}
herr_t
huge_dest(H5F_t * f, void * thing)
{
HDassert ( ((test_entry_t *)thing)->type == HUGE_ENTRY_TYPE );
return(destroy(f, thing));
}
herr_t
monster_dest(H5F_t * f, void * thing)
{
HDassert ( ((test_entry_t *)thing)->type == MONSTER_ENTRY_TYPE );
return(destroy(f, thing));
}
herr_t
variable_dest(H5F_t * f, void * thing)
{
HDassert ( ((test_entry_t *)thing)->type == VARIABLE_ENTRY_TYPE );
return(destroy(f, thing));
}
/*-------------------------------------------------------------------------
* Function: flush & friends
*
* Purpose: flush the entry and mark it as clean. The helper functions
* verify that the correct version of flush is being called,
* and then call flush proper.
*
* Return: SUCCEED
*
* Programmer: John Mainzer
* 6/10/04
*
* Modifications:
*
* JRM -- 8/30/06
* Added variable_flush() and flags_ptr parameter.
*
* JRM -- 9/1/06
* Added support for flush operations.
*
*-------------------------------------------------------------------------
*/
herr_t
flush(H5F_t *f,
hid_t UNUSED dxpl_id,
hbool_t dest,
haddr_t
#ifdef NDEBUG
UNUSED
#endif /* NDEBUG */
addr,
void *thing,
unsigned * flags_ptr)
{
int i;
test_entry_t * entry_ptr;
test_entry_t * base_addr;
HDassert( thing );
entry_ptr = (test_entry_t *)thing;
base_addr = entries[entry_ptr->type];
HDassert( entry_ptr->index >= 0 );
HDassert( entry_ptr->index <= max_indices[entry_ptr->type] );
HDassert( entry_ptr == &(base_addr[entry_ptr->index]) );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->header.addr == entry_ptr->addr );
HDassert( entry_ptr->addr == addr );
HDassert( entry_ptr->header.size == entry_ptr->size );
HDassert( ( entry_ptr->type == VARIABLE_ENTRY_TYPE ) ||
( entry_ptr->size == entry_sizes[entry_ptr->type] ) );
HDassert( entry_ptr->header.is_dirty == entry_ptr->is_dirty );
HDassert( entry_ptr->cache_ptr != NULL );
HDassert( entry_ptr->cache_ptr->magic == H5C__H5C_T_MAGIC );
HDassert( entry_ptr->num_flush_ops >= 0 );
HDassert( entry_ptr->num_flush_ops < MAX_FLUSH_OPS );
if ( entry_ptr->num_flush_ops > 0 ) {
for ( i = 0; i < entry_ptr->num_flush_ops; i++ )
{
execute_flush_op(entry_ptr->cache_ptr,
entry_ptr,
&((entry_ptr->flush_ops)[i]),
flags_ptr);
}
entry_ptr->num_flush_ops = 0;
entry_ptr->flush_op_self_resize_in_progress = FALSE;
}
entry_ptr->flushed = TRUE;
if ( ( ! write_permitted ) && ( entry_ptr->is_dirty ) ) {
pass = FALSE;
failure_mssg = "called flush when write_permitted is FALSE.";
}
if ( entry_ptr->is_dirty ) {
(entry_ptr->writes)++;
entry_ptr->is_dirty = FALSE;
entry_ptr->header.is_dirty = FALSE;
}
if ( dest ) {
destroy(f, thing);
}
return(SUCCEED);
} /* flush() */
herr_t
pico_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr,
void *thing, unsigned * flags_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == PICO_ENTRY_TYPE );
return(flush(f, dxpl_id, dest, addr, thing, flags_ptr));
}
herr_t
nano_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr,
void *thing, unsigned * flags_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == NANO_ENTRY_TYPE );
return(flush(f, dxpl_id, dest, addr, thing, flags_ptr));
}
herr_t
micro_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr,
void *thing, unsigned * flags_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == MICRO_ENTRY_TYPE );
return(flush(f, dxpl_id, dest, addr, thing, flags_ptr));
}
herr_t
tiny_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr,
void *thing, unsigned * flags_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == TINY_ENTRY_TYPE );
return(flush(f, dxpl_id, dest, addr, thing, flags_ptr));
}
herr_t
small_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr,
void *thing, unsigned * flags_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == SMALL_ENTRY_TYPE );
return(flush(f, dxpl_id, dest, addr, thing, flags_ptr));
}
herr_t
medium_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr,
void *thing, unsigned * flags_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == MEDIUM_ENTRY_TYPE );
return(flush(f, dxpl_id, dest, addr, thing, flags_ptr));
}
herr_t
large_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr,
void *thing, unsigned * flags_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == LARGE_ENTRY_TYPE );
return(flush(f, dxpl_id, dest, addr, thing, flags_ptr));
}
herr_t
huge_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr,
void *thing, unsigned * flags_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == HUGE_ENTRY_TYPE );
return(flush(f, dxpl_id, dest, addr, thing, flags_ptr));
}
herr_t
monster_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr,
void *thing, unsigned * flags_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == MONSTER_ENTRY_TYPE );
return(flush(f, dxpl_id, dest, addr, thing, flags_ptr));
}
herr_t
variable_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr,
void *thing, unsigned * flags_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == VARIABLE_ENTRY_TYPE );
return(flush(f, dxpl_id, dest, addr, thing, flags_ptr));
}
/*-------------------------------------------------------------------------
* Function: load & friends
*
* Purpose: "load" the requested entry and mark it as clean. The
* helper functions verify that the correct version of load
* is being called, and then call load proper.
*
* Return: SUCCEED
*
* Programmer: John Mainzer
* 6/10/04
*
* Modifications:
*
* JRM -- 8/30/06
* Added variable_load().
*
*-------------------------------------------------------------------------
*/
void *
load(H5F_t UNUSED *f,
hid_t UNUSED dxpl_id,
haddr_t addr,
const void UNUSED *udata1,
void UNUSED *udata2)
{
int32_t type;
int32_t idx;
test_entry_t * entry_ptr;
test_entry_t * base_addr;
addr_to_type_and_index(addr, &type, &idx);
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->type == type );
HDassert( entry_ptr->type >= 0 );
HDassert( entry_ptr->type < NUMBER_OF_ENTRY_TYPES );
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->index >= 0 );
HDassert( entry_ptr->index <= max_indices[type] );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->addr == addr );
#if 1 /* JRM */
if ( ! ( ( entry_ptr->type == VARIABLE_ENTRY_TYPE ) ||
( entry_ptr->size == entry_sizes[type] ) ) ) {
HDfprintf(stdout, "entry type/index/size = %d/%d/%ld\n",
(int)(entry_ptr->type),
(int)(entry_ptr->index),
(long)(entry_ptr->size));
}
#endif /* JRM */
HDassert( ( entry_ptr->type == VARIABLE_ENTRY_TYPE ) ||
( entry_ptr->size == entry_sizes[type] ) );
entry_ptr->loaded = TRUE;
entry_ptr->header.is_dirty = FALSE;
entry_ptr->is_dirty = FALSE;
(entry_ptr->reads)++;
return(entry_ptr);
} /* load() */
void *
pico_load(H5F_t *f, hid_t dxpl_id, haddr_t addr,
const void *udata1, void *udata2)
{
return(load(f, dxpl_id, addr, udata1, udata2));
}
void *
nano_load(H5F_t *f, hid_t dxpl_id, haddr_t addr,
const void *udata1, void *udata2)
{
return(load(f, dxpl_id, addr, udata1, udata2));
}
void *
micro_load(H5F_t *f, hid_t dxpl_id, haddr_t addr,
const void *udata1, void *udata2)
{
return(load(f, dxpl_id, addr, udata1, udata2));
}
void *
tiny_load(H5F_t *f, hid_t dxpl_id, haddr_t addr,
const void *udata1, void *udata2)
{
return(load(f, dxpl_id, addr, udata1, udata2));
}
void *
small_load(H5F_t *f, hid_t dxpl_id, haddr_t addr,
const void *udata1, void *udata2)
{
return(load(f, dxpl_id, addr, udata1, udata2));
}
void *
medium_load(H5F_t *f, hid_t dxpl_id, haddr_t addr,
const void *udata1, void *udata2)
{
return(load(f, dxpl_id, addr, udata1, udata2));
}
void *
large_load(H5F_t *f, hid_t dxpl_id, haddr_t addr,
const void *udata1, void *udata2)
{
return(load(f, dxpl_id, addr, udata1, udata2));
}
void *
huge_load(H5F_t *f, hid_t dxpl_id, haddr_t addr,
const void *udata1, void *udata2)
{
return(load(f, dxpl_id, addr, udata1, udata2));
}
void *
monster_load(H5F_t *f, hid_t dxpl_id, haddr_t addr,
const void *udata1, void *udata2)
{
return(load(f, dxpl_id, addr, udata1, udata2));
}
void *
variable_load(H5F_t *f, hid_t dxpl_id, haddr_t addr,
const void *udata1, void *udata2)
{
return(load(f, dxpl_id, addr, udata1, udata2));
}
/*-------------------------------------------------------------------------
* Function: size & friends
*
* Purpose: Get the size of the specified entry. The helper functions
* verify that the correct version of size is being called,
* and then call size proper.
*
* Return: SUCCEED
*
* Programmer: John Mainzer
* 6/10/04
*
* Modifications:
*
* JRM -- 8/30/06
* Added variable_size().
*
*-------------------------------------------------------------------------
*/
herr_t
size(H5F_t UNUSED * f,
void * thing,
size_t * size_ptr)
{
test_entry_t * entry_ptr;
test_entry_t * base_addr;
HDassert( size_ptr );
HDassert( thing );
entry_ptr = (test_entry_t *)thing;
base_addr = entries[entry_ptr->type];
HDassert( entry_ptr->index >= 0 );
HDassert( entry_ptr->index <= max_indices[entry_ptr->type] );
HDassert( entry_ptr == &(base_addr[entry_ptr->index]) );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->header.addr == entry_ptr->addr );
HDassert( ( entry_ptr->type == VARIABLE_ENTRY_TYPE ) || \
( entry_ptr->size == entry_sizes[entry_ptr->type] ) );
*size_ptr = entry_ptr->size;
return(SUCCEED);
} /* size() */
herr_t
pico_size(H5F_t * f, void * thing, size_t * size_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == PICO_ENTRY_TYPE );
return(size(f, thing, size_ptr));
}
herr_t
nano_size(H5F_t * f, void * thing, size_t * size_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == NANO_ENTRY_TYPE );
return(size(f, thing, size_ptr));
}
herr_t
micro_size(H5F_t * f, void * thing, size_t * size_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == MICRO_ENTRY_TYPE );
return(size(f, thing, size_ptr));
}
herr_t
tiny_size(H5F_t * f, void * thing, size_t * size_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == TINY_ENTRY_TYPE );
return(size(f, thing, size_ptr));
}
herr_t
small_size(H5F_t * f, void * thing, size_t * size_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == SMALL_ENTRY_TYPE );
return(size(f, thing, size_ptr));
}
herr_t
medium_size(H5F_t * f, void * thing, size_t * size_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == MEDIUM_ENTRY_TYPE );
return(size(f, thing, size_ptr));
}
herr_t
large_size(H5F_t * f, void * thing, size_t * size_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == LARGE_ENTRY_TYPE );
return(size(f, thing, size_ptr));
}
herr_t
huge_size(H5F_t * f, void * thing, size_t * size_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == HUGE_ENTRY_TYPE );
return(size(f, thing, size_ptr));
}
herr_t
monster_size(H5F_t * f, void * thing, size_t * size_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == MONSTER_ENTRY_TYPE );
return(size(f, thing, size_ptr));
}
herr_t
variable_size(H5F_t * f, void * thing, size_t * size_ptr)
{
HDassert ( ((test_entry_t *)thing)->type == VARIABLE_ENTRY_TYPE );
return(size(f, thing, size_ptr));
}
/**************************************************************************/
/**************************************************************************/
/************************** test utility functions: ***********************/
/**************************************************************************/
/**************************************************************************/
/*-------------------------------------------------------------------------
* Function: add_flush_op
*
* Purpose: Do nothing if pass is FALSE on entry.
