hdf5/src/H5B.c
Quincey Koziol e69e970a1c [svn-r5471] Purpose:
Code cleanup

Description:
    Broke the FUNC_ENTER macro into several macros, with more specialized
    uses (which followup mail will describe).  This was designed to move
    most/all of the checks which could be done at compile time to that point,
    instead of needlessly performing them (over & over :-) at run-time.
    This reduces the library's size (and thus staticly linked binaries) and
    has a minor speedup effect also.

Platforms tested:
    IRIX64 6.5 (modi4) with parallel & FORTRAN enabled, and additional testing
    on FreeBSD and Solaris immediately after the checkin.
2002-05-29 10:07:55 -05:00

2369 lines
69 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*-------------------------------------------------------------------------
* Copyright (C) 1997-2001 National Center for Supercomputing Applications
* All rights reserved.
*
*-------------------------------------------------------------------------
*
* Created: hdf5btree.c
* Jul 10 1997
* Robb Matzke <matzke@llnl.gov>
*
* Purpose: Implements balanced, sibling-linked, N-ary trees
* capable of storing any type of data with unique key
* values.
*
* A B-link-tree is a balanced tree where each node has
* a pointer to its left and right siblings. A
* B-link-tree is a rooted tree having the following
* properties:
*
* 1. Every node, x, has the following fields:
*
* a. level[x], the level in the tree at which node
* x appears. Leaf nodes are at level zero.
*
* b. n[x], the number of children pointed to by the
* node. Internal nodes point to subtrees while
* leaf nodes point to arbitrary data.
*
* c. The child pointers themselves, child[x,i] such
* that 0 <= i < n[x].
*
* d. n[x]+1 key values stored in increasing
* order:
*
* key[x,0] < key[x,1] < ... < key[x,n[x]].
*
* e. left[x] is a pointer to the node's left sibling
* or the null pointer if this is the left-most
* node at this level in the tree.
*
* f. right[x] is a pointer to the node's right
* sibling or the null pointer if this is the
* right-most node at this level in the tree.
*
* 3. The keys key[x,i] partition the key spaces of the
* children of x:
*
* key[x,i] <= key[child[x,i],j] <= key[x,i+1]
*
* for any valid combination of i and j.
*
* 4. There are lower and upper bounds on the number of
* child pointers a node can contain. These bounds
* can be expressed in terms of a fixed integer k>=2
* called the `minimum degree' of the B-tree.
*
* a. Every node other than the root must have at least
* k child pointers and k+1 keys. If the tree is
* nonempty, the root must have at least one child
* pointer and two keys.
*
* b. Every node can contain at most 2k child pointers
* and 2k+1 keys. A node is `full' if it contains
* exactly 2k child pointers and 2k+1 keys.
*
* 5. When searching for a particular value, V, and
* key[V] = key[x,i] for some node x and entry i,
* then:
*
* a. If i=0 the child[0] is followed.
*
* b. If i=n[x] the child[n[x]-1] is followed.
*
* c. Otherwise, the child that is followed
* (either child[x,i-1] or child[x,i]) is
* determined by the type of object to which the
* leaf nodes of the tree point and is controlled
* by the key comparison function registered for
* that type of B-tree.
*
*
* Modifications:
*
* Robb Matzke, 4 Aug 1997
* Added calls to H5E.
*
*-------------------------------------------------------------------------
*/
#define H5F_PACKAGE /*suppress error about including H5Fpkg */
/* private headers */
#include "H5private.h" /*library */
#include "H5ACprivate.h" /*cache */
#include "H5Bprivate.h" /*B-link trees */
#include "H5Eprivate.h" /*error handling */
#include "H5Fpkg.h" /*file access */
#include "H5FLprivate.h" /*Free Lists */
#include "H5Iprivate.h" /*IDs */
#include "H5MFprivate.h" /*file memory management */
#include "H5MMprivate.h" /*core memory management */
#include "H5Pprivate.h" /*property lists */
#define PABLO_MASK H5B_mask
#define BOUND(MIN,X,MAX) ((X)<(MIN)?(MIN):((X)>(MAX)?(MAX):(X)))
/* PRIVATE PROTOTYPES */
static H5B_ins_t H5B_insert_helper(H5F_t *f, haddr_t addr,
const H5B_class_t *type,
const double split_ratios[],
uint8_t *lt_key,
hbool_t *lt_key_changed,
uint8_t *md_key, void *udata,
uint8_t *rt_key,
hbool_t *rt_key_changed,
haddr_t *retval);
static herr_t H5B_insert_child(H5F_t *f, const H5B_class_t *type,
H5B_t *bt, int idx, haddr_t child,
H5B_ins_t anchor, void *md_key);
static herr_t H5B_flush(H5F_t *f, hbool_t destroy, haddr_t addr, H5B_t *b);
static H5B_t *H5B_load(H5F_t *f, haddr_t addr, const void *_type, void *udata);
static herr_t H5B_decode_key(H5F_t *f, H5B_t *bt, int idx);
static herr_t H5B_decode_keys(H5F_t *f, H5B_t *bt, int idx);
static size_t H5B_nodesize(H5F_t *f, const H5B_class_t *type,
size_t *total_nkey_size, size_t sizeof_rkey);
static herr_t H5B_split(H5F_t *f, const H5B_class_t *type, H5B_t *old_bt,
haddr_t old_addr, int idx,
const double split_ratios[], void *udata,
haddr_t *new_addr/*out*/);
static H5B_t * H5B_copy(H5F_t *f, const H5B_t *old_bt);
#ifdef H5B_DEBUG
static herr_t H5B_assert(H5F_t *f, haddr_t addr, const H5B_class_t *type,
void *udata);
#endif
/* H5B inherits cache-like properties from H5AC */
static const H5AC_class_t H5AC_BT[1] = {{
H5AC_BT_ID,
(void *(*)(H5F_t*, haddr_t, const void*, void*))H5B_load,
(herr_t (*)(H5F_t*, hbool_t, haddr_t, void*))H5B_flush,
}};
/* Interface initialization? */
#define INTERFACE_INIT NULL
static int interface_initialize_g = 0;
/* Declare a free list to manage the page information */
H5FL_BLK_DEFINE_STATIC(page);
/* Declare a PQ free list to manage the native block information */
H5FL_BLK_DEFINE_STATIC(native_block);
/* Declare a free list to manage the H5B_key_t array information */
H5FL_ARR_DEFINE_STATIC(H5B_key_t,-1);
/* Declare a free list to manage the haddr_t array information */
H5FL_ARR_DEFINE_STATIC(haddr_t,-1);
/* Declare a free list to manage the H5B_t struct */
H5FL_DEFINE_STATIC(H5B_t);
/*-------------------------------------------------------------------------
* Function: H5B_create
*
* Purpose: Creates a new empty B-tree leaf node. The UDATA pointer is
* passed as an argument to the sizeof_rkey() method for the
* B-tree.
*
* Return: Success: Non-negative, and the address of new node is
* returned through the ADDR_P argument.
*
* Failure: Negative
*
* Programmer: Robb Matzke
* matzke@llnl.gov
* Jun 23 1997
*
* Modifications:
* Robb Matzke, 1999-07-28
* Changed the name of the ADDR argument to ADDR_P to make it
* obvious that the address is passed by reference unlike most
* other functions that take addresses.
*-------------------------------------------------------------------------
*/
herr_t
H5B_create(H5F_t *f, const H5B_class_t *type, void *udata,
haddr_t *addr_p/*out*/)
{
H5B_t *bt = NULL;
size_t sizeof_rkey;
size_t size;
size_t total_native_keysize;
size_t offset;
int i;
herr_t ret_value = FAIL;
FUNC_ENTER_NOAPI(H5B_create, FAIL);
/*
* Check arguments.
*/
assert(f);
assert(type);
assert(addr_p);
/*
* Allocate file and memory data structures.
*/
sizeof_rkey = (type->get_sizeof_rkey) (f, udata);
size = H5B_nodesize(f, type, &total_native_keysize, sizeof_rkey);
if (HADDR_UNDEF==(*addr_p=H5MF_alloc(f, H5FD_MEM_BTREE, (hsize_t)size))) {
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"file allocation failed for B-tree root node");
}
if (NULL==(bt = H5FL_ALLOC(H5B_t,1))) {
HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL,
"memory allocation failed for B-tree root node");
}
bt->type = type;
bt->sizeof_rkey = sizeof_rkey;
bt->dirty = TRUE;
bt->ndirty = 0;
bt->level = 0;
bt->left = HADDR_UNDEF;
bt->right = HADDR_UNDEF;
bt->nchildren = 0;
if (NULL==(bt->page=H5FL_BLK_ALLOC(page,size,1)) ||
NULL==(bt->native=H5FL_BLK_ALLOC(native_block,total_native_keysize,0)) ||
NULL==(bt->child=H5FL_ARR_ALLOC(haddr_t,(size_t)(2*H5B_Kvalue(f,type)),0)) ||
NULL==(bt->key=H5FL_ARR_ALLOC(H5B_key_t,(size_t)(2*H5B_Kvalue(f,type)+1),0))) {
HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL,
"memory allocation failed for B-tree root node");
}
/*
* Initialize each entry's raw child and key pointers to point into the
* `page' buffer. Each native key pointer should be null until the key is
* translated to native format.
