hdf5/perform/pio_engine.c
Quincey Koziol 427ff7da28 [svn-r9727] Purpose:
Bug Fix/Code Cleanup/Doc Cleanup/Optimization/Branch Sync :-)

Description:
    Generally speaking, this is the "signed->unsigned" change to selections.
However, in the process of merging code back, things got stickier and stickier
until I ended up doing a big "sync the two branches up" operation.  So... I
brought back all the "infrastructure" fixes from the development branch to the
release branch (which I think were actually making some improvement in
performance) as well as fixed several bugs which had been fixed in one branch,
but not the other.

    I've also tagged the repository before making this checkin with the label
"before_signed_unsigned_changes".

Platforms tested:
    FreeBSD 4.10 (sleipnir) w/parallel & fphdf5
    FreeBSD 4.10 (sleipnir) w/threadsafe
    FreeBSD 4.10 (sleipnir) w/backward compatibility
    Solaris 2.7 (arabica) w/"purify options"
    Solaris 2.8 (sol) w/FORTRAN & C++
    AIX 5.x (copper) w/parallel & FORTRAN
    IRIX64 6.5 (modi4) w/FORTRAN
    Linux 2.4 (heping) w/FORTRAN & C++


Misc. update:
2004-12-29 09:26:20 -05:00

2142 lines
74 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the files COPYING and Copyright.html. COPYING can be found at the root *
* of the source code distribution tree; Copyright.html can be found at the *
* root level of an installed copy of the electronic HDF5 document set and *
* is linked from the top-level documents page. It can also be found at *
* http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html. If you do not have *
* access to either file, you may request a copy from hdfhelp@ncsa.uiuc.edu. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Author: Albert Cheng of NCSA, Oct 24, 2001.
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include "hdf5.h"
#ifdef H5_HAVE_PARALLEL
#include <mpi.h>
#ifndef MPI_FILE_NULL /*MPIO may be defined in mpi.h already */
# include <mpio.h>
#endif /* !MPI_FILE_NULL */
#ifdef H5_HAVE_GPFS
# include <gpfs_fcntl.h>
#endif /* H5_HAVE_GPFS */
#include "pio_perf.h"
#include "pio_timer.h"
/* Macro definitions */
/* sizes of various items. these sizes won't change during program execution */
/* The following three must have the same type */
#define ELMT_SIZE (sizeof(unsigned char)) /* we're doing bytes */
#define ELMT_MPI_TYPE MPI_BYTE
#define ELMT_H5_TYPE H5T_NATIVE_UCHAR
#define GOTOERROR(errcode) { ret_code = errcode; goto done; }
#define GOTODONE { goto done; }
#define ERRMSG(mesg) { \
fprintf(stderr, "Proc %d: ", pio_mpi_rank_g); \
fprintf(stderr, "*** Assertion failed (%s) at line %4d in %s\n", \
mesg, (int)__LINE__, __FILE__); \
}
#define MSG(mesg) { \
fprintf(stderr, "Proc %d: ", pio_mpi_rank_g); \
fprintf(stderr, "(%s) at line %4d in %s\n", \
mesg, (int)__LINE__, __FILE__); \
}
/* verify: if val is false (0), print mesg. */
#define VRFY(val, mesg) do { \
if (!val) { \
ERRMSG(mesg); \
GOTOERROR(FAIL); \
} \
} while(0)
/* POSIX I/O macros */
#define POSIXCREATE(fn) HDopen(fn, O_CREAT|O_TRUNC|O_RDWR, 0600)
#define POSIXOPEN(fn, F) HDopen(fn, F, 0600)
#define POSIXCLOSE(F) HDclose(F)
#define POSIXSEEK(F,L) HDlseek(F, L, SEEK_SET)
#define POSIXWRITE(F,B,S) HDwrite(F,B,S)
#define POSIXREAD(F,B,S) HDread(F,B,S)
enum {
PIO_CREATE = 1,
PIO_WRITE = 2,
PIO_READ = 4
};
/* Global variables */
static int clean_file_g = -1; /*whether to cleanup temporary test */
/*files. -1 is not defined; */
/*0 is no cleanup; 1 is do cleanup */
/*
* In a parallel machine, the filesystem suitable for compiling is
* unlikely a parallel file system that is suitable for parallel I/O.
* There is no standard pathname for the parallel file system. /tmp
* is about the best guess.
*/
#ifndef HDF5_PARAPREFIX
# ifdef __PUMAGON__
/* For the PFS of TFLOPS */
# define HDF5_PARAPREFIX "pfs:/pfs_grande/multi/tmp_1"
# else
# define HDF5_PARAPREFIX ""
# endif /* __PUMAGON__ */
#endif /* !HDF5_PARAPREFIX */
#ifndef MIN
# define MIN(a,b) ((a) < (b) ? (a) : (b))
#endif /* !MIN */
/* the different types of file descriptors we can expect */
typedef union _file_descr {
int posixfd; /* POSIX file handle*/
MPI_File mpifd; /* MPI file */
hid_t h5fd; /* HDF5 file */
} file_descr;
/* local functions */
static char *pio_create_filename(iotype iot, const char *base_name,
char *fullname, size_t size);
static herr_t do_write(results *res, file_descr *fd, parameters *parms,
long ndsets, off_t nelmts, size_t buf_size, void *buffer);
static herr_t do_read(results *res, file_descr *fd, parameters *parms,
long ndsets, off_t nelmts, size_t buf_size, void *buffer /*out*/);
static herr_t do_fopen(parameters *param, char *fname, file_descr *fd /*out*/,
int flags);
static herr_t do_fclose(iotype iot, file_descr *fd);
static void do_cleanupfile(iotype iot, char *fname);
/* GPFS-specific functions */
#ifdef H5_HAVE_GPFS
static void gpfs_access_range(int handle, off_t start, off_t length, int is_write);
static void gpfs_free_range(int handle, off_t start, off_t length);
static void gpfs_clear_file_cache(int handle);
static void gpfs_cancel_hints(int handle);
static void gpfs_start_data_shipping(int handle, int num_insts);
static void gpfs_start_data_ship_map(int handle, int partition_size,
int agent_count, int *agent_node_num);
static void gpfs_stop_data_shipping(int handle);
static void gpfs_invalidate_file_cache(const char *filename);
#endif /* H5_HAVE_GPFS */
/*
* Function: do_pio
* Purpose: PIO Engine where Parallel IO are executed.