*
* Otherwise, add the specified flush operation to the
* target instance of test_entry_t.
*
* Return: void
*
* Programmer: John Mainzer
* 9/1/06
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
add_flush_op(int target_type,
int target_idx,
int op_code,
int type,
int idx,
hbool_t flag,
size_t new_size)
{
int i;
test_entry_t * target_base_addr;
test_entry_t * target_entry_ptr;
HDassert( ( 0 <= target_type ) && ( target_type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= target_idx ) &&
( target_idx <= max_indices[target_type] ) );
HDassert( ( 0 <= op_code ) && ( op_code <= FLUSH_OP__MAX_OP ) );
HDassert( ( op_code != FLUSH_OP__RESIZE ) ||
( type == VARIABLE_ENTRY_TYPE ) );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
HDassert( ( flag == TRUE ) || ( flag == FALSE ) );
HDassert( new_size <= VARIABLE_ENTRY_SIZE );
if ( pass ) {
target_base_addr = entries[target_type];
target_entry_ptr = &(target_base_addr[target_idx]);
HDassert( target_entry_ptr->index == target_idx );
HDassert( target_entry_ptr->type == target_type );
HDassert( target_entry_ptr == target_entry_ptr->self );
HDassert( target_entry_ptr->num_flush_ops < MAX_FLUSH_OPS );
i = (target_entry_ptr->num_flush_ops)++;
(target_entry_ptr->flush_ops)[i].op_code = op_code;
(target_entry_ptr->flush_ops)[i].type = type;
(target_entry_ptr->flush_ops)[i].idx = idx;
(target_entry_ptr->flush_ops)[i].flag = flag;
(target_entry_ptr->flush_ops)[i].size = new_size;
}
return;
} /* add_flush_op() */
/*-------------------------------------------------------------------------
* Function: create_pinned_entry_dependency
*
* Purpose: Do nothing if pass is FALSE on entry.
*
* Otherwise, set up a pinned entry dependency so we can
* test the pinned entry modifications to the flush routine.
*
* Given the types and indicies of the pinned and pinning
* entries, add the pinned entry to the list of pinned
* entries in the pinning entry, increment the
* pinning reference count of the pinned entry, and
* if that count was zero initially, pin the entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/10/04
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
create_pinned_entry_dependency(H5C_t * cache_ptr,
int pinning_type,
int pinning_idx,
int pinned_type,
int pinned_idx)
{
test_entry_t * pinning_base_addr;
test_entry_t * pinning_entry_ptr;
test_entry_t * pinned_base_addr;
test_entry_t * pinned_entry_ptr;
if ( pass ) {
HDassert( ( 0 <= pinning_type ) &&
( pinning_type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= pinning_idx ) &&
( pinning_idx <= max_indices[pinning_type] ) );
HDassert( ( 0 <= pinned_type ) &&
( pinned_type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= pinned_idx ) &&
( pinned_idx <= max_indices[pinned_type] ) );
pinning_base_addr = entries[pinning_type];
pinning_entry_ptr = &(pinning_base_addr[pinning_idx]);
pinned_base_addr = entries[pinned_type];
pinned_entry_ptr = &(pinned_base_addr[pinned_idx]);
HDassert( pinning_entry_ptr->index == pinning_idx );
HDassert( pinning_entry_ptr->type == pinning_type );
HDassert( pinning_entry_ptr == pinning_entry_ptr->self );
HDassert( pinning_entry_ptr->num_pins < MAX_PINS );
HDassert( pinning_entry_ptr->index == pinning_idx );
HDassert( pinning_entry_ptr->type == pinning_type );
HDassert( pinning_entry_ptr == pinning_entry_ptr->self );
HDassert( ! ( pinning_entry_ptr->is_protected ) );
pinning_entry_ptr->pin_type[pinning_entry_ptr->num_pins] = pinned_type;
pinning_entry_ptr->pin_idx[pinning_entry_ptr->num_pins] = pinned_idx;
(pinning_entry_ptr->num_pins)++;
if ( pinned_entry_ptr->pinning_ref_count == 0 ) {
protect_entry(cache_ptr, pinned_type, pinned_idx);
unprotect_entry(cache_ptr, pinned_type, pinned_idx, FALSE,
H5C__PIN_ENTRY_FLAG);
}
(pinned_entry_ptr->pinning_ref_count)++;
}
return;
} /* create_pinned_entry_dependency() */
/*-------------------------------------------------------------------------
* Function: dirty_entry
*
* Purpose: Given a pointer to a cache, an entry type, and an index,
* dirty the target entry.
*
* If the dirty_pin parameter is true, verify that the
* target entry is in the cache and is pinned. If it
* isn't, scream and die. If it is, use the
* H5C_mark_pinned_entry_dirty() call to dirty it.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/10/04
*
* Modifications:
*
* None.
*
*-------------------------------------------------------------------------
*/
void
dirty_entry(H5C_t * cache_ptr,
int32_t type,
int32_t idx,
hbool_t dirty_pin)
{
test_entry_t * base_addr;
test_entry_t * entry_ptr;
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
if ( pass ) {
if ( dirty_pin ) {
if ( ! entry_in_cache(cache_ptr, type, idx) ) {
pass = FALSE;
failure_mssg = "entry to be dirty pinned is not in cache.";
} else {
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
if ( ! ( (entry_ptr->header).is_pinned ) ) {
pass = FALSE;
failure_mssg = "entry to be dirty pinned is not pinned.";
} else {
mark_pinned_entry_dirty(cache_ptr, type, idx, FALSE, (size_t)0);
}
}
} else {
protect_entry(cache_ptr, type, idx);
unprotect_entry(cache_ptr, type, idx, TRUE, H5C__NO_FLAGS_SET);
}
}
return;
} /* dirty_entry() */
/*-------------------------------------------------------------------------
* Function: execute_flush_op
*
* Purpose: Given a pointer to an instance of struct flush_op, execute
* it.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 9/1/06
*
* Modifications:
*
* None.
*
*-------------------------------------------------------------------------
*/
void
execute_flush_op(H5C_t * cache_ptr,
struct test_entry_t * entry_ptr,
struct flush_op * op_ptr,
unsigned * flags_ptr)
{
HDassert( cache_ptr != NULL );
HDassert( cache_ptr->magic == H5C__H5C_T_MAGIC );
HDassert( entry_ptr != NULL );
HDassert( entry_ptr = entry_ptr->self );
HDassert( entry_ptr->header.addr == entry_ptr->addr );
HDassert( ( entry_ptr->flush_op_self_resize_in_progress ) ||
( entry_ptr->header.size == entry_ptr->size ) );
HDassert( op_ptr != NULL );
HDassert( ( 0 <= entry_ptr->type ) &&
( entry_ptr->type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= entry_ptr->index ) &&
( entry_ptr->index <= max_indices[entry_ptr->type] ) );
HDassert( ( 0 <= op_ptr->type ) &&
( op_ptr->type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= op_ptr->idx ) &&
( op_ptr->idx <= max_indices[op_ptr->type] ) );
HDassert( ( op_ptr->flag == FALSE ) || ( op_ptr->flag == TRUE ) );
HDassert( flags_ptr != NULL );
if ( pass ) {
switch ( op_ptr->op_code )
{
case FLUSH_OP__NO_OP:
break;
case FLUSH_OP__DIRTY:
HDassert( ( entry_ptr->type != op_ptr->type ) ||
( entry_ptr->index != op_ptr->idx ) );
dirty_entry(cache_ptr, op_ptr->type, op_ptr->idx, op_ptr->flag);
break;
case FLUSH_OP__RESIZE:
if ( ( entry_ptr->type == op_ptr->type ) &&
( entry_ptr->index == op_ptr->idx ) ) {
/* the flush operation is acting on the entry to
* which it is attached. Handle this here:
*/
HDassert( entry_ptr->type == VARIABLE_ENTRY_TYPE );
HDassert( op_ptr->size > 0 );
HDassert( op_ptr->size <= VARIABLE_ENTRY_SIZE );
entry_ptr->size = op_ptr->size;
(*flags_ptr) |= H5C_CALLBACK__SIZE_CHANGED_FLAG;
entry_ptr->flush_op_self_resize_in_progress = TRUE;
/* if the entry is in the process of being destroyed,
* set the header size to match the entry size so as
* to avoid a spurious failure in the destroy callback.
*/
if ( entry_ptr->header.destroy_in_progress ) {
entry_ptr->header.size = entry_ptr->size;
}
} else {
/* change the size of some other entry */
resize_entry(cache_ptr, op_ptr->type, op_ptr->idx,
op_ptr->size, op_ptr->flag);
}
break;
case FLUSH_OP__RENAME:
rename_entry(cache_ptr, op_ptr->type, op_ptr->idx,
op_ptr->flag);
break;
default:
pass = FALSE;
failure_mssg = "Undefined flush op code.";
break;
}
}
return;
} /* execute_flush_op() */
/*-------------------------------------------------------------------------
* Function: entry_in_cache
*
* Purpose: Given a pointer to a cache, an entry type, and an index,
* determine if the entry is currently in the cache.
*
* Return: TRUE if the entry is in the cache, and FALSE otherwise.
*
* Programmer: John Mainzer
* 6/10/04
*
* Modifications:
*
* JRM - 10/12/04
* Removed references to local_H5C_t, as we now get direct
* access to the definition of H5C_t via H5Cpkg.h.
*
*-------------------------------------------------------------------------
*/
hbool_t
entry_in_cache(H5C_t * cache_ptr,
int32_t type,
int32_t idx)
{
hbool_t in_cache = FALSE; /* will set to TRUE if necessary */
test_entry_t * base_addr;
test_entry_t * entry_ptr;
H5C_cache_entry_t * test_ptr = NULL;
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
H5C__SEARCH_INDEX(cache_ptr, entry_ptr->addr, test_ptr)
if ( test_ptr != NULL ) {
in_cache = TRUE;
HDassert( test_ptr == (H5C_cache_entry_t *)entry_ptr );
HDassert( entry_ptr->addr == entry_ptr->header.addr );
}
return(in_cache);
} /* entry_in_cache() */
/*-------------------------------------------------------------------------
* Function: reset_entries
*
* Purpose: reset the contents of the entries arrays to know values.
*
* Return: void
*
* Programmer: John Mainzer
* 6/10/04
*
* Modifications:
*
* JRM -- 3/31/06
* Added initialization for new pinned entry test related
* fields.
*
* JRM -- 4/1/07
* Added initialization for the new is_read_only, and
* ro_ref_count fields.
