hdf5/testpar/t_mdset.c
Albert Cheng 3043f95b29 [svn-r7979] Purpose:
Feature.

Description:
Added the short_dataset test (was in v1.6 first.)

Platforms tested:
Tested in eirene (pp) only since these have been tested in v1.6 already.

Misc. update:
2003-12-25 17:52:39 -05:00

1027 lines
35 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the files COPYING and Copyright.html. COPYING can be found at the root *
* of the source code distribution tree; Copyright.html can be found at the *
* root level of an installed copy of the electronic HDF5 document set and *
* is linked from the top-level documents page. It can also be found at *
* http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html. If you do not have *
* access to either file, you may request a copy from hdfhelp@ncsa.uiuc.edu. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* $Id$ */
#include "testphdf5.h"
#define DIM 2
#define SIZE 32
#define NDATASET 4
#define GROUP_DEPTH 128
enum obj_type { is_group, is_dset };
void write_dataset(hid_t, hid_t, hid_t);
int read_dataset(hid_t, hid_t, hid_t);
void create_group_recursive(hid_t, hid_t, hid_t, int);
void recursive_read_group(hid_t, hid_t, hid_t, int);
void group_dataset_read(hid_t fid, int mpi_rank, int m);
void write_attribute(hid_t, int, int);
int read_attribute(hid_t, int, int);
int check_value(DATATYPE *, DATATYPE *);
void get_slab(hssize_t[], hsize_t[], hsize_t[], hsize_t[]);
/*
* Example of using PHDF5 to create ndatasets datasets. Each process write
* a slab of array to the file.
*/
void multiple_dset_write(char *filename, int ndatasets)
{
int i, j, n, mpi_size, mpi_rank;
hid_t iof, plist, dataset, memspace, filespace;
hid_t dcpl; /* Dataset creation property list */
hbool_t use_gpfs = FALSE; /* Use GPFS hints */
hssize_t chunk_origin [DIM];
hsize_t chunk_dims [DIM], file_dims [DIM];
hsize_t count[DIM]={1,1};
double outme [SIZE][SIZE];
double fill=1.0; /* Fill value */
char dname [100];
herr_t ret;
MPI_Comm_rank (MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size (MPI_COMM_WORLD, &mpi_size);
VRFY((mpi_size <= SIZE), "mpi_size <= SIZE");
plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type, use_gpfs);
VRFY((plist>=0), "create_faccess_plist succeeded");
iof = H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist);
VRFY((iof>=0), "H5Fcreate succeeded");
ret = H5Pclose (plist);
VRFY((ret>=0), "H5Pclose succeeded");
/* decide the hyperslab according to process number. */
get_slab(chunk_origin, chunk_dims, count, file_dims);
memspace = H5Screate_simple (DIM, chunk_dims, NULL);
filespace = H5Screate_simple (DIM, file_dims, NULL);
ret = H5Sselect_hyperslab (filespace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims);
VRFY((ret>=0), "mdata hyperslab selection");
/* Create a dataset creation property list */
dcpl = H5Pcreate(H5P_DATASET_CREATE);
VRFY((dcpl>=0), "dataset creation property list succeeded");
ret=H5Pset_fill_value(dcpl, H5T_NATIVE_DOUBLE, &fill);
VRFY((ret>=0), "set fill-value succeeded");
for (n = 0; n < ndatasets; n++) {
sprintf (dname, "dataset %d", n);
dataset = H5Dcreate (iof, dname, H5T_NATIVE_DOUBLE, filespace, dcpl);
VRFY((dataset > 0), dname);
/* calculate data to write */
for (i = 0; i < SIZE; i++)
for (j = 0; j < SIZE; j++)
outme [i][j] = n*1000 + mpi_rank;
H5Dwrite (dataset, H5T_NATIVE_DOUBLE, memspace, filespace, H5P_DEFAULT, outme);
H5Dclose (dataset);
#ifdef BARRIER_CHECKS
if (! ((n+1) % 10)) {
printf("created %d datasets\n", n+1);
MPI_Barrier(MPI_COMM_WORLD);
}
#endif /* BARRIER_CHECKS */
}
H5Sclose (filespace);
H5Sclose (memspace);
H5Pclose (dcpl);
H5Fclose (iof);
}
/* Example of using PHDF5 to create, write, and read compact dataset.