* Return: results
* Programmer: Albert Cheng, Bill Wendling 2001/12/12
* Modifications:
*/
results
do_pio(parameters param)
{
/* return codes */
herr_t ret_code = 0; /*return code */
results res;
file_descr fd;
iotype iot;
char fname[FILENAME_MAX];
long nf;
long ndsets;
off_t nbytes; /* Number of bytes per dataset */
char *buffer = NULL; /*data buffer pointer */
size_t buf_size; /*data buffer size in bytes */
size_t blk_size; /*data block size in bytes */
/* HDF5 variables */
herr_t hrc; /*HDF5 return code */
/* Sanity check parameters */
/* IO type */
iot = param.io_type;
switch (iot) {
case MPIO:
fd.mpifd = MPI_FILE_NULL;
res.timers = pio_time_new(MPI_TIMER);
break;
case POSIXIO:
fd.posixfd = -1;
res.timers = pio_time_new(MPI_TIMER);
break;
case PHDF5:
fd.h5fd = -1;
res.timers = pio_time_new(MPI_TIMER);
break;
default:
/* unknown request */
fprintf(stderr, "Unknown IO type request (%d)\n", iot);
GOTOERROR(FAIL);
}
ndsets = param.num_dsets; /* number of datasets per file */
nbytes = param.num_bytes; /* number of bytes per dataset */
buf_size = param.buf_size;
blk_size = param.blk_size;
if (param.num_files < 0 ) {
fprintf(stderr,
"number of files must be >= 0 (%ld)\n",
param.num_files);
GOTOERROR(FAIL);
}
if (ndsets < 0 ) {
fprintf(stderr,
"number of datasets per file must be >= 0 (%ld)\n",
ndsets);
GOTOERROR(FAIL);
}
if (param.num_procs <= 0 ) {
fprintf(stderr,
"maximum number of process to use must be > 0 (%d)\n",
param.num_procs);
GOTOERROR(FAIL);
}
/* Validate transfer buffer size & block size*/
if(blk_size<=0) {
HDfprintf(stderr,
"Transfer block size (%Hd) must be > 0\n", (long_long)blk_size);
GOTOERROR(FAIL);
}
if(buf_size<=0) {
HDfprintf(stderr,
"Transfer buffer size (%Hd) must be > 0\n", (long_long)buf_size);
GOTOERROR(FAIL);
}
if ((buf_size % blk_size) != 0){
HDfprintf(stderr,
"Transfer buffer size (%Hd) must be a multiple of the "
"interleaved I/O block size (%Hd)\n",
(long_long)buf_size, (long_long)blk_size);
GOTOERROR(FAIL);
}
if((nbytes%pio_mpi_nprocs_g)!=0) {
HDfprintf(stderr,
"Dataset size (%Hd) must be a multiple of the "
"number of processes (%d)\n",
(long_long)nbytes, pio_mpi_nprocs_g);
GOTOERROR(FAIL);
}
if(((nbytes/pio_mpi_nprocs_g)%buf_size)!=0) {
HDfprintf(stderr,
"Dataset size/process (%Hd) must be a multiple of the "
"trasfer buffer size (%Hd)\n",
(long_long)(nbytes/pio_mpi_nprocs_g), (long_long)buf_size);
GOTOERROR(FAIL);
}
/* Allocate transfer buffer */
if ((buffer = malloc(buf_size)) == NULL){
HDfprintf(stderr, "malloc for transfer buffer size (%Hd) failed\n",
(long_long)(buf_size));
GOTOERROR(FAIL);
}
if (pio_debug_level >= 4) {
int myrank;
MPI_Comm_rank(pio_comm_g, &myrank);
/* output all of the times for all iterations */
if (myrank == 0)
fprintf(output, "Timer details:\n");
}
for (nf = 1; nf <= param.num_files; nf++) {
/*
* Write performance measurement
*/
/* Open file for write */
char base_name[256];
sprintf(base_name, "#pio_tmp_%lu", nf);
pio_create_filename(iot, base_name, fname, sizeof(fname));
if (pio_debug_level > 0)
HDfprintf(output, "rank %d: data filename=%s\n",
pio_mpi_rank_g, fname);
/* Need barrier to make sure everyone starts at the same time */
MPI_Barrier(pio_comm_g);
set_time(res.timers, HDF5_GROSS_WRITE_FIXED_DIMS, START);
hrc = do_fopen(&param, fname, &fd, PIO_CREATE | PIO_WRITE);
VRFY((hrc == SUCCESS), "do_fopen failed");
set_time(res.timers, HDF5_FINE_WRITE_FIXED_DIMS, START);
hrc = do_write(&res, &fd, &param, ndsets, nbytes, buf_size, buffer);
set_time(res.timers, HDF5_FINE_WRITE_FIXED_DIMS, STOP);
VRFY((hrc == SUCCESS), "do_write failed");
/* Close file for write */
hrc = do_fclose(iot, &fd);
set_time(res.timers, HDF5_GROSS_WRITE_FIXED_DIMS, STOP);
VRFY((hrc == SUCCESS), "do_fclose failed");
if (!param.h5_write_only) {
/*
* Read performance measurement
*/
/* Need barrier to make sure everyone is done writing and has
* closed the file. Also to make sure everyone starts reading
* at the same time.
*/
MPI_Barrier(pio_comm_g);
/* Open file for read */
set_time(res.timers, HDF5_GROSS_READ_FIXED_DIMS, START);
hrc = do_fopen(&param, fname, &fd, PIO_READ);
VRFY((hrc == SUCCESS), "do_fopen failed");
set_time(res.timers, HDF5_FINE_READ_FIXED_DIMS, START);
hrc = do_read(&res, &fd, &param, ndsets, nbytes, buf_size, buffer);
set_time(res.timers, HDF5_FINE_READ_FIXED_DIMS, STOP);
VRFY((hrc == SUCCESS), "do_read failed");
/* Close file for read */
hrc = do_fclose(iot, &fd);
set_time(res.timers, HDF5_GROSS_READ_FIXED_DIMS, STOP);
VRFY((hrc == SUCCESS), "do_fclose failed");
}
/* Need barrier to make sure everyone is done with the file */
/* before it may be removed by do_cleanupfile */
MPI_Barrier(pio_comm_g);
do_cleanupfile(iot, fname);
}
done:
/* clean up */
/* release HDF5 objects */
/* close any opened files */
/* no remove(fname) because that should have happened normally. */
switch (iot) {
case POSIXIO:
if (fd.posixfd != -1)
hrc = do_fclose(iot, &fd);
break;
case MPIO:
if (fd.mpifd != MPI_FILE_NULL)
hrc = do_fclose(iot, &fd);
break;
case PHDF5:
if (fd.h5fd != -1)
hrc = do_fclose(iot, &fd);
break;
}
/* release generic resources */
if(buffer)
free(buffer);
res.ret_code = ret_code;
return res;
}
/*
* Function: pio_create_filename
* Purpose: Create a new filename to write to. Determine the correct
* suffix to append to the filename by the type of I/O we're
* doing. Also, place in the /tmp/{$USER,$LOGIN} directory if
* USER or LOGIN are specified in the environment.
* Return: Pointer to filename or NULL
* Programmer: Bill Wendling, 21. November 2001
* Modifications:
*/
static char *
pio_create_filename(iotype iot, const char *base_name, char *fullname, size_t size)
{
const char *prefix, *suffix="";
char *ptr, last = '\0';
size_t i, j;
if (!base_name || !fullname || size < 1)
return NULL;
memset(fullname, 0, size);
switch (iot) {
case POSIXIO:
suffix = ".posix";
break;
case MPIO:
suffix = ".mpio";
break;
case PHDF5:
suffix = ".h5";
break;
}
/* First use the environment variable and then try the constant */
prefix = getenv("HDF5_PARAPREFIX");
#ifdef HDF5_PARAPREFIX
if (!prefix)
prefix = HDF5_PARAPREFIX;
#endif /* HDF5_PARAPREFIX */
/* Prepend the prefix value to the base name */
if (prefix && *prefix) {
/* If the prefix specifies the HDF5_PARAPREFIX directory, then
* default to using the "/tmp/$USER" or "/tmp/$LOGIN"
* directory instead. */
register char *user, *login, *subdir;
user = getenv("USER");
login = getenv("LOGIN");
subdir = (user ? user : login);
if (subdir) {
for (i = 0; i < size && prefix[i]; i++)
fullname[i] = prefix[i];
fullname[i++] = '/';
for (j = 0; i < size && subdir[j]; i++, j++)
fullname[i] = subdir[j];
} else {
/* We didn't append the prefix yet */
strncpy(fullname, prefix, MIN(strlen(prefix), size));
}
if ((strlen(fullname) + strlen(base_name) + 1) < size) {
/* Append the base_name with a slash first. Multiple slashes are
* handled below. */
h5_stat_t buf;
if (HDstat(fullname, &buf) < 0)
/* The directory doesn't exist just yet */
if (mkdir(fullname, (mode_t)0755) < 0 && errno != EEXIST) {
/* We couldn't make the "/tmp/${USER,LOGIN}" subdirectory.
* Default to PREFIX's original prefix value. */
strcpy(fullname, prefix);
}
strcat(fullname, "/");
strcat(fullname, base_name);
} else {
/* Buffer is too small */
return NULL;
}
} else if (strlen(base_name) >= size) {
/* Buffer is too small */
return NULL;
} else {
strcpy(fullname, base_name);
}
/* Append a suffix */
if (suffix) {
if (strlen(fullname) + strlen(suffix) >= size)
return NULL;
strcat(fullname, suffix);
}
/* Remove any double slashes in the filename */
for (ptr = fullname, i = j = 0; ptr && i < size; i++, ptr++) {
if (*ptr != '/' || last != '/')
fullname[j++] = *ptr;
last = *ptr;
}
return fullname;
}
/*
* Function: do_write
* Purpose: Write the required amount of data to the file.
* Return: SUCCESS or FAIL
* Programmer: Albert Cheng, Bill Wendling, 2001/12/13
* Modifications:
*/
static herr_t
do_write(results *res, file_descr *fd, parameters *parms, long ndsets,
off_t nbytes, size_t buf_size, void *buffer)
{
int ret_code = SUCCESS;
int rc; /*routine return code */
long ndset;
size_t blk_size; /* The block size to subdivide the xfer buffer into */
off_t nbytes_xfer; /* Total number of bytes transferred so far */
size_t nbytes_toxfer; /* Number of bytes to transfer a particular time */
char dname[64];
off_t dset_offset=0; /*dataset offset in a file */
off_t bytes_begin; /*first elmt this process transfer */
off_t bytes_count; /*number of elmts this process transfer */
unsigned char *buf_p; /* Current buffer pointer */
/* POSIX variables */
off_t file_offset; /* File offset of the next transfer */
off_t posix_file_offset; /* Base file offset of the next transfer */
/* MPI variables */
MPI_Offset mpi_file_offset;/* Base file offset of the next transfer*/
MPI_Offset mpi_offset; /* Offset in MPI file */
MPI_Datatype mpi_file_type; /* MPI derived type for file */
MPI_Datatype mpi_blk_type; /* MPI derived type for buffer */
MPI_Status mpi_status;
int mrc; /* MPI return code */
/* HDF5 variables */
herr_t hrc; /*HDF5 return code */
hsize_t h5dims[1]; /*dataset dim sizes */
hid_t h5dset_space_id = -1; /*dataset space ID */
hid_t h5mem_space_id = -1; /*memory dataspace ID */
hid_t h5ds_id = -1; /*dataset handle */
hsize_t h5block[1]; /*dataspace selection */
hsize_t h5stride[1];
hsize_t h5count[1];
hsize_t h5start[1];
hssize_t h5offset[1]; /* Selection offset within dataspace */
hid_t h5dcpl = -1; /* Dataset creation property list */
hid_t h5dxpl = -1; /* Dataset transfer property list */
/* Get the parameters from the parameter block */
blk_size=parms->blk_size;
/* Prepare buffer for verifying data */
if (parms->verify)
memset(buffer,pio_mpi_rank_g,buf_size);
/* There are two kinds of transfer patterns, contiguous and interleaved.