*
*-------------------------------------------------------------------------
*/
void
reset_entries(void)
{
int i;
int j;
int k;
int32_t max_index;
haddr_t addr = 0;
haddr_t alt_addr = PICO_ALT_BASE_ADDR;
size_t entry_size;
test_entry_t * base_addr;
for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
{
entry_size = entry_sizes[i];
max_index = max_indices[i];
base_addr = entries[i];
HDassert( base_addr );
for ( j = 0; j <= max_index; j++ )
{
/* one can argue that we should fill the header with garbage.
* If this is desired, we can simply comment out the header
* initialization - the headers will be full of garbage soon
* enough.
*/
base_addr[j].header.addr = (haddr_t)0;
base_addr[j].header.size = (size_t)0;
base_addr[j].header.type = NULL;
base_addr[j].header.is_dirty = FALSE;
base_addr[j].header.is_protected = FALSE;
base_addr[j].header.is_read_only = FALSE;
base_addr[j].header.ro_ref_count = FALSE;
base_addr[j].header.next = NULL;
base_addr[j].header.prev = NULL;
base_addr[j].header.aux_next = NULL;
base_addr[j].header.aux_prev = NULL;
base_addr[j].self = &(base_addr[j]);
base_addr[j].cache_ptr = NULL;
base_addr[j].addr = addr;
base_addr[j].at_main_addr = TRUE;
base_addr[j].main_addr = addr;
base_addr[j].alt_addr = alt_addr;
base_addr[j].size = entry_size;
base_addr[j].type = i;
base_addr[j].index = j;
base_addr[j].reads = 0;
base_addr[j].writes = 0;
base_addr[j].is_dirty = FALSE;
base_addr[j].is_protected = FALSE;
base_addr[j].is_read_only = FALSE;
base_addr[j].ro_ref_count = FALSE;
base_addr[j].is_pinned = FALSE;
base_addr[j].pinning_ref_count = 0;
base_addr[j].num_pins = 0;
for ( k = 0; k < MAX_PINS; k++ )
{
base_addr[j].pin_type[k] = -1;
base_addr[j].pin_idx[k] = -1;
}
base_addr[j].num_flush_ops = 0;
for ( k = 0; k < MAX_FLUSH_OPS; k++ )
{
base_addr[j].flush_ops[k].op_code = FLUSH_OP__NO_OP;
base_addr[j].flush_ops[k].type = -1;
base_addr[j].flush_ops[k].idx = -1;
base_addr[j].flush_ops[k].flag = FALSE;
base_addr[j].flush_ops[k].size = 0;
}
base_addr[j].flush_op_self_resize_in_progress = FALSE;
base_addr[j].loaded = FALSE;
base_addr[j].cleared = FALSE;
base_addr[j].flushed = FALSE;
base_addr[j].destroyed = FALSE;
addr += (haddr_t)entry_size;
alt_addr += (haddr_t)entry_size;
}
}
return;
} /* reset_entries() */
/*-------------------------------------------------------------------------
* Function: resize_entry
*
* Purpose: Given a pointer to a cache, an entry type, an index, and
* a size, set the size of the target entry to the size. Note
* that at present, the type of the entry must be
* VARIABLE_ENTRY_TYPE.
*
* If the resize_pin parameter is true, verify that the
* target entry is in the cache and is pinned. If it
* isn't, scream and die. If it is, use the
* H5C_mark_pinned_entry_dirty() call to resize it.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/10/04
*
* Modifications:
*
* None.
*
*-------------------------------------------------------------------------
*/
void
resize_entry(H5C_t * cache_ptr,
int32_t type,
int32_t idx,
size_t new_size,
hbool_t resize_pin)
{
test_entry_t * base_addr;
test_entry_t * entry_ptr;
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( type == VARIABLE_ENTRY_TYPE );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
HDassert( ( 0 < new_size ) && ( new_size <= entry_sizes[type] ) );
if ( pass ) {
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
if ( resize_pin ) {
if ( ! entry_in_cache(cache_ptr, type, idx) ) {
pass = FALSE;
failure_mssg = "entry to be resized pinned is not in cache.";
} else {
if ( ! ( (entry_ptr->header).is_pinned ) ) {
pass = FALSE;
failure_mssg = "entry to be resized pinned is not pinned.";
} else {
mark_pinned_entry_dirty(cache_ptr, type, idx,
TRUE, new_size);
}
}
} else {
protect_entry(cache_ptr, type, idx);
unprotect_entry_with_size_change(cache_ptr, type, idx,
H5C__SIZE_CHANGED_FLAG, new_size);
}
}
return;
} /* resize_entry() */
/*-------------------------------------------------------------------------
* Function: resize_pinned_entry
*
* Purpose: Given a pointer to a cache, an entry type, an index, and
* a new size, change the size of the target pinned entry
* to match the supplied new size.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 1/11/08
*
* Modifications:
*
* None.
*
*-------------------------------------------------------------------------
*/
void
resize_pinned_entry(H5C_t * cache_ptr,
int32_t type,
int32_t idx,
size_t new_size)
{
herr_t result;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
HDassert( type = VARIABLE_ENTRY_TYPE ) ;
HDassert( ( 0 < new_size ) && ( new_size <= entry_sizes[type] ) );
if ( pass ) {
if ( ! entry_in_cache(cache_ptr, type, idx) ) {
pass = FALSE;
failure_mssg = "entry not in cache.";
} else {
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
if ( ! ( (entry_ptr->header).is_pinned ) ) {
pass = FALSE;
failure_mssg = "entry to be resized is not pinned.";
} else {
entry_ptr->size = new_size;
result = H5C_resize_pinned_entry(cache_ptr,
(void *)entry_ptr,
new_size);
if ( result != SUCCEED ) {
pass = FALSE;
failure_mssg = "error(s) in H5C_resize_pinned_entry().";
} else {
HDassert( entry_ptr->size = (entry_ptr->header).size );
}
}
}
}
return;
} /* resize_pinned_entry() */
/*-------------------------------------------------------------------------
* Function: verify_clean
*
* Purpose: Verify that all cache entries are marked as clean. If any
* are not, set pass to FALSE.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/10/04
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
verify_clean(void)
{
int i;
int j;
int dirty_count = 0;
int32_t max_index;
test_entry_t * base_addr;
if ( pass ) {
for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
{
max_index = max_indices[i];
base_addr = entries[i];
HDassert( base_addr );
for ( j = 0; j <= max_index; j++ )
{
if ( ( base_addr[j].header.is_dirty ) ||
( base_addr[j].is_dirty ) ) {
dirty_count++;
}
}
}
if ( dirty_count > 0 ) {
pass = FALSE;
failure_mssg = "verify_clean() found dirty entry(s).";
}
}
return;
} /* verify_clean() */
/*-------------------------------------------------------------------------
* Function: verify_entry_status
*
* Purpose: Verify that a list of entries have the expected status.
* If any discrepencies are found, set the failure message
* and set pass to FALSE.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 10/8/04
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
verify_entry_status(H5C_t * cache_ptr,
int tag,
int num_entries,
struct expected_entry_status expected[])
{
static char msg[128];
hbool_t in_cache = FALSE; /* will set to TRUE if necessary */
int i;
test_entry_t * entry_ptr;
test_entry_t * base_addr;
i = 0;
while ( ( pass ) && ( i < num_entries ) )
{
base_addr = entries[expected[i].entry_type];
entry_ptr = &(base_addr[expected[i].entry_index]);
if ( ( ! expected[i].in_cache ) &&
( ( expected[i].is_dirty ) ||
( expected[i].is_protected ) ||
( expected[i].is_pinned ) ) ) {
pass = FALSE;
sprintf(msg, "Contradictory data in expected[%d].\n", i);
failure_mssg = msg;
}
if ( pass ) {
in_cache = entry_in_cache(cache_ptr, expected[i].entry_type,
expected[i].entry_index);
if ( in_cache != expected[i].in_cache ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) in cache actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)in_cache,
(int)expected[i].in_cache);
failure_mssg = msg;
}
}
if ( pass ) {
if ( entry_ptr->size != expected[i].size ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) size actualexpected = %ld/%ld.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(long)(entry_ptr->size),
(long)expected[i].size);
failure_mssg = msg;
}
}
if ( ( pass ) && ( in_cache ) ) {
if ( entry_ptr->header.size != expected[i].size ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) header size actual/expected = %ld/%ld.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(long)(entry_ptr->header.size),
(long)expected[i].size);
failure_mssg = msg;
}
}
if ( pass ) {
if ( entry_ptr->at_main_addr != expected[i].at_main_addr ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) at main addr actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->at_main_addr),
(int)expected[i].at_main_addr);
failure_mssg = msg;
}
}
if ( pass ) {
if ( entry_ptr->is_dirty != expected[i].is_dirty ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) is_dirty actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->is_dirty),
(int)expected[i].is_dirty);
failure_mssg = msg;
}
}
if ( ( pass ) && ( in_cache ) ) {
if ( entry_ptr->header.is_dirty != expected[i].is_dirty ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) header is_dirty actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->header.is_dirty),
(int)expected[i].is_dirty);
failure_mssg = msg;
}
}
if ( pass ) {
if ( entry_ptr->is_protected != expected[i].is_protected ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) is_protected actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->is_protected),
(int)expected[i].is_protected);
failure_mssg = msg;
}
}
if ( ( pass ) && ( in_cache ) ) {
if ( entry_ptr->header.is_protected != expected[i].is_protected ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) header is_protected actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->header.is_protected),
(int)expected[i].is_protected);
failure_mssg = msg;
}
}
if ( pass ) {
if ( entry_ptr->is_pinned != expected[i].is_pinned ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) is_pinned actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->is_pinned),
(int)expected[i].is_pinned);
failure_mssg = msg;
}
}
if ( ( pass ) && ( in_cache ) ) {
if ( entry_ptr->header.is_pinned != expected[i].is_pinned ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) header is_pinned actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->header.is_pinned),
(int)expected[i].is_pinned);
failure_mssg = msg;
}
}
if ( pass ) {
if ( ( entry_ptr->loaded != expected[i].loaded ) ||
( entry_ptr->cleared != expected[i].cleared ) ||
( entry_ptr->flushed != expected[i].flushed ) ||
( entry_ptr->destroyed != expected[i].destroyed ) ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d,%d) loaded = %d(%d), clrd = %d(%d), flshd = %d(%d), dest = %d(%d)\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->loaded),
(int)(expected[i].loaded),
(int)(entry_ptr->cleared),
(int)(expected[i].cleared),
(int)(entry_ptr->flushed),
(int)(expected[i].flushed),
(int)(entry_ptr->destroyed),
(int)(expected[i].destroyed));
failure_mssg = msg;
}
}
i++;
} /* while */
return;
} /* verify_entry_status() */
/*-------------------------------------------------------------------------
* Function: verify_unprotected
*
* Purpose: Verify that no cache entries are marked as protected. If
* any are, set pass to FALSE.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/10/04
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
verify_unprotected(void)
{
int i;
int j;
int protected_count = 0;
int32_t max_index;
test_entry_t * base_addr;
if ( pass ) {
for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
{
max_index = max_indices[i];
base_addr = entries[i];
HDassert( base_addr );
for ( j = 0; j <= max_index; j++ )
{
HDassert( base_addr[j].header.is_protected ==
base_addr[j].is_protected );
if ( ( base_addr[j].header.is_protected ) ||
( base_addr[j].is_protected ) ) {
protected_count++;
}
}
}
if ( protected_count > 0 ) {
pass = FALSE;
failure_mssg = "verify_unprotected() found protected entry(s).";
}
}
return;
} /* verify_unprotected() */
/*-------------------------------------------------------------------------
* Function: setup_cache()
*
* Purpose: Allocate a cache of the desired size and configure it for
* use in the test bed. Return a pointer to the new cache
* structure.