*/
void compact_dataset(char *filename)
{
int i, j, mpi_size, mpi_rank, err_num=0;
hbool_t use_gpfs = FALSE;
hid_t iof, plist, dcpl, dxpl, dataset, filespace;
hsize_t file_dims [DIM]={SIZE,SIZE};
double outme [SIZE][SIZE], inme[SIZE][SIZE];
char dname[]="dataset";
herr_t ret;
MPI_Comm_rank (MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size (MPI_COMM_WORLD, &mpi_size);
VRFY((mpi_size <= SIZE), "mpi_size <= SIZE");
plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type, use_gpfs);
iof = H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist);
/* Define data space */
filespace = H5Screate_simple (DIM, file_dims, NULL);
/* Create a compact dataset */
dcpl = H5Pcreate(H5P_DATASET_CREATE);
VRFY((dcpl>=0), "dataset creation property list succeeded");
ret=H5Pset_layout(dcpl, H5D_COMPACT);
VRFY((dcpl >= 0), "set property list for compact dataset");
ret=H5Pset_alloc_time(dcpl, H5D_ALLOC_TIME_EARLY);
VRFY((ret >= 0), "set space allocation time for compact dataset");
dataset = H5Dcreate (iof, dname, H5T_NATIVE_DOUBLE, filespace, dcpl);
VRFY((dataset >= 0), "H5Dcreate succeeded");
/* set up the collective transfer properties list */
dxpl = H5Pcreate (H5P_DATASET_XFER);
VRFY((dxpl >= 0), "");
ret=H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pcreate xfer succeeded");
/* Recalculate data to write. Each process writes the same data. */
for (i = 0; i < SIZE; i++)
for (j = 0; j < SIZE; j++)
outme [i][j] = (i+j)*1000;
ret=H5Dwrite (dataset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, dxpl, outme);
VRFY((ret >= 0), "H5Dwrite succeeded");
H5Pclose (dcpl);
H5Pclose (plist);
H5Dclose (dataset);
H5Sclose (filespace);
H5Fclose (iof);
/* Open the file and dataset, read and compare the data. */
plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type, use_gpfs);
iof = H5Fopen(filename, H5F_ACC_RDONLY, plist);
VRFY((iof >= 0), "H5Fopen succeeded");
/* set up the collective transfer properties list */
dxpl = H5Pcreate (H5P_DATASET_XFER);
VRFY((dxpl >= 0), "");
ret=H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pcreate xfer succeeded");
dataset = H5Dopen(iof, dname);
VRFY((dataset >= 0), "H5Dcreate succeeded");
ret = H5Dread(dataset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, dxpl, inme);
VRFY((ret >= 0), "H5Dread succeeded");
/* Verify data value */
for (i = 0; i < SIZE; i++)
for (j = 0; j < SIZE; j++)
if(inme[i][j] != outme[i][j])
if(err_num++ < MAX_ERR_REPORT || verbose)
printf("Dataset Verify failed at [%d][%d]: expect %f, got %f\n", i, j, outme[i][j], inme[i][j]);
H5Pclose(plist);
H5Pclose(dxpl);
H5Dclose(dataset);
H5Fclose(iof);
}
/* Example of using PHDF5 to create "large" datasets. (>2GB, >4GB, >8GB)
* Actual data is _not_ written to these datasets. Dataspaces are exact
* sizes (2GB, 4GB, etc.), but the metadata for the file pushes the file over
* the boundary of interest.
*/
void big_dataset(const char *filename)
{
int mpi_size, mpi_rank; /* MPI info */
hbool_t use_gpfs = FALSE; /* Don't use GPFS stuff for this test */
hid_t iof, /* File ID */
fapl, /* File access property list ID */
dataset, /* Dataset ID */
filespace; /* Dataset's dataspace ID */
hsize_t file_dims [4]; /* Dimensions of dataspace */
char dname[]="dataset"; /* Name of dataset */
MPI_Offset file_size; /* Size of file on disk */