*/
for (i = 0, offset = H5B_SIZEOF_HDR(f);
i < 2 * H5B_Kvalue(f, type);
i++, offset += bt->sizeof_rkey + H5F_SIZEOF_ADDR(f)) {
bt->key[i].dirty = FALSE;
bt->key[i].rkey = bt->page + offset;
bt->key[i].nkey = NULL;
bt->child[i] = HADDR_UNDEF;
}
/*
* The last possible key...
*/
bt->key[2 * H5B_Kvalue(f, type)].dirty = FALSE;
bt->key[2 * H5B_Kvalue(f, type)].rkey = bt->page + offset;
bt->key[2 * H5B_Kvalue(f, type)].nkey = NULL;
/*
* Cache the new B-tree node.
*/
if (H5AC_set(f, H5AC_BT, *addr_p, bt) < 0) {
HRETURN_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL,
"can't add B-tree root node to cache");
}
#ifdef H5B_DEBUG
H5B_assert(f, *addr_p, type, udata);
#endif
ret_value = SUCCEED;
done:
if (ret_value<0) {
H5MF_xfree(f, H5FD_MEM_BTREE, *addr_p, (hsize_t)size);
if (bt) {
H5FL_BLK_FREE (page,bt->page);
H5FL_BLK_FREE (native_block,bt->native);
H5FL_ARR_FREE (haddr_t,bt->child);
H5FL_ARR_FREE (H5B_key_t,bt->key);
H5FL_FREE (H5B_t,bt);
}
}
FUNC_LEAVE(ret_value);
}
/*-------------------------------------------------------------------------
* Function: H5B_Kvalue
*
* Purpose: Replaced a macro to retrieve a B-tree key value for a certain
* type, now that the generic properties are being used to store
* the B-tree values.
*
* Return: Success: Non-negative, and the B-tree key value is
* returned.
*
* Failure: Negative (should not happen)
*
* Programmer: Raymond Lu
* slu@ncsa.uiuc.edu
* Oct 14 2001
*
* Modifications:
* Quincey Koziol, 2001-10-15
* Added this header and removed unused ret_value variable.
*-------------------------------------------------------------------------
*/
int
H5B_Kvalue(H5F_t *f, const H5B_class_t *type)
{
int btree_k[H5B_NUM_BTREE_ID];
H5P_genplist_t *plist;
FUNC_ENTER_NOAPI(H5B_Kvalue, FAIL);
assert(f);
assert(type);
/* Check arguments */
if (NULL == (plist = H5I_object(f->shared->fcpl_id)))
HRETURN_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "can't get property list");
if(H5P_get(plist, H5F_CRT_BTREE_RANK_NAME, btree_k) < 0)
HRETURN_ERROR(H5E_PLIST, H5E_CANTGET, FAIL, "unable to get rank for btree internal nodes");
FUNC_LEAVE(btree_k[type->id]);
} /* end H5B_Kvalue() */
/*-------------------------------------------------------------------------
* Function: H5B_load
*
* Purpose: Loads a B-tree node from the disk.
*
* Return: Success: Pointer to a new B-tree node.
*
* Failure: NULL
*
* Programmer: Robb Matzke
* matzke@llnl.gov
* Jun 23 1997
*
* Modifications:
* Robb Matzke, 1999-07-28
* The ADDR argument is passed by value.
*-------------------------------------------------------------------------
*/
static H5B_t *
H5B_load(H5F_t *f, haddr_t addr, const void *_type, void *udata)
{
const H5B_class_t *type = (const H5B_class_t *) _type;
size_t total_nkey_size;
size_t size;
H5B_t *bt = NULL;
int i;
uint8_t *p;
H5B_t *ret_value = NULL;
FUNC_ENTER_NOAPI(H5B_load, NULL);
/* Check arguments */
assert(f);
assert(H5F_addr_defined(addr));
assert(type);
assert(type->get_sizeof_rkey);
if (NULL==(bt = H5FL_ALLOC(H5B_t,1))) {
HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, NULL,
"memory allocation failed");
}
bt->sizeof_rkey = (type->get_sizeof_rkey) (f, udata);
size = H5B_nodesize(f, type, &total_nkey_size, bt->sizeof_rkey);
bt->type = type;
bt->dirty = FALSE;
bt->ndirty = 0;
if (NULL==(bt->page=H5FL_BLK_ALLOC(page,size,0)) ||
NULL==(bt->native=H5FL_BLK_ALLOC(native_block,total_nkey_size,0)) ||
NULL==(bt->key=H5FL_ARR_ALLOC(H5B_key_t,(size_t)(2*H5B_Kvalue(f,type)+1),0)) ||
NULL==(bt->child=H5FL_ARR_ALLOC(haddr_t,(size_t)(2*H5B_Kvalue(f,type)),0))) {
HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, NULL,
"memory allocation failed");
}
if (H5F_block_read(f, H5FD_MEM_BTREE, addr, size, H5P_DATASET_XFER_DEFAULT, bt->page)<0) {
HGOTO_ERROR(H5E_BTREE, H5E_READERROR, NULL,
"can't read B-tree node");
}
p = bt->page;
/* magic number */
if (HDmemcmp(p, H5B_MAGIC, H5B_SIZEOF_MAGIC)) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, NULL,
"wrong B-tree signature");
}
p += 4;
/* node type and level */
if (*p++ != type->id) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, NULL,
"incorrect B-tree node level");
}
bt->level = *p++;
/* entries used */
UINT16DECODE(p, bt->nchildren);
/* sibling pointers */
H5F_addr_decode(f, (const uint8_t **) &p, &(bt->left));
H5F_addr_decode(f, (const uint8_t **) &p, &(bt->right));
/* the child/key pairs */
for (i = 0; i < 2 * H5B_Kvalue(f, type); i++) {
bt->key[i].dirty = FALSE;
bt->key[i].rkey = p;
p += bt->sizeof_rkey;
bt->key[i].nkey = NULL;
if (i < bt->nchildren) {
H5F_addr_decode(f, (const uint8_t **) &p, bt->child + i);
} else {
bt->child[i] = HADDR_UNDEF;
p += H5F_SIZEOF_ADDR(f);
}
}
bt->key[2 * H5B_Kvalue(f, type)].dirty = FALSE;
bt->key[2 * H5B_Kvalue(f, type)].rkey = p;
bt->key[2 * H5B_Kvalue(f, type)].nkey = NULL;
ret_value = bt;
done:
if (!ret_value && bt) {
H5FL_ARR_FREE(haddr_t,bt->child);
H5FL_ARR_FREE(H5B_key_t,bt->key);
H5FL_BLK_FREE(page,bt->page);
H5FL_BLK_FREE(native_block,bt->native);
H5FL_FREE(H5B_t,bt);
}
FUNC_LEAVE(ret_value);
}
/*-------------------------------------------------------------------------
* Function: H5B_flush
*
* Purpose: Flushes a dirty B-tree node to disk.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Robb Matzke
* matzke@llnl.gov
* Jun 23 1997
*
* Modifications:
* rky 980828
* Only p0 writes metadata to disk.
*
* Robb Matzke, 1999-07-28
* The ADDR argument is passed by value.
*-------------------------------------------------------------------------
*/
static herr_t
H5B_flush(H5F_t *f, hbool_t destroy, haddr_t addr, H5B_t *bt)
{
int i;
size_t size = 0;
uint8_t *p = bt->page;
FUNC_ENTER_NOAPI(H5B_flush, FAIL);
/*
* Check arguments.
*/
assert(f);
assert(H5F_addr_defined(addr));
assert(bt);
assert(bt->type);
assert(bt->type->encode);
size = H5B_nodesize(f, bt->type, NULL, bt->sizeof_rkey);
if (bt->dirty) {
/* magic number */
HDmemcpy(p, H5B_MAGIC, H5B_SIZEOF_MAGIC);
p += 4;
/* node type and level */
*p++ = bt->type->id;
*p++ = bt->level;
/* entries used */
UINT16ENCODE(p, bt->nchildren);
/* sibling pointers */
H5F_addr_encode(f, &p, bt->left);
H5F_addr_encode(f, &p, bt->right);
/* child keys and pointers */
for (i=0; i<=bt->nchildren; i++) {
/* encode the key */
assert(bt->key[i].rkey == p);
if (bt->key[i].dirty) {
if (bt->key[i].nkey) {
if ((bt->type->encode) (f, bt, bt->key[i].rkey,
bt->key[i].nkey) < 0) {
HRETURN_ERROR(H5E_BTREE, H5E_CANTENCODE, FAIL,
"unable to encode B-tree key");
}
}
bt->key[i].dirty = FALSE;
}
p += bt->sizeof_rkey;
/* encode the child address */
if (i < bt->ndirty) {
H5F_addr_encode(f, &p, bt->child[i]);
} else {
p += H5F_SIZEOF_ADDR(f);
}
}
/*
* Write the disk page. We always write the header, but we don't
* bother writing data for the child entries that don't exist or
* for the final unchanged children.
*/
if (H5F_block_write(f, H5FD_MEM_BTREE, addr, size, H5P_DATASET_XFER_DEFAULT, bt->page)<0) {
HRETURN_ERROR(H5E_BTREE, H5E_CANTFLUSH, FAIL,
"unable to save B-tree node to disk");
}
bt->dirty = FALSE;
bt->ndirty = 0;
}
if (destroy) {
H5FL_ARR_FREE(haddr_t,bt->child);
H5FL_ARR_FREE(H5B_key_t,bt->key);
H5FL_BLK_FREE(page,bt->page);
H5FL_BLK_FREE(native_block,bt->native);
H5FL_FREE(H5B_t,bt);
}
FUNC_LEAVE(SUCCEED);
}
/*-------------------------------------------------------------------------
* Function: H5B_find
*
* Purpose: Locate the specified information in a B-tree and return
* that information by filling in fields of the caller-supplied
* UDATA pointer depending on the type of leaf node
* requested. The UDATA can point to additional data passed
* to the key comparison function.