*
* Return: Pointer to new cache, or NULL on failure.
*
* Programmer: John Mainzer
* 6/11/04
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
H5C_t *
setup_cache(size_t max_cache_size,
size_t min_clean_size)
{
H5C_t * cache_ptr = NULL;
cache_ptr = H5C_create(max_cache_size,
min_clean_size,
(NUMBER_OF_ENTRY_TYPES - 1),
(const char **)entry_type_names,
check_write_permitted,
TRUE,
NULL,
NULL);
if ( cache_ptr == NULL ) {
pass = FALSE;
failure_mssg = "H5C_create() returned NULL.";
} else {
H5C_set_skip_flags(cache_ptr, TRUE, TRUE);
}
return(cache_ptr);
} /* setup_cache() */
/*-------------------------------------------------------------------------
* Function: takedown_cache()
*
* Purpose: Flush the specified cache and disable it. If requested,
* dump stats first. If pass is FALSE, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 6/11/04
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
takedown_cache(H5C_t * cache_ptr,
hbool_t dump_stats,
hbool_t dump_detailed_stats)
{
HDassert(cache_ptr);
if ( pass ) {
if ( dump_stats ) {
H5C_stats(cache_ptr, "test cache", dump_detailed_stats);
}
H5C_dest(NULL, -1, -1, cache_ptr);
}
return;
} /* takedown_cache() */
/*-------------------------------------------------------------------------
* Function: expunge_entry()
*
* Purpose: Expunge the entry indicated by the type and index.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 7/6/06
*
* Modifications:
*
* None.
*
*-------------------------------------------------------------------------
*/
void
expunge_entry(H5C_t * cache_ptr,
int32_t type,
int32_t idx)
{
/* const char * fcn_name = "expunge_entry()"; */
herr_t result;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
if ( pass ) {
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->cache_ptr == cache_ptr );
HDassert( ! ( entry_ptr->header.is_protected ) );
HDassert( ! ( entry_ptr->is_protected ) );
HDassert( ! ( entry_ptr->header.is_pinned ) );
HDassert( ! ( entry_ptr->is_pinned ) );
result = H5C_expunge_entry(NULL, -1, -1, cache_ptr, &(types[type]),
entry_ptr->addr, H5AC__NO_FLAGS_SET);
if ( result < 0 ) {
pass = FALSE;
failure_mssg = "error in H5C_expunge_entry().";
}
}
return;
} /* expunge_entry() */
/*-------------------------------------------------------------------------
* Function: flush_cache()
*
* Purpose: Flush the specified cache, destroying all entries if
requested. If requested, dump stats first.
*
* Return: void
*
* Programmer: John Mainzer
* 6/23/04
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
flush_cache(H5C_t * cache_ptr,
hbool_t destroy_entries,
hbool_t dump_stats,
hbool_t dump_detailed_stats)
{
const char * fcn_name = "flush_cache()";
herr_t result = 0;
hbool_t verbose = FALSE;
HDassert(cache_ptr);
verify_unprotected();
if ( pass ) {
if ( destroy_entries ) {
result = H5C_flush_cache(NULL, -1, -1, cache_ptr,
H5C__FLUSH_INVALIDATE_FLAG);
} else {
result = H5C_flush_cache(NULL, -1, -1, cache_ptr,
H5C__NO_FLAGS_SET);
}
}
if ( dump_stats ) {
H5C_stats(cache_ptr, "test cache", dump_detailed_stats);
}
if ( result < 0 ) {
pass = FALSE;
failure_mssg = "error in H5C_flush_cache().";
}
else if ( ( destroy_entries ) &&
( ( cache_ptr->index_len != 0 ) ||
( cache_ptr->index_size != 0 ) ||
( cache_ptr->clean_index_size != 0 ) ||
( cache_ptr->dirty_index_size != 0 ) ) ) {
if ( verbose ) {
HDfprintf(stdout,
"%s: unexpected il/is/cis/dis = %lld/%lld/%lld/%lld.\n",
fcn_name,
(long long)(cache_ptr->index_len),
(long long)(cache_ptr->index_size),
(long long)(cache_ptr->clean_index_size),
(long long)(cache_ptr->dirty_index_size));
}
pass = FALSE;
failure_mssg =
"non zero index len/sizes after H5C_flush_cache() with invalidate.";
}
return;
} /* flush_cache() */
/*-------------------------------------------------------------------------
* Function: insert_entry()
*
* Purpose: Insert the entry indicated by the type and index. Mark
* it clean or dirty as indicated.
*
* Note that I don't see much practical use for inserting
* a clean entry, but the interface permits it so we should
* test it.
*
* Do nothing if pass is false.
*
* Return: void
*
* Programmer: John Mainzer
* 6/16/04
*
* Modifications:
*
* JRM -- 1/13/05
* Updated function for the flags parameter in
* H5C_insert_entry(), and to allow access to this parameter.
*
* JRM -- 6/17/05
* The interface no longer permits clean inserts.
* Accordingly, the dirty parameter is no longer meaningfull.
*
* JRM -- 4/5/06
* Added code to initialize the new cache_ptr field of the
* test_entry_t structure.
*
* JRM -- 8/10/06
* Updated to reflect the fact that entries can now be
* inserted pinned.
*
*-------------------------------------------------------------------------
*/
void
insert_entry(H5C_t * cache_ptr,
int32_t type,
int32_t idx,
hbool_t UNUSED dirty,
unsigned int flags)
{
herr_t result;
hbool_t insert_pinned;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
if ( pass ) {
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( !(entry_ptr->is_protected) );
insert_pinned = ((flags & H5C__PIN_ENTRY_FLAG) != 0 );
entry_ptr->is_dirty = TRUE;
result = H5C_insert_entry(NULL, -1, -1, cache_ptr, &(types[type]),
entry_ptr->addr, (void *)entry_ptr, flags);
if ( ( result < 0 ) ||
( entry_ptr->header.is_protected ) ||
( entry_ptr->header.type != &(types[type]) ) ||
( entry_ptr->size != entry_ptr->header.size ) ||
( entry_ptr->addr != entry_ptr->header.addr ) ) {
pass = FALSE;
failure_mssg = "error in H5C_insert().";
#if 0 /* This is useful debugging code. Lets keep it around. */
HDfprintf(stdout, "result = %d\n", (int)result);
HDfprintf(stdout, "entry_ptr->header.is_protected = %d\n",
(int)(entry_ptr->header.is_protected));
HDfprintf(stdout,
"entry_ptr->header.type != &(types[type]) = %d\n",
(int)(entry_ptr->header.type != &(types[type])));
HDfprintf(stdout,
"entry_ptr->size != entry_ptr->header.size = %d\n",
(int)(entry_ptr->size != entry_ptr->header.size));
HDfprintf(stdout,
"entry_ptr->addr != entry_ptr->header.addr = %d\n",
(int)(entry_ptr->addr != entry_ptr->header.addr));
#endif
}
HDassert( entry_ptr->cache_ptr == NULL );
entry_ptr->cache_ptr = cache_ptr;
if ( insert_pinned ) {
HDassert( entry_ptr->header.is_pinned );
entry_ptr->is_pinned = TRUE;
} else {
HDassert( ! ( entry_ptr->header.is_pinned ) );
entry_ptr->is_pinned = FALSE;
}
HDassert( entry_ptr->header.is_dirty );
HDassert( ((entry_ptr->header).type)->id == type );
}
return;
} /* insert_entry() */
/*-------------------------------------------------------------------------
* Function: mark_pinned_entry_dirty()
*
* Purpose: Mark the specified entry as dirty.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 3/28/06
*
* Modifications:
*
* None.
*
*-------------------------------------------------------------------------
*/
void
mark_pinned_entry_dirty(H5C_t * cache_ptr,
int32_t type,
int32_t idx,
hbool_t size_changed,
size_t new_size)
{
/* const char * fcn_name = "mark_pinned_entry_dirty()"; */
herr_t result;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
if ( pass ) {
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->cache_ptr == cache_ptr );
HDassert( ! (entry_ptr->header.is_protected) );
HDassert( entry_ptr->header.is_pinned );
HDassert( entry_ptr->is_pinned );
entry_ptr->is_dirty = TRUE;
if ( size_changed ) {
/* update entry size now to keep the sanity checks happy */
entry_ptr->size = new_size;
}
result = H5C_mark_pinned_entry_dirty(cache_ptr,
(void *)entry_ptr,
size_changed,
new_size);
if ( ( result < 0 ) ||
( ! (entry_ptr->header.is_dirty) ) ||
( ! (entry_ptr->header.is_pinned) ) ||
( entry_ptr->header.type != &(types[type]) ) ||
( entry_ptr->size != entry_ptr->header.size ) ||
( entry_ptr->addr != entry_ptr->header.addr ) ) {
#if 0 /* This is useful debugging code -- keep it around */
HDfprintf(stdout, "result = %ld.\n", (long)result);
HDfprintf(stdout, "entry_ptr->header.is_dirty = %d.\n",
(int)(entry_ptr->header.is_dirty));
HDfprintf(stdout, "entry_ptr->header.is_pinned = %d.\n",
(int)(entry_ptr->header.is_pinned));
HDfprintf(stdout,
"(entry_ptr->header.type != &(types[type])) = %d.\n",
(int)(entry_ptr->header.type != &(types[type])));
HDfprintf(stdout,
"entry_ptr->size = %ld, entry_ptr->header.size = %ld.\n",
(long)(entry_ptr->size), (long)(entry_ptr->header.size));
HDfprintf(stdout,
"entry_ptr->addr = %ld, entry_ptr->header.addr = %ld.\n",
(long)(entry_ptr->addr), (long)(entry_ptr->header.addr));
#endif
pass = FALSE;
failure_mssg = "error in H5C_mark_pinned_entry_dirty().";
}
HDassert( ((entry_ptr->header).type)->id == type );
}
return;
} /* mark_pinned_entry_dirty() */
/*-------------------------------------------------------------------------
* Function: mark_pinned_or_protected_entry_dirty()
*
* Purpose: Mark the specified entry as dirty.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 5/17/06
*
* Modifications:
*
* None.
