hdf5/test/hyperslab.c
Robb Matzke 953979f4a0 [svn-r147] ./test/dsets.c
./test/dtypes.c
./test/hyperslab.c
./test/istore.c
	Added a definition for __FUNCTION__.  Changed a couple
	variable types.

./test/testhdf5.h
	The error stack is printed when something goes wrong.
1997-12-16 16:08:59 -05:00

1201 lines
30 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (C) 1997 NCSA
* All rights reserved.
*
* Programmer: Robb Matzke <matzke@llnl.gov>
* Friday, October 10, 1997
*
* Purpose: Hyperslab operations are rather complex, so this file
* attempts to test them extensively so we can be relatively
* sure they really work. We only test 1d, 2d, and 3d cases
* because testing general dimensionalities would require us to
* rewrite much of the hyperslab stuff.
*/
#include <H5private.h>
#include <H5MMprivate.h>
#include <H5Vprivate.h>
#ifndef HAVE_FUNCTION
#define __FUNCTION__ ""
#endif
#define AT() printf (" at %s:%d in %s()\n",__FILE__,__LINE__,__FUNCTION__);
#define TEST_SMALL 0x0001
#define TEST_MEDIUM 0x0002
#define VARIABLE_SRC 0
#define VARIABLE_DST 1
#define VARIABLE_BOTH 2
/*-------------------------------------------------------------------------
* Function: init_full
*
* Purpose: Initialize full array.
*
* Return: void
*
* Programmer: Robb Matzke
* Friday, October 10, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static uintn
init_full (uint8 *array, size_t nx, size_t ny, size_t nz)
{
int i, j, k;
uint8 acc=128;
uintn total=0;
for (i=0; i<nx; i++) {
for (j=0; j<ny; j++) {
for (k=0; k<nz; k++) {
total += acc;
*array++ = acc++;
}
}
}
return total;
}
/*-------------------------------------------------------------------------
* Function: print_array
*
* Purpose: Prints the values in an array
*
* Return: void
*
* Programmer: Robb Matzke
* Friday, October 10, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
print_array (uint8 *array, size_t nx, size_t ny, size_t nz)
{
int i, j, k;
for (i=0; i<nx; i++) {
if (nz>1) {
printf ("i=%d:\n", i);
} else {
printf ("%03d:", i);
}
for (j=0; j<ny; j++) {
if (nz>1) printf ("%03d:", j);
for (k=0; k<nz; k++) {
printf (" %3d", *array++);
}
if (nz>1) printf ("\n");
}
printf ("\n");
}
}
/*-------------------------------------------------------------------------
* Function: print_ref
*
* Purpose: Prints the reference value
*
* Return: Success: 0
*
* Failure:
*
* Programmer: Robb Matzke
* Friday, October 10, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
print_ref (size_t nx, size_t ny, size_t nz)
{
uint8 *array;
array = H5MM_xcalloc (nx*ny*nz, sizeof(uint8));
printf ("Reference array:\n");
init_full (array, nx, ny, nz);
print_array (array, nx, ny, nz);
}
/*-------------------------------------------------------------------------
* Function: test_fill
*
* Purpose: Tests the H5V_hyper_fill() function.
*
* Return: Success: SUCCEED
*
* Failure: FAIL
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
test_fill (size_t nx, size_t ny, size_t nz,
size_t di, size_t dj, size_t dk,
size_t ddx, size_t ddy, size_t ddz)
{
uint8 *dst=NULL; /*destination array */
size_t hs_size[3]; /*hyperslab size */
size_t dst_size[3]; /*destination total size */
size_t dst_offset[3]; /*offset of hyperslab in dest */
uintn ref_value; /*reference value */
uintn acc; /*accumulator */
int i, j, k, dx, dy, dz, u, v, w; /*counters */
int ndims; /*hyperslab dimensionality */
char dim[64],s[256]; /*temp string */
uintn fill_value; /*fill value */
/*
* Dimensionality.
