hdf5/test/cmpd_dset.c
Robb Matzke b24130dcf0 [svn-r290] Changes since 19980206
----------------------

./configure.in
./src/H5Fprivate.h
./src/H5Fsec2.c
	We now detect and use lseek64() on systems that have it (e.g.,
	Irix64) and are able to generate >2GB files on Irix XFS file
	systems (and anything else that supports large files).  This
	change also removed some warning messages from the Irix `-64'
	compiler.

	> $ ls -l istore.h5
	> -rw-r--r--    1 matzke   meshtv   8605436856 Feb 17 14:03 istore.h5

./configure.in
./src/H5Fprivate.h
./src/H5Fstdio.h
	We now detect and use fseek64() on systems that have it (e.g.,
	Irix64) and are able to generate >2GB files on Irix XFS file
	systems (and anything else that supports large files).  This
	change also removed some warning messages from the Iris `-64'
	compiler.

./src/H5E.c
./src/H5Epublic.h
	Added the H5E_OVERFLOW error to signal file address overflow.

./src/H5Fpublic.h
./examples/h5_chunk_read.c
./examples/h5_compound.c
./examples/h5_extend_write.c
./examples/h5_group.c
./examples/h5_read.c
./examples/h5_write.c
./html/Datasets.html
./html/Files.html
./html/H5.api.html
./html/H5.intro.html
./html/H5.sample_code.html
./html/ph5example.c
./html/review1.html
./test/cmpd_dset.c
./test/dsets.c
./test/extend.c
./test/tfile.c
./test/th5p.c
./test/theap.c
./test/tohdr.c
./test/tstab.c
./testpar/phdf5.c
	Renamed file access constants to follow the naming scheme.
	Also changed the base names a little to be more accurate as to
	what they do.  The old names H5ACC_WRITE and H5ACC_OVERWRITE
	will temporarily work.

	     H5ACC_DEFAULT     --> H5F_ACC_RDONLY for H5Fopen()
	     H5ACC_DEFAULT     --> H5F_ACC_EXCL   for H5Fcreate()
	     H5ACC_WRITE       --> H5F_ACC_RDWR
	     H5ACC_OVERWRITE   --> H5F_ACC_TRUNC

	Albert or Kim: The H5ACC_INDEPENDENT and H5ACC_COLLECTIVE
	macros in H5Fpublic.h should be an enum typedef and have names
	more like H5F_MPIO_INDEPENDENT and H5F_MPIO_COLLECTIVE.  Also
	change the access_mode argument of H5Cset_mpio().

	H5Fcreate() and H5Fopen() are more strict now about which
	flags are acceptable for the operation.

./src/H5Fprivate.h
./src/H5F.c
./src/H5C.c
	Changed the file access template to make it more general.  A
	union contains a struct for each type of low-level driver and
	the default template is initialized at run-time.

./src/H5Fpublic.h
./src/H5F.c
	Added H5Fget_access_template() and cleaned up
	H5Fget_create_template().

./src/H5C.c
	The H5Cset_mpi() no longer trashes the file access template
	when an error is detected.  We check for errors and *then*
	update the file access template.

	Added H5C_close() so Albert and Kim have a place to release
	the MPI communicator and info from the file access property
	list.

	Kim or Albert: I notice in H5Cset_mpi() you copy the MPI
	communicator.  Do you need to do something similar in
	H5C_copy()?

./src/H5F.c
	Added more error checking for the file creation and access
	property lists because it used to be possible to make the
	library dump core by swapping the creation and access property
	list ID numbers of H5Fcreate().

./test/istore.c
./test/tfile.c
./test/th5p.c
./test/theap.c
./test/tohdr.c
./test/tstab.c
./testpar/testphdf5.c
	One must pass H5C_DEFAULT as the file creation or access
	property list in order to get the default property list.  It
	is no longer possible to pass zero or any other arbitrary bad
	object ID.

./src/H5Fcore.c
./src/H5Ffamly.c
./src/H5Flow.c
./src/H5Fmpio.c
./src/H5Fsec2.c
./src/H5Fsplit.c
./src/H5Fstdio.c
./src/H5MF.c
	The file access property list is passed to all H5F_low_...()
	functions and to the drivers.

./src/H5Fcore.c
	The block size can be set at run time on a per-file basis
	instead of at compile time across all files. The "5000 items in
	a group test" now takes 1.6 seconds.

./src/H5private.h
	Removed inclusion of mpi.h and mpio.h since they're included
	from H5public.h.