*
*-------------------------------------------------------------------------
*/
void
mark_pinned_or_protected_entry_dirty(H5C_t * cache_ptr,
int32_t type,
int32_t idx)
{
/* const char * fcn_name = "mark_pinned_or_protected_entry_dirty()"; */
herr_t result;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
if ( pass ) {
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->cache_ptr == cache_ptr );
HDassert( entry_ptr->header.is_protected ||
entry_ptr->header.is_pinned );
entry_ptr->is_dirty = TRUE;
result = H5C_mark_pinned_or_protected_entry_dirty(cache_ptr,
(void *)entry_ptr);
if ( ( result < 0 )
||
( ( ! (entry_ptr->header.is_protected) )
&&
( ! (entry_ptr->header.is_pinned) )
)
||
( ( entry_ptr->header.is_protected )
&&
( ! ( entry_ptr->header.dirtied ) )
)
||
( ( ! ( entry_ptr->header.is_protected ) )
&&
( ! ( entry_ptr->header.is_dirty ) )
)
||
( entry_ptr->header.type != &(types[type]) )
||
( entry_ptr->size != entry_ptr->header.size )
||
( entry_ptr->addr != entry_ptr->header.addr ) ) {
pass = FALSE;
failure_mssg =
"error in H5C_mark_pinned_or_protected_entry_dirty().";
}
HDassert( ((entry_ptr->header).type)->id == type );
}
return;
} /* mark_pinned_or_protected_entry_dirty() */
/*-------------------------------------------------------------------------
* Function: rename_entry()
*
* Purpose: Rename the entry indicated by the type and index to its
* main or alternate address as indicated. If the entry is
* already at the desired entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 6/21/04
*
* Modifications:
*
* JRM -- 6/17/05
* Updated code to reflect the fact that renames automatically
* dirty entries.
*
*-------------------------------------------------------------------------
*/
void
rename_entry(H5C_t * cache_ptr,
int32_t type,
int32_t idx,
hbool_t main_addr)
{
herr_t result;
hbool_t done = TRUE; /* will set to FALSE if we have work to do */
haddr_t old_addr = HADDR_UNDEF;
haddr_t new_addr = HADDR_UNDEF;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->cache_ptr == cache_ptr );
HDassert( !(entry_ptr->is_protected) );
HDassert( !(entry_ptr->header.is_protected) );
if ( entry_ptr->at_main_addr && !main_addr ) {
/* rename to alt addr */
HDassert( entry_ptr->addr == entry_ptr->main_addr );
done = FALSE;
old_addr = entry_ptr->addr;
new_addr = entry_ptr->alt_addr;
} else if ( !(entry_ptr->at_main_addr) && main_addr ) {
/* rename to main addr */
HDassert( entry_ptr->addr == entry_ptr->alt_addr );
done = FALSE;
old_addr = entry_ptr->addr;
new_addr = entry_ptr->main_addr;
}
if ( ! done ) {
entry_ptr->is_dirty = TRUE;
result = H5C_rename_entry(cache_ptr, &(types[type]),
old_addr, new_addr);
}
if ( ! done ) {
if ( ( result < 0 ) ||
( ( ! ( entry_ptr->header.destroy_in_progress ) ) &&
( entry_ptr->header.addr != new_addr ) ) ) {
pass = FALSE;
failure_mssg = "error in H5C_rename_entry().";
} else {
entry_ptr->addr = new_addr;
entry_ptr->at_main_addr = main_addr;
}
}
HDassert( ((entry_ptr->header).type)->id == type );
HDassert( entry_ptr->header.is_dirty );
HDassert( entry_ptr->is_dirty );
return;
} /* rename_entry() */
/*-------------------------------------------------------------------------
* Function: protect_entry()
*
* Purpose: Protect the entry indicated by the type and index.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/11/04
*
* Modifications:
*
* - Modified call to H5C_protect to pass H5C__NO_FLAGS_SET in the
* new flags parameter.
* JRM -- 3/28/07
*
*-------------------------------------------------------------------------
*/
void
protect_entry(H5C_t * cache_ptr,
int32_t type,
int32_t idx)
{
/* const char * fcn_name = "protect_entry()"; */
test_entry_t * base_addr;
test_entry_t * entry_ptr;
H5C_cache_entry_t * cache_entry_ptr;
if ( pass ) {
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( !(entry_ptr->is_protected) );
cache_entry_ptr = H5C_protect(NULL, -1, -1, cache_ptr, &(types[type]),
entry_ptr->addr, NULL, NULL,
H5C__NO_FLAGS_SET);
if ( ( cache_entry_ptr != (void *)entry_ptr ) ||
( !(entry_ptr->header.is_protected) ) ||
( entry_ptr->header.type != &(types[type]) ) ||
( entry_ptr->size != entry_ptr->header.size ) ||
( entry_ptr->addr != entry_ptr->header.addr ) ) {
#if 0
/* I've written the following debugging code several times
* now. Lets keep it around so I don't have to write it
* again.
* - JRM
*/
HDfprintf(stdout, "( cache_entry_ptr != (void *)entry_ptr ) = %d\n",
(int)( cache_entry_ptr != (void *)entry_ptr ));
HDfprintf(stdout, "cache_entry_ptr = 0x%lx, entry_ptr = 0x%lx\n",
(long)cache_entry_ptr, (long)entry_ptr);
HDfprintf(stdout, "entry_ptr->header.is_protected = %d\n",
(int)(entry_ptr->header.is_protected));
HDfprintf(stdout,
"( entry_ptr->header.type != &(types[type]) ) = %d\n",
(int)( entry_ptr->header.type != &(types[type]) ));
HDfprintf(stdout,
"entry_ptr->size = %d, entry_ptr->header.size = %d\n",
(int)(entry_ptr->size), (int)(entry_ptr->header.size));
HDfprintf(stdout,
"entry_ptr->addr = %d, entry_ptr->header.addr = %d\n",
(int)(entry_ptr->addr), (int)(entry_ptr->header.addr));
#endif
pass = FALSE;
failure_mssg = "error in H5C_protect().";
} else {
HDassert( ( entry_ptr->cache_ptr == NULL ) ||
( entry_ptr->cache_ptr == cache_ptr ) );
entry_ptr->cache_ptr = cache_ptr;
entry_ptr->is_protected = TRUE;
}
HDassert( ((entry_ptr->header).type)->id == type );
}
return;
} /* protect_entry() */
/*-------------------------------------------------------------------------
* Function: protect_entry_ro()
*
* Purpose: Do a read only protect the entry indicated by the type
* and index.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 4/1/07
*
* Modifications:
*
* - None.
*
*-------------------------------------------------------------------------
*/
void
protect_entry_ro(H5C_t * cache_ptr,
int32_t type,
int32_t idx)
{
/* const char * fcn_name = "protect_entry_ro()"; */
test_entry_t * base_addr;
test_entry_t * entry_ptr;
H5C_cache_entry_t * cache_entry_ptr;
if ( pass ) {
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( ( ! ( entry_ptr->is_protected ) ) ||
( ( entry_ptr->is_read_only ) &&
( entry_ptr->ro_ref_count > 0 ) ) );
cache_entry_ptr = H5C_protect(NULL, -1, -1, cache_ptr, &(types[type]),
entry_ptr->addr, NULL, NULL,
H5C__READ_ONLY_FLAG);
if ( ( cache_entry_ptr != (void *)entry_ptr ) ||
( !(entry_ptr->header.is_protected) ) ||
( !(entry_ptr->header.is_read_only) ) ||
( entry_ptr->header.ro_ref_count <= 0 ) ||
( entry_ptr->header.type != &(types[type]) ) ||
( entry_ptr->size != entry_ptr->header.size ) ||
( entry_ptr->addr != entry_ptr->header.addr ) ) {
pass = FALSE;
failure_mssg = "error in read only H5C_protect().";
} else {
HDassert( ( entry_ptr->cache_ptr == NULL ) ||
( entry_ptr->cache_ptr == cache_ptr ) );
entry_ptr->cache_ptr = cache_ptr;
entry_ptr->is_protected = TRUE;
entry_ptr->is_read_only = TRUE;
entry_ptr->ro_ref_count++;
}
HDassert( ((entry_ptr->header).type)->id == type );
}
return;
} /* protect_entry_ro() */
/*-------------------------------------------------------------------------
* Function: unpin_entry()
*
* Purpose: Unpin the entry indicated by the type and index.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 3/28/06
*
* Modifications:
*
* None.
*
*-------------------------------------------------------------------------
*/
void
unpin_entry(H5C_t * cache_ptr,
int32_t type,
int32_t idx)
{
/* const char * fcn_name = "unpin_entry()"; */
herr_t result;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
if ( pass ) {
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->cache_ptr == cache_ptr );
HDassert( ! (entry_ptr->header.is_protected) );
HDassert( entry_ptr->header.is_pinned );
HDassert( entry_ptr->is_pinned );
result = H5C_unpin_entry(cache_ptr, (void *)entry_ptr);
if ( ( result < 0 ) ||
( entry_ptr->header.is_pinned ) ||
( entry_ptr->header.type != &(types[type]) ) ||
( entry_ptr->size != entry_ptr->header.size ) ||
( entry_ptr->addr != entry_ptr->header.addr ) ) {
pass = FALSE;
failure_mssg = "error in H5C_unpin().";
}
entry_ptr->is_pinned = FALSE;
HDassert( ((entry_ptr->header).type)->id == type );
}
return;
} /* unpin_entry() */
/*-------------------------------------------------------------------------
* Function: unprotect_entry()
*
* Purpose: Unprotect the entry indicated by the type and index.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/12/04
*
* Modifications:
*
* JRM -- 1/7/05
* Updated for the replacement of the deleted parameter in
* H5C_unprotect() with the new flags parameter.
*
* JRM - 6/17/05
* Modified function to use the new dirtied parameter of
* H5C_unprotect().
*
* JRM -- 9/8/05
* Update for new entry size parameter in H5C_unprotect().
* We don't use them here for now.
*
* JRM -- 3/31/06
* Update for pinned entries.
*
* JRM -- 4/1/07
* Updated for new multiple read protects.