* Let 0,1,2,...,n be data accessed by process 0,1,2,...,n
* where n is rank of the last process.
* In contiguous pattern, data are accessed as
* 000...111...222...nnn...
* In interleaved pattern, data are accessed as
* 012...n012...n...
* These are all in the scope of one dataset.
*/
if (parms->interleaved==0) {
/* Contiguous Pattern: */
bytes_begin = (off_t)(((double)nbytes*pio_mpi_rank_g)/pio_mpi_nprocs_g);
} /* end if */
else {
/* Interleaved Pattern: */
bytes_begin = (off_t)(blk_size*pio_mpi_rank_g);
} /* end else */
/* Calculate the total number of bytes (bytes_count) to be
* transferred by this process. It may be different for different
* transfer pattern due to rounding to integral values.
*/
/*
* Calculate the beginning bytes of this process and the next.
* bytes_count is the difference between these two beginnings.
* This way, it eliminates any rounding errors.
* (This is tricky, don't mess with the formula, rounding errors
* can easily get introduced) */
bytes_count = (off_t)(((double)nbytes*(pio_mpi_rank_g+1)) / pio_mpi_nprocs_g)
- (off_t)(((double)nbytes*pio_mpi_rank_g) / pio_mpi_nprocs_g);
/* debug */
if (pio_debug_level >= 4) {
HDprint_rank(output);
HDfprintf(output, "Debug(do_write): "
"buf_size=%Hd, bytes_begin=%Hd, bytes_count=%Hd\n",
(long_long)buf_size, (long_long)bytes_begin,
(long_long)bytes_count);
}
/* I/O Access specific setup */
switch (parms->io_type) {
case POSIXIO:
/* No extra setup */
break;
case MPIO: /* MPI-I/O setup */
/* Build block's derived type */
mrc = MPI_Type_contiguous((int)blk_size,
MPI_BYTE, &mpi_blk_type);
VRFY((mrc==MPI_SUCCESS), "MPIO_TYPE_CREATE");
/* Build file's derived type */
mrc = MPI_Type_vector((int)(buf_size/blk_size), (int)1,
(int)pio_mpi_nprocs_g, mpi_blk_type, &mpi_file_type);
VRFY((mrc==MPI_SUCCESS), "MPIO_TYPE_CREATE");
/* Commit file type */
mrc = MPI_Type_commit( &mpi_file_type );
VRFY((mrc==MPI_SUCCESS), "MPIO_TYPE_COMMIT");
/* Commit buffer type */
mrc = MPI_Type_commit( &mpi_blk_type );
VRFY((mrc==MPI_SUCCESS), "MPIO_TYPE_COMMIT");
break;
case PHDF5: /* HDF5 setup */
if(nbytes>0) {
/* define a contiquous dataset of nbytes native bytes */
h5dims[0] = nbytes;
h5dset_space_id = H5Screate_simple(1, h5dims, NULL);
VRFY((h5dset_space_id >= 0), "H5Screate_simple");
/* Set up the file dset space id to select the pattern to access */
if (parms->interleaved==0){
/* Contiguous pattern */
h5start[0] = bytes_begin;
h5stride[0] = h5block[0] = blk_size;
h5count[0] = buf_size/blk_size;
} /* end if */
else {
/* Interleaved access pattern */
/* Skip offset over blocks of other processes */
h5start[0] = bytes_begin;
h5stride[0] = blk_size*pio_mpi_nprocs_g;
h5block[0] = blk_size;
h5count[0] = buf_size/blk_size;
} /* end else */
hrc = H5Sselect_hyperslab(h5dset_space_id, H5S_SELECT_SET,
h5start, h5stride, h5count, h5block);
VRFY((hrc >= 0), "H5Sselect_hyperslab");
} /* end if */
else {
h5dset_space_id = H5Screate(H5S_SCALAR);
VRFY((h5dset_space_id >= 0), "H5Screate");
} /* end else */
/* Create the memory dataspace that corresponds to the xfer buffer */
if(buf_size>0) {
h5dims[0] = buf_size;
h5mem_space_id = H5Screate_simple(1, h5dims, NULL);
VRFY((h5mem_space_id >= 0), "H5Screate_simple");
} /* end if */
else {
h5mem_space_id = H5Screate(H5S_SCALAR);
VRFY((h5mem_space_id >= 0), "H5Screate");
} /* end else */
/* Create the dataset transfer property list */
h5dxpl = H5Pcreate(H5P_DATASET_XFER);
if (h5dxpl < 0) {
fprintf(stderr, "HDF5 Property List Create failed\n");
GOTOERROR(FAIL);
}
/* Change to collective I/O, if asked */
if(parms->collective) {
hrc = H5Pset_dxpl_mpio(h5dxpl, H5FD_MPIO_COLLECTIVE);
if (hrc < 0) {
fprintf(stderr, "HDF5 Property List Set failed\n");
GOTOERROR(FAIL);
} /* end if */
} /* end if */
break;
} /* end switch */
for (ndset = 1; ndset <= ndsets; ++ndset) {
/* Calculate dataset offset within a file */
/* create dataset */
switch (parms->io_type) {
case POSIXIO:
case MPIO:
/* both posix and mpi io just need dataset offset in file*/
dset_offset = (ndset - 1) * nbytes;
break;
case PHDF5:
h5dcpl = H5Pcreate(H5P_DATASET_CREATE);
if (h5dcpl < 0) {
fprintf(stderr, "HDF5 Property List Create failed\n");
GOTOERROR(FAIL);
}
/* Make the dataset chunked if asked */
if(parms->h5_use_chunks) {
/* Set the chunk size to be the same as the buffer size */
h5dims[0] = buf_size;
hrc = H5Pset_chunk(h5dcpl, 1, h5dims);
if (hrc < 0) {
fprintf(stderr, "HDF5 Property List Set failed\n");
GOTOERROR(FAIL);
} /* end if */
} /* end if */
sprintf(dname, "Dataset_%ld", ndset);
h5ds_id = H5Dcreate(fd->h5fd, dname, ELMT_H5_TYPE,
h5dset_space_id, h5dcpl);
if (h5ds_id < 0) {
fprintf(stderr, "HDF5 Dataset Create failed\n");
GOTOERROR(FAIL);
}
hrc = H5Pclose(h5dcpl);
/* verifying the close of the dcpl */
if (hrc < 0) {
fprintf(stderr, "HDF5 Property List Close failed\n");
GOTOERROR(FAIL);
}
break;
}
/* The task is to transfer bytes_count bytes, starting at
* bytes_begin position, using transfer buffer of buf_size bytes.
* If interleaved, select buf_size at a time, in round robin
* fashion, according to number of process. Otherwise, select
* all bytes_count in contiguous.
