hdf5/testpar/t_cache_image.c
2023-10-03 09:01:28 -07:00

3605 lines
109 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* This file contains tests specific to the cache image
* feature implemented in H5C.c
*/
#include "testphdf5.h"
#include "cache_common.h"
#include "genall5.h"
#define TEST_FILES_TO_CONSTRUCT 2
#define CHUNK_SIZE 10
#define DSET_SIZE (40 * CHUNK_SIZE)
#define MAX_NUM_DSETS 256
#define PAR_NUM_DSETS 32
#define PAGE_SIZE (4 * 1024)
#define PB_SIZE (64 * PAGE_SIZE)
/* global variable declarations: */
const char *FILENAMES[] = {"t_cache_image_00", "t_cache_image_01", "t_cache_image_02", NULL};
/* local utility function declarations */
static void create_data_sets(hid_t file_id, int min_dset, int max_dset);
#if 0 /* keep pending full parallel cache image */
static void delete_data_sets(hid_t file_id, int min_dset, int max_dset);
#endif
static void open_hdf5_file(const bool create_file, const bool mdci_sbem_expected, const bool read_only,
const bool set_mdci_fapl, const bool config_fsm, const bool enable_page_buffer,
const char *hdf_file_name, const unsigned cache_image_flags, hid_t *file_id_ptr,
H5F_t **file_ptr_ptr, H5C_t **cache_ptr_ptr, MPI_Comm comm, MPI_Info info,
int l_facc_type, const bool all_coll_metadata_ops, const bool coll_metadata_write,
const int md_write_strat);
static void verify_data_sets(hid_t file_id, int min_dset, int max_dset);
/* local test function declarations */
static unsigned construct_test_file(int test_file_index);
static void par_create_dataset(int dset_num, hid_t file_id, int mpi_rank, int mpi_size);
static void par_delete_dataset(int dset_num, hid_t file_id, int mpi_rank);
static void par_verify_dataset(int dset_num, hid_t file_id, int mpi_rank);
static bool serial_insert_cache_image(int file_name_idx, int mpi_size);
static void serial_verify_dataset(int dset_num, hid_t file_id, int mpi_size);
/* top level test function declarations */
static unsigned verify_cache_image_RO(int file_name_id, int md_write_strat, int mpi_rank);
static unsigned verify_cache_image_RW(int file_name_id, int md_write_strat, int mpi_rank);
static bool smoke_check_1(MPI_Comm mpi_comm, MPI_Info mpi_info, int mpi_rank, int mpi_size);
/****************************************************************************/
/***************************** Utility Functions ****************************/
/****************************************************************************/
/*-------------------------------------------------------------------------
* Function: construct_test_file()
*
* Purpose: This function attempts to mimic the typical "poor man's
* parallel use case in which the file is passed between
* processes, each of which open the file, write some data,
* close the file, and then pass control on to the next
* process.
*
* In this case, we create one group for each process, and
* populate it with a "zoo" of HDF5 objects selected to
* (ideally) exercise all HDF5 on disk data structures.
*
* The end result is a test file used verify that PHDF5
* can open a file with a cache image.
*
* Cycle of operation
*
* 1) Create a HDF5 file with the cache image FAPL entry.
*
* Verify that the cache is informed of the cache image
* FAPL entry.
*
* Set all cache image flags, forcing full functionality.
*
* 2) Create a data set in the file.
*
* 3) Close the file.
*
* 4) Open the file.
*
* Verify that the metadata cache is instructed to load
* the metadata cache image.
*
* 5) Create a data set in the file.
*
* 6) Close the file. If enough datasets have been created
* goto 7. Otherwise return to 4.
*
* 7) Open the file R/O.
*
* Verify that the file contains a metadata cache image
* superblock extension message.
*
* 8) Verify all data sets.
*
* Verify that the cache image has been loaded.
*
* 9) close the file.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static unsigned
construct_test_file(int test_file_index)
{
const char *fcn_name = "construct_test_file()";
char filename[512];
bool show_progress = false;
hid_t file_id = H5I_INVALID_HID;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
int cp = 0;
int min_dset = 0;
int max_dset = 0;
MPI_Comm dummy_comm = MPI_COMM_WORLD;
MPI_Info dummy_info = MPI_INFO_NULL;
pass = true;
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* setup the file name */
if (pass) {
assert(FILENAMES[test_file_index]);
if (h5_fixname(FILENAMES[test_file_index], H5P_DEFAULT, filename, sizeof(filename)) == NULL) {
pass = false;
failure_mssg = "h5_fixname() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 1) Create a HDF5 file with the cache image FAPL entry.
*
* Verify that the cache is informed of the cache image FAPL entry.
*
* Set flags forcing full function of the cache image feature.
*/
if (pass) {
open_hdf5_file(/* create_file */ true,
/* mdci_sbem_expected */ false,
/* read_only */ false,
/* set_mdci_fapl */ true,
/* config_fsm */ true,
/* enable_page_buffer */ false,
/* hdf_file_name */ filename,
/* cache_image_flags */ H5C_CI__ALL_FLAGS,
/* file_id_ptr */ &file_id,
/* file_ptr_ptr */ &file_ptr,
/* cache_ptr_ptr */ &cache_ptr,
/* comm */ dummy_comm,
/* info */ dummy_info,
/* l_facc_type */ 0,
/* all_coll_metadata_ops */ false,
/* coll_metadata_write */ false,
/* md_write_strat */ 0);
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 2) Create a data set in the file. */
if (pass) {
create_data_sets(file_id, min_dset++, max_dset++);
}
#if H5C_COLLECT_CACHE_STATS
if (pass) {
if (cache_ptr->images_loaded != 0) {
pass = false;
failure_mssg = "metadata cache image block loaded(1).";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 3) Close the file. */
if (pass) {
if (H5Fclose(file_id) < 0) {
pass = false;
failure_mssg = "H5Fclose() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
while ((pass) && (max_dset < MAX_NUM_DSETS)) {
/* 4) Open the file.
*
* Verify that the metadata cache is instructed to load the
* metadata cache image.
*/
if (pass) {
open_hdf5_file(/* create_file */ false,
/* mdci_sbem_expected */ true,
/* read_only */ false,
/* set_mdci_fapl */ true,
/* config_fsm */ false,
/* enable_page_buffer */ false,
/* hdf_file_name */ filename,
/* cache_image_flags */ H5C_CI__ALL_FLAGS,
/* file_id_ptr */ &file_id,
/* file_ptr_ptr */ &file_ptr,
/* cache_ptr_ptr */ &cache_ptr,
/* comm */ dummy_comm,
/* info */ dummy_info,
/* l_facc_type */ 0,
/* all_coll_metadata_ops */ false,
/* coll_metadata_write */ false,
/* md_write_strat */ 0);
}
if (show_progress)
fprintf(stdout, "%s:L1 cp = %d, max_dset = %d, pass = %d.\n", fcn_name, cp, max_dset, pass);
/* 5) Create a data set in the file. */
if (pass) {
create_data_sets(file_id, min_dset++, max_dset++);
}
#if H5C_COLLECT_CACHE_STATS
if (pass) {
if (cache_ptr->images_loaded == 0) {
pass = false;
failure_mssg = "metadata cache image block not loaded(1).";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (show_progress)
fprintf(stdout, "%s:L2 cp = %d, max_dset = %d, pass = %d.\n", fcn_name, cp + 1, max_dset, pass);
/* 6) Close the file. */
if (pass) {
if (H5Fclose(file_id) < 0) {
pass = false;
failure_mssg = "H5Fclose() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s:L3 cp = %d, max_dset = %d, pass = %d.\n", fcn_name, cp + 2, max_dset, pass);
} /* end while */
cp += 3;
/* 7) Open the file R/O.
*
* Verify that the file contains a metadata cache image
* superblock extension message.
*/
if (pass) {
open_hdf5_file(/* create_file */ false,
/* mdci_sbem_expected */ true,
/* read_only */ true,
/* set_mdci_fapl */ false,
/* config_fsm */ false,
/* enable_page_buffer */ false,
/* hdf_file_name */ filename,
/* cache_image_flags */ H5C_CI__ALL_FLAGS,
/* file_id_ptr */ &file_id,
/* file_ptr_ptr */ &file_ptr,
/* cache_ptr_ptr */ &cache_ptr,
/* comm */ dummy_comm,
/* info */ dummy_info,
/* l_facc_type */ 0,
/* all_coll_metadata_ops */ false,
/* coll_metadata_write */ false,
/* md_write_strat */ 0);
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 8) Open and close all data sets.
*
* Verify that the cache image has been loaded.
*/
if (pass) {
verify_data_sets(file_id, 0, max_dset - 1);
}
#if H5C_COLLECT_CACHE_STATS
if (pass) {
if (cache_ptr->images_loaded == 0) {
pass = false;
failure_mssg = "metadata cache image block not loaded(2).";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 9) Close the file. */
if (pass) {
if (H5Fclose(file_id) < 0) {
pass = false;
failure_mssg = "H5Fclose() failed.\n";
}
}
return !pass;
} /* construct_test_file() */
/*-------------------------------------------------------------------------
* Function: create_data_sets()
*
* Purpose: If pass is true on entry, create the specified data sets
* in the indicated file.
*
* Data sets and their contents must be well know, as we
* will verify that they contain the expected data later.
*
* On failure, set pass to false, and set failure_mssg
* to point to an appropriate failure message.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static void
create_data_sets(hid_t file_id, int min_dset, int max_dset)
{
const char *fcn_name = "create_data_sets()";
char dset_name[64];
bool show_progress = false;
bool valid_chunk;
bool verbose = false;
int cp = 0;
int i, j, k, l, m;
int data_chunk[CHUNK_SIZE][CHUNK_SIZE];
herr_t status;
hid_t dataspace_id = H5I_INVALID_HID;
hid_t filespace_ids[MAX_NUM_DSETS];
hid_t memspace_id = H5I_INVALID_HID;
hid_t dataset_ids[MAX_NUM_DSETS];
hid_t properties = H5I_INVALID_HID;
hsize_t dims[2];
hsize_t a_size[2];
hsize_t offset[2];
hsize_t chunk_size[2];
if (show_progress)
fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
assert(0 <= min_dset);
assert(min_dset <= max_dset);
assert(max_dset < MAX_NUM_DSETS);
/* create the datasets */
if (pass) {
i = min_dset;
while ((pass) && (i <= max_dset)) {
/* create a dataspace for the chunked dataset */
dims[0] = DSET_SIZE;
dims[1] = DSET_SIZE;
dataspace_id = H5Screate_simple(2, dims, NULL);
if (dataspace_id < 0) {
pass = false;
failure_mssg = "H5Screate_simple() failed.";
}
/* set the dataset creation plist to specify that the raw data is
* to be partitioned into 10X10 element chunks.