*
*-------------------------------------------------------------------------
*/
void
unprotect_entry(H5C_t * cache_ptr,
int32_t type,
int32_t idx,
int dirty,
unsigned int flags)
{
/* const char * fcn_name = "unprotect_entry()"; */
herr_t result;
hbool_t pin_flag_set;
hbool_t unpin_flag_set;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
if ( pass ) {
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->cache_ptr == cache_ptr );
HDassert( entry_ptr->header.is_protected );
HDassert( entry_ptr->is_protected );
pin_flag_set = ((flags & H5C__PIN_ENTRY_FLAG) != 0 );
unpin_flag_set = ((flags & H5C__UNPIN_ENTRY_FLAG) != 0 );
HDassert ( ! ( pin_flag_set && unpin_flag_set ) );
HDassert ( ( ! pin_flag_set ) || ( ! (entry_ptr->is_pinned) ) );
HDassert ( ( ! unpin_flag_set ) || ( entry_ptr->is_pinned ) );
if ( ( dirty == TRUE ) || ( dirty == FALSE ) ) {
flags |= (dirty ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET);
entry_ptr->is_dirty = (entry_ptr->is_dirty || dirty);
}
result = H5C_unprotect(NULL, -1, -1, cache_ptr, &(types[type]),
entry_ptr->addr, (void *)entry_ptr,
flags, (size_t)0);
if ( ( result < 0 ) ||
( ( entry_ptr->header.is_protected ) &&
( ( ! ( entry_ptr->is_read_only ) ) ||
( entry_ptr->ro_ref_count <= 0 ) ) ) ||
( entry_ptr->header.type != &(types[type]) ) ||
( entry_ptr->size != entry_ptr->header.size ) ||
( entry_ptr->addr != entry_ptr->header.addr ) ) {
#if 1 /* JRM */
if ( result < 0 ) {
HDfprintf(stdout, "result is negative.\n");
}
if ( ( entry_ptr->header.is_protected ) &&
( ( ! ( entry_ptr->is_read_only ) ) ||
( entry_ptr->ro_ref_count <= 0 ) ) ) {
HDfprintf(stdout, "protected and not RO or refcnt <= 0.\n");
}
if ( entry_ptr->header.type != &(types[type]) ) {
HDfprintf(stdout, "type disagreement.\n");
}
if ( entry_ptr->size != entry_ptr->header.size ) {
HDfprintf(stdout, "size disagreement.\n");
}
if ( entry_ptr->addr != entry_ptr->header.addr ) {
HDfprintf(stdout, "addr disagreement.\n");
}
#endif /* JRM */
pass = FALSE;
failure_mssg = "error in H5C_unprotect().";
}
else
{
if ( entry_ptr->ro_ref_count > 1 ) {
entry_ptr->ro_ref_count--;
} else if ( entry_ptr->ro_ref_count == 1 ) {
entry_ptr->is_protected = FALSE;
entry_ptr->is_read_only = FALSE;
entry_ptr->ro_ref_count = 0;
} else {
entry_ptr->is_protected = FALSE;
}
if ( pin_flag_set ) {
HDassert ( entry_ptr->header.is_pinned );
entry_ptr->is_pinned = TRUE;
} else if ( unpin_flag_set ) {
HDassert ( ! ( entry_ptr->header.is_pinned ) );
entry_ptr->is_pinned = FALSE;
}
}
HDassert( ((entry_ptr->header).type)->id == type );
if ( ( flags & H5C__DIRTIED_FLAG ) != 0
&& ( (flags & H5C__DELETED_FLAG) == 0 ) ) {
HDassert( entry_ptr->header.is_dirty );
HDassert( entry_ptr->is_dirty );
}
HDassert( entry_ptr->header.is_protected == entry_ptr->is_protected );
HDassert( entry_ptr->header.is_read_only == entry_ptr->is_read_only );
HDassert( entry_ptr->header.ro_ref_count == entry_ptr->ro_ref_count );
}
return;
} /* unprotect_entry() */
/*-------------------------------------------------------------------------
* Function: unprotect_entry_with_size_change()
*
* Purpose: Version of unprotect_entry() that allow access to the new
* size change parameters in H5C_unprotect_entry()
*
* At present, only the sizes of VARIABLE_ENTRY_TYPE entries
* can be changed. Thus this function will scream and die
* if the H5C__SIZE_CHANGED_FLAG is set and the type is not
* VARIABLE_ENTRY_TYPE.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 8/31/06
*
* Modifications:
*
* None.
*
*-------------------------------------------------------------------------
*/
void
unprotect_entry_with_size_change(H5C_t * cache_ptr,
int32_t type,
int32_t idx,
unsigned int flags,
size_t new_size)
{
const char * fcn_name = "unprotect_entry_with_size_change()";
herr_t result;
hbool_t dirty_flag_set;
hbool_t pin_flag_set;
hbool_t unpin_flag_set;
hbool_t size_changed_flag_set;
hbool_t verbose = FALSE;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
if ( pass ) {
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
HDassert( new_size <= entry_sizes[type] );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->cache_ptr == cache_ptr );
HDassert( entry_ptr->header.is_protected );
HDassert( entry_ptr->is_protected );
dirty_flag_set = ((flags & H5C__DIRTIED_FLAG) != 0 );
pin_flag_set = ((flags & H5C__PIN_ENTRY_FLAG) != 0 );
unpin_flag_set = ((flags & H5C__UNPIN_ENTRY_FLAG) != 0 );
size_changed_flag_set = ((flags & H5C__SIZE_CHANGED_FLAG) != 0 );
HDassert ( ! ( pin_flag_set && unpin_flag_set ) );
HDassert ( ( ! pin_flag_set ) || ( ! (entry_ptr->is_pinned) ) );
HDassert ( ( ! unpin_flag_set ) || ( entry_ptr->is_pinned ) );
HDassert ( ( ! size_changed_flag_set ) || ( new_size > 0 ) );
HDassert ( ( ! size_changed_flag_set ) ||
( type == VARIABLE_ENTRY_TYPE ) );
entry_ptr->is_dirty = (entry_ptr->is_dirty || dirty_flag_set);
if ( size_changed_flag_set ) {
entry_ptr->is_dirty = TRUE;
entry_ptr->size = new_size;
}
result = H5C_unprotect(NULL, -1, -1, cache_ptr, &(types[type]),
entry_ptr->addr, (void *)entry_ptr,
flags, new_size);
if ( ( result < 0 ) ||
( entry_ptr->header.is_protected ) ||
( entry_ptr->header.type != &(types[type]) ) ||
( entry_ptr->size != entry_ptr->header.size ) ||
( entry_ptr->addr != entry_ptr->header.addr ) ) {
if ( verbose ) {
if ( result < 0 ) {
HDfprintf(stdout, "%s: H5C_unprotect() failed.\n", fcn_name);
}
if ( entry_ptr->header.is_protected ) {
HDfprintf(stdout, "%s: entry still protected?!?.\n",
fcn_name);
}
if ( entry_ptr->header.type != &(types[type]) ) {
HDfprintf(stdout,
"%s: entry has bad type after unprotect.\n",
fcn_name);
}
if ( entry_ptr->size != entry_ptr->header.size ) {
HDfprintf(stdout,
"%s: bad entry size after unprotect. e/a = %d/%d\n",
fcn_name,
(int)(entry_ptr->size),
(int)(entry_ptr->header.size));
}
if ( entry_ptr->addr != entry_ptr->header.addr ) {
HDfprintf(stdout,
"%s: bad entry addr after unprotect. e/a = 0x%llx/0x%llx\n",
fcn_name,
(long long)(entry_ptr->addr),
(long long)(entry_ptr->header.addr));
}
}
pass = FALSE;
failure_mssg = "error in H5C_unprotect().";
}
else
{
entry_ptr->is_protected = FALSE;
if ( pin_flag_set ) {
HDassert ( entry_ptr->header.is_pinned );
entry_ptr->is_pinned = TRUE;
} else if ( unpin_flag_set ) {
HDassert ( ! ( entry_ptr->header.is_pinned ) );
entry_ptr->is_pinned = FALSE;
}
}
HDassert( ((entry_ptr->header).type)->id == type );
if ( ( flags & H5C__DIRTIED_FLAG ) != 0
&& ( (flags & H5C__DELETED_FLAG) == 0 ) ) {
HDassert( entry_ptr->header.is_dirty );
HDassert( entry_ptr->is_dirty );
}
}
return;
} /* unprotect_entry_with_size_change() */
/*-------------------------------------------------------------------------
* Function: row_major_scan_forward()
*
* Purpose: Do a sequence of inserts, protects, unprotects, renames,
* destroys while scanning through the set of entries. If
* pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 6/12/04
*
* Modifications:
*
* JRM -- 4/4/07
* Added code supporting multiple read only protects.
* Note that this increased the minimum lag to 10.
*
*-------------------------------------------------------------------------
*/
void
row_major_scan_forward(H5C_t * cache_ptr,
int32_t lag,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts,
hbool_t dirty_inserts,
hbool_t do_renames,
hbool_t rename_to_main_addr,
hbool_t do_destroys,
hbool_t do_mult_ro_protects,
int dirty_destroys,
int dirty_unprotects)
{
const char * fcn_name = "row_major_scan_forward";
int32_t type;
int32_t idx;
if ( verbose )
HDfprintf(stdout, "%s(): entering.\n", fcn_name);
HDassert( lag >= 10 );
type = 0;
if ( ( pass ) && ( reset_stats ) ) {
H5C_stats__reset(cache_ptr);
}
while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) )
{
idx = -lag;
while ( ( pass ) && ( idx <= (max_indices[type] + lag) ) )
{
if ( verbose ) {
HDfprintf(stdout, "%d:%d: ", type, idx);
}
if ( ( pass ) && ( do_inserts ) && ( (idx + lag) >= 0 ) &&
( (idx + lag) <= max_indices[type] ) &&
( ((idx + lag) % 2) == 0 ) &&
( ! entry_in_cache(cache_ptr, type, (idx + lag)) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, (idx + lag));
insert_entry(cache_ptr, type, (idx + lag), dirty_inserts,
H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( (idx + lag - 1) >= 0 ) &&
( (idx + lag - 1) <= max_indices[type] ) &&
( ( (idx + lag - 1) % 3 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, (idx + lag - 1));
protect_entry(cache_ptr, type, (idx + lag - 1));
}
if ( ( pass ) && ( (idx + lag - 2) >= 0 ) &&
( (idx + lag - 2) <= max_indices[type] ) &&
( ( (idx + lag - 2) % 3 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, (idx + lag - 2));
unprotect_entry(cache_ptr, type, idx+lag-2, NO_CHANGE,
H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( do_renames ) && ( (idx + lag - 2) >= 0 ) &&
( (idx + lag - 2) <= max_indices[type] ) &&
( ( (idx + lag - 2) % 3 ) == 0 ) ) {
rename_entry(cache_ptr, type, (idx + lag - 2),
rename_to_main_addr);
}
if ( ( pass ) && ( (idx + lag - 3) >= 0 ) &&
( (idx + lag - 3) <= max_indices[type] ) &&
( ( (idx + lag - 3) % 5 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, (idx + lag - 3));
protect_entry(cache_ptr, type, (idx + lag - 3));
}
if ( ( pass ) && ( (idx + lag - 5) >= 0 ) &&
( (idx + lag - 5) <= max_indices[type] ) &&
( ( (idx + lag - 5) % 5 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, (idx + lag - 5));
unprotect_entry(cache_ptr, type, idx+lag-5, NO_CHANGE,
H5C__NO_FLAGS_SET);
}
if ( do_mult_ro_protects )
{
if ( ( pass ) && ( (idx + lag - 5) >= 0 ) &&
( (idx + lag - 5) < max_indices[type] ) &&
( (idx + lag - 5) % 9 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p-ro, %d, %d) ", type,
(idx + lag - 5));
protect_entry_ro(cache_ptr, type, (idx + lag - 5));
}
if ( ( pass ) && ( (idx + lag - 6) >= 0 ) &&
( (idx + lag - 6) < max_indices[type] ) &&
( (idx + lag - 6) % 11 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p-ro, %d, %d) ", type,
(idx + lag - 6));
protect_entry_ro(cache_ptr, type, (idx + lag - 6));
}
if ( ( pass ) && ( (idx + lag - 7) >= 0 ) &&
( (idx + lag - 7) < max_indices[type] ) &&
( (idx + lag - 7) % 13 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p-ro, %d, %d) ", type,
(idx + lag - 7));
protect_entry_ro(cache_ptr, type, (idx + lag - 7));
}
if ( ( pass ) && ( (idx + lag - 7) >= 0 ) &&
( (idx + lag - 7) < max_indices[type] ) &&
( (idx + lag - 7) % 9 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u-ro, %d, %d) ", type,
(idx + lag - 7));
unprotect_entry(cache_ptr, type, (idx + lag - 7),
FALSE, H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( (idx + lag - 8) >= 0 ) &&
( (idx + lag - 8) < max_indices[type] ) &&
( (idx + lag - 8) % 11 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u-ro, %d, %d) ", type,
(idx + lag - 8));
unprotect_entry(cache_ptr, type, (idx + lag - 8),
FALSE, H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( (idx + lag - 9) >= 0 ) &&
( (idx + lag - 9) < max_indices[type] ) &&
( (idx + lag - 9) % 13 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u-ro, %d, %d) ", type,
(idx + lag - 9));
unprotect_entry(cache_ptr, type, (idx + lag - 9),
FALSE, H5C__NO_FLAGS_SET);
}
} /* if ( do_mult_ro_protects ) */
if ( ( pass ) && ( idx >= 0 ) && ( idx <= max_indices[type] ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, idx);
protect_entry(cache_ptr, type, idx);
}
if ( ( pass ) && ( (idx - lag + 2) >= 0 ) &&
( (idx - lag + 2) <= max_indices[type] ) &&
( ( (idx - lag + 2) % 7 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, (idx - lag + 2));
unprotect_entry(cache_ptr, type, idx-lag+2, NO_CHANGE,
H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( (idx - lag + 1) >= 0 ) &&
( (idx - lag + 1) <= max_indices[type] ) &&
( ( (idx - lag + 1) % 7 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, (idx - lag + 1));
protect_entry(cache_ptr, type, (idx - lag + 1));
}
if ( do_destroys ) {
if ( ( pass ) && ( (idx - lag) >= 0 ) &&
( ( idx - lag) <= max_indices[type] ) ) {
switch ( (idx - lag) %4 ) {
case 0: /* we just did an insert */
unprotect_entry(cache_ptr, type, idx - lag,
NO_CHANGE, H5C__NO_FLAGS_SET);
break;
case 1:
if ( (entries[type])[idx-lag].is_dirty ) {
unprotect_entry(cache_ptr, type, idx - lag,
NO_CHANGE, H5C__NO_FLAGS_SET);
} else {
unprotect_entry(cache_ptr, type, idx - lag,
dirty_unprotects,
H5C__NO_FLAGS_SET);
}
break;
case 2: /* we just did an insrt */
unprotect_entry(cache_ptr, type, idx - lag,
NO_CHANGE, H5C__DELETED_FLAG);
break;
case 3:
if ( (entries[type])[idx-lag].is_dirty ) {
unprotect_entry(cache_ptr, type, idx - lag,
NO_CHANGE, H5C__DELETED_FLAG);
} else {
unprotect_entry(cache_ptr, type, idx - lag,
dirty_destroys,
H5C__DELETED_FLAG);
}
break;
default:
HDassert(0); /* this can't happen... */
break;
}
}
} else {
if ( ( pass ) && ( (idx - lag) >= 0 ) &&
( ( idx - lag) <= max_indices[type] ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, (idx - lag));
unprotect_entry(cache_ptr, type, idx - lag,
dirty_unprotects, H5C__NO_FLAGS_SET);
}
}
if ( verbose )
HDfprintf(stdout, "\n");
idx++;
}
type++;
}
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
return;
} /* row_major_scan_forward() */
/*-------------------------------------------------------------------------
* Function: hl_row_major_scan_forward()
*
* Purpose: Do a high locality sequence of inserts, protects, and
* unprotects while scanning through the set of entries.