*/
nbytes_xfer = 0 ;
/* Set base file offset for all I/O patterns and POSIX access */
posix_file_offset = dset_offset + bytes_begin;
/* Set base file offset for all I/O patterns and MPI access */
mpi_file_offset = (MPI_Offset)(dset_offset + bytes_begin);
/* Start "raw data" write timer */
set_time(res->timers, HDF5_RAW_WRITE_FIXED_DIMS, START);
while (nbytes_xfer < bytes_count){
/* Write */
/* Calculate offset of write within a dataset/file */
switch (parms->io_type) {
case POSIXIO:
/* Contiguous pattern */
if (parms->interleaved==0) {
/* Compute file offset */
file_offset = posix_file_offset + (off_t)nbytes_xfer;
/* only care if seek returns error */
rc = POSIXSEEK(fd->posixfd, file_offset) < 0 ? -1 : 0;
VRFY((rc==0), "POSIXSEEK");
/* check if all bytes are written */
rc = ((ssize_t)buf_size ==
POSIXWRITE(fd->posixfd, buffer, buf_size));
VRFY((rc != 0), "POSIXWRITE");
/* Advance global offset in dataset */
nbytes_xfer+=buf_size;
} /* end if */
/* Interleaved access pattern */
else {
/* Set the base of user's buffer */
buf_p=(unsigned char *)buffer;
/* Set the number of bytes to transfer this time */
nbytes_toxfer = buf_size;
/* Loop over the buffers to write */
while(nbytes_toxfer>0) {
/* Skip offset over blocks of other processes */
file_offset = posix_file_offset +
(off_t)(nbytes_xfer*pio_mpi_nprocs_g);
/* only care if seek returns error */
rc = POSIXSEEK(fd->posixfd, file_offset) < 0 ? -1 : 0;
VRFY((rc==0), "POSIXSEEK");
/* check if all bytes are written */
rc = ((ssize_t)blk_size ==
POSIXWRITE(fd->posixfd, buf_p, blk_size));
VRFY((rc != 0), "POSIXWRITE");
/* Advance location in buffer */
buf_p+=blk_size;
/* Advance global offset in dataset */
nbytes_xfer+=blk_size;
/* Decrement number of bytes left this time */
nbytes_toxfer-=blk_size;
} /* end while */
} /* end else */
break;
case MPIO:
/* Independent file access */
if(parms->collective==0) {
/* Contiguous pattern */
if (parms->interleaved==0){
/* Compute offset in file */
mpi_offset = mpi_file_offset +
nbytes_xfer;
/* Perform independent write */
mrc = MPI_File_write_at(fd->mpifd, mpi_offset, buffer,
(int)(buf_size/blk_size), mpi_blk_type,
&mpi_status);
VRFY((mrc==MPI_SUCCESS), "MPIO_WRITE");
/* Advance global offset in dataset */
nbytes_xfer+=buf_size;
} /* end if */
/* Interleaved access pattern */
else {
/* Set the base of user's buffer */
buf_p=(unsigned char *)buffer;
/* Set the number of bytes to transfer this time */
nbytes_toxfer = buf_size;
/* Loop over the buffers to write */
while(nbytes_toxfer>0) {
/* Skip offset over blocks of other processes */
mpi_offset = mpi_file_offset +
(nbytes_xfer*pio_mpi_nprocs_g);
/* Perform independent write */
mrc = MPI_File_write_at(fd->mpifd, mpi_offset, buf_p,
(int)1, mpi_blk_type, &mpi_status);
VRFY((mrc==MPI_SUCCESS), "MPIO_WRITE");
/* Advance location in buffer */
buf_p+=blk_size;
/* Advance global offset in dataset */
nbytes_xfer+=blk_size;
/* Decrement number of bytes left this time */
nbytes_toxfer-=blk_size;
} /* end while */
} /* end else */
} /* end if */
/* Collective file access */
else {
/* Contiguous access pattern */
if (parms->interleaved==0){
/* Compute offset in file */
mpi_offset = mpi_file_offset +
nbytes_xfer;
/* Perform independent write */
mrc = MPI_File_write_at_all(fd->mpifd, mpi_offset, buffer,
(int)(buf_size/blk_size), mpi_blk_type, &mpi_status);
VRFY((mrc==MPI_SUCCESS), "MPIO_WRITE");
/* Advance global offset in dataset */
nbytes_xfer+=buf_size;
} /* end if */
/* Interleaved access pattern */
else {
/* Compute offset in file */
mpi_offset = mpi_file_offset +
(nbytes_xfer*pio_mpi_nprocs_g);
/* Set the file view */
mrc = MPI_File_set_view(fd->mpifd, mpi_offset, mpi_blk_type,
mpi_file_type, (char*)"native", h5_io_info_g);
VRFY((mrc==MPI_SUCCESS), "MPIO_VIEW");
/* Perform write */
mrc = MPI_File_write_at_all(fd->mpifd, 0, buffer,
(int)(buf_size/blk_size), mpi_blk_type, &mpi_status);
VRFY((mrc==MPI_SUCCESS), "MPIO_WRITE");
/* Advance global offset in dataset */
nbytes_xfer+=buf_size;
} /* end else */
} /* end else */
break;
case PHDF5:
/* Set up the file dset space id to move the selection to process */
if (parms->interleaved==0){
/* Contiguous pattern */
h5offset[0] = nbytes_xfer;
} /* end if */
else {
/* Interleaved access pattern */
/* Skip offset over blocks of other processes */
h5offset[0] = (nbytes_xfer*pio_mpi_nprocs_g);
} /* end else */
hrc = H5Soffset_simple(h5dset_space_id, h5offset);
VRFY((hrc >= 0), "H5Soffset_simple");
/* Write the buffer out */
hrc = H5Dwrite(h5ds_id, ELMT_H5_TYPE, h5mem_space_id,
h5dset_space_id, h5dxpl, buffer);
VRFY((hrc >= 0), "H5Dwrite");
/* Increment number of bytes transferred */
nbytes_xfer += buf_size;
break;
} /* switch (parms->io_type) */
} /* end while */
/* Stop "raw data" write timer */
set_time(res->timers, HDF5_RAW_WRITE_FIXED_DIMS, STOP);
/* Calculate write time */
/* Close dataset. Only HDF5 needs to do an explicit close. */
if (parms->io_type == PHDF5) {
hrc = H5Dclose(h5ds_id);
if (hrc < 0) {
fprintf(stderr, "HDF5 Dataset Close failed\n");
GOTOERROR(FAIL);
}
h5ds_id = -1;
} /* end if */
} /* end for */
done:
/* release MPI-I/O objects */
if (parms->io_type == MPIO) {
/* Free file type */
mrc = MPI_Type_free( &mpi_file_type );
VRFY((mrc==MPI_SUCCESS), "MPIO_TYPE_FREE");
/* Free buffer type */
mrc = MPI_Type_free( &mpi_blk_type );
VRFY((mrc==MPI_SUCCESS), "MPIO_TYPE_FREE");
} /* end if */
/* release HDF5 objects */
if (h5dset_space_id != -1) {
hrc = H5Sclose(h5dset_space_id);
if (hrc < 0){
fprintf(stderr, "HDF5 Dataset Space Close failed\n");
ret_code = FAIL;
} else {
h5dset_space_id = -1;
}
}
if (h5mem_space_id != -1) {
hrc = H5Sclose(h5mem_space_id);
if (hrc < 0) {
fprintf(stderr, "HDF5 Memory Space Close failed\n");
ret_code = FAIL;
} else {
h5mem_space_id = -1;
}
}
if (h5dxpl != -1) {
hrc = H5Pclose(h5dxpl);
if (hrc < 0) {
fprintf(stderr, "HDF5 Dataset Transfer Property List Close failed\n");
ret_code = FAIL;
} else {
h5dxpl = -1;
}
}
return ret_code;
}
/*
* Function: do_read
* Purpose: read the required amount of data from the file.
* Return: SUCCESS or FAIL
* Programmer: Albert Cheng 2001/12/13
* Modifications:
*/
static herr_t
do_read(results *res, file_descr *fd, parameters *parms, long ndsets,
off_t nbytes, size_t buf_size, void *buffer /*out*/)
{
int ret_code = SUCCESS;
int rc; /*routine return code */
long ndset;
size_t blk_size; /* The block size to subdivide the xfer buffer into */
off_t nbytes_xfer; /* Total number of bytes transferred so far */
size_t nbytes_toxfer; /* Number of bytes to transfer a particular time */
char dname[64];
off_t dset_offset=0; /*dataset offset in a file */
off_t bytes_begin; /*first elmt this process transfer */
off_t bytes_count; /*number of elmts this process transfer */
unsigned char *buf_p; /* Current buffer pointer */
/* POSIX variables */
off_t file_offset; /* File offset of the next transfer */
off_t posix_file_offset; /* Base file offset of the next transfer */
/* MPI variables */
MPI_Offset mpi_file_offset;/* Base file offset of the next transfer*/
MPI_Offset mpi_offset; /* Offset in MPI file */
MPI_Datatype mpi_file_type; /* MPI derived type for file */
MPI_Datatype mpi_blk_type; /* MPI derived type for buffer */
MPI_Status mpi_status;
int mrc; /* MPI return code */
/* HDF5 variables */
herr_t hrc; /*HDF5 return code */
hsize_t h5dims[1]; /*dataset dim sizes */
hid_t h5dset_space_id = -1; /*dataset space ID */
hid_t h5mem_space_id = -1; /*memory dataspace ID */
hid_t h5ds_id = -1; /*dataset handle */
hsize_t h5block[1]; /*dataspace selection */
hsize_t h5stride[1];
hsize_t h5count[1];
hsize_t h5start[1];
hssize_t h5offset[1]; /* Selection offset within dataspace */
hid_t h5dxpl = -1; /* Dataset transfer property list */
/* Get the parameters from the parameter block */
blk_size=parms->blk_size;
/* There are two kinds of transfer patterns, contiguous and interleaved.
* Let 0,1,2,...,n be data accessed by process 0,1,2,...,n
* where n is rank of the last process.
* In contiguous pattern, data are accessed as
* 000...111...222...nnn...
* In interleaved pattern, data are accessed as
* 012...n012...n...
* These are all in the scope of one dataset.