*/
if (pass) {
chunk_size[0] = CHUNK_SIZE;
chunk_size[1] = CHUNK_SIZE;
properties = H5Pcreate(H5P_DATASET_CREATE);
if (properties < 0) {
pass = false;
failure_mssg = "H5Pcreate() failed.";
}
}
if (pass) {
if (H5Pset_chunk(properties, 2, chunk_size) < 0) {
pass = false;
failure_mssg = "H5Pset_chunk() failed.";
}
}
/* create the dataset */
if (pass) {
snprintf(dset_name, sizeof(dset_name), "/dset%03d", i);
dataset_ids[i] = H5Dcreate2(file_id, dset_name, H5T_STD_I32BE, dataspace_id, H5P_DEFAULT,
properties, H5P_DEFAULT);
if (dataset_ids[i] < 0) {
pass = false;
failure_mssg = "H5Dcreate() failed.";
}
}
/* get the file space ID */
if (pass) {
filespace_ids[i] = H5Dget_space(dataset_ids[i]);
if (filespace_ids[i] < 0) {
pass = false;
failure_mssg = "H5Dget_space() failed.";
}
}
i++;
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
/* create the mem space to be used to read and write chunks */
if (pass) {
dims[0] = CHUNK_SIZE;
dims[1] = CHUNK_SIZE;
memspace_id = H5Screate_simple(2, dims, NULL);
if (memspace_id < 0) {
pass = false;
failure_mssg = "H5Screate_simple() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
/* select in memory hyperslab */
if (pass) {
offset[0] = 0; /*offset of hyperslab in memory*/
offset[1] = 0;
a_size[0] = CHUNK_SIZE; /*size of hyperslab*/
a_size[1] = CHUNK_SIZE;
status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL);
if (status < 0) {
pass = false;
failure_mssg = "H5Sselect_hyperslab() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
/* initialize all datasets on a round robin basis */
i = 0;
while ((pass) && (i < DSET_SIZE)) {
j = 0;
while ((pass) && (j < DSET_SIZE)) {
m = min_dset;
while ((pass) && (m <= max_dset)) {
/* initialize the slab */
for (k = 0; k < CHUNK_SIZE; k++) {
for (l = 0; l < CHUNK_SIZE; l++) {
data_chunk[k][l] = (DSET_SIZE * DSET_SIZE * m) + (DSET_SIZE * (i + k)) + j + l;
}
}
/* select on disk hyperslab */
offset[0] = (hsize_t)i; /*offset of hyperslab in file*/
offset[1] = (hsize_t)j;
a_size[0] = CHUNK_SIZE; /*size of hyperslab*/
a_size[1] = CHUNK_SIZE;
status = H5Sselect_hyperslab(filespace_ids[m], H5S_SELECT_SET, offset, NULL, a_size, NULL);
if (status < 0) {
pass = false;
failure_mssg = "disk H5Sselect_hyperslab() failed.";
}
/* write the chunk to file */
status = H5Dwrite(dataset_ids[m], H5T_NATIVE_INT, memspace_id, filespace_ids[m], H5P_DEFAULT,
data_chunk);
if (status < 0) {
pass = false;
failure_mssg = "H5Dwrite() failed.";
}
m++;
}
j += CHUNK_SIZE;
}
i += CHUNK_SIZE;
}
if (show_progress)
fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
/* read data from data sets and validate it */
i = 0;
while ((pass) && (i < DSET_SIZE)) {
j = 0;
while ((pass) && (j < DSET_SIZE)) {
m = min_dset;
while ((pass) && (m <= max_dset)) {
/* select on disk hyperslab */
offset[0] = (hsize_t)i; /* offset of hyperslab in file */
offset[1] = (hsize_t)j;
a_size[0] = CHUNK_SIZE; /* size of hyperslab */
a_size[1] = CHUNK_SIZE;
status = H5Sselect_hyperslab(filespace_ids[m], H5S_SELECT_SET, offset, NULL, a_size, NULL);
if (status < 0) {
pass = false;
failure_mssg = "disk hyperslab create failed.";
}
/* read the chunk from file */
if (pass) {
status = H5Dread(dataset_ids[m], H5T_NATIVE_INT, memspace_id, filespace_ids[m],
H5P_DEFAULT, data_chunk);
if (status < 0) {
pass = false;
failure_mssg = "disk hyperslab create failed.";
}
}
/* validate the slab */
if (pass) {
valid_chunk = true;
for (k = 0; k < CHUNK_SIZE; k++) {
for (l = 0; l < CHUNK_SIZE; l++) {
if (data_chunk[k][l] !=
((DSET_SIZE * DSET_SIZE * m) + (DSET_SIZE * (i + k)) + j + l)) {
valid_chunk = false;
if (verbose) {
fprintf(stdout, "data_chunk[%0d][%0d] = %0d, expect %0d.\n", k, l,
data_chunk[k][l],
((DSET_SIZE * DSET_SIZE * m) + (DSET_SIZE * (i + k)) + j + l));
fprintf(stdout, "m = %d, i = %d, j = %d, k = %d, l = %d\n", m, i, j, k,
l);
}
}
}
}
if (!valid_chunk) {
pass = false;
failure_mssg = "slab validation failed.";
if (verbose) {
fprintf(stdout, "Chunk (%0d, %0d) in /dset%03d is invalid.\n", i, j, m);
}
}
}
m++;
}
j += CHUNK_SIZE;
}
i += CHUNK_SIZE;
}
if (show_progress)
fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
/* close the file spaces */
i = min_dset;
while ((pass) && (i <= max_dset)) {
if (H5Sclose(filespace_ids[i]) < 0) {
pass = false;
failure_mssg = "H5Sclose() failed.";
}
i++;
}
/* close the datasets */
i = min_dset;
while ((pass) && (i <= max_dset)) {
if (H5Dclose(dataset_ids[i]) < 0) {
pass = false;
failure_mssg = "H5Dclose() failed.";
}
i++;
}
/* close the mem space */
if (pass) {
if (H5Sclose(memspace_id) < 0) {
pass = false;
failure_mssg = "H5Sclose(memspace_id) failed.";
}
}
return;
} /* create_data_sets() */
/*-------------------------------------------------------------------------
* Function: delete_data_sets()
*
* Purpose: If pass is true on entry, verify and then delete the
* dataset(s) indicated by min_dset and max_dset in the
* indicated file.
*
* Data sets and their contents must be well know, as we
* will verify that they contain the expected data later.
*
* On failure, set pass to false, and set failure_mssg
* to point to an appropriate failure message.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
#if 0
/* this code will be needed to test full support of cache image
* in parallel -- keep it around against that day.
*
* -- JRM
*/
static void
delete_data_sets(hid_t file_id, int min_dset, int max_dset)
{
const char * fcn_name = "delete_data_sets()";
char dset_name[64];
bool show_progress = false;
int cp = 0;
int i;
if ( show_progress ) fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
assert(0 <= min_dset);
assert(min_dset <= max_dset);
assert(max_dset < MAX_NUM_DSETS);
if ( show_progress ) fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
/* first, verify the contents of the target dataset(s) */
verify_data_sets(file_id, min_dset, max_dset);
if ( show_progress ) fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
/* now delete the target datasets */
if ( pass ) {
i = min_dset;
while ( ( pass ) && ( i <= max_dset ) )
{
snprintf(dset_name, sizeof(dset_name), "/dset%03d", i);
if ( H5Ldelete(file_id, dset_name, H5P_DEFAULT) < 0) {
pass = false;
failure_mssg = "H5Ldelete() failed.";
}
i++;
}
}
if ( show_progress ) fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
return;
} /* delete_data_sets() */
#endif
/*-------------------------------------------------------------------------
* Function: open_hdf5_file()
*
* Purpose: If pass is true on entry, create or open the specified HDF5
* and test to see if it has a metadata cache image superblock
* extension message.
*
* Set pass to false and issue a suitable failure
* message if either the file contains a metadata cache image
* superblock extension and mdci_sbem_expected is true, or
* vice versa.
*
* If mdci_sbem_expected is true, also verify that the metadata
* cache has been advised of this.
*
* If read_only is true, open the file read only. Otherwise
* open the file read/write.
*
* If set_mdci_fapl is true, set the metadata cache image
* FAPL entry when opening the file, and verify that the
* metadata cache is notified.
*
* If config_fsm is true, setup the persistent free space
* manager. Note that this flag may only be set if
* create_file is also true.
*
* Return pointers to the cache data structure and file data
* structures.
*
* On failure, set pass to false, and set failure_mssg
* to point to an appropriate failure message.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static void
open_hdf5_file(const bool create_file, const bool mdci_sbem_expected, const bool read_only,
const bool set_mdci_fapl, const bool config_fsm, const bool enable_page_buffer,
const char *hdf_file_name, const unsigned cache_image_flags, hid_t *file_id_ptr,
H5F_t **file_ptr_ptr, H5C_t **cache_ptr_ptr, MPI_Comm comm, MPI_Info info, int l_facc_type,
const bool all_coll_metadata_ops, const bool coll_metadata_write, const int md_write_strat)
{
const char *fcn_name = "open_hdf5_file()";
bool show_progress = false;
bool verbose = false;
int cp = 0;
hid_t fapl_id = H5I_INVALID_HID;
hid_t fcpl_id = H5I_INVALID_HID;
hid_t file_id = H5I_INVALID_HID;
herr_t result;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
H5C_cache_image_ctl_t image_ctl;
H5AC_cache_image_config_t cache_image_config = {H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION, true, false,
H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE};
assert(!create_file || config_fsm);
if (pass) {
/* opening the file both read only and with a cache image
* requested is a contradiction. We resolve it by ignoring
* the cache image request silently.