*
* Note: This function does not follow the left/right sibling
* pointers since it assumes that all nodes can be reached
* from the parent node.
*
* Return: Non-negative on success (if found, values returned through the
* UDATA argument). Negative on failure (if not found, UDATA is
* undefined).
*
* Programmer: Robb Matzke
* matzke@llnl.gov
* Jun 23 1997
*
* Modifications:
* Robb Matzke, 1999-07-28
* The ADDR argument is passed by value.
*-------------------------------------------------------------------------
*/
herr_t
H5B_find(H5F_t *f, const H5B_class_t *type, haddr_t addr, void *udata)
{
H5B_t *bt = NULL;
int idx = -1, lt = 0, rt, cmp = 1;
int ret_value = FAIL;
FUNC_ENTER_NOAPI(H5B_find, FAIL);
/*
* Check arguments.
*/
assert(f);
assert(type);
assert(type->decode);
assert(type->cmp3);
assert(type->found);
assert(H5F_addr_defined(addr));
/*
* Perform a binary search to locate the child which contains
* the thing for which we're searching.
*/
if (NULL == (bt = H5AC_protect(f, H5AC_BT, addr, type, udata))) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
"unable to load B-tree node");
}
rt = bt->nchildren;
while (lt < rt && cmp) {
idx = (lt + rt) / 2;
if (H5B_decode_keys(f, bt, idx) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
"unable to decode B-tree key(s)");
}
/* compare */
if ((cmp = (type->cmp3) (f, bt->key[idx].nkey, udata,
bt->key[idx+1].nkey)) < 0) {
rt = idx;
} else {
lt = idx+1;
}
}
if (cmp) {
HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL,
"B-tree key not found");
}
/*
* Follow the link to the subtree or to the data node.
*/
assert(idx >= 0 && idx < bt->nchildren);
if (bt->level > 0) {
if ((ret_value = H5B_find(f, type, bt->child[idx], udata)) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL,
"key not found in subtree");
}
} else {
ret_value = (type->found) (f, bt->child[idx], bt->key[idx].nkey,
udata, bt->key[idx+1].nkey);
if (ret_value < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL,
"key not found in leaf node");
}
}
done:
if (bt && H5AC_unprotect(f, H5AC_BT, addr, bt) < 0) {
HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, FAIL,
"unable to release node");
}
FUNC_LEAVE(ret_value);
}
/*-------------------------------------------------------------------------
* Function: H5B_split
*
* Purpose: Split a single node into two nodes. The old node will
* contain the left children and the new node will contain the
* right children.
*
* The UDATA pointer is passed to the sizeof_rkey() method but is
* otherwise unused.
*
* The OLD_BT argument is a pointer to a protected B-tree
* node.
*
* Return: Non-negative on success (The address of the new node is
* returned through the NEW_ADDR argument). Negative on failure.
*
* Programmer: Robb Matzke
* matzke@llnl.gov
* Jul 3 1997
*
* Modifications:
* Robb Matzke, 1999-07-28
* The OLD_ADDR argument is passed by value. The NEW_ADDR
* argument has been renamed to NEW_ADDR_P
*-------------------------------------------------------------------------
*/
static herr_t
H5B_split(H5F_t *f, const H5B_class_t *type, H5B_t *old_bt, haddr_t old_addr,
int idx, const double split_ratios[], void *udata,
haddr_t *new_addr_p/*out*/)
{
H5B_t *new_bt = NULL, *tmp_bt = NULL;
herr_t ret_value = FAIL;
int i, k, nleft, nright;
size_t recsize = 0;
FUNC_ENTER_NOINIT(H5B_split);
/*
* Check arguments.
*/
assert(f);
assert(type);
assert(H5F_addr_defined(old_addr));
/*
* Initialize variables.
*/
assert(old_bt->nchildren == 2 * H5B_Kvalue(f, type));
recsize = old_bt->sizeof_rkey + H5F_SIZEOF_ADDR(f);
k = H5B_Kvalue(f, type);
#ifdef H5B_DEBUG
if (H5DEBUG(B)) {
const char *side;
if (!H5F_addr_defined(old_bt->left) &&
!H5F_addr_defined(old_bt->right)) {
side = "ONLY";
} else if (!H5F_addr_defined(old_bt->right)) {
side = "RIGHT";
} else if (!H5F_addr_defined(old_bt->left)) {
side = "LEFT";
} else {
side = "MIDDLE";
}
fprintf(H5DEBUG(B), "H5B_split: %3d {%5.3f,%5.3f,%5.3f} %6s",
2*k, split_ratios[0], split_ratios[1], split_ratios[2], side);
}
#endif
/*
* Decide how to split the children of the old node among the old node
* and the new node.
*/
if (!H5F_addr_defined(old_bt->right)) {
nleft = (int)(2 * k * split_ratios[2]); /*right*/
} else if (!H5F_addr_defined(old_bt->left)) {
nleft = (int)(2 * k * split_ratios[0]); /*left*/
} else {
nleft = (int)(2 * k * split_ratios[1]); /*middle*/
}
/*
* Keep the new child in the same node as the child that split. This can
* result in nodes that have an unused child when data is written
* sequentially, but it simplifies stuff below.
*/
if (idx<nleft && nleft==2*k) {
--nleft;
} else if (idx>=nleft && 0==nleft) {
nleft++;
}
nright = 2*k - nleft;
#ifdef H5B_DEBUG
if (H5DEBUG(B)) {
fprintf(H5DEBUG(B), " split %3d/%-3d\n", nleft, nright);
}
#endif
/*
* Create the new B-tree node.
*/
if (H5B_create(f, type, udata, new_addr_p/*out*/) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL,
"unable to create B-tree");
}
if (NULL==(new_bt=H5AC_protect(f, H5AC_BT, *new_addr_p, type, udata))) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
"unable to protect B-tree");
}
new_bt->level = old_bt->level;
/*
* Copy data from the old node to the new node.
*/
HDmemcpy(new_bt->page + H5B_SIZEOF_HDR(f),
old_bt->page + H5B_SIZEOF_HDR(f) + nleft * recsize,
nright * recsize + new_bt->sizeof_rkey);
HDmemcpy(new_bt->native,
old_bt->native + nleft * type->sizeof_nkey,
(nright+1) * type->sizeof_nkey);
for (i=0; i<=nright; i++) {
/* key */
new_bt->key[i].dirty = old_bt->key[nleft+i].dirty;
if (old_bt->key[nleft+i].nkey) {
new_bt->key[i].nkey = new_bt->native + i * type->sizeof_nkey;
}
/* child */
if (i < nright) {
new_bt->child[i] = old_bt->child[nleft+i];
}
}
new_bt->ndirty = new_bt->nchildren = nright;
/*
* Truncate the old node.
*/
old_bt->dirty = TRUE;
old_bt->nchildren = nleft;
old_bt->ndirty = MIN(old_bt->ndirty, old_bt->nchildren);
/*
* Update sibling pointers.
*/
new_bt->left = old_addr;
new_bt->right = old_bt->right;
if (H5F_addr_defined(old_bt->right)) {
if (NULL == (tmp_bt = H5AC_find(f, H5AC_BT, old_bt->right, type,
udata))) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
"unable to load right sibling");
}
tmp_bt->dirty = TRUE;
tmp_bt->left = *new_addr_p;
}
old_bt->right = *new_addr_p;
HGOTO_DONE(SUCCEED);
done:
{
if (new_bt && H5AC_unprotect(f, H5AC_BT, *new_addr_p, new_bt) < 0) {
HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, FAIL,
"unable to release B-tree node");
}
}
FUNC_LEAVE(ret_value);
}
/*-------------------------------------------------------------------------
* Function: H5B_decode_key
*
* Purpose: Decode the specified key into native format. Do not call
* this function if the key is already decoded since it my
* decode a stale raw key into the native key.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Robb Matzke
* matzke@llnl.gov
* Jul 8 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
H5B_decode_key(H5F_t *f, H5B_t *bt, int idx)
{
FUNC_ENTER_NOINIT(H5B_decode_key);
bt->key[idx].nkey = bt->native + idx * bt->type->sizeof_nkey;
if ((bt->type->decode) (f, bt, bt->key[idx].rkey,
bt->key[idx].nkey) < 0) {
HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
"unable to decode key");
}
FUNC_LEAVE(SUCCEED);
}
/*-------------------------------------------------------------------------
* Function: H5B_decode_keys
*
* Purpose: Decode keys on either side of the specified branch.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Robb Matzke
* Tuesday, October 14, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
H5B_decode_keys(H5F_t *f, H5B_t *bt, int idx)
{
FUNC_ENTER_NOINIT(H5B_decode_keys);
assert(f);
assert(bt);
assert(idx >= 0 && idx < bt->nchildren);
if (!bt->key[idx].nkey && H5B_decode_key(f, bt, idx) < 0) {
HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
"unable to decode key");
}
if (!bt->key[idx+1].nkey && H5B_decode_key(f, bt, idx+1) < 0) {
HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
"unable to decode key");
}
FUNC_LEAVE(SUCCEED);
}
/*-------------------------------------------------------------------------
* Function: H5B_insert
*
* Purpose: Adds a new item to the B-tree. If the root node of
* the B-tree splits then the B-tree gets a new address.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Robb Matzke
* matzke@llnl.gov
* Jun 23 1997
*
* Modifications:
* Robb Matzke, 28 Sep 1998
* The optional SPLIT_RATIOS[] indicates what percent of the child
* pointers should go in the left node when a node splits. There are
* three possibilities and a separate split ratio can be specified for
* each: [0] The node that split is the left-most node at its level of
* the tree, [1] the node that split has left and right siblings, [2]
* the node that split is the right-most node at its level of the tree.