*/
if (parms->interleaved==0) {
/* Contiguous Pattern: */
bytes_begin = (off_t)(((double)nbytes*pio_mpi_rank_g)/pio_mpi_nprocs_g);
} /* end if */
else {
/* Interleaved Pattern: */
bytes_begin = (off_t)(blk_size*pio_mpi_rank_g);
} /* end else */
/* Calculate the total number of bytes (bytes_count) to be
* transferred by this process. It may be different for different
* transfer pattern due to rounding to integral values.
*/
/*
* Calculate the beginning bytes of this process and the next.
* bytes_count is the difference between these two beginnings.
* This way, it eliminates any rounding errors.
* (This is tricky, don't mess with the formula, rounding errors
* can easily get introduced) */
bytes_count = (off_t)(((double)nbytes*(pio_mpi_rank_g+1)) / pio_mpi_nprocs_g)
- (off_t)(((double)nbytes*pio_mpi_rank_g) / pio_mpi_nprocs_g);
/* debug */
if (pio_debug_level >= 4) {
HDprint_rank(output);
HDfprintf(output, "Debug(do_read): "
"buf_size=%Hd, bytes_begin=%Hd, bytes_count=%Hd\n",
(long_long)buf_size, (long_long)bytes_begin,
(long_long)bytes_count);
}
/* I/O Access specific setup */
switch (parms->io_type) {
case POSIXIO:
/* No extra setup */
break;
case MPIO: /* MPI-I/O setup */
/* Build block's derived type */
mrc = MPI_Type_contiguous((int)blk_size,
MPI_BYTE, &mpi_blk_type);
VRFY((mrc==MPI_SUCCESS), "MPIO_TYPE_CREATE");
/* Build file's derived type */
mrc = MPI_Type_vector((int)(buf_size/blk_size), (int)1,
(int)pio_mpi_nprocs_g, mpi_blk_type, &mpi_file_type);
VRFY((mrc==MPI_SUCCESS), "MPIO_TYPE_CREATE");
/* Commit file type */
mrc = MPI_Type_commit( &mpi_file_type );
VRFY((mrc==MPI_SUCCESS), "MPIO_TYPE_COMMIT");
/* Commit buffer type */
mrc = MPI_Type_commit( &mpi_blk_type );
VRFY((mrc==MPI_SUCCESS), "MPIO_TYPE_COMMIT");
break;
case PHDF5: /* HDF5 setup */
if(nbytes>0) {
/* define a contiquous dataset of nbytes native bytes */
h5dims[0] = nbytes;
h5dset_space_id = H5Screate_simple(1, h5dims, NULL);
VRFY((h5dset_space_id >= 0), "H5Screate_simple");
/* Set up the file dset space id to select the pattern to access */
if (parms->interleaved==0){
/* Contiguous pattern */
h5start[0] = bytes_begin;
h5stride[0] = h5block[0] = blk_size;
h5count[0] = buf_size/blk_size;
} /* end if */
else {
/* Interleaved access pattern */
/* Skip offset over blocks of other processes */
h5start[0] = bytes_begin;
h5stride[0] = blk_size*pio_mpi_nprocs_g;
h5block[0] = blk_size;
h5count[0] = buf_size/blk_size;
} /* end else */
hrc = H5Sselect_hyperslab(h5dset_space_id, H5S_SELECT_SET,
h5start, h5stride, h5count, h5block);
VRFY((hrc >= 0), "H5Sselect_hyperslab");
} /* end if */
else {
h5dset_space_id = H5Screate(H5S_SCALAR);
VRFY((h5dset_space_id >= 0), "H5Screate");
} /* end else */
/* Create the memory dataspace that corresponds to the xfer buffer */
if(buf_size>0) {
h5dims[0] = buf_size;
h5mem_space_id = H5Screate_simple(1, h5dims, NULL);
VRFY((h5mem_space_id >= 0), "H5Screate_simple");
} /* end if */
else {
h5mem_space_id = H5Screate(H5S_SCALAR);
VRFY((h5mem_space_id >= 0), "H5Screate");
} /* end else */
/* Create the dataset transfer property list */
h5dxpl = H5Pcreate(H5P_DATASET_XFER);
if (h5dxpl < 0) {
fprintf(stderr, "HDF5 Property List Create failed\n");
GOTOERROR(FAIL);
}
/* Change to collective I/O, if asked */
if(parms->collective) {
hrc = H5Pset_dxpl_mpio(h5dxpl, H5FD_MPIO_COLLECTIVE);
if (hrc < 0) {
fprintf(stderr, "HDF5 Property List Set failed\n");
GOTOERROR(FAIL);
} /* end if */
} /* end if */
break;
} /* end switch */
for (ndset = 1; ndset <= ndsets; ++ndset) {
/* Calculate dataset offset within a file */
/* create dataset */
switch (parms->io_type) {
case POSIXIO:
case MPIO:
/* both posix and mpi io just need dataset offset in file*/
dset_offset = (ndset - 1) * nbytes;
break;
case PHDF5:
sprintf(dname, "Dataset_%ld", ndset);
h5ds_id = H5Dopen(fd->h5fd, dname);
if (h5ds_id < 0) {
fprintf(stderr, "HDF5 Dataset open failed\n");
GOTOERROR(FAIL);
}
break;
}
/* The task is to transfer bytes_count bytes, starting at
* bytes_begin position, using transfer buffer of buf_size bytes.
* If interleaved, select buf_size at a time, in round robin
* fashion, according to number of process. Otherwise, select
* all bytes_count in contiguous.
*/
nbytes_xfer = 0 ;
/* Set base file offset for all I/O patterns and POSIX access */
posix_file_offset = dset_offset + bytes_begin;
/* Set base file offset for all I/O patterns and MPI access */
mpi_file_offset = (MPI_Offset)(dset_offset + bytes_begin);
/* Start "raw data" read timer */
set_time(res->timers, HDF5_RAW_READ_FIXED_DIMS, START);
while (nbytes_xfer < bytes_count){
/* Read */
/* Calculate offset of read within a dataset/file */
switch (parms->io_type) {
case POSIXIO:
/* Contiguous pattern */
if (parms->interleaved==0) {
/* Compute file offset */
file_offset = posix_file_offset + (off_t)nbytes_xfer;
/* only care if seek returns error */
rc = POSIXSEEK(fd->posixfd, file_offset) < 0 ? -1 : 0;
VRFY((rc==0), "POSIXSEEK");
/* check if all bytes are written */
rc = ((ssize_t)buf_size ==
POSIXREAD(fd->posixfd, buffer, buf_size));
VRFY((rc != 0), "POSIXREAD");
/* Advance global offset in dataset */
nbytes_xfer+=buf_size;
} /* end if */
/* Interleaved access pattern */
else {
/* Set the base of user's buffer */
buf_p=(unsigned char *)buffer;
/* Set the number of bytes to transfer this time */
nbytes_toxfer = buf_size;
/* Loop over the buffers to read */
while(nbytes_toxfer>0) {
/* Skip offset over blocks of other processes */
file_offset = posix_file_offset +
(off_t)(nbytes_xfer*pio_mpi_nprocs_g);
/* only care if seek returns error */
rc = POSIXSEEK(fd->posixfd, file_offset) < 0 ? -1 : 0;
VRFY((rc==0), "POSIXSEEK");
/* check if all bytes are written */
rc = ((ssize_t)blk_size ==
POSIXREAD(fd->posixfd, buf_p, blk_size));
VRFY((rc != 0), "POSIXREAD");
/* Advance location in buffer */
buf_p+=blk_size;
/* Advance global offset in dataset */
nbytes_xfer+=blk_size;
/* Decrement number of bytes left this time */
nbytes_toxfer-=blk_size;
} /* end while */
} /* end else */
break;
case MPIO:
/* Independent file access */
if(parms->collective==0) {
/* Contiguous pattern */
if (parms->interleaved==0){
/* Compute offset in file */
mpi_offset = mpi_file_offset +
nbytes_xfer;
/* Perform independent read */
mrc = MPI_File_read_at(fd->mpifd, mpi_offset, buffer,
(int)(buf_size/blk_size), mpi_blk_type,
&mpi_status);
VRFY((mrc==MPI_SUCCESS), "MPIO_READ");
/* Advance global offset in dataset */
nbytes_xfer+=buf_size;
} /* end if */
/* Interleaved access pattern */
else {
/* Set the base of user's buffer */
buf_p=(unsigned char *)buffer;
/* Set the number of bytes to transfer this time */
nbytes_toxfer = buf_size;
/* Loop over the buffers to read */
while(nbytes_toxfer>0) {
/* Skip offset over blocks of other processes */
mpi_offset = mpi_file_offset +
(nbytes_xfer*pio_mpi_nprocs_g);
/* Perform independent read */
mrc = MPI_File_read_at(fd->mpifd, mpi_offset, buf_p,
(int)1, mpi_blk_type, &mpi_status);
VRFY((mrc==MPI_SUCCESS), "MPIO_READ");