*/
if ((create_file && mdci_sbem_expected) || (create_file && read_only) ||
(config_fsm && !create_file) || (create_file && enable_page_buffer && !config_fsm) ||
(hdf_file_name == NULL) || ((set_mdci_fapl) && (cache_image_flags == 0)) ||
((set_mdci_fapl) && ((cache_image_flags & ~H5C_CI__ALL_FLAGS) != 0)) || (file_id_ptr == NULL) ||
(file_ptr_ptr == NULL) || (cache_ptr_ptr == NULL) ||
(l_facc_type != (l_facc_type & (FACC_MPIO)))) {
failure_mssg = "Bad param(s) on entry to open_hdf5_file().\n";
pass = false;
}
else if (verbose) {
fprintf(stdout, "%s: HDF file name = \"%s\".\n", fcn_name, hdf_file_name);
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* create a file access property list. */
if (pass) {
fapl_id = H5Pcreate(H5P_FILE_ACCESS);
if (fapl_id < 0) {
pass = false;
failure_mssg = "H5Pcreate() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* call H5Pset_libver_bounds() on the fapl_id */
if (pass) {
if (H5Pset_libver_bounds(fapl_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) < 0) {
pass = false;
failure_mssg = "H5Pset_libver_bounds() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* get metadata cache image config -- verify that it is the default */
if (pass) {
result = H5Pget_mdc_image_config(fapl_id, &cache_image_config);
if (result < 0) {
pass = false;
failure_mssg = "H5Pget_mdc_image_config() failed.\n";
}
if ((cache_image_config.version != H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION) ||
(cache_image_config.generate_image != false) ||
(cache_image_config.save_resize_status != false) ||
(cache_image_config.entry_ageout != H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE)) {
pass = false;
failure_mssg = "Unexpected default cache image config.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* set metadata cache image fapl entry if indicated */
if ((pass) && (set_mdci_fapl)) {
/* set cache image config fields to taste */
cache_image_config.generate_image = true;
cache_image_config.save_resize_status = false;
cache_image_config.entry_ageout = H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE;
result = H5Pset_mdc_image_config(fapl_id, &cache_image_config);
if (result < 0) {
pass = false;
failure_mssg = "H5Pset_mdc_image_config() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* setup the persistent free space manager if indicated */
if ((pass) && (config_fsm)) {
fcpl_id = H5Pcreate(H5P_FILE_CREATE);
if (fcpl_id <= 0) {
pass = false;
failure_mssg = "H5Pcreate(H5P_FILE_CREATE) failed.";
}
}
if ((pass) && (config_fsm)) {
if (H5Pset_file_space_strategy(fcpl_id, H5F_FSPACE_STRATEGY_PAGE, true, (hsize_t)1) == FAIL) {
pass = false;
failure_mssg = "H5Pset_file_space_strategy() failed.\n";
}
}
if ((pass) && (config_fsm)) {
if (H5Pset_file_space_page_size(fcpl_id, PAGE_SIZE) == FAIL) {
pass = false;
failure_mssg = "H5Pset_file_space_page_size() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* setup the page buffer if indicated */
if ((pass) && (enable_page_buffer)) {
if (H5Pset_page_buffer_size(fapl_id, PB_SIZE, 0, 0) < 0) {
pass = false;
failure_mssg = "H5Pset_page_buffer_size() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
if ((pass) && (l_facc_type == FACC_MPIO)) {
/* set Parallel access with communicator */
if (H5Pset_fapl_mpio(fapl_id, comm, info) < 0) {
pass = false;
failure_mssg = "H5Pset_fapl_mpio() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
if ((pass) && (l_facc_type == FACC_MPIO)) {
if (H5Pset_all_coll_metadata_ops(fapl_id, all_coll_metadata_ops) < 0) {
pass = false;
failure_mssg = "H5Pset_all_coll_metadata_ops() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
if ((pass) && (l_facc_type == FACC_MPIO)) {
if (H5Pset_coll_metadata_write(fapl_id, coll_metadata_write) < 0) {
pass = false;
failure_mssg = "H5Pset_coll_metadata_write() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
if ((pass) && (l_facc_type == FACC_MPIO)) {
/* set the desired parallel metadata write strategy */
H5AC_cache_config_t mdc_config;
mdc_config.version = H5C__CURR_AUTO_SIZE_CTL_VER;
if (H5Pget_mdc_config(fapl_id, &mdc_config) < 0) {
pass = false;
failure_mssg = "H5Pget_mdc_config() failed.\n";
}
mdc_config.metadata_write_strategy = md_write_strat;
if (H5Pset_mdc_config(fapl_id, &mdc_config) < 0) {
pass = false;
failure_mssg = "H5Pset_mdc_config() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* open the file */
if (pass) {
if (create_file) {
if (fcpl_id != -1)
file_id = H5Fcreate(hdf_file_name, H5F_ACC_TRUNC, fcpl_id, fapl_id);
else
file_id = H5Fcreate(hdf_file_name, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
}
else {
if (read_only)
file_id = H5Fopen(hdf_file_name, H5F_ACC_RDONLY, fapl_id);
else
file_id = H5Fopen(hdf_file_name, H5F_ACC_RDWR, fapl_id);
}
if (file_id < 0) {
pass = false;
failure_mssg = "H5Fcreate() or H5Fopen() failed.\n";
}
else {
file_ptr = (struct H5F_t *)H5VL_object_verify(file_id, H5I_FILE);
if (file_ptr == NULL) {
pass = false;
failure_mssg = "Can't get file_ptr.";
if (verbose) {
fprintf(stdout, "%s: Can't get file_ptr.\n", fcn_name);
}
}
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* get a pointer to the files internal data structure and then
* to the cache structure
*/
if (pass) {
if (file_ptr->shared->cache == NULL) {
pass = false;
failure_mssg = "can't get cache pointer(1).\n";
}
else {
cache_ptr = file_ptr->shared->cache;
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* verify expected page buffer status. At present, page buffering
* must be disabled in parallel -- hopefully this will change in the
* future.
*/
if (pass) {
if ((file_ptr->shared->page_buf) && ((!enable_page_buffer) || (l_facc_type == FACC_MPIO))) {
pass = false;
failure_mssg = "page buffer unexpectedly enabled.";
}
else if ((file_ptr->shared->page_buf != NULL) &&
((enable_page_buffer) || (l_facc_type != FACC_MPIO))) {
pass = false;
failure_mssg = "page buffer unexpectedly disabled.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* verify expected metadata cache status */
/* get the cache image control structure from the cache, and verify
* that it contains the expected values.
*
* Then set the flags in this structure to the specified value.
*/
if (pass) {
if (H5C__get_cache_image_config(cache_ptr, &image_ctl) < 0) {
pass = false;
failure_mssg = "error returned by H5C__get_cache_image_config().";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
if (pass) {
if (set_mdci_fapl) {
if (read_only) {
if ((image_ctl.version != H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION) ||
(image_ctl.generate_image != false) || (image_ctl.save_resize_status != false) ||
(image_ctl.entry_ageout != H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE) ||
(image_ctl.flags != H5C_CI__ALL_FLAGS)) {
pass = false;
failure_mssg = "Unexpected image_ctl values(1).\n";
}
}
else {
if ((image_ctl.version != H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION) ||
(image_ctl.generate_image != true) || (image_ctl.save_resize_status != false) ||
(image_ctl.entry_ageout != H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE) ||
(image_ctl.flags != H5C_CI__ALL_FLAGS)) {
pass = false;
failure_mssg = "Unexpected image_ctl values(2).\n";
}
}
}
else {
if ((image_ctl.version != H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION) ||
(image_ctl.generate_image != false) || (image_ctl.save_resize_status != false) ||
(image_ctl.entry_ageout != H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE) ||
(image_ctl.flags != H5C_CI__ALL_FLAGS)) {
pass = false;
failure_mssg = "Unexpected image_ctl values(3).\n";
}
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
if ((pass) && (set_mdci_fapl)) {
image_ctl.flags = cache_image_flags;
if (H5C_set_cache_image_config(file_ptr, cache_ptr, &image_ctl) < 0) {
pass = false;
failure_mssg = "error returned by H5C_set_cache_image_config().";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
if (pass) {
if (cache_ptr->close_warning_received == true) {
pass = false;
failure_mssg = "Unexpected value of close_warning_received.\n";
}
if (mdci_sbem_expected) {
if (read_only) {
if ((cache_ptr->load_image != true) || (cache_ptr->delete_image != false)) {
pass = false;
failure_mssg = "mdci sb extension message not present?\n";
}
}
else {
if ((cache_ptr->load_image != true) || (cache_ptr->delete_image != true)) {
pass = false;
failure_mssg = "mdci sb extension message not present?\n";
}
}
}
else {
if ((cache_ptr->load_image == true) || (cache_ptr->delete_image == true)) {
pass = false;
failure_mssg = "mdci sb extension message present?\n";
}
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
if (pass) {
*file_id_ptr = file_id;
*file_ptr_ptr = file_ptr;
*cache_ptr_ptr = cache_ptr;
}
if (show_progress) {
fprintf(stdout, "%s: cp = %d, pass = %d -- exiting.\n", fcn_name, cp++, pass);
if (!pass)
fprintf(stdout, "%s: failure_mssg = %s\n", fcn_name, failure_mssg);
}
return;
} /* open_hdf5_file() */
/*-------------------------------------------------------------------------
* Function: par_create_dataset()
*
* Purpose: Collectively create a chunked dataset, and fill it with
* known values.