*/
if (0==nz) {
if (0==ny) {
ndims = 1;
ny = nz = 1;
sprintf (dim, "%lu", (unsigned long)nx);
} else {
ndims = 2;
nz = 1;
sprintf (dim, "%lux%lu", (unsigned long)nx, (unsigned long)ny);
}
} else {
ndims = 3;
sprintf (dim, "%lux%lux%lu",
(unsigned long)nx, (unsigned long)ny, (unsigned long)nz);
}
sprintf (s, "Testing hyperslab fill %-11s variable hyperslab ", dim);
printf ("%-70s", s);
fflush (stdout);
/* Allocate array */
dst = H5MM_xcalloc (nx*ny*nz, 1);
init_full (dst, nx, ny, nz);
for (i=0; i<nx; i+=di) {
for (j=0; j<ny; j+=dj) {
for (k=0; k<nz; k+=dk) {
for (dx=1; dx<=nx-i; dx+=ddx) {
for (dy=1; dy<=ny-j; dy+=ddy) {
for (dz=1; dz<=nz-k; dz+=ddz) {
/* Describe the hyperslab */
dst_size[0] = nx;
dst_size[1] = ny;
dst_size[2] = nz;
dst_offset[0] = i;
dst_offset[1] = j;
dst_offset[2] = k;
hs_size[0] = dx;
hs_size[1] = dy;
hs_size[2] = dz;
for (fill_value=0; fill_value<256; fill_value+=64) {
/*
* Initialize the full array, then subtract the
* original * fill values and add the new ones.
*/
ref_value = init_full (dst, nx, ny, nz);
for (u=dst_offset[0]; u<dst_offset[0]+dx; u++) {
for (v=dst_offset[1]; v<dst_offset[1]+dy; v++) {
for (w=dst_offset[2]; w<dst_offset[2]+dz; w++) {
ref_value -= dst[u*ny*nz + v*nz + w];
}
}
}
ref_value += fill_value * dx * dy * dz;
/* Fill the hyperslab with some value */
H5V_hyper_fill (ndims, hs_size, dst_size, dst_offset,
dst, fill_value);
/*
* Sum the array and compare it to the reference
* value.
*/
acc = 0;
for (u=0; u<nx; u++) {
for (v=0; v<ny; v++) {
for (w=0; w<nz; w++) {
acc += dst[u*ny*nz + v*nz + w];
}
}
}
if (acc != ref_value) {
puts ("*FAILED*");
if (!isatty (1)) {
/*
* Print debugging info unless output is going
* directly to a terminal.
*/
AT ();
printf (" acc != ref_value\n");
printf (" i=%d, j=%d, k=%d, "
"dx=%d, dy=%d, dz=%d, fill=%d\n",
i, j, k, dx, dy, dz, fill_value);
print_ref (nx, ny, nz);
printf ("\n Result is:\n");
print_array (dst, nx, ny, nz);
}
goto error;
}
}
}
}
}
}
}
}
puts (" PASSED");
H5MM_xfree (dst);
return SUCCEED;
error:
H5MM_xfree (dst);
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: test_copy
*
* Purpose: Tests H5V_hyper_copy().
*
* The NX, NY, and NZ arguments are the size for the source and
* destination arrays. You map pass zero for NZ or for NY and
* NZ to test the 2-d and 1-d cases respectively.
*
* A hyperslab is copied from/to (depending on MODE) various
* places in SRC and DST beginning at 0,0,0 and increasing
* location by DI,DJ,DK in the x, y, and z directions.
*
* For each hyperslab location, various sizes of hyperslabs are
* tried beginning with 1x1x1 and increasing the size in each
* dimension by DDX,DDY,DDZ.