./src/H5Cpublic.h
./src/H5C.c
	Added H5Cset_stdio(), H5Cset_sec2(), H5Cset_core(),
	H5Cset_split(), and H5Cset_family() in addition to the
	H5Cset_mpio() that Kim and Albert already wrote.  We still
	need the H5Cget_driver() and an H5Cget...() counterpart for
	each of those functions.  The split and family drivers still
	need a little work but I'm checking this in anyway.
1998-02-19 13:19:48 -05:00

572 lines
15 KiB
C

/*
* Copyright (C) 1998 NCSA
* All rights reserved.
*
* Programmer: Robb Matzke <matzke@llnl.gov>
* Friday, January 23, 1998
*/
#include <assert.h>
#include <hdf5.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* The first dataset */
typedef struct s1_t {
int a;
int b;
int c;
int d;
int e;
} s1_t;
/* The second dataset (same as first) */
typedef s1_t s2_t;
/* The third dataset (reversed fields of s1) */
typedef struct s3_t {
int e;
int d;
int c;
int b;
int a;
} s3_t;
/* The fourth dataset (a subset of s1) */
typedef struct s4_t {
int b;
int d;
} s4_t;
/* The fifth dataset (a superset of s1) */
typedef struct s5_t {
int pre;
int a;
int b;
int mid1;
int c;
int mid2;
int d;
int e;
int post;
} s5_t;
#if 1
# define NX 100
# define NY 2000
#else
# define NX 12
# define NY 9
#endif
/*-------------------------------------------------------------------------
* Function: main
*
* Purpose: Creates a simple dataset of a compound type and then reads
* it back. The dataset is read back in various ways to
* exercise the I/O pipeline and compound type conversion.
*
* Return: Success: 0
*
* Failure: 1
*
* Programmer: Robb Matzke
* Friday, January 23, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
int
main (void)
{
/* First dataset */
static s1_t s1[NX*NY];
hid_t s1_tid;
/* Second dataset */
static s2_t s2[NX*NY];
hid_t s2_tid;
/* Third dataset */
static s3_t s3[NX*NY];
hid_t s3_tid;
/* Fourth dataset */
static s4_t s4[NX*NY];
hid_t s4_tid;
/* Fifth dataset */
static s5_t s5[NX*NY];
hid_t s5_tid;
/* Sixth dataset */
/* Seventh dataset */
hid_t s7_sid;
/* Eighth dataset */
s1_t *s8 = NULL;
hid_t s8_f_sid; /*file data space */
hid_t s8_m_sid; /*memory data space */
/* Ninth dataset */
/* Tenth dataset */
/* Eleventh dataset */
s5_t *s11 = NULL;
/* Other variables */
int i, j, ndims;
hid_t file, dataset, space;
herr_t status;
static size_t dim[] = {NX, NY};
int f_offset[2]; /*offset of hyperslab in file */
size_t h_size[2]; /*size of hyperslab */
size_t h_sample[2]; /*hyperslab sampling */
/* Create the file */
file = H5Fcreate ("cmpd_dset.h5", H5F_ACC_TRUNC,
H5C_DEFAULT, H5C_DEFAULT);
assert (file>=0);
/* Create the data space */
space = H5Pcreate_simple (2, dim, NULL);
assert (space>=0);
/*
*######################################################################
* STEP 1: Save the original dataset natively.
*/
printf ("\
STEP 1: Initialize dataset `s1' and store it on disk in native order.\n");
fflush (stdout);
/* Initialize the dataset */
for (i=0; i<NX*NY; i++) {
s1[i].a = 5*i+0;
s1[i].b = 2000*2*i;
s1[i].c = 5*i+2;
s1[i].d = 2001+2*i;
s1[i].e = 5*i+4;
}
/* Create the memory data type */
s1_tid = H5Tcreate (H5T_COMPOUND, sizeof(s1_t));
H5Tinsert (s1_tid, "a", HPOFFSET(s1,a), H5T_NATIVE_INT);
H5Tinsert (s1_tid, "b", HPOFFSET(s1,b), H5T_NATIVE_INT);
H5Tinsert (s1_tid, "c", HPOFFSET(s1,c), H5T_NATIVE_INT);
H5Tinsert (s1_tid, "d", HPOFFSET(s1,d), H5T_NATIVE_INT);
H5Tinsert (s1_tid, "e", HPOFFSET(s1,e), H5T_NATIVE_INT);
assert (s1_tid>=0);
/* Create the dataset */
dataset = H5Dcreate (file, "s1", s1_tid, space, H5C_DEFAULT);
assert (dataset>=0);
/* Write the data */
status = H5Dwrite (dataset, s1_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s1);