*
* On failure, set pass to false, and set failure_mssg
* to point to an appropriate failure message.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static void
par_create_dataset(int dset_num, hid_t file_id, int mpi_rank, int mpi_size)
{
const char *fcn_name = "par_create_dataset()";
char dset_name[256];
bool show_progress = false;
bool valid_chunk;
bool verbose = false;
int cp = 0;
int i, j, k, l;
int data_chunk[1][CHUNK_SIZE][CHUNK_SIZE];
hsize_t dims[3];
hsize_t a_size[3];
hsize_t offset[3];
hsize_t chunk_size[3];
hid_t status;
hid_t dataspace_id = H5I_INVALID_HID;
hid_t memspace_id = H5I_INVALID_HID;
hid_t dset_id = H5I_INVALID_HID;
hid_t filespace_id = H5I_INVALID_HID;
hid_t dcpl_id = H5I_INVALID_HID;
hid_t dxpl_id = H5I_INVALID_HID;
show_progress = (show_progress && (mpi_rank == 0));
verbose = (verbose && (mpi_rank == 0));
snprintf(dset_name, sizeof(dset_name), "/dset%03d", dset_num);
if (show_progress) {
fprintf(stdout, "%s: dset name = \"%s\".\n", fcn_name, dset_name);
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
}
if (pass) {
/* create a dataspace for the chunked dataset */
dims[0] = (hsize_t)mpi_size;
dims[1] = DSET_SIZE;
dims[2] = DSET_SIZE;
dataspace_id = H5Screate_simple(3, dims, NULL);
if (dataspace_id < 0) {
pass = false;
failure_mssg = "H5Screate_simple() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* set the dataset creation plist to specify that the raw data is
* to be partitioned into 1X10X10 element chunks.
*/
if (pass) {
dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
if (dcpl_id < 0) {
pass = false;
failure_mssg = "H5Pcreate(H5P_DATASET_CREATE) failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
if (pass) {
chunk_size[0] = 1;
chunk_size[1] = CHUNK_SIZE;
chunk_size[2] = CHUNK_SIZE;
if (H5Pset_chunk(dcpl_id, 3, chunk_size) < 0) {
pass = false;
failure_mssg = "H5Pset_chunk() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* create the dataset */
if (pass) {
dset_id =
H5Dcreate2(file_id, dset_name, H5T_STD_I32BE, dataspace_id, H5P_DEFAULT, dcpl_id, H5P_DEFAULT);
if (dset_id < 0) {
pass = false;
failure_mssg = "H5Dcreate() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* get the file space ID */
if (pass) {
filespace_id = H5Dget_space(dset_id);
if (filespace_id < 0) {
pass = false;
failure_mssg = "H5Dget_space() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* create the mem space to be used to read and write chunks */
if (pass) {
dims[0] = 1;
dims[1] = CHUNK_SIZE;
dims[2] = CHUNK_SIZE;
memspace_id = H5Screate_simple(3, dims, NULL);
if (memspace_id < 0) {
pass = false;
failure_mssg = "H5Screate_simple() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* select in memory hyperslab */
if (pass) {
offset[0] = 0; /* offset of hyperslab in memory */
offset[1] = 0;
offset[2] = 0;
a_size[0] = 1; /* size of hyperslab */
a_size[1] = CHUNK_SIZE;
a_size[2] = CHUNK_SIZE;
status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL);
if (status < 0) {
pass = false;
failure_mssg = "H5Sselect_hyperslab() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* setup the DXPL for collective I/O */
if (pass) {
dxpl_id = H5Pcreate(H5P_DATASET_XFER);
if (dxpl_id < 0) {
pass = false;
failure_mssg = "H5Pcreate(H5P_DATASET_XFER) failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
if (pass) {
if (H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) < 0) {
pass = false;
failure_mssg = "H5Pset_dxpl_mpio() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* initialize the dataset with collective writes */
i = 0;
while ((pass) && (i < DSET_SIZE)) {
j = 0;
while ((pass) && (j < DSET_SIZE)) {
if (show_progress)
fprintf(stdout, "%s: cp = %d.0, pass = %d.\n", fcn_name, cp, pass);
/* initialize the slab */
for (k = 0; k < CHUNK_SIZE; k++) {
for (l = 0; l < CHUNK_SIZE; l++) {
data_chunk[0][k][l] =
(DSET_SIZE * DSET_SIZE * mpi_rank) + (DSET_SIZE * (i + k)) + j + l + dset_num;
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d.1, pass = %d.\n", fcn_name, cp, pass);
/* select on disk hyperslab */
offset[0] = (hsize_t)mpi_rank; /* offset of hyperslab in file */
offset[1] = (hsize_t)i;
offset[2] = (hsize_t)j;
a_size[0] = (hsize_t)1; /* size of hyperslab */
a_size[1] = CHUNK_SIZE;
a_size[2] = CHUNK_SIZE;
status = H5Sselect_hyperslab(filespace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL);
if (status < 0) {
pass = false;
failure_mssg = "disk H5Sselect_hyperslab() failed.";
}
if (show_progress)
fprintf(stdout, "%s: cp = %d.2, pass = %d.\n", fcn_name, cp, pass);
/* write the chunk to file */
status = H5Dwrite(dset_id, H5T_NATIVE_INT, memspace_id, filespace_id, dxpl_id, data_chunk);
if (status < 0) {
pass = false;
failure_mssg = "H5Dwrite() failed.";
}
if (show_progress)
fprintf(stdout, "%s: cp = %d.3, pass = %d.\n", fcn_name, cp, pass);
j += CHUNK_SIZE;
}
i += CHUNK_SIZE;
}
cp++;
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* read data from data sets and validate it */
i = 0;
while ((pass) && (i < DSET_SIZE)) {
j = 0;
while ((pass) && (j < DSET_SIZE)) {
/* select on disk hyperslab */
offset[0] = (hsize_t)mpi_rank;
offset[1] = (hsize_t)i; /* offset of hyperslab in file */
offset[2] = (hsize_t)j;
a_size[0] = (hsize_t)1;
a_size[1] = CHUNK_SIZE; /* size of hyperslab */
a_size[2] = CHUNK_SIZE;
status = H5Sselect_hyperslab(filespace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL);
if (status < 0) {
pass = false;
failure_mssg = "disk hyperslab create failed.";
}
/* read the chunk from file */
if (pass) {
status = H5Dread(dset_id, H5T_NATIVE_INT, memspace_id, filespace_id, dxpl_id, data_chunk);
if (status < 0) {
pass = false;
failure_mssg = "chunk read failed.";
}
}
/* validate the slab */
if (pass) {
valid_chunk = true;
for (k = 0; k < CHUNK_SIZE; k++) {
for (l = 0; l < CHUNK_SIZE; l++) {
if (data_chunk[0][k][l] !=
((DSET_SIZE * DSET_SIZE * mpi_rank) + (DSET_SIZE * (i + k)) + j + l + dset_num)) {
valid_chunk = false;
if (verbose) {
fprintf(stdout, "data_chunk[%0d][%0d] = %0d, expect %0d.\n", k, l,
data_chunk[0][k][l],
((DSET_SIZE * DSET_SIZE * mpi_rank) + (DSET_SIZE * (i + k)) + j + l +
dset_num));
fprintf(stdout, "dset_num = %d, i = %d, j = %d, k = %d, l = %d\n", dset_num,
i, j, k, l);
}
}
}
}
if (!valid_chunk) {
pass = false;
failure_mssg = "slab validation failed.";
if (verbose) {
fprintf(stdout, "Chunk (%0d, %0d) in /dset%03d is invalid.\n", i, j, dset_num);
}
}
}
j += CHUNK_SIZE;
}
i += CHUNK_SIZE;
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* close the data space */
if ((pass) && (H5Sclose(dataspace_id) < 0)) {
pass = false;
failure_mssg = "H5Sclose(dataspace_id) failed.";
}
/* close the file space */
if ((pass) && (H5Sclose(filespace_id) < 0)) {
pass = false;
failure_mssg = "H5Sclose(filespace_id) failed.";
}
/* close the dataset */
if ((pass) && (H5Dclose(dset_id) < 0)) {
pass = false;
failure_mssg = "H5Dclose(dset_id) failed.";
}
/* close the mem space */
if ((pass) && (H5Sclose(memspace_id) < 0)) {
pass = false;
failure_mssg = "H5Sclose(memspace_id) failed.";
}
/* close the dataset creation property list */
if ((pass) && (H5Pclose(dcpl_id) < 0)) {
pass = false;
failure_mssg = "H5Pclose(dcpl) failed.";
}
/* close the data access property list */
if ((pass) && (H5Pclose(dxpl_id) < 0)) {
pass = false;
failure_mssg = "H5Pclose(dxpl) failed.";
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
return;
} /* par_create_dataset() */
/*-------------------------------------------------------------------------
* Function: par_delete_dataset()
*
* Purpose: Collectively delete the specified dataset.
*
* On failure, set pass to false, and set failure_mssg
* to point to an appropriate failure message.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static void
par_delete_dataset(int dset_num, hid_t file_id, int mpi_rank)
{
const char *fcn_name = "par_delete_dataset()";
char dset_name[256];
bool show_progress = false;
int cp = 0;
show_progress = (show_progress && (mpi_rank == 0));
snprintf(dset_name, sizeof(dset_name), "/dset%03d", dset_num);
if (show_progress) {
fprintf(stdout, "%s: dset name = \"%s\".\n", fcn_name, dset_name);
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
}
/* verify the target dataset */
if (pass) {
par_verify_dataset(dset_num, file_id, mpi_rank);
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* delete the target dataset */
if (pass) {
if (H5Ldelete(file_id, dset_name, H5P_DEFAULT) < 0) {
pass = false;
failure_mssg = "H5Ldelete() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
return;
} /* par_delete_dataset() */
/*-------------------------------------------------------------------------
* Function: par_insert_cache_image()
*
* Purpose: Insert a cache image in the supplied file.
*
* At present, cache image is not enabled in the parallel
* so we have to insert the cache image with a serial
* process. Do this via a fork and an execv from process 0.
* All processes wait until the child process completes, and
* then return.