herr_t ret; /* Generic return value */
MPI_Comm_rank (MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size (MPI_COMM_WORLD, &mpi_size);
VRFY((mpi_size <= SIZE), "mpi_size <= SIZE");
fapl = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type, use_gpfs);
VRFY((fapl >= 0), "create_faccess_plist succeeded");
/*
* Create >2GB HDF5 file
*/
iof = H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
VRFY((iof >= 0), "H5Fcreate succeeded");
/* Define dataspace for 2GB dataspace */
file_dims[0]= 2;
file_dims[1]= 1024;
file_dims[2]= 1024;
file_dims[3]= 1024;
filespace = H5Screate_simple (4, file_dims, NULL);
VRFY((filespace >= 0), "H5Screate_simple succeeded");
dataset = H5Dcreate (iof, dname, H5T_NATIVE_UCHAR, filespace, H5P_DEFAULT);
VRFY((dataset >= 0), "H5Dcreate succeeded");
/* Close all file objects */
ret=H5Dclose (dataset);
VRFY((ret >= 0), "H5Dclose succeeded");
ret=H5Sclose (filespace);
VRFY((ret >= 0), "H5Sclose succeeded");
ret=H5Fclose (iof);
VRFY((ret >= 0), "H5Fclose succeeded");
/* Check that file of the correct size was created */
file_size=h5_mpi_get_file_size(filename, MPI_COMM_WORLD, MPI_INFO_NULL);
VRFY((file_size == 2147485696ULL), "File is correct size");
/*
* Create >4GB HDF5 file
*/
iof = H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
VRFY((iof >= 0), "H5Fcreate succeeded");
/* Define dataspace for 4GB dataspace */
file_dims[0]= 4;
file_dims[1]= 1024;
file_dims[2]= 1024;
file_dims[3]= 1024;
filespace = H5Screate_simple (4, file_dims, NULL);
VRFY((filespace >= 0), "H5Screate_simple succeeded");
dataset = H5Dcreate (iof, dname, H5T_NATIVE_UCHAR, filespace, H5P_DEFAULT);
VRFY((dataset >= 0), "H5Dcreate succeeded");
/* Close all file objects */
ret=H5Dclose (dataset);
VRFY((ret >= 0), "H5Dclose succeeded");
ret=H5Sclose (filespace);
VRFY((ret >= 0), "H5Sclose succeeded");
ret=H5Fclose (iof);
VRFY((ret >= 0), "H5Fclose succeeded");
/* Check that file of the correct size was created */
file_size=h5_mpi_get_file_size(filename, MPI_COMM_WORLD, MPI_INFO_NULL);
VRFY((file_size == 4294969344ULL), "File is correct size");
/*
* Create >8GB HDF5 file
*/
iof = H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
VRFY((iof >= 0), "H5Fcreate succeeded");
/* Define dataspace for 8GB dataspace */
file_dims[0]= 8;
file_dims[1]= 1024;
file_dims[2]= 1024;
file_dims[3]= 1024;
filespace = H5Screate_simple (4, file_dims, NULL);
VRFY((filespace >= 0), "H5Screate_simple succeeded");
dataset = H5Dcreate (iof, dname, H5T_NATIVE_UCHAR, filespace, H5P_DEFAULT);
VRFY((dataset >= 0), "H5Dcreate succeeded");
/* Close all file objects */
ret=H5Dclose (dataset);
VRFY((ret >= 0), "H5Dclose succeeded");
ret=H5Sclose (filespace);
VRFY((ret >= 0), "H5Sclose succeeded");
ret=H5Fclose (iof);
VRFY((ret >= 0), "H5Fclose succeeded");
/* Check that file of the correct size was created */
file_size=h5_mpi_get_file_size(filename, MPI_COMM_WORLD, MPI_INFO_NULL);
VRFY((file_size == 8589936640ULL), "File is correct size");
/* Close fapl */
ret=H5Pclose (fapl);
VRFY((ret >= 0), "H5Pclose succeeded");
}
/* Example of using PHDF5 to read "short" datasets. These datasets don't have
* actual data written to the entire raw data area and rely on the "fill with
* zeros" code in the VFL driver read routine to work correctly.