/* Advance location in buffer */
buf_p+=blk_size;
/* Advance global offset in dataset */
nbytes_xfer+=blk_size;
/* Decrement number of bytes left this time */
nbytes_toxfer-=blk_size;
} /* end while */
} /* end else */
} /* end if */
/* Collective file access */
else {
/* Contiguous access pattern */
if (parms->interleaved==0){
/* Compute offset in file */
mpi_offset = mpi_file_offset +
nbytes_xfer;
/* Perform collective read */
mrc = MPI_File_read_at_all(fd->mpifd, mpi_offset, buffer,
(int)(buf_size/blk_size), mpi_blk_type, &mpi_status);
VRFY((mrc==MPI_SUCCESS), "MPIO_READ");
/* Advance global offset in dataset */
nbytes_xfer+=buf_size;
} /* end if */
/* Interleaved access pattern */
else {
/* Compute offset in file */
mpi_offset = mpi_file_offset +
(nbytes_xfer*pio_mpi_nprocs_g);
/* Set the file view */
mrc = MPI_File_set_view(fd->mpifd, mpi_offset, mpi_blk_type,
mpi_file_type, (char*)"native", h5_io_info_g);
VRFY((mrc==MPI_SUCCESS), "MPIO_VIEW");
/* Perform collective read */
mrc = MPI_File_read_at_all(fd->mpifd, 0, buffer,
(int)(buf_size/blk_size), mpi_blk_type, &mpi_status);
VRFY((mrc==MPI_SUCCESS), "MPIO_READ");
/* Advance global offset in dataset */
nbytes_xfer+=buf_size;
} /* end else */
} /* end else */
break;
case PHDF5:
/* Set up the file dset space id to move the selection to process */
if (parms->interleaved==0){
/* Contiguous pattern */
h5offset[0] = nbytes_xfer;
} /* end if */
else {
/* Interleaved access pattern */
/* Skip offset over blocks of other processes */
h5offset[0] = (nbytes_xfer*pio_mpi_nprocs_g);
} /* end else */
hrc = H5Soffset_simple(h5dset_space_id, h5offset);
VRFY((hrc >= 0), "H5Soffset_simple");
/* Read the buffer in */
hrc = H5Dread(h5ds_id, ELMT_H5_TYPE, h5mem_space_id,
h5dset_space_id, h5dxpl, buffer);
VRFY((hrc >= 0), "H5Dread");
/* Increment number of bytes transferred */
nbytes_xfer += buf_size;
break;
} /* switch (parms->io_type) */
/* Verify raw data, if asked */
if (parms->verify) {
/* Verify data read */
unsigned char *ucharptr = (unsigned char *)buffer;
size_t i;
int nerror=0;
for (i = 0; i < buf_size; ++i){
if (*ucharptr++ != pio_mpi_rank_g) {
if (++nerror < 20){
/* report at most 20 errors */
HDprint_rank(output);
HDfprintf(output, "read data error, expected (%Hd), "
"got (%Hd)\n",
(long_long)pio_mpi_rank_g,
(long_long)*(ucharptr-1));
} /* end if */
} /* end if */
} /* end for */
if (nerror >= 20) {
HDprint_rank(output);
HDfprintf(output, "...");
HDfprintf(output, "total read data errors=%d\n",
nerror);
} /* end if */
} /* if (parms->verify) */
} /* end while */
/* Stop "raw data" read timer */
set_time(res->timers, HDF5_RAW_READ_FIXED_DIMS, STOP);
/* Calculate read time */
/* Close dataset. Only HDF5 needs to do an explicit close. */
if (parms->io_type == PHDF5) {
hrc = H5Dclose(h5ds_id);
if (hrc < 0) {
fprintf(stderr, "HDF5 Dataset Close failed\n");
GOTOERROR(FAIL);
}
h5ds_id = -1;
} /* end if */
} /* end for */
done:
/* release MPI-I/O objects */
if (parms->io_type == MPIO) {
/* Free file type */
mrc = MPI_Type_free( &mpi_file_type );
VRFY((mrc==MPI_SUCCESS), "MPIO_TYPE_FREE");
/* Free buffer type */
mrc = MPI_Type_free( &mpi_blk_type );
VRFY((mrc==MPI_SUCCESS), "MPIO_TYPE_FREE");
} /* end if */
/* release HDF5 objects */
if (h5dset_space_id != -1) {
hrc = H5Sclose(h5dset_space_id);
if (hrc < 0){
fprintf(stderr, "HDF5 Dataset Space Close failed\n");
ret_code = FAIL;
} else {
h5dset_space_id = -1;
}
}
if (h5mem_space_id != -1) {
hrc = H5Sclose(h5mem_space_id);
if (hrc < 0) {
fprintf(stderr, "HDF5 Memory Space Close failed\n");
ret_code = FAIL;
} else {
h5mem_space_id = -1;
}
}
if (h5dxpl != -1) {
hrc = H5Pclose(h5dxpl);
if (hrc < 0) {
fprintf(stderr, "HDF5 Dataset Transfer Property List Close failed\n");
ret_code = FAIL;
} else {
h5dxpl = -1;
}
}
return ret_code;
}
/*
* Function: do_fopen
* Purpose: Open the specified file.
* Return: SUCCESS or FAIL
* Programmer: Albert Cheng, Bill Wendling, 2001/12/13
* Modifications:
*/
static herr_t
do_fopen(parameters *param, char *fname, file_descr *fd /*out*/, int flags)
{
int ret_code = SUCCESS, mrc;
herr_t hrc;
hid_t acc_tpl = -1; /* file access templates */
hbool_t use_gpfs = FALSE; /* use GPFS hints */
switch (param->io_type) {
case POSIXIO:
if (flags & (PIO_CREATE | PIO_WRITE))
fd->posixfd = POSIXCREATE(fname);
else
fd->posixfd = POSIXOPEN(fname, O_RDONLY);
if (fd->posixfd < 0 ) {
fprintf(stderr, "POSIX File Open failed(%s)\n", fname);
GOTOERROR(FAIL);
}
/* The perils of POSIX I/O in a parallel environment. The problem is:
*
* - Process n opens a file with truncation and then starts
* writing to the file.
* - Process m also opens the file with truncation, but after
* process n has already started to write to the file. Thus,
* all of the stuff process n wrote is now lost.
*/
MPI_Barrier(pio_comm_g);
break;
case MPIO:
if (flags & (PIO_CREATE | PIO_WRITE)) {
MPI_File_delete(fname, h5_io_info_g);
mrc = MPI_File_open(pio_comm_g, fname, MPI_MODE_CREATE | MPI_MODE_RDWR,
h5_io_info_g, &fd->mpifd);
if (mrc != MPI_SUCCESS) {
fprintf(stderr, "MPI File Open failed(%s)\n", fname);
GOTOERROR(FAIL);
}
/*since MPI_File_open with MPI_MODE_CREATE does not truncate */
/*filesize , set size to 0 explicitedly. */
mrc = MPI_File_set_size(fd->mpifd, (MPI_Offset)0);
if (mrc != MPI_SUCCESS) {
fprintf(stderr, "MPI_File_set_size failed\n");
GOTOERROR(FAIL);
}
} else {
mrc = MPI_File_open(pio_comm_g, fname, MPI_MODE_RDONLY,
h5_io_info_g, &fd->mpifd);
if (mrc != MPI_SUCCESS) {
fprintf(stderr, "MPI File Open failed(%s)\n", fname);
GOTOERROR(FAIL);
}
}
break;
case PHDF5:
acc_tpl = H5Pcreate(H5P_FILE_ACCESS);
if (acc_tpl < 0) {
fprintf(stderr, "HDF5 Property List Create failed\n");
GOTOERROR(FAIL);
}
/* Use the appropriate VFL driver */
if(param->h5_use_mpi_posix) {
/* Set the file driver to the MPI-posix driver */
hrc = H5Pset_fapl_mpiposix(acc_tpl, pio_comm_g, use_gpfs);
if (hrc < 0) {
fprintf(stderr, "HDF5 Property List Set failed\n");
GOTOERROR(FAIL);
}
} /* end if */
else {
/* Set the file driver to the MPI-I/O driver */
hrc = H5Pset_fapl_mpio(acc_tpl, pio_comm_g, h5_io_info_g);
if (hrc < 0) {
fprintf(stderr, "HDF5 Property List Set failed\n");
GOTOERROR(FAIL);
}
} /* end else */
/* Set the alignment of objects in HDF5 file */
hrc = H5Pset_alignment(acc_tpl, param->h5_thresh, param->h5_align);
if (hrc < 0) {
fprintf(stderr, "HDF5 Property List Set failed\n");
GOTOERROR(FAIL);
}
/* create the parallel file */
if (flags & (PIO_CREATE | PIO_WRITE)) {
fd->h5fd = H5Fcreate(fname, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
} else {
fd->h5fd = H5Fopen(fname, H5F_ACC_RDONLY, acc_tpl);
}
hrc = H5Pclose(acc_tpl);
if (fd->h5fd < 0) {
fprintf(stderr, "HDF5 File Create failed(%s)\n", fname);
GOTOERROR(FAIL);
}
/* verifying the close of the acc_tpl */
if (hrc < 0) {
fprintf(stderr, "HDF5 Property List Close failed\n");
GOTOERROR(FAIL);
}
break;
}
done:
return ret_code;
}
/*
* Function: do_fclose
* Purpose: Close the specified file descriptor.