assert (status>=0);
/*
*######################################################################
* STEP 2: We create a new type ID for the second dataset even though
* it's the same as the first just to test things better, but
* in fact, we could have used s1_tid.
*/
printf ("\
STEP 2: Read the dataset from disk into a new memory buffer which has the\n\
same data type and space. This will be the typical case.\n");
fflush (stdout);
/* Create a data type for s2 */
s2_tid = H5Tcreate (H5T_COMPOUND, sizeof(s2_t));
H5Tinsert (s2_tid, "a", HPOFFSET(s2,a), H5T_NATIVE_INT);
H5Tinsert (s2_tid, "b", HPOFFSET(s2,b), H5T_NATIVE_INT);
H5Tinsert (s2_tid, "c", HPOFFSET(s2,c), H5T_NATIVE_INT);
H5Tinsert (s2_tid, "d", HPOFFSET(s2,d), H5T_NATIVE_INT);
H5Tinsert (s2_tid, "e", HPOFFSET(s2,e), H5T_NATIVE_INT);
assert (s2_tid>=0);
/* Read the data */
status = H5Dread (dataset, s2_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s2);
assert (status>=0);
/* Compare s2 with s1. They should be the same */
for (i=0; i<NX*NY; i++) {
assert (s1[i].a==s2[i].a);
assert (s1[i].b==s2[i].b);
assert (s1[i].c==s2[i].c);
assert (s1[i].d==s2[i].d);
assert (s1[i].e==s2[i].e);
}
/*
*######################################################################
* STEP 3: Read the dataset back into a third memory buffer. This buffer
* has the same data space but the data type is different: the
* data type is a struct whose members are in the opposite order.
*/
printf ("\
STEP 3: Read the dataset again with members in a different order.\n");
fflush (stdout);
/* Create a data type for s3 */
s3_tid = H5Tcreate (H5T_COMPOUND, sizeof(s3_t));
H5Tinsert (s3_tid, "a", HPOFFSET(s3,a), H5T_NATIVE_INT);
H5Tinsert (s3_tid, "b", HPOFFSET(s3,b), H5T_NATIVE_INT);
H5Tinsert (s3_tid, "c", HPOFFSET(s3,c), H5T_NATIVE_INT);
H5Tinsert (s3_tid, "d", HPOFFSET(s3,d), H5T_NATIVE_INT);
H5Tinsert (s3_tid, "e", HPOFFSET(s3,e), H5T_NATIVE_INT);
assert (s3_tid>=0);
/* Read the data */
status = H5Dread (dataset, s3_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s3);
assert (status>=0);
/* Compare s3 with s1. They should be the same */
for (i=0; i<NX*NY; i++) {
assert (s1[i].a==s3[i].a);
assert (s1[i].b==s3[i].b);
assert (s1[i].c==s3[i].c);
assert (s1[i].d==s3[i].d);
assert (s1[i].e==s3[i].e);
}
/*
*######################################################################
* STEP 4: Read a subset of the members. Of the <a,b,c,d,e> members
* stored on disk we'll read <b,d>.
*/
printf ("\
STEP 4: Read a subset of the members.\n");
fflush (stdout);
/* Create a datatype for s4 */
s4_tid = H5Tcreate (H5T_COMPOUND, sizeof(s4_t));
H5Tinsert (s4_tid, "b", HPOFFSET(s4,b), H5T_NATIVE_INT);
H5Tinsert (s4_tid, "d", HPOFFSET(s4,d), H5T_NATIVE_INT);
assert (s4_tid>=0);
/* Read the data */
status = H5Dread (dataset, s4_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s4);
assert (status>=0);
/* Compare s4 with s1 */
for (i=0; i<NX*NY; i++) {
assert (s1[i].b==s4[i].b);
assert (s1[i].d==s4[i].d);
}
/*
*######################################################################
* STEP 5: Read all the members into a struct which has other members
* which have already been initialized.
*/
printf ("\
STEP 5: Read members into a superset which is partially initialized.\n");
fflush (stdout);
/* Initialize some members */
for (i=0; i<NX*NY; i++) {
s5[i].pre = 1000+4*i;
s5[i].mid1 = 1001+4*i;
s5[i].mid2 = 1002+4*i;
s5[i].post = 1003+4*i;
}
/* Create a data type for s5 */
s5_tid = H5Tcreate (H5T_COMPOUND, sizeof(s5_t));
H5Tinsert (s5_tid, "a", HPOFFSET(s5,a), H5T_NATIVE_INT);