* If pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 10/21/04
*
* Modifications:
*
* JRM -- 1/21/05
* Added the max_index parameter to allow the caller to
* throttle the size of the inner loop, and thereby the
* execution time of the function.
*
*-------------------------------------------------------------------------
*/
void
hl_row_major_scan_forward(H5C_t * cache_ptr,
int32_t max_index,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts,
hbool_t dirty_inserts)
{
const char * fcn_name = "hl_row_major_scan_forward";
int32_t type;
int32_t idx;
int32_t i;
int32_t lag = 100;
int32_t local_max_index;
if ( verbose )
HDfprintf(stdout, "%s(): entering.\n", fcn_name);
HDassert( lag > 5 );
HDassert( max_index >= 200 );
HDassert( max_index <= MAX_ENTRIES );
type = 0;
if ( ( pass ) && ( reset_stats ) ) {
H5C_stats__reset(cache_ptr);
}
while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) )
{
idx = -lag;
local_max_index = MIN(max_index, max_indices[type]);
while ( ( pass ) && ( idx <= (local_max_index + lag) ) )
{
if ( ( pass ) && ( do_inserts ) && ( (idx + lag) >= 0 ) &&
( (idx + lag) <= max_indices[type] ) &&
( ((idx + lag) % 2) == 0 ) &&
( ! entry_in_cache(cache_ptr, type, (idx + lag)) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, (idx + lag));
insert_entry(cache_ptr, type, (idx + lag), dirty_inserts,
H5C__NO_FLAGS_SET);
}
i = idx;
while ( ( pass ) && ( i >= idx - lag ) && ( i >= 0 ) )
{
if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, i);
protect_entry(cache_ptr, type, i);
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, i);
unprotect_entry(cache_ptr, type, i, NO_CHANGE,
H5C__NO_FLAGS_SET);
}
i--;
}
if ( verbose )
HDfprintf(stdout, "\n");
idx++;
}
type++;
}
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
return;
} /* hl_row_major_scan_forward() */
/*-------------------------------------------------------------------------
* Function: row_major_scan_backward()
*
* Purpose: Do a sequence of inserts, protects, unprotects, renames,
* destroys while scanning backwards through the set of
* entries. If pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 6/12/04
*
* Modifications:
*
* JRM -- 4/4/07
* Added code supporting multiple read only protects.
* Note that this increased the minimum lag to 10.
*
*-------------------------------------------------------------------------
*/
void
row_major_scan_backward(H5C_t * cache_ptr,
int32_t lag,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts,
hbool_t dirty_inserts,
hbool_t do_renames,
hbool_t rename_to_main_addr,
hbool_t do_destroys,
hbool_t do_mult_ro_protects,
int dirty_destroys,
int dirty_unprotects)
{
const char * fcn_name = "row_major_scan_backward";
int32_t type;
int32_t idx;
if ( verbose )
HDfprintf(stdout, "%s(): Entering.\n", fcn_name);
HDassert( lag >= 10 );
type = NUMBER_OF_ENTRY_TYPES - 1;
if ( ( pass ) && ( reset_stats ) ) {
H5C_stats__reset(cache_ptr);
}
while ( ( pass ) && ( type >= 0 ) )
{
idx = max_indices[type] + lag;
while ( ( pass ) && ( idx >= -lag ) )
{
if ( ( pass ) && ( do_inserts ) && ( (idx - lag) >= 0 ) &&
( (idx - lag) <= max_indices[type] ) &&
( ((idx - lag) % 2) == 1 ) &&
( ! entry_in_cache(cache_ptr, type, (idx - lag)) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, (idx - lag));
insert_entry(cache_ptr, type, (idx - lag), dirty_inserts,
H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( (idx - lag + 1) >= 0 ) &&
( (idx - lag + 1) <= max_indices[type] ) &&
( ( (idx - lag + 1) % 3 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, (idx - lag + 1));
protect_entry(cache_ptr, type, (idx - lag + 1));
}
if ( ( pass ) && ( (idx - lag + 2) >= 0 ) &&
( (idx - lag + 2) <= max_indices[type] ) &&
( ( (idx - lag + 2) % 3 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, (idx - lag + 2));
unprotect_entry(cache_ptr, type, idx-lag+2, NO_CHANGE,
H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( do_renames ) && ( (idx - lag + 2) >= 0 ) &&
( (idx - lag + 2) <= max_indices[type] ) &&
( ( (idx - lag + 2) % 3 ) == 0 ) ) {
rename_entry(cache_ptr, type, (idx - lag + 2),
rename_to_main_addr);
}
if ( ( pass ) && ( (idx - lag + 3) >= 0 ) &&
( (idx - lag + 3) <= max_indices[type] ) &&
( ( (idx - lag + 3) % 5 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, (idx - lag + 3));
protect_entry(cache_ptr, type, (idx - lag + 3));
}
if ( ( pass ) && ( (idx - lag + 5) >= 0 ) &&
( (idx - lag + 5) <= max_indices[type] ) &&
( ( (idx - lag + 5) % 5 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, (idx - lag + 5));
unprotect_entry(cache_ptr, type, idx-lag+5, NO_CHANGE,
H5C__NO_FLAGS_SET);
}
if ( do_mult_ro_protects )
{
if ( ( pass ) && ( (idx - lag + 5) >= 0 ) &&
( (idx - lag + 5) < max_indices[type] ) &&
( (idx - lag + 5) % 9 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p-ro, %d, %d) ", type,
(idx - lag + 5));
protect_entry_ro(cache_ptr, type, (idx - lag + 5));
}
if ( ( pass ) && ( (idx - lag + 6) >= 0 ) &&
( (idx - lag + 6) < max_indices[type] ) &&
( (idx - lag + 6) % 11 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p-ro, %d, %d) ", type,
(idx - lag + 6));
protect_entry_ro(cache_ptr, type, (idx - lag + 6));
}
if ( ( pass ) && ( (idx - lag + 7) >= 0 ) &&
( (idx - lag + 7) < max_indices[type] ) &&
( (idx - lag + 7) % 13 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p-ro, %d, %d) ", type,
(idx - lag + 7));
protect_entry_ro(cache_ptr, type, (idx - lag + 7));
}
if ( ( pass ) && ( (idx - lag + 7) >= 0 ) &&
( (idx - lag + 7) < max_indices[type] ) &&
( (idx - lag + 7) % 9 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u-ro, %d, %d) ", type,
(idx - lag + 7));
unprotect_entry(cache_ptr, type, (idx - lag + 7),
FALSE, H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( (idx - lag + 8) >= 0 ) &&
( (idx - lag + 8) < max_indices[type] ) &&
( (idx - lag + 8) % 11 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u-ro, %d, %d) ", type,
(idx - lag + 8));
unprotect_entry(cache_ptr, type, (idx - lag + 8),
FALSE, H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( (idx - lag + 9) >= 0 ) &&
( (idx - lag + 9) < max_indices[type] ) &&
( (idx - lag + 9) % 13 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u-ro, %d, %d) ", type,
(idx - lag + 9));
unprotect_entry(cache_ptr, type, (idx - lag + 9),
FALSE, H5C__NO_FLAGS_SET);
}
} /* if ( do_mult_ro_protects ) */
if ( ( pass ) && ( idx >= 0 ) && ( idx <= max_indices[type] ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, idx);
protect_entry(cache_ptr, type, idx);
}
if ( ( pass ) && ( (idx + lag - 2) >= 0 ) &&
( (idx + lag - 2) <= max_indices[type] ) &&
( ( (idx + lag - 2) % 7 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, (idx + lag - 2));
unprotect_entry(cache_ptr, type, idx+lag-2, NO_CHANGE,
H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( (idx + lag - 1) >= 0 ) &&
( (idx + lag - 1) <= max_indices[type] ) &&
( ( (idx + lag - 1) % 7 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, (idx + lag - 1));
protect_entry(cache_ptr, type, (idx + lag - 1));
}
if ( do_destroys ) {
if ( ( pass ) && ( (idx + lag) >= 0 ) &&
( ( idx + lag) <= max_indices[type] ) ) {
switch ( (idx + lag) %4 ) {
case 0:
if ( (entries[type])[idx+lag].is_dirty ) {
unprotect_entry(cache_ptr, type, idx + lag,
NO_CHANGE, H5C__NO_FLAGS_SET);
} else {
unprotect_entry(cache_ptr, type, idx + lag,
dirty_unprotects,
H5C__NO_FLAGS_SET);
}
break;
case 1: /* we just did an insert */
unprotect_entry(cache_ptr, type, idx + lag,
NO_CHANGE, H5C__NO_FLAGS_SET);
break;
case 2:
if ( (entries[type])[idx + lag].is_dirty ) {
unprotect_entry(cache_ptr, type, idx + lag,
NO_CHANGE, H5C__DELETED_FLAG);
} else {
unprotect_entry(cache_ptr, type, idx + lag,
dirty_destroys,
H5C__DELETED_FLAG);
}
break;
case 3: /* we just did an insrt */
unprotect_entry(cache_ptr, type, idx + lag,
NO_CHANGE, H5C__DELETED_FLAG);
break;
default:
HDassert(0); /* this can't happen... */
break;
}
}
} else {
if ( ( pass ) && ( (idx + lag) >= 0 ) &&
( ( idx + lag) <= max_indices[type] ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, (idx - lag));
unprotect_entry(cache_ptr, type, idx + lag,
dirty_unprotects, H5C__NO_FLAGS_SET);
}
}
if ( verbose )
HDfprintf(stdout, "\n");
idx--;
}
type--;
}
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
return;
} /* row_major_scan_backward() */
/*-------------------------------------------------------------------------
* Function: hl_row_major_scan_backward()
*
* Purpose: Do a high locality sequence of inserts, protects, and
* unprotects while scanning through the set of entries.