* Return: SUCCESS or FAIL
* Programmer: Albert Cheng, Bill Wendling, 2001/12/13
* Modifications:
*/
static herr_t
do_fclose(iotype iot, file_descr *fd /*out*/)
{
herr_t ret_code = SUCCESS, hrc;
int mrc = 0, rc = 0;
switch (iot) {
case POSIXIO:
rc = POSIXCLOSE(fd->posixfd);
if (rc != 0){
fprintf(stderr, "POSIX File Close failed\n");
GOTOERROR(FAIL);
}
fd->posixfd = -1;
break;
case MPIO:
mrc = MPI_File_close(&fd->mpifd);
if (mrc != MPI_SUCCESS){
fprintf(stderr, "MPI File close failed\n");
GOTOERROR(FAIL);
}
fd->mpifd = MPI_FILE_NULL;
break;
case PHDF5:
hrc = H5Fclose(fd->h5fd);
if (hrc < 0) {
fprintf(stderr, "HDF5 File Close failed\n");
GOTOERROR(FAIL);
}
fd->h5fd = -1;
break;
}
done:
return ret_code;
}
/*
* Function: do_fclose
* Purpose: Cleanup temporary file unless HDF5_NOCLEANUP is set.
* Only Proc 0 of the PIO communicator will do the cleanup.
* Other processes just return.
* Return: void
* Programmer: Albert Cheng 2001/12/12
* Modifications:
*/
static void
do_cleanupfile(iotype iot, char *fname)
{
if (pio_mpi_rank_g != 0)
return;
if (clean_file_g == -1)
clean_file_g = (getenv("HDF5_NOCLEANUP")==NULL) ? 1 : 0;
if (clean_file_g){
switch (iot){
case POSIXIO:
remove(fname);
break;
case MPIO:
case PHDF5:
MPI_File_delete(fname, h5_io_info_g);
break;
}
}
}
#ifdef H5_HAVE_GPFS
/* Descriptions here come from the IBM GPFS Manual */
/*
* Function: gpfs_access_range
* Purpose: Declares an access range within a file for an
* application.
*
* The application will access file offsets within the given
* range, and will not access offsets outside the range.
* Violating this hint may produce worse performance than if
* no hint was specified.
*
* This hint is useful in situations where a file is
* partitioned coarsely among several nodes. If the ranges
* do not overlap, each node can specify which range of the
* file it will access, with a performance improvement in
* some cases, such as for sequential writing within a
* range.
*
* Subsequent GPFS_ACCESS_RANGE hints will replace a hint
* passed earlier.
*
* START - The start of the access range offset, in
* bytes, from the beginning of the file
* LENGTH - Length of the access range. 0 indicates to
* the end of the file
* IS_WRITE - 0 indicates READ access, 1 indicates WRITE access
* Return: Nothing
* Programmer: Bill Wendling, 03. June 2002
* Modifications:
*/
static void
gpfs_access_range(int handle, off_t start, off_t length, int is_write)
{
struct {
gpfsFcntlHeader_t hdr;
gpfsAccessRange_t access;
} access_range;
access_range.hdr.totalLength = sizeof(access_range);
access_range.hdr.fcntlVersion = GPFS_FCNTL_CURRENT_VERSION;
access_range.hdr.fcntlReserved = 0;
access_range.access.structLen = sizeof(gpfsAccessRange_t);
access_range.access.structType = GPFS_ACCESS_RANGE;
access_range.access.start = start;
access_range.access.length = length;
access_range.access.isWrite = is_write;
if (gpfs_fcntl(handle, &access_range) != 0) {
fprintf(stderr,
"gpfs_fcntl DS start directive failed. errno=%d errorOffset=%d\n",
errno, access_range.hdr.errorOffset);
exit(EXIT_FAILURE);
}
}
/*
* Function: gpfs_free_range
* Purpose: Undeclares an access range within a file for an
* application.
*
* The application will no longer access file offsets within
* the given range. GPFS flushes the data at the file
* offsets and removes it from the cache.
*
* Multi-node applications that have finished one phase of
* their computation may wish to use this hint before the
* file is accessed in a conflicting mode from another node
* in a later phase. The potential performance benefit is
* that GPFS can avoid later synchronous cache consistency
* operations.
*
* START - The start of the access range offset, in
* bytes from the beginning of the file.
* LENGTH - Length of the access range. 0 indicates to
* the end of the file.
* Return: Nothing
* Programmer: Bill Wendling, 03. June 2002
* Modifications:
*/
static void
gpfs_free_range(int handle, off_t start, off_t length)
{
struct {
gpfsFcntlHeader_t hdr;
gpfsFreeRange_t range;
} free_range;
/* Issue the invalidate hint */
free_range.hdr.totalLength = sizeof(free_range);
free_range.hdr.fcntlVersion = GPFS_FCNTL_CURRENT_VERSION;
free_range.hdr.fcntlReserved = 0;
free_range.range.structLen = sizeof(gpfsFreeRange_t);
free_range.range.structType = GPFS_FREE_RANGE;
free_range.range.start = start;
free_range.range.length = length;
if (gpfs_fcntl(handle, &free_range) != 0) {
fprintf(stderr,
"gpfs_fcntl free range failed for range %d:%d. errno=%d errorOffset=%d\n",
start, length, errno, free_range.hdr.errorOffset);
exit(EXIT_FAILURE);
}
}
/*
* Function: gpfs_clear_file_cache
* Purpose: Indicates file access in the near future is not expected.
*
* The application does not expect to make any further
* accesses to the file in the near future, so GPFS removes
* any data or metadata pertaining to the file from its
* cache.
*
* Multi-node applications that have finished one phase of
* their computation may wish to use this hint before the
* file is accessed in a conflicting mode from another node
* in a later phase. The potential performance benefit is
* that GPFS can avoid later synchronous cache consistency
* operations.
* Return: Nothing
* Programmer: Bill Wendling, 03. June 2002
* Modifications:
*/
static void
gpfs_clear_file_cache(int handle)
{
struct {
gpfsFcntlHeader_t hdr;
gpfsClearFileCache_t clear;
} clear_cache;
clear_cache.hdr.totalLength = sizeof(clear_cache);
clear_cache.hdr.fcntlVersion = GPFS_FCNTL_CURRENT_VERSION;
clear_cache.hdr.fcntlReserved = 0;
clear_cache.clear.structLen = sizeof(gpfsClearFileCache_t);
clear_cache.clear.structType = GPFS_CLEAR_FILE_CACHE;
if (gpfs_fcntl(handle, &clear_cache) != 0) {
fprintf(stderr,
"gpfs_fcntl clear file cache directive failed. errno=%d errorOffset=%d\n",
errno, clear_cache.hdr.errorOffset);
exit(EXIT_FAILURE);
}
}
/*
* Function: gpfs_cancel_hints
* Purpose: Indicates to remove any hints against the open file
* handle.
*
* GPFS removes any hints that may have been issued against
* this open file handle:
*
* - The hint status of the file is restored ot what it
* would have been immediately after being opened, but
* does not affect the contents of the GPFS file
* cache. Cancelling an earlier hint that resulted in
* data being removed from the GPFS file cache does
* not bring that data back int othe cache; data
* re-enters the cache only pon access by the
* application or by user-driven or automatic
* prefetching.
* - Only the GPFS_MULTIPLE_ACCESS_RANGE hint has a
* state that might be removed by the
* GPFS_CANCEL_HINTS directive.
* Return: Nothing
* Programmer: Bill Wendling, 03. June 2002
* Modifications:
*/
static void
gpfs_cancel_hints(int handle)
{
struct {
gpfsFcntlHeader_t hdr;
gpfsCancelHints_t cancel;
} cancel_hints;
cancel_hints.hdr.totalLength = sizeof(cancel_hints);
cancel_hints.hdr.fcntlVersion = GPFS_FCNTL_CURRENT_VERSION;
cancel_hints.hdr.fcntlReserved = 0;
cancel_hints.cancel.structLen = sizeof(gpfsCancelHints_t);
cancel_hints.cancel.structType = GPFS_CANCEL_HINTS;
if (gpfs_fcntl(handle, &cancel_hints) != 0) {
fprintf(stderr,
"gpfs_fcntl cancel hints directive failed. errno=%d errorOffset=%d\n",
errno, cancel_hints.hdr.errorOffset);
exit(EXIT_FAILURE);
}
}
/*
* Function: gpfs_start_data_shipping
* Purpose: Initiates data shipping mode.