*/
void short_dataset(const char *filename)
{
int mpi_size, mpi_rank; /* MPI info */
hbool_t use_gpfs = FALSE; /* Don't use GPFS stuff for this test */
int err_num; /* Number of errors */
hid_t iof, /* File ID */
fapl, /* File access property list ID */
dxpl, /* Data transfer property list ID */
dataset, /* Dataset ID */
memspace, /* Memory dataspace ID */
filespace; /* Dataset's dataspace ID */
char dname[]="dataset"; /* Name of dataset */
hsize_t dset_size[4] = {0, 6, 7, 8};
hssize_t req_start[4] = {0, 0, 0, 0};
hsize_t req_count[4] = {1, 6, 7, 8};
int *rdata, *wdata; /* Buffers for data to read and write */
int *tdata, *tdata2; /* Temporary pointer into buffer */
int acc, i, j, k, l; /* Local index variables */
herr_t ret; /* Generic return value */
MPI_Comm_rank (MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size (MPI_COMM_WORLD, &mpi_size);
VRFY((mpi_size <= SIZE), "mpi_size <= SIZE");
/* Allocate space for the buffers */
dset_size[0]=mpi_size+1;
rdata=HDmalloc((size_t)(dset_size[0]*dset_size[1]*dset_size[2]*dset_size[3]*sizeof(int)));
VRFY((rdata != NULL), "HDcalloc succeeded for read buffer");
wdata=HDmalloc((size_t)(dset_size[0]*dset_size[1]*dset_size[2]*dset_size[3]*sizeof(int)));
VRFY((wdata != NULL), "HDmalloc succeeded for write buffer");
/* Initialize write buffer */
HDmemset(rdata,2,(size_t)(dset_size[0]*dset_size[1]*dset_size[2]*dset_size[3]*sizeof(int)));
tdata=wdata;
for (i=0, acc=0; i<(int)dset_size[0]; i++)
for (j=0; j<(int)dset_size[1]; j++)
for (k=0; k<(int)dset_size[2]; k++)
for (l=0; l<(int)dset_size[3]; l++)
*tdata++ = acc++;
fapl = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type, use_gpfs);
VRFY((fapl >= 0), "create_faccess_plist succeeded");
/*
* Create HDF5 file
*/
iof = H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
VRFY((iof >= 0), "H5Fcreate succeeded");
filespace = H5Screate_simple(4, dset_size, NULL);
VRFY((filespace >= 0), "File H5Screate_simple succeeded");
dataset = H5Dcreate(iof, dname, H5T_NATIVE_INT, filespace, H5P_DEFAULT);
VRFY((dataset >= 0), "H5Dcreate succeeded");
memspace = H5Screate_simple(4, dset_size, NULL);
VRFY((memspace >= 0), "Memory H5Screate_simple succeeded");
/* Create hyperslabs in memory and file dataspaces */
req_start[0]=mpi_rank;
ret=H5Sselect_hyperslab(filespace, H5S_SELECT_SET, req_start, NULL, req_count, NULL);
VRFY((ret >= 0), "H5Sselect_hyperslab succeeded on memory dataspace");
ret=H5Sselect_hyperslab(memspace, H5S_SELECT_SET, req_start, NULL, req_count, NULL);
VRFY((ret >= 0), "H5Sselect_hyperslab succeeded on memory dataspace");
/* Create DXPL for collective I/O */
dxpl = H5Pcreate (H5P_DATASET_XFER);
VRFY((dxpl >= 0), "H5Pcreate succeeded");
ret=H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
/* Collectively write a hyperslab of data to the dataset */
ret=H5Dwrite(dataset, H5T_NATIVE_INT, memspace, filespace, dxpl, wdata);
VRFY((ret >= 0), "H5Dwrite succeeded");
/* Barrier here, to allow MPI-posix I/O to sync */
MPI_Barrier(MPI_COMM_WORLD);
/* Independently read the entire dataset back */
ret=H5Dread(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata);
VRFY((ret >= 0), "H5Dread succeeded");
/* Verify correct data read */
tdata=wdata;
tdata2=rdata;
err_num=0;
for (i=0; i<(int)dset_size[0]; i++)
for (j=0; j<(int)dset_size[1]; j++)
for (k=0; k<(int)dset_size[2]; k++)
for (l=0; l<(int)dset_size[3]; l++, tdata++, tdata2++)
if(i<mpi_size) {
if( *tdata != *tdata2 )
if(err_num++ < MAX_ERR_REPORT || verbose)
printf("Dataset Verify failed at [%d][%d][%d][%d]: expect %d, got %d\n", i,j,k,l, *tdata, *tdata2);
} /* end if */
else {
if( *tdata2 != 0)
if(err_num++ < MAX_ERR_REPORT || verbose)
printf("Dataset Verify failed at [%d][%d][%d][%d]: expect 0, got %d\n", i,j,k,l, *tdata2);
} /* end else */
if(err_num > MAX_ERR_REPORT && !verbose)
printf("[more errors ...]\n");
if(err_num){
printf("%d errors found in check_value\n", err_num);
nerrors++;
}
/* Close all file objects */
ret=H5Dclose (dataset);
VRFY((ret >= 0), "H5Dclose succeeded");
ret=H5Sclose (filespace);
VRFY((ret >= 0), "H5Sclose succeeded");
ret=H5Fclose (iof);
VRFY((ret >= 0), "H5Fclose succeeded");
/* Close memory dataspace */
ret=H5Sclose (memspace);
VRFY((ret >= 0), "H5Sclose succeeded");
/* Close dxpl */
ret=H5Pclose (dxpl);
VRFY((ret >= 0), "H5Pclose succeeded");
/* Close fapl */
ret=H5Pclose (fapl);
VRFY((ret >= 0), "H5Pclose succeeded");
}
/* Write multiple groups with a chunked dataset in each group collectively.
* These groups and datasets are for testing independent read later.