*
* Return: Success: SUCCEED
*
* Failure: FAIL
*
* Programmer: Robb Matzke
* Friday, October 10, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
test_copy (int mode,
size_t nx, size_t ny, size_t nz,
size_t di, size_t dj, size_t dk,
size_t ddx, size_t ddy, size_t ddz)
{
uint8 *src=NULL; /*source array */
uint8 *dst=NULL; /*destination array */
size_t hs_size[3]; /*hyperslab size */
size_t dst_size[3]; /*destination total size */
size_t src_size[3]; /*source total size */
size_t dst_offset[3]; /*offset of hyperslab in dest */
size_t src_offset[3]; /*offset of hyperslab in source */
uintn ref_value; /*reference value */
uintn acc; /*accumulator */
int i, j, k, dx, dy, dz, u, v, w; /*counters */
int ndims; /*hyperslab dimensionality */
char dim[64], s[256]; /*temp string */
const char *sub;
/*
* Dimensionality.
*/
if (0==nz) {
if (0==ny) {
ndims = 1;
ny = nz = 1;
sprintf (dim, "%lu", (unsigned long)nx);
} else {
ndims = 2;
nz = 1;
sprintf (dim, "%lux%lu", (unsigned long)nx, (unsigned long)ny);
}
} else {
ndims = 3;
sprintf (dim, "%lux%lux%lu",
(unsigned long)nx, (unsigned long)ny, (unsigned long)nz);
}
switch (mode) {
case VARIABLE_SRC:
/*
* The hyperslab "travels" through the source array but the
* destination hyperslab is always at the origin of the destination
* array.
*/
sub = "variable source";
break;
case VARIABLE_DST:
/*
* We always read a hyperslab from the origin of the source and copy it
* to a hyperslab at various locations in the destination.
*/
sub = "variable destination";
break;
case VARIABLE_BOTH:
/*
* We read the hyperslab from various locations in the source and copy
* it to the same location in the destination.
*/
sub = "sync source & dest ";
break;
default:
abort ();
}
sprintf (s, "Testing hyperslab copy %-11s %s", dim, sub);
printf ("%-70s", s);
fflush (stdout);
/*
* Allocate arrays
*/
src = H5MM_xcalloc (nx*ny*nz, 1);
dst = H5MM_xcalloc (nx*ny*nz, 1);
init_full (src, nx, ny, nz);
for (i=0; i<nx; i+=di) {
for (j=0; j<ny; j+=dj) {
for (k=0; k<nz; k+=dk) {
for (dx=1; dx<=nx-i; dx+=ddx) {
for (dy=1; dy<=ny-j; dy+=ddy) {
for (dz=1; dz<=nz-k; dz+=ddz) {
/*
* Describe the source and destination hyperslabs and the
* arrays to which they belong.
*/
hs_size[0] = dx;
hs_size[1] = dy;
hs_size[2] = dz;
dst_size[0] = src_size[0] = nx;
dst_size[1] = src_size[1] = ny;
dst_size[2] = src_size[2] = nz;
switch (mode) {
case VARIABLE_SRC:
dst_offset[0] = 0;
dst_offset[1] = 0;
dst_offset[2] = 0;
src_offset[0] = i;
src_offset[1] = j;
src_offset[2] = k;
break;
case VARIABLE_DST:
dst_offset[0] = i;
dst_offset[1] = j;
dst_offset[2] = k;
src_offset[0] = 0;
src_offset[1] = 0;
src_offset[2] = 0;
break;
case VARIABLE_BOTH:
dst_offset[0] = i;
dst_offset[1] = j;
dst_offset[2] = k;
src_offset[0] = i;
src_offset[1] = j;
src_offset[2] = k;
break;
default:
abort ();
}
/*
* Sum the main array directly to get a reference value
* to compare against later.
*/
ref_value = 0;
for (u=src_offset[0]; u<src_offset[0]+dx; u++) {
for (v=src_offset[1]; v<src_offset[1]+dy; v++) {
for (w=src_offset[2]; w<src_offset[2]+dz; w++) {
ref_value += src[u*ny*nz + v*nz + w];
}
}
}
/*
* Set all loc values to 1 so we can detect writing
* outside the hyperslab.
*/
for (u=0; u<nx; u++) {
for (v=0; v<ny; v++) {
for (w=0; w<nz; w++) {
dst[u*ny*nz + v*nz + w] = 1;
}
}
}
/*
* Copy a hyperslab from the global array to the local
* array.