*
* Once all participating threads have issued this directive
* for a file, GPFS enters a mode where it logically
* partitions the blocks of the file among a group of agent
* nodes. The agents are those nodes on which one or more
* threads have issued the GPFS_DATA_SHIP_START directive.
* Each thread that has issued a GPFS_DATA_SHIP_START
* directive and the associated agent nodes are referred to
* as the data shipping collective.
*
* The second parameter is the total number of open
* instances on all nodes that will be operating on the
* file. Must be called for every such instance with the
* same value of NUM_INSTS.
*
* NUM_INSTS - The number of open file instances, on all
* nodes, collaborating to operate on the file
* Return: Nothing
* Programmer: Bill Wendling, 28. May 2002
* Modifications:
*/
static void
gpfs_start_data_shipping(int handle, int num_insts)
{
struct {
gpfsFcntlHeader_t hdr;
gpfsDataShipStart_t start;
} ds_start;
ds_start.hdr.totalLength = sizeof(ds_start);
ds_start.hdr.fcntlVersion = GPFS_FCNTL_CURRENT_VERSION;
ds_start.hdr.fcntlReserved = 0;
ds_start.start.structLen = sizeof(gpfsDataShipStart_t);
ds_start.start.structType = GPFS_DATA_SHIP_START;
ds_start.start.numInstances = num_insts;
ds_start.start.reserved = 0;
if (gpfs_fcntl(handle, &ds_start) != 0) {
fprintf(stderr,
"gpfs_fcntl DS start directive failed. errno=%d errorOffset=%d\n",
errno, ds_start.hdr.errorOffset);
exit(EXIT_FAILURE);
}
}
/*
* Function: gpfs_start_data_ship_map
* Purpose: Indicates which agent nodes are to be used for data
* shipping. GPFS recognizes which agent nodes to use for
* data shipping.
*
* PARTITION_SIZE - The number of contiguous bytes per
* server. This value must be a
* multiple of the number of bytes in a
* single file system block
* AGENT_COUNT - The number of entries in the
* agentNodeNumber array
* AGENT_NODE_NUM - The data ship agent node numbers as
* listed in the SDT or the global ODM
*
* Return: Nothing
* Programmer: Bill Wendling, 10. Jul 2002
* Modifications:
*/
static void
gpfs_start_data_ship_map(int handle, int partition_size, int agent_count,
int *agent_node_num)
{
int i;
struct {
gpfsFcntlHeader_t hdr;
gpfsDataShipMap_t map;
} ds_map;
ds_map.hdr.totalLength = sizeof(ds_map);
ds_map.hdr.fcntlVersion = GPFS_FCNTL_CURRENT_VERSION;
ds_map.hdr.fcntlReserved = 0;
ds_map.map.structLen = sizeof(gpfsDataShipMap_t);
ds_map.map.structType = GPFS_DATA_SHIP_MAP;
ds_map.map.partitionSize = partition_size;
ds_map.map.agentCount = agent_count;
for (i = 0; i < agent_count; ++i)
ds_map.map.agentNodeNumber[i] = agent_node_num[i];
if (gpfs_fcntl(handle, &ds_map) != 0) {
fprintf(stderr,
"gpfs_fcntl DS map directive failed. errno=%d errorOffset=%d\n",
errno, ds_map.hdr.errorOffset);
exit(EXIT_FAILURE);
}
}
/*
* Function: gpfs_stop_data_shipping
* Purpose: Takes a file out of the data shipping mode.
*
* - GPFS waits for all threads that issued the
* GPFS_DATA_SHIP_START directive to issue this directive,
* then flushes the dirty file data to disk.
*
* - While a gpfs_cntl() call is blocked for other threads,
* the call can be interrupted by any signal. If a signal
* is delivered to any of the waiting calls, all waiting
* calls on every node will be interrupted and will return
* EINTR. GPFS will not cancel data shipping mode if such
* a signal occurs. It is the responsibility of the
* application to mask off any signals that might normally
* occur while waiting for another node in the data
* shipping collective. Several libraries use SIGALRM; the
* thread that makes the gpfs_fcntl() call should use
* sigthreadmask to mask off delivery of this signal while
* inside the call.
* Return: Nothing
* Programmer: Bill Wendling, 28. May 2002
* Modifications:
*/
static void
gpfs_stop_data_shipping(int handle)
{
struct {
gpfsFcntlHeader_t hdr;
gpfsDataShipStop_t stop;
} ds_stop;
ds_stop.hdr.totalLength = sizeof(ds_stop);
ds_stop.hdr.fcntlVersion = GPFS_FCNTL_CURRENT_VERSION;
ds_stop.hdr.fcntlReserved = 0;
ds_stop.stop.structLen = sizeof(ds_stop.stop);
ds_stop.stop.structType = GPFS_DATA_SHIP_STOP;
if (gpfs_fcntl(handle, &ds_stop) != 0)
fprintf(stderr,
"gpfs_fcntl DS stop directive failed. errno=%d errorOffset=%d\n",
errno, ds_stop.hdr.errorOffset);
}
/*
* Function: gpfs_invalidate_file_cache
* Purpose: Invalidate all cached data held on behalf of a file on
* this node.
* Return: Nothing
* Programmer: Bill Wendling, 03. June 2002
* Modifications:
*/
static void
gpfs_invalidate_file_cache(const char *filename)
{
int handle;
struct {
gpfsFcntlHeader_t hdr;
gpfsClearFileCache_t inv;
} inv_cache_hint;
/* Open the file. If the open fails, the file cannot be cached. */
handle = open(filename, O_RDONLY, 0);
if (handle == -1)
return;
/* Issue the invalidate hint */
inv_cache_hint.hdr.totalLength = sizeof(inv_cache_hint);
inv_cache_hint.hdr.fcntlVersion = GPFS_FCNTL_CURRENT_VERSION;
inv_cache_hint.hdr.fcntlReserved = 0;
inv_cache_hint.inv.structLen = sizeof(gpfsClearFileCache_t);
inv_cache_hint.inv.structType = GPFS_CLEAR_FILE_CACHE;
if (gpfs_fcntl(handle, &inv_cache_hint) != 0) {
fprintf(stderr,
"gpfs_fcntl clear cache hint failed for file '%s'.",
filename);
fprintf(stderr, " errno=%d errorOffset=%d\n",
errno, inv_cache_hint.hdr.errorOffset);
exit(1);
}
/* Close the file */
if (close(handle) == -1) {
fprintf(stderr,
"could not close file '%s' after flushing file cache, ",
filename);
fprintf(stderr, "errno=%d\n", errno);
exit(1);
}
}
#else
/* turn the stubs off since some compilers are warning they are not used */
#if 0
/* H5_HAVE_GPFS isn't defined...stub functions */
static void
gpfs_access_range(int UNUSED handle, off_t UNUSED start, off_t UNUSED length,
int UNUSED is_write)
{
return;
}
static void
gpfs_free_range(int UNUSED handle, off_t UNUSED start, off_t UNUSED length)
{
return;
}
static void
gpfs_clear_file_cache(int UNUSED handle)
{
return;
}
static void
gpfs_cancel_hints(int UNUSED handle)
{
return;
}
static void
gpfs_start_data_shipping(int UNUSED handle, int UNUSED num_insts)
{
return;
}
static void
gpfs_stop_data_shipping(int UNUSED handle)
{
return;
}
static void
gpfs_start_data_ship_map(int UNUSED handle, int UNUSED partition_size,
int UNUSED agent_count, int UNUSED *agent_node_num)
{
return;
}
static void
gpfs_invalidate_file_cache(const char UNUSED *filename)
{
return;
}
#endif /* 0 */
#endif /* H5_HAVE_GPFS */
#ifdef TIME_MPI
/* instrument the MPI_File_wrirte_xxx and read_xxx calls to measure
* pure time spent in MPI_File code.
*/
int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)
{
int err;
set_time(timer_g, HDF5_MPI_READ, START);
err=PMPI_File_read_at(fh, offset, buf, count, datatype, status);
set_time(timer_g, HDF5_MPI_READ, STOP);
return err;
}
int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)
{
int err;
set_time(timer_g, HDF5_MPI_READ, START);
err=PMPI_File_read_at_all(fh, offset, buf, count, datatype, status);
set_time(timer_g, HDF5_MPI_READ, STOP);
return err;
}
int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)
{
int err;
set_time(timer_g, HDF5_MPI_WRITE, START);
err=PMPI_File_write_at(fh, offset, buf, count, datatype, status);
set_time(timer_g, HDF5_MPI_WRITE, STOP);
return err;
}
int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)
{
int err;
set_time(timer_g, HDF5_MPI_WRITE, START);
err=PMPI_File_write_at_all(fh, offset, buf, count, datatype, status);
set_time(timer_g, HDF5_MPI_WRITE, STOP);
return err;
}
#endif /* TIME_MPI */
#endif /* H5_HAVE_PARALLEL */