*/
void collective_group_write(char *filename, int ngroups)
{
int mpi_rank, mpi_size;
int i, j, m;
hbool_t use_gpfs = FALSE;
char gname[64], dname[32];
hid_t fid, gid, did, plist, dcpl, memspace, filespace;
DATATYPE outme[SIZE][SIZE];
hssize_t chunk_origin[DIM];
hsize_t chunk_dims[DIM], file_dims[DIM], count[DIM];
const hsize_t chunk_size[2] = {SIZE/2, SIZE/2}; /* Chunk dimensions */
herr_t ret1, ret2;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type, use_gpfs);
fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist);
H5Pclose(plist);
/* decide the hyperslab according to process number. */
get_slab(chunk_origin, chunk_dims, count, file_dims);
/* select hyperslab in memory and file spaces. These two operations are
* identical since the datasets are the same. */
memspace = H5Screate_simple(DIM, file_dims, NULL);
ret1 = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, chunk_origin,
chunk_dims, count, chunk_dims);
filespace = H5Screate_simple(DIM, file_dims, NULL);
ret2 = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, chunk_origin,
chunk_dims, count, chunk_dims);
VRFY((memspace>=0), "memspace");
VRFY((filespace>=0), "filespace");
VRFY((ret1>=0), "mgroup memspace selection");
VRFY((ret2>=0), "mgroup filespace selection");
dcpl = H5Pcreate(H5P_DATASET_CREATE);
ret1 = H5Pset_chunk (dcpl, 2, chunk_size);
VRFY((dcpl>=0), "dataset creation property");
VRFY((ret1>=0), "set chunk for dataset creation property");
/* creates ngroups groups under the root group, writes chunked
* datasets in parallel. */
for(m = 0; m < ngroups; m++) {
sprintf(gname, "group%d", m);
gid = H5Gcreate(fid, gname, 0);
VRFY((gid > 0), gname);
sprintf(dname, "dataset%d", m);
did = H5Dcreate(gid, dname, H5T_NATIVE_INT, filespace, dcpl);
VRFY((did > 0), dname);
for(i=0; i < SIZE; i++)
for(j=0; j < SIZE; j++)
outme[i][j] = (i+j)*1000 + mpi_rank;
H5Dwrite(did, H5T_NATIVE_INT, memspace, filespace, H5P_DEFAULT,
outme);
H5Dclose(did);
H5Gclose(gid);
#ifdef BARRIER_CHECKS
if(! ((m+1) % 10)) {
printf("created %d groups\n", m+1);
MPI_Barrier(MPI_COMM_WORLD);
}
#endif /* BARRIER_CHECKS */
}
H5Pclose(dcpl);
H5Sclose(filespace);
H5Sclose(memspace);
H5Fclose(fid);
}
/* Let two sets of processes open and read different groups and chunked
* datasets independently.
*/
void independent_group_read(char *filename, int ngroups)
{
int mpi_rank, m;
hid_t plist, fid;
hbool_t use_gpfs = FALSE;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type, use_gpfs);
fid = H5Fopen(filename, H5F_ACC_RDONLY, plist);
H5Pclose(plist);
/* open groups and read datasets. Odd number processes read even number
* groups from the end; even number processes read odd number groups
* from the beginning. */
if(mpi_rank%2==0) {
for(m=ngroups-1; m==0; m-=2)
group_dataset_read(fid, mpi_rank, m);
} else {
for(m=0; m<ngroups; m+=2)
group_dataset_read(fid, mpi_rank, m);
}
H5Fclose(fid);
}
/* Open and read datasets and compare data */
void group_dataset_read(hid_t fid, int mpi_rank, int m)
{
int ret, i, j;
char gname[64], dname[32];
hid_t gid, did;
DATATYPE *outdata, *indata;
indata = (DATATYPE*)malloc(SIZE*SIZE*sizeof(DATATYPE));
outdata = (DATATYPE*)malloc(SIZE*SIZE*sizeof(DATATYPE));
/* open every group under root group. */
sprintf(gname, "group%d", m);
gid = H5Gopen(fid, gname);
VRFY((gid > 0), gname);
/* check the data. */
sprintf(dname, "dataset%d", m);
did = H5Dopen(gid, dname);
VRFY((did>0), dname);
H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, indata);
/* this is the original value */
for(i=0; i<SIZE; i++)
for(j=0; j<SIZE; j++) {
*outdata = (i+j)*1000 + mpi_rank;
outdata++;
}
outdata -= SIZE*SIZE;
/* compare the original value(outdata) to the value in file(indata).*/
ret = check_value(indata, outdata);
VRFY((ret==0), "check the data");
H5Dclose(did);
H5Gclose(gid);
}
/*
* Example of using PHDF5 to create multiple groups. Under the root group,
* it creates ngroups groups. Under the first group just created, it creates
* recursive subgroups of depth GROUP_DEPTH. In each created group, it
* generates NDATASETS datasets. Each process write a hyperslab of an array
* into the file. The structure is like
*
* root group
* |
* ---------------------------- ... ... ------------------------
* | | | ... ... | |
* group0*+' group1*+' group2*+' ... ... group ngroups*+'
* |
* 1st_child_group*'
* |
* 2nd_child_group*'
* |
* :
* :
* |
* GROUP_DEPTHth_child_group*'
*
* * means the group has dataset(s).