*
* On failure, set pass to false, and set failure_mssg
* to point to an appropriate failure message.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static void
par_insert_cache_image(int file_name_idx, int mpi_rank, int mpi_size)
{
if (pass) {
if (mpi_rank == 0) { /* insert cache image in supplied test file */
if (!serial_insert_cache_image(file_name_idx, mpi_size)) {
fprintf(stderr, "\n\nCache image insertion failed.\n");
fprintf(stderr, " failure mssg = \"%s\"\n", failure_mssg);
exit(EXIT_FAILURE);
}
}
}
if (pass) {
/* make sure insertion of the cache image is complete
* before proceeding
*/
MPI_Barrier(MPI_COMM_WORLD);
}
return;
} /* par_insert_cache_image() */
/*-------------------------------------------------------------------------
* Function: par_verify_dataset()
*
* Purpose: Collectively verify the contents of a chunked dataset.
*
* On failure, set pass to false, and set failure_mssg
* to point to an appropriate failure message.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static void
par_verify_dataset(int dset_num, hid_t file_id, int mpi_rank)
{
const char *fcn_name = "par_verify_dataset()";
char dset_name[256];
bool show_progress = false;
bool valid_chunk;
bool verbose = false;
int cp = 0;
int i, j, k, l;
int data_chunk[1][CHUNK_SIZE][CHUNK_SIZE];
hsize_t dims[3];
hsize_t a_size[3];
hsize_t offset[3];
hid_t status;
hid_t memspace_id = H5I_INVALID_HID;
hid_t dset_id = H5I_INVALID_HID;
hid_t filespace_id = H5I_INVALID_HID;
hid_t dxpl_id = H5I_INVALID_HID;
show_progress = (show_progress && (mpi_rank == 0));
verbose = (verbose && (mpi_rank == 0));
snprintf(dset_name, sizeof(dset_name), "/dset%03d", dset_num);
if (show_progress) {
fprintf(stdout, "%s: dset name = \"%s\".\n", fcn_name, dset_name);
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
}
if (pass) {
/* open the dataset */
dset_id = H5Dopen2(file_id, dset_name, H5P_DEFAULT);
if (dset_id < 0) {
pass = false;
failure_mssg = "H5Dopen2() failed.";
}
}
/* get the file space ID */
if (pass) {
filespace_id = H5Dget_space(dset_id);
if (filespace_id < 0) {
pass = false;
failure_mssg = "H5Dget_space() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* create the mem space to be used to read */
if (pass) {
dims[0] = 1;
dims[1] = CHUNK_SIZE;
dims[2] = CHUNK_SIZE;
memspace_id = H5Screate_simple(3, dims, NULL);
if (memspace_id < 0) {
pass = false;
failure_mssg = "H5Screate_simple() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* select in memory hyperslab */
if (pass) {
offset[0] = 0; /* offset of hyperslab in memory */
offset[1] = 0;
offset[2] = 0;
a_size[0] = 1; /* size of hyperslab */
a_size[1] = CHUNK_SIZE;
a_size[2] = CHUNK_SIZE;
status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL);
if (status < 0) {
pass = false;
failure_mssg = "H5Sselect_hyperslab() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* setup the DXPL for collective I/O */
if (pass) {
dxpl_id = H5Pcreate(H5P_DATASET_XFER);
if (dxpl_id < 0) {
pass = false;
failure_mssg = "H5Pcreate(H5P_DATASET_XFER) failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
if (pass) {
if (H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) < 0) {
pass = false;
failure_mssg = "H5Pset_dxpl_mpio() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* read data from data sets and validate it */
i = 0;
while ((pass) && (i < DSET_SIZE)) {
j = 0;
while ((pass) && (j < DSET_SIZE)) {
/* select on disk hyperslab */
offset[0] = (hsize_t)mpi_rank;
offset[1] = (hsize_t)i; /* offset of hyperslab in file */
offset[2] = (hsize_t)j;
a_size[0] = (hsize_t)1;
a_size[1] = CHUNK_SIZE; /* size of hyperslab */
a_size[2] = CHUNK_SIZE;
status = H5Sselect_hyperslab(filespace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL);
if (status < 0) {
pass = false;
failure_mssg = "disk hyperslab create failed.";
}
/* read the chunk from file */
if (pass) {
status = H5Dread(dset_id, H5T_NATIVE_INT, memspace_id, filespace_id, dxpl_id, data_chunk);
if (status < 0) {
pass = false;
failure_mssg = "chunk read failed.";
}
}
/* validate the slab */
if (pass) {
valid_chunk = true;
for (k = 0; k < CHUNK_SIZE; k++) {
for (l = 0; l < CHUNK_SIZE; l++) {
if (data_chunk[0][k][l] !=
((DSET_SIZE * DSET_SIZE * mpi_rank) + (DSET_SIZE * (i + k)) + j + l + dset_num)) {
valid_chunk = false;
if (verbose) {
fprintf(stdout, "data_chunk[%0d][%0d] = %0d, expect %0d.\n", k, l,
data_chunk[0][k][l],
((DSET_SIZE * DSET_SIZE * mpi_rank) + (DSET_SIZE * (i + k)) + j + l +
dset_num));
fprintf(stdout, "dset_num = %d, i = %d, j = %d, k = %d, l = %d\n", dset_num,
i, j, k, l);
}
}
}
}
if (!valid_chunk) {
pass = false;
failure_mssg = "slab validation failed.";
if (verbose) {
fprintf(stdout, "Chunk (%0d, %0d) in /dset%03d is invalid.\n", i, j, dset_num);
}
}
}
j += CHUNK_SIZE;
}
i += CHUNK_SIZE;
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* close the file space */
if ((pass) && (H5Sclose(filespace_id) < 0)) {
pass = false;
failure_mssg = "H5Sclose(filespace_id) failed.";
}
/* close the dataset */
if ((pass) && (H5Dclose(dset_id) < 0)) {
pass = false;
failure_mssg = "H5Dclose(dset_id) failed.";
}
/* close the mem space */
if ((pass) && (H5Sclose(memspace_id) < 0)) {
pass = false;
failure_mssg = "H5Sclose(memspace_id) failed.";
}
/* close the data access property list */
if ((pass) && (H5Pclose(dxpl_id) < 0)) {
pass = false;
failure_mssg = "H5Pclose(dxpl) failed.";
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
return;
} /* par_verify_dataset() */
/*-------------------------------------------------------------------------
* Function: serial_insert_cache_image()
*
* Purpose: Insert a cache image in the supplied file.
*
* To populate the cache image, validate the contents
* of the file before closing.
*
* On failure, print an appropriate error message and
* return false.
*
* Return: true if successful, false otherwise.
*
*-------------------------------------------------------------------------
*/
static bool
serial_insert_cache_image(int file_name_idx, int mpi_size)
{
const char *fcn_name = "serial_insert_cache_image()";
char filename[512];
bool show_progress = false;
int cp = 0;
int i;
int num_dsets = PAR_NUM_DSETS;
hid_t file_id = H5I_INVALID_HID;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
MPI_Comm dummy_comm = MPI_COMM_WORLD;
MPI_Info dummy_info = MPI_INFO_NULL;
pass = true;
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 1) setup the file name */
if (pass) {
assert(FILENAMES[file_name_idx]);
if (h5_fixname(FILENAMES[file_name_idx], H5P_DEFAULT, filename, sizeof(filename)) == NULL) {
pass = false;
fprintf(stdout, "h5_fixname() failed.\n");
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 2) Open the PHDF5 file with the cache image FAPL entry.
*/
if (pass) {
open_hdf5_file(/* create_file */ false,
/* mdci_sbem_expected */ false,
/* read_only */ false,
/* set_mdci_fapl */ true,
/* config_fsm */ false,
/* enable_page_buffer */ false,
/* hdf_file_name */ filename,
/* cache_image_flags */ H5C_CI__ALL_FLAGS,
/* file_id_ptr */ &file_id,
/* file_ptr_ptr */ &file_ptr,
/* cache_ptr_ptr */ &cache_ptr,
/* comm */ dummy_comm,
/* info */ dummy_info,
/* l_facc_type */ 0,
/* all_coll_metadata_ops */ false,
/* coll_metadata_write */ false,
/* md_write_strat */ 1);
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 3) Validate contents of the file */
i = 0;
while ((pass) && (i < num_dsets)) {
serial_verify_dataset(i, file_id, mpi_size);
i++;
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 4) Close the file */
if (pass) {
if (H5Fclose(file_id) < 0) {
pass = false;
failure_mssg = "H5Fclose() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
return pass;
} /* serial_insert_cache_image() */
/*-------------------------------------------------------------------------
* Function: serial_verify_dataset()
*
* Purpose: Verify the contents of a chunked dataset.