* When a node is an only node at its level then we use the right-most
* rule. If SPLIT_RATIOS is null then default values are used.
*
* Robb Matzke, 1999-07-28
* The ADDR argument is passed by value.
*-------------------------------------------------------------------------
*/
herr_t
H5B_insert(H5F_t *f, const H5B_class_t *type, haddr_t addr,
const double split_ratios[], void *udata)
{
/*
* These are defined this way to satisfy alignment constraints.
*/
uint64_t _lt_key[128], _md_key[128], _rt_key[128];
uint8_t *lt_key=(uint8_t*)_lt_key;
uint8_t *md_key=(uint8_t*)_md_key;
uint8_t *rt_key=(uint8_t*)_rt_key;
hbool_t lt_key_changed = FALSE, rt_key_changed = FALSE;
haddr_t child, old_root;
int level;
H5B_t *bt;
hsize_t size;
H5B_ins_t my_ins = H5B_INS_ERROR;
herr_t ret_value = FAIL;
FUNC_ENTER_NOAPI(H5B_insert, FAIL);
/*
* Check arguments.
*/
assert(f);
assert(type);
assert(type->sizeof_nkey <= sizeof _lt_key);
assert(H5F_addr_defined(addr));
if ((my_ins = H5B_insert_helper(f, addr, type, split_ratios, lt_key,
&lt_key_changed, md_key, udata, rt_key,
&rt_key_changed, &child/*out*/))<0 ||
my_ins<0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL,
"unable to insert key");
}
if (H5B_INS_NOOP == my_ins) HRETURN(SUCCEED);
assert(H5B_INS_RIGHT == my_ins);
/* the current root */
if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
"unable to locate root of B-tree");
}
level = bt->level;
if (!lt_key_changed) {
if (!bt->key[0].nkey && H5B_decode_key(f, bt, 0) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
"unable to decode key");
}
HDmemcpy(lt_key, bt->key[0].nkey, type->sizeof_nkey);
}
/* the new node */
if (NULL == (bt = H5AC_find(f, H5AC_BT, child, type, udata))) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
"unable to load new node");
}
if (!rt_key_changed) {
if (!bt->key[bt->nchildren].nkey &&
H5B_decode_key(f, bt, bt->nchildren) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
"unable to decode key");
}
HDmemcpy(rt_key, bt->key[bt->nchildren].nkey, type->sizeof_nkey);
}
/*
* Copy the old root node to some other file location and make the new
* root at the old root's previous address. This prevents the B-tree
* from "moving".
*/
size = H5B_nodesize(f, type, NULL, bt->sizeof_rkey);
if (HADDR_UNDEF==(old_root=H5MF_alloc(f, H5FD_MEM_BTREE, size))) {
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"unable to allocate file space to move root");
}
/* update the new child's left pointer */
if (NULL == (bt = H5AC_find(f, H5AC_BT, child, type, udata))) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
"unable to load new child");
}
bt->dirty = TRUE;
bt->left = old_root;
/*
* Move the node to the new location by checking it out & checking it in
* at the new location -QAK
*/
/* Bring the old root into the cache if it's not already */
if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
"unable to load new child");
}
/* Make certain the old root info is marked as dirty before moving it, */
/* so it is certain to be written out at the new location */
bt->dirty = TRUE;
/* Make a copy of the old root information */
if (NULL == (bt = H5B_copy(f, bt))) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
"unable to copy old root");
}
/* Move the location on the disk */
if (H5AC_rename(f, H5AC_BT, addr, old_root) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTSPLIT, FAIL,
"unable to move B-tree root node");
}
/* Insert the copy of the old root into the file again */
if (H5AC_set(f, H5AC_BT, addr, bt) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTFLUSH, FAIL,
"unable to flush old B-tree root node");
}
/* clear the old root info at the old address (we already copied it) */
bt->dirty = TRUE;
bt->left = HADDR_UNDEF;
bt->right = HADDR_UNDEF;
/* Set the new information for the copy */
bt->ndirty = 2;
bt->level = level + 1;
bt->nchildren = 2;
bt->child[0] = old_root;
bt->key[0].dirty = TRUE;
bt->key[0].nkey = bt->native;
HDmemcpy(bt->key[0].nkey, lt_key, type->sizeof_nkey);
bt->child[1] = child;
bt->key[1].dirty = TRUE;
bt->key[1].nkey = bt->native + type->sizeof_nkey;
HDmemcpy(bt->key[1].nkey, md_key, type->sizeof_nkey);
bt->key[2].dirty = TRUE;
bt->key[2].nkey = bt->native + 2 * type->sizeof_nkey;
HDmemcpy(bt->key[2].nkey, rt_key, type->sizeof_nkey);
#ifdef H5B_DEBUG
H5B_assert(f, addr, type, udata);
#endif
ret_value = SUCCEED;
done:
FUNC_LEAVE(ret_value);
}
/*-------------------------------------------------------------------------
* Function: H5B_insert_child
*
* Purpose: Insert a child to the left or right of child[IDX] depending
* on whether ANCHOR is H5B_INS_LEFT or H5B_INS_RIGHT. The BT
* argument is a pointer to a protected B-tree node.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Robb Matzke
* matzke@llnl.gov
* Jul 8 1997
*
* Modifications:
* Robb Matzke, 1999-07-28
* The CHILD argument is passed by value.
*-------------------------------------------------------------------------
*/
static herr_t
H5B_insert_child(H5F_t *f, const H5B_class_t *type, H5B_t *bt,
int idx, haddr_t child, H5B_ins_t anchor, void *md_key)
{
size_t recsize;
int i;
FUNC_ENTER_NOINIT(H5B_insert_child);
assert(bt);
assert(bt->nchildren<2*H5B_Kvalue(f, type));
bt->dirty = TRUE;
recsize = bt->sizeof_rkey + H5F_SIZEOF_ADDR(f);
if (H5B_INS_RIGHT == anchor) {
/*
* The MD_KEY is the left key of the new node.
*/
idx++;
HDmemmove(bt->page + H5B_SIZEOF_HDR(f) + (idx+1) * recsize,
bt->page + H5B_SIZEOF_HDR(f) + idx * recsize,
(bt->nchildren - idx) * recsize + bt->sizeof_rkey);
HDmemmove(bt->native + (idx+1) * type->sizeof_nkey,
bt->native + idx * type->sizeof_nkey,
((bt->nchildren - idx) + 1) * type->sizeof_nkey);
for (i=bt->nchildren; i>=idx; --i) {
bt->key[i+1].dirty = bt->key[i].dirty;
if (bt->key[i].nkey) {
bt->key[i+1].nkey = bt->native + (i+1) * type->sizeof_nkey;
} else {
bt->key[i+1].nkey = NULL;
}
}
bt->key[idx].dirty = TRUE;
bt->key[idx].nkey = bt->native + idx * type->sizeof_nkey;
HDmemcpy(bt->key[idx].nkey, md_key, type->sizeof_nkey);
} else {
/*
* The MD_KEY is the right key of the new node.
*/
HDmemmove(bt->page + (H5B_SIZEOF_HDR(f) +
(idx+1) * recsize + bt->sizeof_rkey),
bt->page + (H5B_SIZEOF_HDR(f) +
idx * recsize + bt->sizeof_rkey),
(bt->nchildren - idx) * recsize);
HDmemmove(bt->native + (idx+2) * type->sizeof_nkey,
bt->native + (idx+1) * type->sizeof_nkey,
(bt->nchildren - idx) * type->sizeof_nkey);
for (i = bt->nchildren; i > idx; --i) {
bt->key[i+1].dirty = bt->key[i].dirty;
if (bt->key[i].nkey) {
bt->key[i+1].nkey = bt->native + (i+1) * type->sizeof_nkey;
} else {
bt->key[i+1].nkey = NULL;
}
}
bt->key[idx+1].dirty = TRUE;
bt->key[idx+1].nkey = bt->native + (idx+1) * type->sizeof_nkey;
HDmemcpy(bt->key[idx+1].nkey, md_key, type->sizeof_nkey);
}
HDmemmove(bt->child + idx + 1,
bt->child + idx,
(bt->nchildren - idx) * sizeof(haddr_t));
bt->child[idx] = child;
bt->nchildren += 1;
bt->ndirty = bt->nchildren;
FUNC_LEAVE(SUCCEED);
}
/*-------------------------------------------------------------------------
* Function: H5B_insert_helper
*
* Purpose: Inserts the item UDATA into the tree rooted at ADDR and having
* the specified type.
*
* On return, if LT_KEY_CHANGED is non-zero, then LT_KEY is
* the new native left key. Similarily for RT_KEY_CHANGED
* and RT_KEY.
*
* If the node splits, then MD_KEY contains the key that
* was split between the two nodes (that is, the key that
* appears as the max key in the left node and the min key
* in the right node).
*
* Return: Success: A B-tree operation. The address of the new
* node, if the node splits, is returned through
* the NEW_NODE_P argument. The new node is always
* to the right of the previous node. This
* function is called recursively and the return
* value influences the behavior of the caller.
* See also, declaration of H5B_ins_t.