* + means the group has attribute(s).
* ' means the datasets in the groups have attribute(s).
*/
void multiple_group_write(char *filename, int ngroups)
{
int mpi_rank, mpi_size;
int m;
hbool_t use_gpfs = FALSE;
char gname[64];
hid_t fid, gid, plist, memspace, filespace;
hssize_t chunk_origin[DIM];
hsize_t chunk_dims[DIM], file_dims[DIM], count[DIM];
herr_t ret;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type, use_gpfs);
fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist);
H5Pclose(plist);
/* decide the hyperslab according to process number. */
get_slab(chunk_origin, chunk_dims, count, file_dims);
/* select hyperslab in memory and file spaces. These two operations are
* identical since the datasets are the same. */
memspace = H5Screate_simple(DIM, file_dims, NULL);
VRFY((memspace>=0), "memspace");
ret = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, chunk_origin,
chunk_dims, count, chunk_dims);
VRFY((ret>=0), "mgroup memspace selection");
filespace = H5Screate_simple(DIM, file_dims, NULL);
VRFY((filespace>=0), "filespace");
ret = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, chunk_origin,
chunk_dims, count, chunk_dims);
VRFY((ret>=0), "mgroup filespace selection");
/* creates ngroups groups under the root group, writes datasets in
* parallel. */
for(m = 0; m < ngroups; m++) {
sprintf(gname, "group%d", m);
gid = H5Gcreate(fid, gname, 0);
VRFY((gid > 0), gname);
/* create attribute for these groups. */
write_attribute(gid, is_group, m);
if(m != 0)
write_dataset(memspace, filespace, gid);
H5Gclose(gid);
#ifdef BARRIER_CHECKS
if(! ((m+1) % 10)) {
printf("created %d groups\n", m+1);
MPI_Barrier(MPI_COMM_WORLD);
}
#endif /* BARRIER_CHECKS */
}
/* recursively creates subgroups under the first group. */
gid = H5Gopen(fid, "group0");
create_group_recursive(memspace, filespace, gid, 0);
ret = H5Gclose(gid);
VRFY((ret>=0), "H5Gclose");
ret = H5Sclose(filespace);
VRFY((ret>=0), "H5Sclose");
ret = H5Sclose(memspace);
VRFY((ret>=0), "H5Sclose");
ret = H5Fclose(fid);
VRFY((ret>=0), "H5Fclose");
}
/*
* In a group, creates NDATASETS datasets. Each process writes a hyperslab
* of a data array to the file.
*/
void write_dataset(hid_t memspace, hid_t filespace, hid_t gid)
{
int i, j, n;
int mpi_rank, mpi_size;
char dname[32];
DATATYPE outme[SIZE][SIZE];
hid_t did;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
for(n=0; n < NDATASET; n++) {
sprintf(dname, "dataset%d", n);
did = H5Dcreate(gid, dname, H5T_NATIVE_INT, filespace,
H5P_DEFAULT);
VRFY((did > 0), dname);
for(i=0; i < SIZE; i++)
for(j=0; j < SIZE; j++)
outme[i][j] = n*1000 + mpi_rank;
H5Dwrite(did, H5T_NATIVE_INT, memspace, filespace, H5P_DEFAULT,
outme);
/* create attribute for these datasets.*/
write_attribute(did, is_dset, n);
H5Dclose(did);
}
}
/*
* Creates subgroups of depth GROUP_DEPTH recursively. Also writes datasets
* in parallel in each group.