*
* On failure, set pass to false, and set failure_mssg
* to point to an appropriate failure message.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static void
serial_verify_dataset(int dset_num, hid_t file_id, int mpi_size)
{
const char *fcn_name = "serial_verify_dataset()";
char dset_name[256];
bool show_progress = false;
bool valid_chunk;
bool verbose = false;
int cp = 0;
int i, j, k, l, m;
int data_chunk[1][CHUNK_SIZE][CHUNK_SIZE];
hsize_t dims[3];
hsize_t a_size[3];
hsize_t offset[3];
hid_t status;
hid_t memspace_id = H5I_INVALID_HID;
hid_t dset_id = H5I_INVALID_HID;
hid_t filespace_id = H5I_INVALID_HID;
snprintf(dset_name, sizeof(dset_name), "/dset%03d", dset_num);
if (show_progress) {
fprintf(stdout, "%s: dset name = \"%s\".\n", fcn_name, dset_name);
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
}
if (pass) {
/* open the dataset */
dset_id = H5Dopen2(file_id, dset_name, H5P_DEFAULT);
if (dset_id < 0) {
pass = false;
failure_mssg = "H5Dopen2() failed.";
}
}
/* get the file space ID */
if (pass) {
filespace_id = H5Dget_space(dset_id);
if (filespace_id < 0) {
pass = false;
failure_mssg = "H5Dget_space() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* create the mem space to be used to read */
if (pass) {
dims[0] = 1;
dims[1] = CHUNK_SIZE;
dims[2] = CHUNK_SIZE;
memspace_id = H5Screate_simple(3, dims, NULL);
if (memspace_id < 0) {
pass = false;
failure_mssg = "H5Screate_simple() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* select in memory hyperslab */
if (pass) {
offset[0] = 0; /* offset of hyperslab in memory */
offset[1] = 0;
offset[2] = 0;
a_size[0] = 1; /* size of hyperslab */
a_size[1] = CHUNK_SIZE;
a_size[2] = CHUNK_SIZE;
status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL);
if (status < 0) {
pass = false;
failure_mssg = "H5Sselect_hyperslab() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* read data from data sets and validate it */
i = 0;
while ((pass) && (i < mpi_size)) {
j = 0;
while ((pass) && (j < DSET_SIZE)) {
k = 0;
while ((pass) && (k < DSET_SIZE)) {
/* select on disk hyperslab */
offset[0] = (hsize_t)i; /* offset of hyperslab in file */
offset[1] = (hsize_t)j; /* offset of hyperslab in file */
offset[2] = (hsize_t)k;
a_size[0] = (hsize_t)1;
a_size[1] = CHUNK_SIZE; /* size of hyperslab */
a_size[2] = CHUNK_SIZE;
status = H5Sselect_hyperslab(filespace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL);
if (status < 0) {
pass = false;
failure_mssg = "disk hyperslab create failed.";
}
/* read the chunk from file */
if (pass) {
status =
H5Dread(dset_id, H5T_NATIVE_INT, memspace_id, filespace_id, H5P_DEFAULT, data_chunk);
if (status < 0) {
pass = false;
failure_mssg = "chunk read failed.";
}
}
/* validate the slab */
if (pass) {
valid_chunk = true;
for (l = 0; l < CHUNK_SIZE; l++) {
for (m = 0; m < CHUNK_SIZE; m++) {
if (data_chunk[0][l][m] !=
((DSET_SIZE * DSET_SIZE * i) + (DSET_SIZE * (j + l)) + k + m + dset_num)) {
valid_chunk = false;
if (verbose) {
fprintf(stdout, "data_chunk[%0d][%0d] = %0d, expect %0d.\n", j, k,
data_chunk[0][j][k],
((DSET_SIZE * DSET_SIZE * i) + (DSET_SIZE * (j + l)) + k + m +
dset_num));
fprintf(stdout, "dset_num = %d, i = %d, j = %d, k = %d, l = %d, m = %d\n",
dset_num, i, j, k, l, m);
}
}
}
}
if (!valid_chunk) {
pass = false;
failure_mssg = "slab validation failed.";
if (verbose) {
fprintf(stdout, "Chunk (%0d, %0d) in /dset%03d is invalid.\n", j, k, dset_num);
}
}
}
k += CHUNK_SIZE;
}
j += CHUNK_SIZE;
}
i++;
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* close the file space */
if ((pass) && (H5Sclose(filespace_id) < 0)) {
pass = false;
failure_mssg = "H5Sclose(filespace_id) failed.";
}
/* close the dataset */
if ((pass) && (H5Dclose(dset_id) < 0)) {
pass = false;
failure_mssg = "H5Dclose(dset_id) failed.";
}
/* close the mem space */
if ((pass) && (H5Sclose(memspace_id) < 0)) {
pass = false;
failure_mssg = "H5Sclose(memspace_id) failed.";
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
return;
} /* serial_verify_dataset() */
/*-------------------------------------------------------------------------
* Function: verify_data_sets()
*
* Purpose: If pass is true on entry, verify that the data sets in the
* file exist and contain the expected data.
*
* Note that these data sets were created by
* create_data_sets() above. Thus any changes in that
* function must be reflected in this function, and
* vise-versa.
*
* On failure, set pass to false, and set failure_mssg
* to point to an appropriate failure message.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static void
verify_data_sets(hid_t file_id, int min_dset, int max_dset)
{
const char *fcn_name = "verify_data_sets()";
char dset_name[64];
bool show_progress = false;
bool valid_chunk;
bool verbose = false;
int cp = 0;
int i, j, k, l, m;
int data_chunk[CHUNK_SIZE][CHUNK_SIZE];
herr_t status;
hid_t filespace_ids[MAX_NUM_DSETS];
hid_t memspace_id = H5I_INVALID_HID;
hid_t dataset_ids[MAX_NUM_DSETS];
hsize_t dims[2];
hsize_t a_size[2];
hsize_t offset[2];
if (show_progress)
fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
assert(0 <= min_dset);
assert(min_dset <= max_dset);
assert(max_dset < MAX_NUM_DSETS);
/* open the datasets */
if (pass) {
i = min_dset;
while ((pass) && (i <= max_dset)) {
/* open the dataset */
if (pass) {
snprintf(dset_name, sizeof(dset_name), "/dset%03d", i);
dataset_ids[i] = H5Dopen2(file_id, dset_name, H5P_DEFAULT);
if (dataset_ids[i] < 0) {
pass = false;
failure_mssg = "H5Dopen2() failed.";
}
}
/* get the file space ID */
if (pass) {
filespace_ids[i] = H5Dget_space(dataset_ids[i]);
if (filespace_ids[i] < 0) {
pass = false;
failure_mssg = "H5Dget_space() failed.";
}
}
i++;
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
/* create the mem space to be used to read and write chunks */
if (pass) {
dims[0] = CHUNK_SIZE;
dims[1] = CHUNK_SIZE;
memspace_id = H5Screate_simple(2, dims, NULL);
if (memspace_id < 0) {
pass = false;
failure_mssg = "H5Screate_simple() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
/* select in memory hyperslab */
if (pass) {
offset[0] = 0; /*offset of hyperslab in memory*/
offset[1] = 0;
a_size[0] = CHUNK_SIZE; /*size of hyperslab*/
a_size[1] = CHUNK_SIZE;
status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL);
if (status < 0) {
pass = false;
failure_mssg = "H5Sselect_hyperslab() failed.";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
/* read data from data sets and validate it */
i = 0;
while ((pass) && (i < DSET_SIZE)) {
j = 0;
while ((pass) && (j < DSET_SIZE)) {
m = min_dset;
while ((pass) && (m <= max_dset)) {
/* select on disk hyperslab */
offset[0] = (hsize_t)i; /* offset of hyperslab in file */
offset[1] = (hsize_t)j;
a_size[0] = CHUNK_SIZE; /* size of hyperslab */
a_size[1] = CHUNK_SIZE;
status = H5Sselect_hyperslab(filespace_ids[m], H5S_SELECT_SET, offset, NULL, a_size, NULL);
if (status < 0) {
pass = false;
failure_mssg = "disk hyperslab create failed.";
}
/* read the chunk from file */
if (pass) {
status = H5Dread(dataset_ids[m], H5T_NATIVE_INT, memspace_id, filespace_ids[m],
H5P_DEFAULT, data_chunk);
if (status < 0) {
pass = false;
failure_mssg = "disk hyperslab create failed.";
}
}
/* validate the slab */
if (pass) {
valid_chunk = true;
for (k = 0; k < CHUNK_SIZE; k++) {
for (l = 0; l < CHUNK_SIZE; l++) {
if (data_chunk[k][l] !=
((DSET_SIZE * DSET_SIZE * m) + (DSET_SIZE * (i + k)) + j + l)) {
valid_chunk = false;
if (verbose) {
fprintf(stdout, "data_chunk[%0d][%0d] = %0d, expect %0d.\n", k, l,
data_chunk[k][l],
((DSET_SIZE * DSET_SIZE * m) + (DSET_SIZE * (i + k)) + j + l));
fprintf(stdout, "m = %d, i = %d, j = %d, k = %d, l = %d\n", m, i, j, k,
l);
}
}
}
}
if (!valid_chunk) {
pass = false;
failure_mssg = "slab validation failed.";
if (verbose) {
fprintf(stdout, "Chunk (%0d, %0d) in /dset%03d is invalid.\n", i, j, m);
}
}
}
m++;
}
j += CHUNK_SIZE;
}
i += CHUNK_SIZE;
}
if (show_progress)
fprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++);
/* close the file spaces */
i = min_dset;
while ((pass) && (i <= max_dset)) {
if (H5Sclose(filespace_ids[i]) < 0) {
pass = false;
failure_mssg = "H5Sclose() failed.";
}
i++;
}
/* close the datasets */
i = min_dset;
while ((pass) && (i <= max_dset)) {
if (H5Dclose(dataset_ids[i]) < 0) {
pass = false;
failure_mssg = "H5Dclose() failed.";
}
i++;
}
/* close the mem space */
if (pass) {
if (H5Sclose(memspace_id) < 0) {
pass = false;
failure_mssg = "H5Sclose(memspace_id) failed.";
}
}
return;
} /* verify_data_sets() */
/****************************************************************************/
/******************************* Test Functions *****************************/
/****************************************************************************/
/*-------------------------------------------------------------------------
* Function: verify_cache_image_RO()
*
* Purpose: Verify that a HDF5 file containing a cache image is
* opened R/O and read correctly by PHDF5 with the specified
* metadata write strategy.
*
* Basic cycle of operation is as follows:
*
* 1) Open the test file created at the beginning of this
* test read only.
*
* Verify that the file contains a cache image.
*
* Verify that only process 0 reads the cache image.
*
* Verify that all other processes receive the cache
* image block from process 0.
*
* 2) Verify that the file contains the expected data.
*
* 3) Close the file.
*
* 4) Open the file R/O, and verify that it still contains
* a cache image.
*
* 5) Verify that the file contains the expected data.
*
* 6) Close the file.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static unsigned
verify_cache_image_RO(int file_name_id, int md_write_strat, int mpi_rank)
{
const char *fcn_name = "verify_cache_image_RO()";
char filename[512];
bool show_progress = false;
hid_t file_id = H5I_INVALID_HID;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
int cp = 0;
pass = true;
if (mpi_rank == 0) {
switch (md_write_strat) {
case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY:
TESTING("parallel CI load test -- proc0 md write -- R/O");
break;
case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED:
TESTING("parallel CI load test -- dist md write -- R/O");
break;
default:
TESTING("parallel CI load test -- unknown md write -- R/o");
pass = false;
break;
}
}
show_progress = ((show_progress) && (mpi_rank == 0));
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* setup the file name */
if (pass) {
if (h5_fixname(FILENAMES[file_name_id], H5P_DEFAULT, filename, sizeof(filename)) == NULL) {
pass = false;
failure_mssg = "h5_fixname() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 1) Open the test file created at the beginning of this test.