*
* Failure: H5B_INS_ERROR
*
* Programmer: Robb Matzke
* matzke@llnl.gov
* Jul 9 1997
*
* Modifications:
*
* Robb Matzke, 28 Sep 1998
* The optional SPLIT_RATIOS[] indicates what percent of the child
* pointers should go in the left node when a node splits. There are
* three possibilities and a separate split ratio can be specified for
* each: [0] The node that split is the left-most node at its level of
* the tree, [1] the node that split has left and right siblings, [2]
* the node that split is the right-most node at its level of the tree.
* When a node is an only node at its level then we use the right-most
* rule. If SPLIT_RATIOS is null then default values are used.
*
* Robb Matzke, 1999-07-28
* The ADDR argument is passed by value. The NEW_NODE argument is
* renamed NEW_NODE_P
*-------------------------------------------------------------------------
*/
static H5B_ins_t
H5B_insert_helper(H5F_t *f, haddr_t addr, const H5B_class_t *type,
const double split_ratios[], uint8_t *lt_key,
hbool_t *lt_key_changed, uint8_t *md_key, void *udata,
uint8_t *rt_key, hbool_t *rt_key_changed,
haddr_t *new_node_p/*out*/)
{
H5B_t *bt = NULL, *twin = NULL, *tmp_bt = NULL;
int lt = 0, idx = -1, rt, cmp = -1;
haddr_t child_addr;
H5B_ins_t my_ins = H5B_INS_ERROR;
H5B_ins_t ret_value = H5B_INS_ERROR;
FUNC_ENTER_NOINIT(H5B_insert_helper);
/*
* Check arguments
*/
assert(f);
assert(H5F_addr_defined(addr));
assert(type);
assert(type->decode);
assert(type->cmp3);
assert(type->new_node);
assert(lt_key);
assert(lt_key_changed);
assert(rt_key);
assert(rt_key_changed);
assert(new_node_p);
*lt_key_changed = FALSE;
*rt_key_changed = FALSE;
/*
* Use a binary search to find the child that will receive the new
* data. When the search completes IDX points to the child that
* should get the new data.
*/
if (NULL == (bt = H5AC_protect(f, H5AC_BT, addr, type, udata))) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR,
"unable to load node");
}
rt = bt->nchildren;
while (lt < rt && cmp) {
idx = (lt + rt) / 2;
if (H5B_decode_keys(f, bt, idx) < 0) {
HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
"unable to decode key");
}
if ((cmp = (type->cmp3) (f, bt->key[idx].nkey, udata,
bt->key[idx+1].nkey)) < 0) {
rt = idx;
} else {
lt = idx + 1;
}
}
if (0 == bt->nchildren) {
/*
* The value being inserted will be the only value in this tree. We
* must necessarily be at level zero.
*/
assert(0 == bt->level);
bt->key[0].nkey = bt->native;
bt->key[1].nkey = bt->native + type->sizeof_nkey;
if ((type->new_node)(f, H5B_INS_FIRST, bt->key[0].nkey, udata,
bt->key[1].nkey, bt->child + 0/*out*/) < 0) {
bt->key[0].nkey = bt->key[1].nkey = NULL;
HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, H5B_INS_ERROR,
"unable to create leaf node");
}
bt->nchildren = 1;
bt->dirty = TRUE;
bt->ndirty = 1;
bt->key[0].dirty = TRUE;
bt->key[1].dirty = TRUE;
idx = 0;
if (type->follow_min) {
if ((my_ins = (type->insert)(f, bt->child[idx], bt->key[idx].nkey,
lt_key_changed, md_key, udata,
bt->key[idx+1].nkey, rt_key_changed,
&child_addr/*out*/)) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
"unable to insert first leaf node");
}
} else {
my_ins = H5B_INS_NOOP;
}
} else if (cmp < 0 && idx <= 0 && bt->level > 0) {
/*
* The value being inserted is less than any value in this tree.
* Follow the minimum branch out of this node to a subtree.
*/
idx = 0;
if (H5B_decode_keys(f, bt, idx) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
"unable to decode key");
}
if ((my_ins = H5B_insert_helper(f, bt->child[idx], type, split_ratios,
bt->key[idx].nkey, lt_key_changed,
md_key, udata, bt->key[idx+1].nkey,
rt_key_changed,
&child_addr/*out*/))<0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
"can't insert minimum subtree");
}
} else if (cmp < 0 && idx <= 0 && type->follow_min) {
/*
* The value being inserted is less than any leaf node out of this
* current node. Follow the minimum branch to a leaf node and let the
* subclass handle the problem.
*/
idx = 0;
if (H5B_decode_keys(f, bt, idx) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
"unable to decode key");
}
if ((my_ins = (type->insert)(f, bt->child[idx], bt->key[idx].nkey,
lt_key_changed, md_key, udata,
bt->key[idx+1].nkey, rt_key_changed,
&child_addr/*out*/)) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
"can't insert minimum leaf node");
}
} else if (cmp < 0 && idx <= 0) {
/*
* The value being inserted is less than any leaf node out of the
* current node. Create a new minimum leaf node out of this B-tree
* node. This node is not empty (handled above).
*/
idx = 0;
if (H5B_decode_keys(f, bt, idx) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
"unable to decode key");
}
my_ins = H5B_INS_LEFT;
HDmemcpy(md_key, bt->key[idx].nkey, type->sizeof_nkey);
if ((type->new_node)(f, H5B_INS_LEFT, bt->key[idx].nkey, udata,
md_key, &child_addr/*out*/) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
"can't insert minimum leaf node");
}
*lt_key_changed = TRUE;
} else if (cmp > 0 && idx + 1 >= bt->nchildren && bt->level > 0) {
/*
* The value being inserted is larger than any value in this tree.
* Follow the maximum branch out of this node to a subtree.
*/
idx = bt->nchildren - 1;
if (H5B_decode_keys(f, bt, idx) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
"unable to decode key");
}
if ((my_ins = H5B_insert_helper(f, bt->child[idx], type, split_ratios,
bt->key[idx].nkey, lt_key_changed,
md_key, udata, bt->key[idx+1].nkey,
rt_key_changed,
&child_addr/*out*/)) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
"can't insert maximum subtree");
}
} else if (cmp > 0 && idx + 1 >= bt->nchildren && type->follow_max) {
/*
* The value being inserted is larger than any leaf node out of the
* current node. Follow the maximum branch to a leaf node and let the
* subclass handle the problem.
*/
idx = bt->nchildren - 1;
if (H5B_decode_keys(f, bt, idx) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
"unable to decode key");
}
if ((my_ins = (type->insert)(f, bt->child[idx], bt->key[idx].nkey,
lt_key_changed, md_key, udata,
bt->key[idx+1].nkey, rt_key_changed,
&child_addr/*out*/)) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
"can't insert maximum leaf node");
}
} else if (cmp > 0 && idx + 1 >= bt->nchildren) {
/*
* The value being inserted is larger than any leaf node out of the
* current node. Create a new maximum leaf node out of this B-tree
* node.
*/
idx = bt->nchildren - 1;
if (H5B_decode_keys(f, bt, idx) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
"unable to decode key");
}
my_ins = H5B_INS_RIGHT;
HDmemcpy(md_key, bt->key[idx+1].nkey, type->sizeof_nkey);
if ((type->new_node)(f, H5B_INS_RIGHT, md_key, udata,
bt->key[idx+1].nkey, &child_addr/*out*/) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
"can't insert maximum leaf node");
}
*rt_key_changed = TRUE;
} else if (cmp) {
/*
* We couldn't figure out which branch to follow out of this node. THIS
* IS A MAJOR PROBLEM THAT NEEDS TO BE FIXED --rpm.
*/
assert("INTERNAL HDF5 ERROR (contact rpm)" && 0);
HDabort();
} else if (bt->level > 0) {
/*
* Follow a branch out of this node to another subtree.
*/
assert(idx >= 0 && idx < bt->nchildren);
if ((my_ins = H5B_insert_helper(f, bt->child[idx], type, split_ratios,
bt->key[idx].nkey, lt_key_changed,
md_key, udata,
bt->key[idx+1].nkey, rt_key_changed,
&child_addr/*out*/)) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
"can't insert subtree");
}
} else {
/*
* Follow a branch out of this node to a leaf node of some other type.
*/
assert(idx >= 0 && idx < bt->nchildren);
if ((my_ins = (type->insert)(f, bt->child[idx], bt->key[idx].nkey,
lt_key_changed, md_key, udata,
bt->key[idx+1].nkey, rt_key_changed,
&child_addr/*out*/)) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
"can't insert leaf node");
}
}
assert(my_ins >= 0);
/*
* Update the left and right keys of the current node.
*/
if (*lt_key_changed) {
bt->dirty = TRUE;
bt->key[idx].dirty = TRUE;
if (idx > 0) {
*lt_key_changed = FALSE;
} else {
HDmemcpy(lt_key, bt->key[idx].nkey, type->sizeof_nkey);
}
}
if (*rt_key_changed) {
bt->dirty = TRUE;
bt->key[idx+1].dirty = TRUE;
if (idx+1 < bt->nchildren) {
*rt_key_changed = FALSE;
} else {
HDmemcpy(rt_key, bt->key[idx+1].nkey, type->sizeof_nkey);
}
}
if (H5B_INS_CHANGE == my_ins) {
/*
* The insertion simply changed the address for the child.