H5Tinsert (s5_tid, "b", HPOFFSET(s5,b), H5T_NATIVE_INT);
H5Tinsert (s5_tid, "c", HPOFFSET(s5,c), H5T_NATIVE_INT);
H5Tinsert (s5_tid, "d", HPOFFSET(s5,d), H5T_NATIVE_INT);
H5Tinsert (s5_tid, "e", HPOFFSET(s5,e), H5T_NATIVE_INT);
assert (s5_tid>=0);
/* Read the data */
status = H5Dread (dataset, s5_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s5);
assert (status>=0);
/* Check that the data was read properly */
for (i=0; i<NX*NY; i++) {
assert (s1[i].a==s5[i].a);
assert (s1[i].b==s5[i].b);
assert (s1[i].c==s5[i].c);
assert (s1[i].d==s5[i].d);
assert (s1[i].e==s5[i].e);
}
/* Check that no previous values were clobbered */
for (i=0; i<NX*NY; i++) {
assert (s5[i].pre == 1000+4*i);
assert (s5[i].mid1 == 1001+4*i);
assert (s5[i].mid2 == 1002+4*i);
assert (s5[i].post == 1003+4*i);
}
/*
*######################################################################
* STEP 6: Update fields `b' and `d' on the file leaving the other
* fields unchanged. This tests member alignment and background
* buffers.
*/
printf ("\
STEP 6: Update fields `b' and `d' on the file, leaving the other fields\n\
unchanged.\n");
fflush (stdout);
/* Initialize `s4' with new values */
for (i=0; i<NX*NY; i++) {
s4[i].b = 5*i+1;
s4[i].d = 5*i+3;
}
/* Write the data to file */
status = H5Dwrite (dataset, s4_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s4);
assert (status>=0);
/* Read the data back */
status = H5Dread (dataset, s1_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s1);
assert (status>=0);
/* Compare */
for (i=0; i<NX*NY; i++) {
assert (s1[i].a == 5*i+0);
assert (s1[i].b == 5*i+1);
assert (s1[i].c == 5*i+2);
assert (s1[i].d == 5*i+3);
assert (s1[i].e == 5*i+4);
}
/*
*######################################################################
* STEP 7. Read the original dataset with an explicit data space. Even
* though these data spaces are equal it tests a different part of the
* library.
*/
printf ("\
STEP 7: Reading original dataset with explicit data space.\n");
fflush (stdout);
/* Create the data space */
s7_sid = H5Pcreate_simple (2, dim, NULL);
assert (s7_sid>=0);
/* Read the dataset */
status = H5Dread (dataset, s2_tid, s7_sid, H5P_ALL, H5C_DEFAULT, s2);
assert (status>=0);
/* Compare */
for (i=0; i<NX*NY; i++) {
assert (s2[i].a == s1[i].a);
assert (s2[i].b == s1[i].b);
assert (s2[i].c == s1[i].c);
assert (s2[i].d == s1[i].d);
assert (s2[i].e == s1[i].e);
}
/*
*######################################################################
* STEP 8. Read a hyperslab of the file into a complete array in memory.
* The hyperslab is the middle third of the array.
*/
printf ("\
STEP 8: Read middle third hyperslab into memory array.\n");
fflush (stdout);
/* Create the file data space */
s8_f_sid = H5Dget_space (dataset);
assert (s8_f_sid>=0);
f_offset[0] = NX/3;
f_offset[1] = NY/3;
h_size[0] = 2*NX/3 - f_offset[0];
h_size[1] = 2*NY/3 - f_offset[1];
h_sample[0] = 1;
h_sample[1] = 1;
status = H5Pset_hyperslab (s8_f_sid, f_offset, h_size, h_sample);
assert (status>=0);
/* Create memory data space */
s8_m_sid = H5Pcreate_simple (2, h_size, NULL);
assert (s8_m_sid>=0);
/* Read the dataset */
s8 = calloc (h_size[0]*h_size[1], sizeof(s1_t));
assert (s8);
status = H5Dread (dataset, s1_tid, s8_m_sid, s8_f_sid, H5C_DEFAULT, s8);
assert (status>=0);
/* Compare */
for (i=0; i<h_size[0]; i++) {
for (j=0; j<h_size[1]; j++) {
s1_t *ps1 = s1 + (f_offset[0]+i)*NY + f_offset[1] + j;
s1_t *ps8 = s8 + i*h_size[1] + j;
assert (ps8->a == ps1->a);
assert (ps8->b == ps1->b);
assert (ps8->c == ps1->c);
assert (ps8->d == ps1->d);
assert (ps8->e == ps1->e);
}
}
free (s8);