*
* Verify that the file contains a cache image.
*/
if (pass) {
open_hdf5_file(/* create_file */ false,
/* mdci_sbem_expected */ true,
/* read_only */ true,
/* set_mdci_fapl */ false,
/* config_fsm */ false,
/* enable_page_buffer */ false,
/* hdf_file_name */ filename,
/* cache_image_flags */ H5C_CI__ALL_FLAGS,
/* file_id_ptr */ &file_id,
/* file_ptr_ptr */ &file_ptr,
/* cache_ptr_ptr */ &cache_ptr,
/* comm */ MPI_COMM_WORLD,
/* info */ MPI_INFO_NULL,
/* l_facc_type */ FACC_MPIO,
/* all_coll_metadata_ops */ false,
/* coll_metadata_write */ false,
/* md_write_strat */ md_write_strat);
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 2) Verify that the file contains the expected data.
*
* Verify that only process 0 reads the cache image.
*
* Verify that all other processes receive the cache
* image block from process 0.
*/
if (pass) {
verify_data_sets(file_id, 0, MAX_NUM_DSETS - 1);
}
/* Verify that only process 0 reads the cache image. */
#if H5C_COLLECT_CACHE_STATS
if (pass) {
if (((mpi_rank == 0) && (cache_ptr->images_read != 1)) ||
((mpi_rank > 0) && (cache_ptr->images_read != 0))) {
pass = false;
failure_mssg = "unexpected images_read.";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* Verify that all other processes receive the cache image block
* from process 0.
*
* Since we have already verified that only process 0 has read the
* image, it is sufficient to verify that the image was loaded on
* all processes.
*/
#if H5C_COLLECT_CACHE_STATS
if (pass) {
if (cache_ptr->images_loaded != 1) {
pass = false;
failure_mssg = "Image not loaded?.";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 3) Close the file. */
if (pass) {
if (H5Fclose(file_id) < 0) {
pass = false;
failure_mssg = "H5Fclose() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 4) Open the file, and verify that it doesn't contain a cache image. */
if (pass) {
open_hdf5_file(/* create_file */ false,
/* mdci_sbem_expected */ true,
/* read_only */ true,
/* set_mdci_fapl */ false,
/* config_fsm */ false,
/* enable_page_buffer */ false,
/* hdf_file_name */ filename,
/* cache_image_flags */ H5C_CI__ALL_FLAGS,
/* file_id_ptr */ &file_id,
/* file_ptr_ptr */ &file_ptr,
/* cache_ptr_ptr */ &cache_ptr,
/* comm */ MPI_COMM_WORLD,
/* info */ MPI_INFO_NULL,
/* l_facc_type */ FACC_MPIO,
/* all_coll_metadata_ops */ false,
/* coll_metadata_write */ false,
/* md_write_strat */ md_write_strat);
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 5) Verify that the file contains the expected data. */
if (pass) {
verify_data_sets(file_id, 0, MAX_NUM_DSETS - 1);
}
#if H5C_COLLECT_CACHE_STATS
if (pass) {
if (cache_ptr->images_loaded != 1) {
pass = false;
failure_mssg = "metadata cache image block not loaded(2).";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
/* 6) Close the file. */
if (pass) {
if (H5Fclose(file_id) < 0) {
pass = false;
failure_mssg = "H5Fclose() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* report results */
if (mpi_rank == 0) {
if (pass) {
PASSED();
}
else {
H5_FAILED();
if (show_progress) {
fprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
}
}
}
return !pass;
} /* verify_cache_image_RO() */
/*-------------------------------------------------------------------------
* Function: verify_cache_image_RW()
*
* Purpose: Verify that a HDF5 file containing a cache image is
* opened and read correctly by PHDF5 with the specified
* metadata write strategy.
*
* Basic cycle of operation is as follows:
*
* 1) Open the test file created at the beginning of this
* test.
*
* Verify that the file contains a cache image.
*
* 2) Verify that the file contains the expected data.
*
* Verify that only process 0 reads the cache image.
*
* Verify that all other processes receive the cache
* image block from process 0.
*
*
* 3) Close the file.
*
* 4) Open the file, and verify that it doesn't contain
* a cache image.
*
* 5) Verify that the file contains the expected data.
*
* 6) Close the file.
*
* 7) Delete the file.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static unsigned
verify_cache_image_RW(int file_name_id, int md_write_strat, int mpi_rank)
{
const char *fcn_name = "verify_cache_imageRW()";
char filename[512];
bool show_progress = false;
hid_t file_id = H5I_INVALID_HID;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
int cp = 0;
pass = true;
if (mpi_rank == 0) {
switch (md_write_strat) {
case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY:
TESTING("parallel CI load test -- proc0 md write -- R/W");
break;
case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED:
TESTING("parallel CI load test -- dist md write -- R/W");
break;
default:
TESTING("parallel CI load test -- unknown md write -- R/W");
pass = false;
break;
}
}
show_progress = ((show_progress) && (mpi_rank == 0));
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* setup the file name */
if (pass) {
if (h5_fixname(FILENAMES[file_name_id], H5P_DEFAULT, filename, sizeof(filename)) == NULL) {
pass = false;
failure_mssg = "h5_fixname() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 1) Open the test file created at the beginning of this test.
*
* Verify that the file contains a cache image.
*
* Verify that only process 0 reads the cache image.
*
* Verify that all other processes receive the cache
* image block from process 0.
*/
if (pass) {
open_hdf5_file(/* create_file */ false,
/* mdci_sbem_expected */ true,
/* read_only */ false,
/* set_mdci_fapl */ false,
/* config_fsm */ false,
/* enable_page_buffer */ false,
/* hdf_file_name */ filename,
/* cache_image_flags */ H5C_CI__ALL_FLAGS,
/* file_id_ptr */ &file_id,
/* file_ptr_ptr */ &file_ptr,
/* cache_ptr_ptr */ &cache_ptr,
/* comm */ MPI_COMM_WORLD,
/* info */ MPI_INFO_NULL,
/* l_facc_type */ FACC_MPIO,
/* all_coll_metadata_ops */ false,
/* coll_metadata_write */ false,
/* md_write_strat */ md_write_strat);
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 2) Verify that the file contains the expected data.
*
* Verify that only process 0 reads the cache image.
*
* Verify that all other processes receive the cache
* image block from process 0.
*/
if (pass) {
verify_data_sets(file_id, 0, MAX_NUM_DSETS - 1);
}
/* Verify that only process 0 reads the cache image. */
#if H5C_COLLECT_CACHE_STATS
if (pass) {
if (((mpi_rank == 0) && (cache_ptr->images_read != 1)) ||
((mpi_rank > 0) && (cache_ptr->images_read != 0))) {
pass = false;
failure_mssg = "unexpected images_read.";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* Verify that all other processes receive the cache image block
* from process 0.
*
* Since we have already verified that only process 0 has read the
* image, it is sufficient to verify that the image was loaded on
* all processes.
*/
#if H5C_COLLECT_CACHE_STATS
if (pass) {
if (cache_ptr->images_loaded != 1) {
pass = false;
failure_mssg = "Image not loaded?.";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 3) Close the file. */
if (pass) {
if (H5Fclose(file_id) < 0) {
pass = false;
failure_mssg = "H5Fclose() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 4) Open the file, and verify that it doesn't contain a cache image. */
if (pass) {
open_hdf5_file(/* create_file */ false,
/* mdci_sbem_expected */ false,
/* read_only */ false,
/* set_mdci_fapl */ false,
/* config_fsm */ false,
/* enable_page_buffer */ false,
/* hdf_file_name */ filename,
/* cache_image_flags */ H5C_CI__ALL_FLAGS,
/* file_id_ptr */ &file_id,
/* file_ptr_ptr */ &file_ptr,
/* cache_ptr_ptr */ &cache_ptr,
/* comm */ MPI_COMM_WORLD,
/* info */ MPI_INFO_NULL,
/* l_facc_type */ FACC_MPIO,
/* all_coll_metadata_ops */ false,
/* coll_metadata_write */ false,
/* md_write_strat */ md_write_strat);
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 5) Verify that the file contains the expected data. */
if (pass) {
verify_data_sets(file_id, 0, MAX_NUM_DSETS - 1);
}
#if H5C_COLLECT_CACHE_STATS
if (pass) {
if (cache_ptr->images_loaded != 0) {
pass = false;
failure_mssg = "metadata cache image block loaded(1).";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
/* 6) Close the file. */
if (pass) {
if (H5Fclose(file_id) < 0) {
pass = false;
failure_mssg = "H5Fclose() failed.\n";
}
}
if (show_progress)
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 7) Delete the file. */
if (pass) {
/* wait for everyone to close the file */
MPI_Barrier(MPI_COMM_WORLD);
if ((mpi_rank == 0) && (HDremove(filename) < 0)) {
pass = false;
failure_mssg = "HDremove() failed.\n";
}
}
/* report results */
if (mpi_rank == 0) {
if (pass) {
PASSED();
}
else {
H5_FAILED();
if (show_progress) {
fprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
}
}
}
return !pass;
} /* verify_cache_imageRW() */
/*****************************************************************************
*
* Function: smoke_check_1()
*
* Purpose: Initial smoke check to verify correct behaviour of cache
* image in combination with parallel.
*
* As cache image is currently disabled in the parallel case,
* we construct a test file in parallel, verify it in serial
* and generate a cache image in passing, and then verify
* it again in parallel.
*
* In passing, also verify that page buffering is silently
* disabled in the parallel case. Needless to say, this part
* of the test will have to be re-worked when and if page
* buffering is supported in parallel.