*/
void create_group_recursive(hid_t memspace, hid_t filespace, hid_t gid,
int counter)
{
hid_t child_gid;
int mpi_rank;
char gname[64];
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
#ifdef BARRIER_CHECKS
if(! ((counter+1) % 10)) {
printf("created %dth child groups\n", counter+1);
MPI_Barrier(MPI_COMM_WORLD);
}
#endif /* BARRIER_CHECKS */
sprintf(gname, "%dth_child_group", counter+1);
child_gid = H5Gcreate(gid, gname, 0);
VRFY((child_gid > 0), gname);
/* write datasets in parallel. */
write_dataset(memspace, filespace, gid);
if( counter < GROUP_DEPTH )
create_group_recursive(memspace, filespace, child_gid, counter+1);
H5Gclose(child_gid);
}
/*
* This function is to verify the data from multiple group testing. It opens
* every dataset in every group and check their correctness.
*/
void multiple_group_read(char *filename, int ngroups)
{
int mpi_rank, mpi_size, error_num;
int m;
hbool_t use_gpfs = FALSE;
char gname[64];
hid_t plist, fid, gid, memspace, filespace;
hssize_t chunk_origin[DIM];
hsize_t chunk_dims[DIM], file_dims[DIM], count[DIM];
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type, use_gpfs);
fid = H5Fopen(filename, H5F_ACC_RDONLY, plist);
H5Pclose(plist);
/* decide hyperslab for each process */
get_slab(chunk_origin, chunk_dims, count, file_dims);
/* select hyperslab for memory and file space */
memspace = H5Screate_simple(DIM, file_dims, NULL);
H5Sselect_hyperslab(memspace, H5S_SELECT_SET, chunk_origin, chunk_dims,
count, chunk_dims);
filespace = H5Screate_simple(DIM, file_dims, NULL);
H5Sselect_hyperslab(filespace, H5S_SELECT_SET, chunk_origin, chunk_dims,
count, chunk_dims);
/* open every group under root group. */
for(m=0; m<ngroups; m++) {
sprintf(gname, "group%d", m);
gid = H5Gopen(fid, gname);
VRFY((gid > 0), gname);
/* check the data. */
if(m != 0)
if( (error_num = read_dataset(memspace, filespace, gid))>0)
nerrors += error_num;
/* check attribute.*/
error_num = 0;
if( (error_num = read_attribute(gid, is_group, m))>0 )
nerrors += error_num;
H5Gclose(gid);
#ifdef BARRIER_CHECKS
if(!((m+1)%10))
MPI_Barrier(MPI_COMM_WORLD);
#endif /* BARRIER_CHECKS */
}
/* open all the groups in vertical direction. */
gid = H5Gopen(fid, "group0");
VRFY((gid>0), "group0");
recursive_read_group(memspace, filespace, gid, 0);
H5Gclose(gid);
H5Sclose(filespace);
H5Sclose(memspace);
H5Fclose(fid);
}
/*
* This function opens all the datasets in a certain, checks the data using
* dataset_vrfy function.
*/
int read_dataset(hid_t memspace, hid_t filespace, hid_t gid)
{
int i, j, n, mpi_rank, mpi_size, attr_errors=0, vrfy_errors=0;
char dname[32];
DATATYPE *outdata, *indata;
hid_t did;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
indata = (DATATYPE*)malloc(SIZE*SIZE*sizeof(DATATYPE));
outdata = (DATATYPE*)malloc(SIZE*SIZE*sizeof(DATATYPE));
for(n=0; n<NDATASET; n++) {
sprintf(dname, "dataset%d", n);
did = H5Dopen(gid, dname);
VRFY((did>0), dname);
H5Dread(did, H5T_NATIVE_INT, memspace, filespace, H5P_DEFAULT,
indata);
/* this is the original value */
for(i=0; i<SIZE; i++)
for(j=0; j<SIZE; j++) {
*outdata = n*1000 + mpi_rank;
outdata++;
}
outdata -= SIZE*SIZE;
/* compare the original value(outdata) to the value in file(indata).*/
vrfy_errors = check_value(indata, outdata);
/* check attribute.*/
if( (attr_errors = read_attribute(did, is_dset, n))>0 )
vrfy_errors += attr_errors;
H5Dclose(did);
}
free(indata);
free(outdata);
return vrfy_errors;
}
/*
* This recursive function opens all the groups in vertical direction and
* checks the data.
*/
void recursive_read_group(hid_t memspace, hid_t filespace, hid_t gid,
int counter)
{
hid_t child_gid;
int mpi_rank, err_num=0;
char gname[64];
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
#ifdef BARRIER_CHECKS
if((counter+1) % 10)
MPI_Barrier(MPI_COMM_WORLD);
#endif /* BARRIER_CHECKS */
if( (err_num = read_dataset(memspace, filespace, gid)) )
nerrors += err_num;
if( counter < GROUP_DEPTH ) {
sprintf(gname, "%dth_child_group", counter+1);
child_gid = H5Gopen(gid, gname);
VRFY((child_gid>0), gname);
recursive_read_group(memspace, filespace, child_gid, counter+1);
H5Gclose(child_gid);
}
}
/* Create and write attribute for a group or a dataset. For groups, attribute
* is a scalar datum; for dataset, it is a one-dimensional array.