s8 = NULL;
/*
*######################################################################
* STEP 9. Read a hyperslab of the file into a hyperslab of memory. The
* part of memory not read is already initialized and must not change.
*/
printf ("\
STEP 9: Read middle third of hyperslab into middle third of memory array.\n");
fflush (stdout);
/* Initialize with some bit pattern */
memset (s2, 0xFF, NX*NY*sizeof(s2_t));
/* Read the hyperslab */
status = H5Dread (dataset, s2_tid, s8_f_sid, s8_f_sid, H5C_DEFAULT, s2);
assert (status>=0);
/* Compare */
for (i=0; i<NX; i++) {
for (j=0; j<NY; j++) {
s1_t *ps1 = s1 + i*NY + j;
s2_t *ps2 = s2 + i*NY + j;
if (i>=f_offset[0] && i<f_offset[0]+h_size[0] &&
j>=f_offset[1] && j<f_offset[1]+h_size[1]) {
assert (ps2->a == ps1->a);
assert (ps2->b == ps1->b);
assert (ps2->c == ps1->c);
assert (ps2->d == ps1->d);
assert (ps2->e == ps1->e);
} else {
assert (ps2->a == -1);
assert (ps2->b == -1);
assert (ps2->c == -1);
assert (ps2->d == -1);
assert (ps2->e == -1);
}
}
}
/*
*######################################################################
* STEP 10. Same as step 9 except the memory array contains some members
* which are already initialized, like step 5.
*/
printf ("\
STEP 10: Read middle third of hyperslab into middle third of memory array\n\
where some of the struct members are already initialized.\n");
fflush (stdout);
/* Initialize with some bit pattern */
memset (s5, 0xFF, NX*NY*sizeof(s5_t));
/* Read the hyperslab */
status = H5Dread (dataset, s5_tid, s8_f_sid, s8_f_sid, H5C_DEFAULT, s5);
assert (status>=0);
/* Compare */
for (i=0; i<NX; i++) {
for (j=0; j<NY; j++) {
s1_t *ps1 = s1 + i*NY + j;
s5_t *ps5 = s5 + i*NY + j;
if (i>=f_offset[0] && i<f_offset[0]+h_size[0] &&
j>=f_offset[1] && j<f_offset[1]+h_size[1]) {
assert (ps5->pre == -1);
assert (ps5->a == ps1->a);
assert (ps5->b == ps1->b);
assert (ps5->mid1 == -1);
assert (ps5->c == ps1->c);
assert (ps5->mid2 == -1);
assert (ps5->d == ps1->d);
assert (ps5->e == ps1->e);
assert (ps5->post == -1);
} else {
assert (ps5->pre == -1);
assert (ps5->a == -1);
assert (ps5->b == -1);
assert (ps5->mid1 == -1);
assert (ps5->c == -1);
assert (ps5->mid2 == -1);
assert (ps5->d == -1);
assert (ps5->e == -1);
assert (ps5->post == -1);
}
}
}
/*
*######################################################################
* Step 11: Write an array into the middle third of the dataset
* initializeing only members `b' and `d' to -1.
*/
printf ("\
STEP 11: Write an array back to the middle third of the dataset to\n\
initialize the `b' and `d' members to -1.\n");
fflush (stdout);
/* Create the memory array and initialize all fields to zero */
ndims = H5Pget_hyperslab (s8_f_sid, f_offset, h_size, h_sample);
assert (ndims==2);
s11 = malloc (h_size[0]*h_size[1]*sizeof(s4_t));
assert (s11);
memset (s11, 0xff, h_size[0]*h_size[1]*sizeof(s4_t));
/* Write to disk */
status = H5Dwrite (dataset, s4_tid, s8_m_sid, s8_f_sid, H5C_DEFAULT, s11);
assert (status>=0);
/* Read the whole thing */
status = H5Dread (dataset, s1_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s1);
assert (status>=0);
/* Compare */
for (i=0; i<NX; i++) {
for (j=0; j<NY; j++) {
s1_t *ps1 = s1 + i*NY + j;
assert (ps1->a == 5*(i*NY+j)+0);
assert (ps1->c == 5*(i*NY+j)+2);
assert (ps1->e == 5*(i*NY+j)+4);
if (i>=f_offset[0] && i<f_offset[0]+h_size[0] &&
j>=f_offset[1] && j<f_offset[1]+h_size[1]) {
assert (ps1->b == -1);
assert (ps1->d == -1);
} else {
assert (ps1->b == 5*(i*NY+j)+1);
assert (ps1->d == 5*(i*NY+j)+3);
}
}
}
/*
* Release resources.
*/
H5Dclose (dataset);
H5Fclose (file);
return 0;
}