*/
bt->child[idx] = child_addr;
bt->dirty = TRUE;
bt->ndirty = MAX(bt->ndirty, idx+1);
ret_value = H5B_INS_NOOP;
} else if (H5B_INS_LEFT == my_ins || H5B_INS_RIGHT == my_ins) {
/*
* If this node is full then split it before inserting the new child.
*/
if (bt->nchildren == 2 * H5B_Kvalue(f, type)) {
if (H5B_split(f, type, bt, addr, idx, split_ratios, udata,
new_node_p/*out*/)<0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTSPLIT, H5B_INS_ERROR,
"unable to split node");
}
if (NULL == (twin = H5AC_protect(f, H5AC_BT, *new_node_p, type,
udata))) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR,
"unable to load node");
}
if (idx<bt->nchildren) {
tmp_bt = bt;
} else {
idx -= bt->nchildren;
tmp_bt = twin;
}
} else {
tmp_bt = bt;
}
/* Insert the child */
if (H5B_insert_child(f, type, tmp_bt, idx, child_addr, my_ins,
md_key) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
"can't insert child");
}
}
/*
* If this node split, return the mid key (the one that is shared
* by the left and right node).
*/
if (twin) {
if (!twin->key[0].nkey && H5B_decode_key(f, twin, 0) < 0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
"unable to decode key");
}
HDmemcpy(md_key, twin->key[0].nkey, type->sizeof_nkey);
ret_value = H5B_INS_RIGHT;
#ifdef H5B_DEBUG
/*
* The max key in the original left node must be equal to the min key
* in the new node.
*/
if (!bt->key[bt->nchildren].nkey) {
herr_t status = H5B_decode_key(f, bt, bt->nchildren);
assert(status >= 0);
}
cmp = (type->cmp2) (f, bt->key[bt->nchildren].nkey, udata,
twin->key[0].nkey);
assert(0 == cmp);
#endif
} else {
ret_value = H5B_INS_NOOP;
}
done:
{
herr_t e1 = (bt && H5AC_unprotect(f, H5AC_BT, addr, bt) < 0);
herr_t e2 = (twin && H5AC_unprotect(f, H5AC_BT, *new_node_p, twin)<0);
if (e1 || e2) { /*use vars to prevent short-circuit of side effects */
HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, H5B_INS_ERROR,
"unable to release node(s)");
}
}
FUNC_LEAVE(ret_value);
}
/*-------------------------------------------------------------------------
* Function: H5B_iterate
*
* Purpose: Calls the list callback for each leaf node of the
* B-tree, passing it the UDATA structure.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Robb Matzke
* matzke@llnl.gov
* Jun 23 1997
*
* Modifications:
* Robb Matzke, 1999-04-21
* The key values are passed to the function which is called.
*
* Robb Matzke, 1999-07-28
* The ADDR argument is passed by value.
*
* Quincey Koziol, 2002-04-22
* Changed callback to function pointer from static function
*-------------------------------------------------------------------------
*/
herr_t
H5B_iterate (H5F_t *f, const H5B_class_t *type, H5B_operator_t op, haddr_t addr, void *udata)
{
H5B_t *bt = NULL;
haddr_t next_addr;
haddr_t cur_addr = HADDR_UNDEF;
haddr_t *child = NULL;
uint8_t *key = NULL;
int i, nchildren;
herr_t ret_value = FAIL;
FUNC_ENTER_NOAPI(H5B_iterate, FAIL);
/*
* Check arguments.
*/
assert(f);
assert(type);
assert(op);
assert(H5F_addr_defined(addr));
assert(udata);
if (NULL == (bt=H5AC_find(f, H5AC_BT, addr, type, udata))) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
"unable to load B-tree node");
}
if (bt->level > 0) {
/* Keep following the left-most child until we reach a leaf node. */
if ((ret_value=H5B_iterate(f, type, op, bt->child[0], udata))<0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLIST, FAIL,
"unable to list B-tree node");
}
} else {
/*
* We've reached the left-most leaf. Now follow the right-sibling
* pointer from leaf to leaf until we've processed all leaves.
*/
if (NULL==(child=H5FL_ARR_ALLOC(haddr_t,(size_t)(2*H5B_Kvalue(f,type)),0)) ||
NULL==(key=H5MM_malloc((2*H5B_Kvalue(f, type)+1)*type->sizeof_nkey))) {
HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL,
"memory allocation failed");
}
for (cur_addr=addr, ret_value=0;
H5F_addr_defined(cur_addr) && !ret_value;
cur_addr=next_addr) {
/*
* Save all the child addresses and native keys since we can't
* leave the B-tree node protected during an application
* callback.
*/
if (NULL==(bt=H5AC_find (f, H5AC_BT, cur_addr, type, udata))) {
HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL, "B-tree node");
}
for (i=0; i<bt->nchildren; i++) {
child[i] = bt->child[i];
}
for (i=0; i<bt->nchildren+1; i++) {
if (!bt->key[i].nkey) H5B_decode_key(f, bt, i);
HDmemcpy(key+i*type->sizeof_nkey, bt->key[i].nkey,
type->sizeof_nkey);
}
next_addr = bt->right;
nchildren = bt->nchildren;
bt = NULL;
/*
* Perform the iteration operator, which might invoke an
* application callback.
*/
for (i=0, ret_value=0; i<nchildren && !ret_value; i++) {
ret_value = (*op)(f, key+i*type->sizeof_nkey,
child[i], key+(i+1)*type->sizeof_nkey,
udata);
if (ret_value<0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL,
"iterator function failed");
}
}
}
}
done:
if(child!=NULL)
H5FL_ARR_FREE(haddr_t,child);
if(key!=NULL)
H5MM_xfree(key);
FUNC_LEAVE(ret_value);
}
/*-------------------------------------------------------------------------
* Function: H5B_remove_helper
*
* Purpose: The recursive part of removing an item from a B-tree. The
* sub B-tree that is being considered is located at ADDR and
* the item to remove is described by UDATA. If the removed
* item falls at the left or right end of the current level then
* it might be necessary to adjust the left and/or right keys
* (LT_KEY and/or RT_KEY) to to indicate that they changed by
* setting LT_KEY_CHANGED and/or RT_KEY_CHANGED.
*
* Return: Success: A B-tree operation, see comments for
* H5B_ins_t declaration. This function is
* called recursively and the return value
* influences the actions of the caller. It is
* also called by H5B_remove().
*
* Failure: H5B_INS_ERROR, a negative value.
*
* Programmer: Robb Matzke
* Wednesday, September 16, 1998
*
* Modifications:
* Robb Matzke, 1999-07-28
* The ADDR argument is passed by value.
*-------------------------------------------------------------------------
*/
static H5B_ins_t
H5B_remove_helper(H5F_t *f, haddr_t addr, const H5B_class_t *type,
int level, uint8_t *lt_key/*out*/,
hbool_t *lt_key_changed/*out*/, void *udata,
uint8_t *rt_key/*out*/, hbool_t *rt_key_changed/*out*/)
{
H5B_t *bt = NULL, *sibling = NULL;
H5B_ins_t ret_value = H5B_INS_ERROR;
int idx=-1, lt=0, rt, cmp=1, i;
size_t sizeof_rkey, sizeof_rec;
hsize_t sizeof_node;
FUNC_ENTER_NOAPI(H5B_remove_helper, H5B_INS_ERROR);
assert(f);
assert(H5F_addr_defined(addr));
assert(type);
assert(type->decode);
assert(type->cmp3);
assert(type->found);
assert(lt_key && lt_key_changed);
assert(udata);
assert(rt_key && rt_key_changed);
/*
* Perform a binary search to locate the child which contains the thing
* for which we're searching.
*/
if (NULL==(bt=H5AC_protect(f, H5AC_BT, addr, type, udata))) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR,
"unable to load B-tree node");
}
rt = bt->nchildren;
while (lt<rt && cmp) {
idx = (lt+rt)/2;
if (H5B_decode_keys(f, bt, idx)<0) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
"unable to decode B-tree key(s)");
}
if ((cmp=(type->cmp3)(f, bt->key[idx].nkey, udata,
bt->key[idx+1].nkey))<0) {
rt = idx;
} else {
lt = idx+1;
}
}
if (cmp) {
HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, H5B_INS_ERROR,
"B-tree key not found");
}
/*
* Follow the link to the subtree or to the data node. The return value
* will be one of H5B_INS_ERROR, H5B_INS_NOOP, or H5B_INS_REMOVE.
*/
assert(idx>=0 && idx<bt->nchildren);
if (bt->level>0) {
/* We're at an internal node -- call recursively */
if ((ret_value=H5B_remove_helper(f,
bt->child[idx],
type,
level+1,
bt->key[idx].nkey/*out*/,
lt_key_changed/*out*/,
udata,
bt->key[idx+1].nkey/*out*/,
rt_key_changed/*out*/))<0) {
HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, H5B_INS_ERROR,
"key not found in subtree");
}
} else if (type->remove) {
/*
* We're at a leaf node but the leaf node points to an object that
* has a removal method. Pass the removal request to the pointed-to
* object and let it decide how to progress.
*/
if ((ret_value=(type->remove)(f,
bt->child[idx],
bt->key[idx].nkey,
lt_key_changed,
udata,
bt->key[idx+1].nkey,
rt_key_changed))<0) {
HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, H5B_INS_ERROR,
"key not found in leaf node");
}
} else {
/*
* We're at a leaf node which points to an object that has no removal
* method. The best we can do is to leave the object alone but
* remove the B-tree reference to the object.