* If pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 10/21/04
*
* Modifications:
*
* JRM -- 1/21/05
* Added the max_index parameter to allow the caller to
* throttle the size of the inner loop, and thereby the
* execution time of the function.
*
*-------------------------------------------------------------------------
*/
void
hl_row_major_scan_backward(H5C_t * cache_ptr,
int32_t max_index,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts,
hbool_t dirty_inserts)
{
const char * fcn_name = "hl_row_major_scan_backward";
int32_t type;
int32_t idx;
int32_t i;
int32_t lag = 100;
int32_t local_max_index;
if ( verbose )
HDfprintf(stdout, "%s(): entering.\n", fcn_name);
HDassert( lag > 5 );
HDassert( max_index >= 200 );
HDassert( max_index <= MAX_ENTRIES );
type = NUMBER_OF_ENTRY_TYPES - 1;
if ( ( pass ) && ( reset_stats ) ) {
H5C_stats__reset(cache_ptr);
}
while ( ( pass ) && ( type >= 0 ) )
{
idx = max_indices[type] + lag;
local_max_index = MIN(max_index, max_indices[type]);
while ( ( pass ) && ( idx >= -lag ) )
{
if ( ( pass ) && ( do_inserts ) && ( (idx + lag) >= 0 ) &&
( (idx + lag) <= local_max_index ) &&
( ((idx + lag) % 2) == 0 ) &&
( ! entry_in_cache(cache_ptr, type, (idx + lag)) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, (idx + lag));
insert_entry(cache_ptr, type, (idx + lag), dirty_inserts,
H5C__NO_FLAGS_SET);
}
i = idx;
while ( ( pass ) && ( i >= idx - lag ) && ( i >= 0 ) )
{
if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, i);
protect_entry(cache_ptr, type, i);
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, i);
unprotect_entry(cache_ptr, type, i, NO_CHANGE,
H5C__NO_FLAGS_SET);
}
i--;
}
if ( verbose )
HDfprintf(stdout, "\n");
idx--;
}
type--;
}
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
return;
} /* hl_row_major_scan_backward() */
/*-------------------------------------------------------------------------
* Function: col_major_scan_forward()
*
* Purpose: Do a sequence of inserts, protects, and unprotects
* while scanning through the set of entries. If
* pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 6/23/04
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
col_major_scan_forward(H5C_t * cache_ptr,
int32_t lag,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts,
hbool_t dirty_inserts,
int dirty_unprotects)
{
const char * fcn_name = "col_major_scan_forward()";
int32_t type;
int32_t idx;
if ( verbose )
HDfprintf(stdout, "%s: entering.\n", fcn_name);
HDassert( lag > 5 );
type = 0;
if ( ( pass ) && ( reset_stats ) ) {
H5C_stats__reset(cache_ptr);
}
idx = -lag;
while ( ( pass ) && ( (idx - lag) <= MAX_ENTRIES ) )
{
type = 0;
while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) )
{
if ( ( pass ) && ( do_inserts ) && ( (idx + lag) >= 0 ) &&
( (idx + lag) <= max_indices[type] ) &&
( ((idx + lag) % 3) == 0 ) &&
( ! entry_in_cache(cache_ptr, type, (idx + lag)) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, (idx + lag));
insert_entry(cache_ptr, type, (idx + lag), dirty_inserts,
H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( idx >= 0 ) && ( idx <= max_indices[type] ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, idx);
protect_entry(cache_ptr, type, idx);
}
if ( ( pass ) && ( (idx - lag) >= 0 ) &&
( (idx - lag) <= max_indices[type] ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, (idx - lag));
unprotect_entry(cache_ptr, type, idx - lag,
dirty_unprotects, H5C__NO_FLAGS_SET);
}
if ( verbose )
HDfprintf(stdout, "\n");
type++;
}
idx++;
}
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
return;
} /* col_major_scan_forward() */
/*-------------------------------------------------------------------------
* Function: hl_col_major_scan_forward()
*
* Purpose: Do a high locality sequence of inserts, protects, and
* unprotects while scanning through the set of entries. If
* pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 19/25/04
*
* Modifications:
*
* JRM -- 1/21/05
* Added the max_index parameter to allow the caller to
* throttle the size of the inner loop, and thereby the
* execution time of the function.
*
*-------------------------------------------------------------------------
*/
void
hl_col_major_scan_forward(H5C_t * cache_ptr,
int32_t max_index,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts,
hbool_t dirty_inserts,
int dirty_unprotects)
{
const char * fcn_name = "hl_col_major_scan_forward()";
int32_t type;
int32_t idx;
int32_t lag = 200;
int32_t i;
int32_t local_max_index;
if ( verbose )
HDfprintf(stdout, "%s: entering.\n", fcn_name);
HDassert( lag > 5 );
HDassert( max_index >= 500 );
HDassert( max_index <= MAX_ENTRIES );
type = 0;
if ( ( pass ) && ( reset_stats ) ) {
H5C_stats__reset(cache_ptr);
}
idx = 0;
local_max_index = MIN(max_index, MAX_ENTRIES);
while ( ( pass ) && ( idx <= local_max_index ) )
{
i = idx;
while ( ( pass ) && ( i >= 0 ) && ( i >= (idx - lag) ) ) {
type = 0;
while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) )
{
if ( ( pass ) && ( do_inserts ) && ( i == idx ) &&
( i <= local_max_index ) &&
( (i % 3) == 0 ) &&
( ! entry_in_cache(cache_ptr, type, i) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, i);
insert_entry(cache_ptr, type, i, dirty_inserts,
H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, i);
protect_entry(cache_ptr, type, i);
}
if ( ( pass ) && ( i >= 0 ) &&
( i <= max_indices[type] ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, i);
unprotect_entry(cache_ptr, type, i,
dirty_unprotects, H5C__NO_FLAGS_SET);
}
if ( verbose )
HDfprintf(stdout, "\n");
type++;
}
i--;
}
idx++;
}
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
return;
} /* hl_col_major_scan_forward() */
/*-------------------------------------------------------------------------
* Function: col_major_scan_backward()
*
* Purpose: Do a sequence of inserts, protects, and unprotects
* while scanning backwards through the set of
* entries. If pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 6/23/04
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
col_major_scan_backward(H5C_t * cache_ptr,
int32_t lag,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts,
hbool_t dirty_inserts,
int dirty_unprotects)
{
const char * fcn_name = "col_major_scan_backward()";
int mile_stone = 1;
int32_t type;
int32_t idx;
if ( verbose )
HDfprintf(stdout, "%s: entering.\n", fcn_name);
HDassert( lag > 5 );
if ( ( pass ) && ( reset_stats ) ) {
H5C_stats__reset(cache_ptr);
}
idx = MAX_ENTRIES + lag;
if ( verbose ) /* 1 */
HDfprintf(stdout, "%s: point %d.\n", fcn_name, mile_stone++);
while ( ( pass ) && ( (idx + lag) >= 0 ) )
{
type = NUMBER_OF_ENTRY_TYPES - 1;
while ( ( pass ) && ( type >= 0 ) )
{
if ( ( pass ) && ( do_inserts) && ( (idx - lag) >= 0 ) &&
( (idx - lag) <= max_indices[type] ) &&
( ((idx - lag) % 3) == 0 ) &&
( ! entry_in_cache(cache_ptr, type, (idx - lag)) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, (idx - lag));
insert_entry(cache_ptr, type, (idx - lag), dirty_inserts,
H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( idx >= 0 ) && ( idx <= max_indices[type] ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, idx);
protect_entry(cache_ptr, type, idx);
}
if ( ( pass ) && ( (idx + lag) >= 0 ) &&
( (idx + lag) <= max_indices[type] ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, (idx + lag));
unprotect_entry(cache_ptr, type, idx + lag,
dirty_unprotects, H5C__NO_FLAGS_SET);
}
if ( verbose )
HDfprintf(stdout, "\n");
type--;
}
idx--;
}
if ( verbose ) /* 2 */
HDfprintf(stdout, "%s: point %d.\n", fcn_name, mile_stone++);
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
if ( verbose )
HDfprintf(stdout, "%s: exiting.\n", fcn_name);
return;
} /* col_major_scan_backward() */
/*-------------------------------------------------------------------------
* Function: hl_col_major_scan_backward()
*
* Purpose: Do a high locality sequence of inserts, protects, and
* unprotects while scanning backwards through the set of
* entries. If pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 10/25/04
*
* Modifications:
*
* JRM -- 1/21/05
* Added the max_index parameter to allow the caller to
* throttle the size of the inner loop, and thereby the
* execution time of the function.
*
*-------------------------------------------------------------------------
*/
void
hl_col_major_scan_backward(H5C_t * cache_ptr,
int32_t max_index,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts,
hbool_t dirty_inserts,
int dirty_unprotects)
{
const char * fcn_name = "hl_col_major_scan_backward()";
int32_t type;
int32_t idx;
int32_t lag = 50;
int32_t i;
int32_t local_max_index;
if ( verbose )
HDfprintf(stdout, "%s: entering.\n", fcn_name);
HDassert( lag > 5 );
HDassert( max_index >= 500 );
HDassert( max_index <= MAX_ENTRIES );
type = 0;
local_max_index = MIN(max_index, MAX_ENTRIES);
if ( ( pass ) && ( reset_stats ) ) {
H5C_stats__reset(cache_ptr);
}
idx = local_max_index;
while ( ( pass ) && ( idx >= 0 ) )
{
i = idx;
while ( ( pass ) && ( i <= local_max_index ) && ( i <= (idx + lag) ) ) {
type = 0;
while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) )
{
if ( ( pass ) && ( do_inserts ) && ( i == idx ) &&
( i <= local_max_index ) &&
( ! entry_in_cache(cache_ptr, type, i) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, i);
insert_entry(cache_ptr, type, i, dirty_inserts,
H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, i);
protect_entry(cache_ptr, type, i);
}
if ( ( pass ) && ( i >= 0 ) &&
( i <= local_max_index ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, i);
unprotect_entry(cache_ptr, type, i,
dirty_unprotects, H5C__NO_FLAGS_SET);
}
if ( verbose )
HDfprintf(stdout, "\n");
type++;
}
i++;
}
idx--;
}
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
return;
} /* hl_col_major_scan_backward() */