*/
H5V_hyper_copy (ndims, hs_size,
dst_size, dst_offset, dst,
src_size, src_offset, src);
/*
* Sum the destination hyperslab. It should be the same
* as the reference value.
*/
acc = 0;
for (u=dst_offset[0]; u<dst_offset[0]+dx; u++) {
for (v=dst_offset[1]; v<dst_offset[1]+dy; v++) {
for (w=dst_offset[2]; w<dst_offset[2]+dz; w++) {
acc += dst[u*ny*nz + v*nz + w];
}
}
}
if (acc != ref_value) {
puts ("*FAILED*");
if (!isatty (1)) {
/*
* Print debugging info unless output is going
* directly to a terminal.
*/
AT ();
printf (" acc != ref_value\n");
printf (" i=%d, j=%d, k=%d, "
"dx=%d, dy=%d, dz=%d\n",
i, j, k, dx, dy, dz);
print_ref (nx, ny, nz);
printf ("\n Destination array is:\n");
print_array (dst, nx, ny, nz);
}
goto error;
}
/*
* Sum the entire array. It should be a fixed amount
* larger than the reference value since we added the
* border of 1's to the hyperslab.
*/
acc = 0;
for (u=0; u<nx; u++) {
for (v=0; v<ny; v++) {
for (w=0; w<nz; w++) {
acc += dst[u*ny*nz + v*nz + w];
}
}
}
if (acc != ref_value + nx*ny*nz - dx*dy*dz) {
puts ("*FAILED*");
if (!isatty (1)) {
/*
* Print debugging info unless output is going
* directly to a terminal.
*/
AT ();
printf (" acc != ref_value + nx*ny*nz - "
"dx*dy*dz\n");
printf (" i=%d, j=%d, k=%d, "
"dx=%d, dy=%d, dz=%d\n",
i, j, k, dx, dy, dz);
print_ref (nx, ny, nz);
printf ("\n Destination array is:\n");
print_array (dst, nx, ny, nz);
}
goto error;
}
}
}
}
}
}
}
puts (" PASSED");
H5MM_xfree (src);
H5MM_xfree (dst);
return SUCCEED;
error:
H5MM_xfree (src);
H5MM_xfree (dst);
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: test_multifill
*
* Purpose: Tests the H5V_stride_copy() function by using it to fill a
* hyperslab by replicating a multi-byte sequence. This might
* be useful to initialize an array of structs with a default
* struct value, or to initialize an array of floating-point
* values with a default bit-pattern.
*
* Return: Success: SUCCEED
*
* Failure: FAIL
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
test_multifill (int nx)
{
int i, j;
size_t size;
intn src_stride;
intn dst_stride;
char s[64];
struct a_struct {
int left;
double mid;
int right;
} fill, *src=NULL, *dst=NULL;
printf ("%-70s", "Testing multi-byte fill value");
fflush (stdout);
/* Initialize the source and destination */
src = H5MM_xmalloc (nx * sizeof(*src));
dst = H5MM_xmalloc (nx * sizeof(*dst));
for (i=0; i<nx; i++) {
src[i].left = 1111111;
src[i].mid = 12345.6789;
src[i].right = 2222222;
dst[i].left = 3333333;
dst[i].mid = 98765.4321;
dst[i].right = 4444444;
}
/*
* Describe the fill value. The zero stride says to read the same thing
* over and over again.