*/
*lt_key_changed = FALSE;
*rt_key_changed = FALSE;
ret_value = H5B_INS_REMOVE;
}
/*
* Update left and right key dirty bits if the subtree indicates that they
* have changed. If the subtree's left key changed and the subtree is the
* left-most child of the current node then we must update the key in our
* parent and indicate that it changed. Similarly, if the rigt subtree
* key changed and it's the right most key of this node we must update
* our right key and indicate that it changed.
*/
if (*lt_key_changed) {
bt->dirty = TRUE;
bt->key[idx].dirty = TRUE;
if (idx>0) {
*lt_key_changed = FALSE;
} else {
HDmemcpy(lt_key, bt->key[idx].nkey, type->sizeof_nkey);
}
}
if (*rt_key_changed) {
bt->dirty = TRUE;
bt->key[idx+1].dirty = TRUE;
if (idx+1<bt->nchildren) {
*rt_key_changed = FALSE;
} else {
HDmemcpy(rt_key, bt->key[idx+1].nkey, type->sizeof_nkey);
}
}
/*
* If the subtree returned H5B_INS_REMOVE then we should remove the
* subtree entry from the current node. There are four cases:
*/
sizeof_rec = bt->sizeof_rkey + H5F_SIZEOF_ADDR(f);
if (H5B_INS_REMOVE==ret_value && 1==bt->nchildren) {
/*
* The subtree is the only child of this node. Discard both
* keys and the subtree pointer. Free this node (unless it's the
* root node) and return H5B_INS_REMOVE.
*/
bt->dirty = TRUE;
bt->nchildren = 0;
bt->ndirty = 0;
if (level>0) {
if (H5F_addr_defined(bt->left)) {
if (NULL==(sibling=H5AC_find(f, H5AC_BT, bt->left, type,
udata))) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR,
"unable to unlink node from tree");
}
sibling->right = bt->right;
sibling->dirty = TRUE;
}
if (H5F_addr_defined(bt->right)) {
if (NULL==(sibling=H5AC_find(f, H5AC_BT, bt->right, type,
udata))) {
HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR,
"unable to unlink node from tree");
}
sibling->left = bt->left;
sibling->dirty = TRUE;
}
bt->left = HADDR_UNDEF;
bt->right = HADDR_UNDEF;
sizeof_rkey = (type->get_sizeof_rkey)(f, udata);
sizeof_node = H5B_nodesize(f, type, NULL, sizeof_rkey);
if (H5AC_unprotect(f, H5AC_BT, addr, bt)<0 ||
H5AC_flush(f, H5AC_BT, addr, TRUE)<0 ||
H5MF_xfree(f, H5FD_MEM_BTREE, addr, sizeof_node)<0) {
bt = NULL;
HGOTO_ERROR(H5E_BTREE, H5E_PROTECT, H5B_INS_ERROR,
"unable to free B-tree node");
}
bt = NULL;
}
} else if (H5B_INS_REMOVE==ret_value && 0==idx) {
/*
* The subtree is the left-most child of this node. We discard the
* left-most key and the left-most child (the child has already been
* freed) and shift everything down by one. We copy the new left-most
* key into lt_key and notify the caller that the left key has
* changed. Return H5B_INS_NOOP.
*/
bt->dirty = TRUE;
bt->nchildren -= 1;
bt->ndirty = bt->nchildren;
HDmemmove(bt->page+H5B_SIZEOF_HDR(f),
bt->page+H5B_SIZEOF_HDR(f)+sizeof_rec,
bt->nchildren*sizeof_rec + bt->sizeof_rkey);
HDmemmove(bt->native,
bt->native + type->sizeof_nkey,
(bt->nchildren+1) * type->sizeof_nkey);
HDmemmove(bt->child,
bt->child+1,
bt->nchildren * sizeof(haddr_t));
for (i=0; i<bt->nchildren; i++) {
bt->key[i].dirty = bt->key[i+1].dirty;
if (bt->key[i+1].nkey) {
bt->key[i].nkey = bt->native + i*type->sizeof_nkey;
} else {
bt->key[i].nkey = NULL;
}
}
assert(bt->key[0].nkey);
HDmemcpy(lt_key, bt->key[0].nkey, type->sizeof_nkey);
*lt_key_changed = TRUE;
ret_value = H5B_INS_NOOP;
} else if (H5B_INS_REMOVE==ret_value && idx+1==bt->nchildren) {
/*
* The subtree is the right-most child of this node. We discard the
* right-most key and the right-most child (the child has already been
* freed). We copy the new right-most key into rt_key and notify the
* caller that the right key has changed. Return H5B_INS_NOOP.
*/
bt->dirty = TRUE;
bt->nchildren -= 1;
bt->ndirty = MIN(bt->ndirty, bt->nchildren);
assert(bt->key[bt->nchildren].nkey);
HDmemcpy(rt_key, bt->key[bt->nchildren].nkey, type->sizeof_nkey);
*rt_key_changed = TRUE;
ret_value = H5B_INS_NOOP;
} else if (H5B_INS_REMOVE==ret_value) {
/*
* There are subtrees out of this node to both the left and right of
* the subtree being removed. The key to the left of the subtree and
* the subtree are removed from this node and all keys and nodes to
* the right are shifted left by one place. The subtree has already
* been freed). Return H5B_INS_NOOP.
*/
bt->dirty = TRUE;
bt->nchildren -= 1;
bt->ndirty = bt->nchildren;
HDmemmove(bt->page+H5B_SIZEOF_HDR(f)+idx*sizeof_rec,
bt->page+H5B_SIZEOF_HDR(f)+(idx+1)*sizeof_rec,
(bt->nchildren-idx)*sizeof_rec + bt->sizeof_rkey);
HDmemmove(bt->native + idx * type->sizeof_nkey,
bt->native + (idx+1) * type->sizeof_nkey,
(bt->nchildren+1-idx) * type->sizeof_nkey);
HDmemmove(bt->child+idx,
bt->child+idx+1,
(bt->nchildren-idx) * sizeof(haddr_t));
for (i=idx; i<bt->nchildren; i++) {
bt->key[i].dirty = bt->key[i+1].dirty;
if (bt->key[i+1].nkey) {
bt->key[i].nkey = bt->native + i*type->sizeof_nkey;
} else {
bt->key[i].nkey = NULL;
}
}
ret_value = H5B_INS_NOOP;
} else {
ret_value = H5B_INS_NOOP;
}
done:
if (bt && H5AC_unprotect(f, H5AC_BT, addr, bt)<0) {
HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, H5B_INS_ERROR,
"unable to release node");
}
FUNC_LEAVE(ret_value);
}
/*-------------------------------------------------------------------------
* Function: H5B_remove
*
* Purpose: Removes an item from a B-tree.
*
* Note: The current version does not attempt to rebalance the tree.
*
* Return: Non-negative on success/Negative on failure (failure includes
* not being able to find the object which is to be removed).
*
* Programmer: Robb Matzke
* Wednesday, September 16, 1998
*
* Modifications:
* Robb Matzke, 1999-07-28
* The ADDR argument is passed by value.
*-------------------------------------------------------------------------
*/
herr_t
H5B_remove(H5F_t *f, const H5B_class_t *type, haddr_t addr, void *udata)
{
/* These are defined this way to satisfy alignment constraints */
uint64_t _lt_key[128], _rt_key[128];
uint8_t *lt_key = (uint8_t*)_lt_key; /*left key*/
uint8_t *rt_key = (uint8_t*)_rt_key; /*right key*/
hbool_t lt_key_changed = FALSE; /*left key changed?*/
hbool_t rt_key_changed = FALSE; /*right key changed?*/
H5B_t *bt = NULL; /*btree node */
FUNC_ENTER_NOAPI(H5B_remove, FAIL);
/* Check args */
assert(f);
assert(type);
assert(type->sizeof_nkey <= sizeof _lt_key);
assert(H5F_addr_defined(addr));
/* The actual removal */
if (H5B_remove_helper(f, addr, type, 0, lt_key, &lt_key_changed,
udata, rt_key, &rt_key_changed)==H5B_INS_ERROR) {
HRETURN_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL,
"unable to remove entry from B-tree");
}
/*
* If the B-tree is now empty then make sure we mark the root node as
* being at level zero
*/
if (NULL==(bt=H5AC_find(f, H5AC_BT, addr, type, udata))) {
HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
"unable to load B-tree root node");
}
if (0==bt->nchildren && 0!=bt->level) {
bt->level = 0;
bt->dirty = TRUE;
}
#ifdef H5B_DEBUG
H5B_assert(f, addr, type, udata);
#endif
FUNC_LEAVE(SUCCEED);
}
/*-------------------------------------------------------------------------
* Function: H5B_nodesize
*
* Purpose: Returns the number of bytes needed for this type of
* B-tree node. The size is the size of the header plus
* enough space for 2t child pointers and 2t+1 keys.
*
* If TOTAL_NKEY_SIZE is non-null, what it points to will
* be initialized with the total number of bytes required to
* hold all the key values in native order.
*
* Return: Success: Size of node in file.
*
* Failure: 0
*
* Programmer: Robb Matzke
* matzke@llnl.gov
* Jul 3 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static size_t
H5B_nodesize(H5F_t *f, const H5B_class_t *type,
size_t *total_nkey_size/*out*/, size_t sizeof_rkey)
{
size_t size;
FUNC_ENTER_NOAPI(H5B_nodesize, (size_t) 0);
/*
* Check arguments.
*/
assert(f);
assert(type);
assert(sizeof_rkey > 0);
assert(H5B_Kvalue(f, type) > 0);
/*
* Total native key size.