*/
void write_attribute(hid_t obj_id, int this_type, int num)
{
hid_t sid, aid;
hsize_t dspace_dims[1]={8};
int i, mpi_rank, attr_data[8], dspace_rank=1;
char attr_name[32];
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
if(this_type == is_group) {
sprintf(attr_name, "Group Attribute %d", num);
sid = H5Screate(H5S_SCALAR);
aid = H5Acreate(obj_id, attr_name, H5T_NATIVE_INT, sid, H5P_DEFAULT);
H5Awrite(aid, H5T_NATIVE_INT, &num);
H5Aclose(aid);
H5Sclose(sid);
}
else if(this_type == is_dset) {
sprintf(attr_name, "Dataset Attribute %d", num);
for(i=0; i<8; i++)
attr_data[i] = i;
sid = H5Screate_simple(dspace_rank, dspace_dims, NULL);
aid = H5Acreate(obj_id, attr_name, H5T_NATIVE_INT, sid, H5P_DEFAULT);
H5Awrite(aid, H5T_NATIVE_INT, attr_data);
H5Aclose(aid);
H5Sclose(sid);
}
}
/* Read and verify attribute for group or dataset. */
int read_attribute(hid_t obj_id, int this_type, int num)
{
hid_t aid;
hsize_t group_block[2]={1,1}, dset_block[2]={1, 8};
int i, mpi_rank, in_num, in_data[8], out_data[8], vrfy_errors = 0;
char attr_name[32];
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
if(this_type == is_group) {
sprintf(attr_name, "Group Attribute %d", num);
aid = H5Aopen_name(obj_id, attr_name);
if(MAINPROCESS) {
H5Aread(aid, H5T_NATIVE_INT, &in_num);
vrfy_errors = dataset_vrfy(NULL, NULL, NULL, group_block,
&in_num, &num);
}
H5Aclose(aid);
}
else if(this_type == is_dset) {
sprintf(attr_name, "Dataset Attribute %d", num);
for(i=0; i<8; i++)
out_data[i] = i;
aid = H5Aopen_name(obj_id, attr_name);
if(MAINPROCESS) {
H5Aread(aid, H5T_NATIVE_INT, in_data);
vrfy_errors = dataset_vrfy(NULL, NULL, NULL, dset_block, in_data,
out_data);
}
H5Aclose(aid);
}
return vrfy_errors;
}
/* This functions compares the original data with the read-in data for its
* hyperslab part only by process ID. */
int check_value(DATATYPE *indata, DATATYPE *outdata)
{
int mpi_rank, mpi_size, err_num=0;
hsize_t i, j;
hssize_t chunk_origin[DIM];
hsize_t chunk_dims[DIM], count[DIM];
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
get_slab(chunk_origin, chunk_dims, count, NULL);
indata += chunk_origin[0]*SIZE;
outdata += chunk_origin[0]*SIZE;
for(i=chunk_origin[0]; i<(chunk_origin[0]+chunk_dims[0]); i++)
for(j=chunk_origin[1]; j<(chunk_origin[1]+chunk_dims[1]); j++) {
if( *indata != *outdata )
if(err_num++ < MAX_ERR_REPORT || verbose)
printf("Dataset Verify failed at [%ld][%ld](row %ld, col%ld): expect %d, got %d\n", (long)i, (long)j, (long)i, (long)j, *outdata, *indata);
}
if(err_num > MAX_ERR_REPORT && !verbose)
printf("[more errors ...]\n");
if(err_num)
printf("%d errors found in check_value\n", err_num);
return err_num;
}
/* Decide the portion of data chunk in dataset by process ID. */
void get_slab(hssize_t chunk_origin[], hsize_t chunk_dims[], hsize_t count[],
hsize_t file_dims[])
{
int mpi_rank, mpi_size;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
if(chunk_origin != NULL) {
chunk_origin[0] = mpi_rank * (SIZE/mpi_size);
chunk_origin[1] = 0;
}
if(chunk_dims != NULL) {
chunk_dims[0] = SIZE/mpi_size;
chunk_dims[1] = SIZE;
}
if(file_dims != NULL)
file_dims[0] = file_dims[1] = SIZE;
if(count != NULL)
count[0] = count[1] = 1;
}
/*=============================================================================
* End of t_mdset.c
*===========================================================================*/