*/
fill.left = 55555555;
fill.mid = 3.1415927;
fill.right = 66666666;
src_stride = 0;
/*
* The destination stride says to fill in one value per array element
*/
dst_stride = sizeof(fill);
/*
* Copy the fill value into each element
*/
size = nx;
H5V_stride_copy (1, sizeof(double), &size,
&dst_stride, &(dst[0].mid), &src_stride, &(fill.mid));
/*
* Check
*/
s[0] = '\0';
for (i=0; i<nx; i++) {
if (dst[i].left != 3333333) {
sprintf (s, "bad dst[%d].left", i);
} else if (dst[i].mid != fill.mid) {
sprintf (s, "bad dst[%d].mid", i);
} else if (dst[i].right != 4444444) {
sprintf (s, "bad dst[%d].right", i);
}
if (s[0]) {
puts ("*FAILED*");
if (!isatty (1)) {
AT ();
printf (" fill={%d,%g,%d}\n ",
fill.left, fill.mid, fill.right);
for (j=0; j<sizeof(fill); j++) {
printf (" %02x", ((uint8*)&fill)[j]);
}
printf ("\n dst[%d]={%d,%g,%d}\n ",
i, dst[i].left, dst[i].mid, dst[i].right);
for (j=0; j<sizeof(dst[i]); j++) {
printf (" %02x", ((uint8*)(dst+i))[j]);
}
printf ("\n");
}
goto error;
}
}
puts (" PASSED");
H5MM_xfree (src);
H5MM_xfree (dst);
return SUCCEED;
error:
H5MM_xfree (src);
H5MM_xfree (dst);
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: test_endian
*
* Purpose: Tests the H5V_stride_copy() function by using it to copy an
* array of integers and swap the byte ordering from little
* endian to big endian or vice versa depending on the hardware.
*
* Return: Success: SUCCEED
*
* Failure: FAIL
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
test_endian (size_t nx)
{
uint8 *src=NULL; /*source array */
uint8 *dst=NULL; /*destination array */
intn src_stride[2]; /*source strides */
intn dst_stride[2]; /*destination strides */
size_t size[2]; /*size vector */
int i, j;
printf ("%-70s", "Testing endian conversion by stride");
fflush (stdout);
/* Initialize arrays */
src = H5MM_xmalloc (nx*4);
init_full (src, nx, 4, 1);
dst = H5MM_xcalloc (nx, 4);
/* Initialize strides */
src_stride[0] = 0;
src_stride[1] = 1;
dst_stride[0] = 8;
dst_stride[1] = -1;
size[0] = nx;
size[1] = 4;
/* Copy the array */
H5V_stride_copy (2, 1, size, dst_stride, dst+3, src_stride, src);
/* Compare */
for (i=0; i<nx; i++) {
for (j=0; j<4; j++) {
if (src[i*4+j] != dst[i*4+3-j]) {
puts ("*FAILED*");
if (!isatty (1)) {
/*
* Print debugging info unless output is going directly to a
* terminal.
*/
AT ();
printf (" i=%d, j=%d\n", i, j);
printf (" Source array is:\n");
print_array (src, nx, 4, 1);
printf ("\n Result is:\n");
print_array (dst, nx, 4, 1);
}
goto error;
}
}
}
puts (" PASSED");
H5MM_xfree (src);
H5MM_xfree (dst);
return SUCCEED;
error:
H5MM_xfree (src);
H5MM_xfree (dst);
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: test_transpose
*
* Purpose: Copy a 2d array from here to there and transpose the elements
* as it's copied.