*/
if (total_nkey_size) {
*total_nkey_size = (2 * H5B_Kvalue(f, type) + 1) * type->sizeof_nkey;
}
/*
* Total node size.
*/
size = (H5B_SIZEOF_HDR(f) + /*node header */
2 * H5B_Kvalue(f, type) * H5F_SIZEOF_ADDR(f) + /*child pointers */
(2 * H5B_Kvalue(f, type) + 1) * sizeof_rkey); /*keys */
FUNC_LEAVE(size);
}
/*-------------------------------------------------------------------------
* Function: H5B_copy
*
* Purpose: Deep copies an existing H5B_t node.
*
* Return: Success: Pointer to H5B_t object.
*
* Failure: NULL
*
* Programmer: Quincey Koziol
* koziol@ncsa.uiuc.edu
* Apr 18 2000
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static H5B_t *
H5B_copy(H5F_t *f, const H5B_t *old_bt)
{
H5B_t *ret_value = NULL;
size_t total_native_keysize;
size_t size;
size_t nkeys;
size_t u;
FUNC_ENTER_NOAPI(H5B_copy, NULL);
/*
* Check arguments.
*/
assert(f);
assert(old_bt);
/*
* Get correct sizes
*/
size = H5B_nodesize(f, old_bt->type, &total_native_keysize, old_bt->sizeof_rkey);
/* Allocate memory for the new H5B_t object */
if (NULL==(ret_value = H5FL_ALLOC(H5B_t,0))) {
HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, NULL,
"memory allocation failed for B-tree root node");
}
/* Copy the main structure */
HDmemcpy(ret_value,old_bt,sizeof(H5B_t));
/* Compute the number of keys in this node */
nkeys=2*H5B_Kvalue(f,old_bt->type);
if (NULL==(ret_value->page=H5FL_BLK_ALLOC(page,size,0)) ||
NULL==(ret_value->native=H5FL_BLK_ALLOC(native_block,total_native_keysize,0)) ||
NULL==(ret_value->child=H5FL_ARR_ALLOC(haddr_t,nkeys,0)) ||
NULL==(ret_value->key=H5FL_ARR_ALLOC(H5B_key_t,(nkeys+1),0))) {
HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, NULL,
"memory allocation failed for B-tree root node");
}
/* Copy the other structures */
HDmemcpy(ret_value->page,old_bt->page,(size_t)size);
HDmemcpy(ret_value->native,old_bt->native,(size_t)total_native_keysize);
HDmemcpy(ret_value->child,old_bt->child,(size_t)(sizeof(haddr_t)*nkeys));
HDmemcpy(ret_value->key,old_bt->key,(size_t)(sizeof(H5B_key_t)*(nkeys+1)));
/*
* Translate the keys from pointers into the old 'page' buffer into
* pointers into the new 'page' buffer.
*/
for (u = 0; u < (nkeys+1); u++)
ret_value->key[u].rkey = (old_bt->key[u].rkey - old_bt->page) + ret_value->page;
done:
FUNC_LEAVE(ret_value);
} /* H5B_copy */
/*-------------------------------------------------------------------------
* Function: H5B_debug
*
* Purpose: Prints debugging info about a B-tree.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Robb Matzke
* matzke@llnl.gov
* Aug 4 1997
*
* Modifications:
* Robb Matzke, 1999-07-28
* The ADDR argument is passed by value.
*-------------------------------------------------------------------------
*/
herr_t
H5B_debug(H5F_t *f, haddr_t addr, FILE *stream, int indent, int fwidth,
const H5B_class_t *type, void *udata)
{
H5B_t *bt = NULL;
int i;
FUNC_ENTER_NOAPI(H5B_debug, FAIL);
/*
* Check arguments.
*/
assert(f);
assert(H5F_addr_defined(addr));
assert(stream);
assert(indent >= 0);
assert(fwidth >= 0);
assert(type);
/*
* Load the tree node.
*/
if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) {
HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
"unable to load B-tree node");
}
/*
* Print the values.
*/
HDfprintf(stream, "%*s%-*s %s\n", indent, "", fwidth,
"Tree type ID:",
((bt->type->id)==H5B_SNODE_ID ? "H5B_SNODE_ID" :
((bt->type->id)==H5B_ISTORE_ID ? "H5B_ISTORE_ID" : "Unknown!")));
HDfprintf(stream, "%*s%-*s %lu\n", indent, "", fwidth,
"Size of node:",
(unsigned long) H5B_nodesize(f, bt->type, NULL, bt->sizeof_rkey));
HDfprintf(stream, "%*s%-*s %lu\n", indent, "", fwidth,
"Size of raw (disk) key:",
(unsigned long) (bt->sizeof_rkey));
HDfprintf(stream, "%*s%-*s %s\n", indent, "", fwidth,
"Dirty flag:",
bt->dirty ? "True" : "False");
HDfprintf(stream, "%*s%-*s %d\n", indent, "", fwidth,
"Number of initial dirty children:",
(int) (bt->ndirty));
HDfprintf(stream, "%*s%-*s %d\n", indent, "", fwidth,
"Level:",
(int) (bt->level));
HDfprintf(stream, "%*s%-*s %a\n", indent, "", fwidth,
"Address of left sibling:",
bt->left);
HDfprintf(stream, "%*s%-*s %a\n", indent, "", fwidth,
"Address of right sibling:",
bt->right);
HDfprintf(stream, "%*s%-*s %d (%d)\n", indent, "", fwidth,
"Number of children (max):",
(int) (bt->nchildren),
(int) (2 * H5B_Kvalue(f, type)));
/*
* Print the child addresses
*/
for (i = 0; i < bt->nchildren; i++) {
HDfprintf(stream, "%*sChild %d...\n", indent, "", i);
HDfprintf(stream, "%*s%-*s %a\n", indent + 3, "", MAX(0, fwidth - 3),
"Address:", bt->child[i]);
H5B_decode_key(f, bt, i);
if (type->debug_key) {
(type->debug_key)(stream, indent+3, MAX (0, fwidth-3),
bt->key[i].nkey, udata);
}
}
FUNC_LEAVE(SUCCEED);
}
/*-------------------------------------------------------------------------
* Function: H5B_assert
*
* Purpose: Verifies that the tree is structured correctly.
*
* Return: Success: SUCCEED
*
* Failure: aborts if something is wrong.
*
* Programmer: Robb Matzke
* Tuesday, November 4, 1997
*
* Modifications:
* Robb Matzke, 1999-07-28
* The ADDR argument is passed by value.
*-------------------------------------------------------------------------
*/
#ifdef H5B_DEBUG
static herr_t
H5B_assert(H5F_t *f, haddr_t addr, const H5B_class_t *type, void *udata)
{
H5B_t *bt = NULL;
int i, ncell, cmp;
static int ncalls = 0;
herr_t status;
/* A queue of child data */
struct child_t {
haddr_t addr;
int level;
struct child_t *next;
} *head = NULL, *tail = NULL, *prev = NULL, *cur = NULL, *tmp = NULL;
FUNC_ENTER_NOAPI(H5B_assert, FAIL);
if (0==ncalls++) {
if (H5DEBUG(B)) {
fprintf(H5DEBUG(B), "H5B: debugging B-trees (expensive)\n");
}
}
/* Initialize the queue */
bt = H5AC_find(f, H5AC_BT, addr, type, udata);
assert(bt);
cur = H5MM_calloc(sizeof(struct child_t));
assert (cur);
cur->addr = addr;
cur->level = bt->level;
head = tail = cur;
/*
* Do a breadth-first search of the tree. New nodes are added to the end
* of the queue as the `cur' pointer is advanced toward the end. We don't
* remove any nodes from the queue because we need them in the uniqueness
* test.
*/
for (ncell = 0; cur; ncell++) {
bt = H5AC_protect(f, H5AC_BT, cur->addr, type, udata);
assert(bt);
/* Check node header */
assert(bt->ndirty >= 0 && bt->ndirty <= bt->nchildren);
assert(bt->level == cur->level);
if (cur->next && cur->next->level == bt->level) {
assert(H5F_addr_eq(bt->right, cur->next->addr));
} else {
assert(!H5F_addr_defined(bt->right));
}
if (prev && prev->level == bt->level) {
assert(H5F_addr_eq(bt->left, prev->addr));
} else {
assert(!H5F_addr_defined(bt->left));
}
if (cur->level > 0) {
for (i = 0; i < bt->nchildren; i++) {
/*
* Check that child nodes haven't already been seen. If they
* have then the tree has a cycle.
*/
for (tmp = head; tmp; tmp = tmp->next) {
assert(H5F_addr_ne(tmp->addr, bt->child[i]));
}
/* Add the child node to the end of the queue */
tmp = H5MM_calloc(sizeof(struct child_t));
assert (tmp);
tmp->addr = bt->child[i];
tmp->level = bt->level - 1;
tail->next = tmp;
tail = tmp;
/* Check that the keys are monotonically increasing */
status = H5B_decode_keys(f, bt, i);
assert(status >= 0);
cmp = (type->cmp2) (f, bt->key[i].nkey, udata,
bt->key[i+1].nkey);
assert(cmp < 0);
}
}
/* Release node */
status = H5AC_unprotect(f, H5AC_BT, cur->addr, bt);
assert(status >= 0);
/* Advance current location in queue */
prev = cur;
cur = cur->next;
}
/* Free all entries from queue */
while (head) {
tmp = head->next;
H5MM_xfree(head);
head = tmp;
}
FUNC_LEAVE(SUCCEED);
}
#endif /* H5B_DEBUG */