*
* Return: Success: true
*
* Failure: false
*
*****************************************************************************/
static bool
smoke_check_1(MPI_Comm mpi_comm, MPI_Info mpi_info, int mpi_rank, int mpi_size)
{
const char *fcn_name = "smoke_check_1()";
char filename[512];
bool show_progress = false;
hid_t file_id = H5I_INVALID_HID;
H5F_t *file_ptr = NULL;
H5C_t *cache_ptr = NULL;
int cp = 0;
int i;
int num_dsets = PAR_NUM_DSETS;
int test_file_index = 2;
h5_stat_size_t file_size;
pass = true;
if (mpi_rank == 0) {
TESTING("parallel cache image smoke check 1");
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* setup the file name */
if (pass) {
assert(FILENAMES[test_file_index]);
if (h5_fixname(FILENAMES[test_file_index], H5P_DEFAULT, filename, sizeof(filename)) == NULL) {
pass = false;
failure_mssg = "h5_fixname() failed.\n";
}
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 1) Create a PHDF5 file without the cache image FAPL entry.
*
* Verify that a cache image is not requested
*/
if (pass) {
open_hdf5_file(/* create_file */ true,
/* mdci_sbem_expected */ false,
/* read_only */ false,
/* set_mdci_fapl */ false,
/* config_fsm */ true,
/* enable_page_buffer */ false,
/* hdf_file_name */ filename,
/* cache_image_flags */ H5C_CI__ALL_FLAGS,
/* file_id_ptr */ &file_id,
/* file_ptr_ptr */ &file_ptr,
/* cache_ptr_ptr */ &cache_ptr,
/* comm */ mpi_comm,
/* info */ mpi_info,
/* l_facc_type */ FACC_MPIO,
/* all_coll_metadata_ops */ false,
/* coll_metadata_write */ true,
/* md_write_strat */ 1);
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 2) Create datasets in the file */
i = 0;
while ((pass) && (i < num_dsets)) {
par_create_dataset(i, file_id, mpi_rank, mpi_size);
i++;
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 3) Verify the datasets in the file */
i = 0;
while ((pass) && (i < num_dsets)) {
par_verify_dataset(i, file_id, mpi_rank);
i++;
}
/* 4) Close the file */
if (pass) {
if (H5Fclose(file_id) < 0) {
pass = false;
failure_mssg = "H5Fclose() failed.\n";
}
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 5 Insert a cache image into the file */
if (pass) {
par_insert_cache_image(test_file_index, mpi_rank, mpi_size);
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 6) Open the file R/O */
if (pass) {
open_hdf5_file(/* create_file */ false,
/* mdci_sbem_expected */ true,
/* read_only */ true,
/* set_mdci_fapl */ false,
/* config_fsm */ false,
/* enable_page_buffer */ false,
/* hdf_file_name */ filename,
/* cache_image_flags */ H5C_CI__ALL_FLAGS,
/* file_id_ptr */ &file_id,
/* file_ptr_ptr */ &file_ptr,
/* cache_ptr_ptr */ &cache_ptr,
/* comm */ mpi_comm,
/* info */ mpi_info,
/* l_facc_type */ FACC_MPIO,
/* all_coll_metadata_ops */ false,
/* coll_metadata_write */ true,
/* md_write_strat */ 1);
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 7) Verify the datasets in the file backwards
*
* Verify that only process 0 reads the cache image.
*
* Verify that all other processes receive the cache
* image block from process 0.
*/
i = num_dsets - 1;
while ((pass) && (i >= 0)) {
par_verify_dataset(i, file_id, mpi_rank);
i--;
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* Verify that only process 0 reads the cache image. */
#if H5C_COLLECT_CACHE_STATS
if (pass) {
if (((mpi_rank == 0) && (cache_ptr->images_read != 1)) ||
((mpi_rank > 0) && (cache_ptr->images_read != 0))) {
pass = false;
failure_mssg = "unexpected images_read.";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* Verify that all other processes receive the cache image block
* from process 0.
*
* Since we have already verified that only process 0 has read the
* image, it is sufficient to verify that the image was loaded on
* all processes.
*/
#if H5C_COLLECT_CACHE_STATS
if (pass) {
if (cache_ptr->images_loaded != 1) {
pass = false;
failure_mssg = "Image not loaded?.";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 8) Close the file */
if (pass) {
if (H5Fclose(file_id) < 0) {
pass = false;
failure_mssg = "H5Fclose() failed.";
}
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 9) Open the file */
if (pass) {
open_hdf5_file(/* create_file */ false,
/* mdci_sbem_expected */ true,
/* read_only */ false,
/* set_mdci_fapl */ false,
/* config_fsm */ false,
/* enable_page_buffer */ false,
/* hdf_file_name */ filename,
/* cache_image_flags */ H5C_CI__ALL_FLAGS,
/* file_id_ptr */ &file_id,
/* file_ptr_ptr */ &file_ptr,
/* cache_ptr_ptr */ &cache_ptr,
/* comm */ mpi_comm,
/* info */ mpi_info,
/* l_facc_type */ FACC_MPIO,
/* all_coll_metadata_ops */ false,
/* coll_metadata_write */ true,
/* md_write_strat */ 1);
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 10) Verify the datasets in the file
*
* Verify that only process 0 reads the cache image.
*
* Verify that all other processes receive the cache
* image block from process 0.
*/
i = 0;
while ((pass) && (i < num_dsets)) {
par_verify_dataset(i, file_id, mpi_rank);
i++;
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* Verify that only process 0 reads the cache image. */
#if H5C_COLLECT_CACHE_STATS
if (pass) {
if (((mpi_rank == 0) && (cache_ptr->images_read != 1)) ||
((mpi_rank > 0) && (cache_ptr->images_read != 0))) {
pass = false;
failure_mssg = "unexpected images_read.";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* Verify that all other processes receive the cache image block
* from process 0.
*
* Since we have already verified that only process 0 has read the
* image, it is sufficient to verify that the image was loaded on
* all processes.
*/
#if H5C_COLLECT_CACHE_STATS
if (pass) {
if (cache_ptr->images_loaded != 1) {
pass = false;
failure_mssg = "Image not loaded?.";
}
}
#endif /* H5C_COLLECT_CACHE_STATS */
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 11) Delete the datasets in the file */
i = 0;
while ((pass) && (i < num_dsets)) {
par_delete_dataset(i, file_id, mpi_rank);
i++;
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 12) Close the file */
if (pass) {
if (H5Fclose(file_id) < 0) {
pass = false;
failure_mssg = "H5Fclose() failed.";
}
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 13) Get the size of the file. Verify that it is less
* than 20 KB. Without deletions and persistent free
* space managers, size size is about 30 MB, so this
* is sufficient to verify that the persistent free
* space managers are more or less doing their job.
*
* Note that this test will have to change if we use
* a larger page size.
*/
if (pass) {
if ((file_size = h5_get_file_size(filename, H5P_DEFAULT)) < 0) {
pass = false;
failure_mssg = "h5_get_file_size() failed.";
}
else if (file_size > 20 * 1024) {
pass = false;
failure_mssg = "unexpectedly large file size.";
}
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* 14) Delete the file */
if (pass) {
/* wait for everyone to close the file */
MPI_Barrier(MPI_COMM_WORLD);
if ((mpi_rank == 0) && (HDremove(filename) < 0)) {
pass = false;
failure_mssg = "HDremove() failed.\n";
}
}
if ((mpi_rank == 0) && (show_progress))
fprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);
/* report results */
if (mpi_rank == 0) {
if (pass) {
PASSED();
}
else {
H5_FAILED();
fprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
}
}
return !pass;
} /* smoke_check_1() */
/*-------------------------------------------------------------------------
* Function: main
*
* Purpose: Run parallel tests on the cache image feature.
*
* At present, cache image is disabled in parallel, and
* thus these tests are restricted to verifying that a
* file with a cache image can be opened in the parallel
* case, and verifying that instructions to create a
* cache image are ignored in the parallel case.
*
* WARNING: This test uses fork() and execve(), and
* therefore will not run on Windows.
*
* Return: Success: 0
*
* Failure: 1
*
*-------------------------------------------------------------------------
*/
int
main(int argc, char **argv)
{
unsigned nerrs = 0;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
int mpi_size;
int mpi_rank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
/* Attempt to turn off atexit post processing so that in case errors
* happen during the test and the process is aborted, it will not get
* hung in the atexit post processing in which it may try to make MPI
* calls. By then, MPI calls may not work.
*/
if (H5dont_atexit() < 0)
printf("%d:Failed to turn off atexit processing. Continue.\n", mpi_rank);
H5open();
if (mpi_rank == 0) {
printf("===================================\n");
printf("Parallel metadata cache image tests\n");
printf(" mpi_size = %d\n", mpi_size);
printf("===================================\n");
}
if (mpi_size < 2) {
if (mpi_rank == 0)
printf(" Need at least 2 processes. Exiting.\n");
goto finish;
}
if (mpi_rank == 0) { /* create test files */
int i;
fprintf(stdout, "Constructing test files: \n");
fflush(stdout);
i = 0;
while ((FILENAMES[i] != NULL) && (i < TEST_FILES_TO_CONSTRUCT)) {
fprintf(stdout, " writing %s ... ", FILENAMES[i]);
fflush(stdout);
construct_test_file(i);
if (pass) {
printf("done.\n");
fflush(stdout);
}
else {
printf("failed.\n");
exit(EXIT_FAILURE);
}
i++;
}
fprintf(stdout, "Test file construction complete.\n");
}
/* can't start test until test files exist */
MPI_Barrier(MPI_COMM_WORLD);
nerrs += verify_cache_image_RO(0, H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY, mpi_rank);
nerrs += verify_cache_image_RO(1, H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED, mpi_rank);
nerrs += verify_cache_image_RW(0, H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY, mpi_rank);
nerrs += verify_cache_image_RW(1, H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED, mpi_rank);
nerrs += smoke_check_1(comm, info, mpi_rank, mpi_size);
finish:
/* make sure all processes are finished before final report, cleanup
* and exit.
*/
MPI_Barrier(MPI_COMM_WORLD);
if (mpi_rank == 0) { /* only process 0 reports */
printf("===================================\n");
if (nerrs > 0)
printf("***metadata cache image tests detected %d failures***\n", nerrs);
else
printf("metadata cache image tests finished with no failures\n");
printf("===================================\n");
}
/* close HDF5 library */
H5close();
/* MPI_Finalize must be called AFTER H5close which may use MPI calls */
MPI_Finalize();
/* cannot just return (nerrs) because exit code is limited to 1byte */
return (nerrs > 0);
} /* main() */