*
* Return: Success: SUCCEED
*
* Failure: FAIL
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
test_transpose (size_t nx, size_t ny)
{
intn *src = NULL;
intn *dst = NULL;
int i, j;
intn src_stride[2], dst_stride[2];
size_t size[2];
char s[256];
sprintf (s, "Testing 2d transpose by stride %4lux%-lud",
(unsigned long)nx, (unsigned long)ny);
printf ("%-70s", s);
fflush (stdout);
/* Initialize */
src = H5MM_xmalloc (nx*ny * sizeof(*src));
for (i=0; i<nx; i++) {
for (j=0; j<ny; j++) {
src[i*ny + j] = i*ny + j;
}
}
dst = H5MM_xcalloc (nx*ny, sizeof(*dst));
/* Build stride info */
size[0] = nx;
size[1] = ny;
src_stride[0] = 0;
src_stride[1] = sizeof(*src);
dst_stride[0] = (1 - nx*ny) * sizeof(*src);
dst_stride[1] = nx * sizeof(*src);
/* Copy and transpose */
if (nx==ny) {
H5V_stride_copy (2, sizeof(*src), size,
dst_stride, dst,
src_stride, src);
} else {
H5V_stride_copy (2, sizeof(*src), size,
dst_stride, dst,
src_stride, src);
}
/* Check */
for (i=0; i<nx; i++) {
for (j=0; j<ny; j++) {
if (src[i*ny + j] != dst[j*nx + i]) {
puts ("*FAILED*");
if (!isatty (1)) {
AT ();
printf (" diff at i=%d, j=%d\n", i, j);
printf (" Source is:\n");
for (i=0; i<nx; i++) {
printf ("%3d:", i);
for (j=0; j<ny; j++) {
printf (" %6d", src[i*ny+j]);
}
printf ("\n");
}
printf ("\n Destination is:\n");
for (i=0; i<ny; i++) {
printf ("%3d:", i);
for (j=0; j<nx; j++) {
printf (" %6d", dst[i*nx+j]);
}
printf ("\n");
}
}
goto error;
}
}
}
puts (" PASSED");
H5MM_xfree (src);
H5MM_xfree (dst);
return SUCCEED;
error:
H5MM_xfree (src);
H5MM_xfree (dst);
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: test_sub_super
*
* Purpose: Tests H5V_stride_copy() to reduce the resolution of an image
* by copying half the pixels in the X and Y directions. Then
* we use the small image and duplicate every pixel to result in
* a 2x2 square.
*
* Return: Success: SUCCEED
*
* Failure: FAIL
*
* Programmer: Robb Matzke
* Monday, October 13, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
test_sub_super (size_t nx, size_t ny)
{
uint8 *full = NULL; /*original image */
uint8 *half = NULL; /*image at 1/2 resolution */
uint8 *twice = NULL; /*2x2 pixels */
intn src_stride[4]; /*source stride info */
intn dst_stride[4]; /*destination stride info */
size_t size[4]; /*number of sample points */
int i, j;
char s[256];
sprintf (s, "Testing image sampling %4lux%-4lu to %4lux%-4lu ",
(unsigned long)(2*nx), (unsigned long)(2*ny),
(unsigned long)nx, (unsigned long)ny);
printf ("%-70s", s);
fflush (stdout);
/* Initialize */
full = H5MM_xmalloc (4*nx*ny);
init_full (full, 2*nx, 2*ny, 1);
half = H5MM_xcalloc (nx*ny, 1);
twice = H5MM_xcalloc (4*nx*ny, 1);
/* Setup */
size[0] = nx;
size[1] = ny;
src_stride[0] = 2*ny;
src_stride[1] = 2;
dst_stride[0] = 0;
dst_stride[1] = 1;
/* Copy */
H5V_stride_copy (2, sizeof(uint8), size,
dst_stride, half, src_stride, full);
/* Check */
for (i=0; i<nx; i++) {
for (j=0; j<ny; j++) {
if (full[4*i*ny + 2*j] != half[i*ny+j]) {
puts ("*FAILED*");
if (!isatty (1)) {
AT ();
printf (" full[%d][%d] != half[%d][%d]\n", i*2, j*2, i, j);
printf (" full is:\n");
print_array (full, 2*nx, 2*ny, 1);
printf ("\n half is:\n");
print_array (half, nx, ny, 1);
}
goto error;
}
}
}
puts (" PASSED");
/*
* Test replicating pixels to produce an image twice as large in each
* dimension.
*/
sprintf (s, "Testing image sampling %4lux%-4lu to %4lux%-4lu ",
(unsigned long)nx, (unsigned long)ny,
(unsigned long)(2*nx), (unsigned long)(2*ny));
printf ("%-70s", s);
fflush (stdout);
/* Setup stride */
size[0] = nx;
size[1] = ny;
size[2] = 2;
size[3] = 2;
src_stride[0] = 0;
src_stride[1] = 1;
src_stride[2] = 0;
src_stride[3] = 0;
dst_stride[0] = 2*ny;
dst_stride[1] = 2*sizeof(uint8) - 4*ny;
dst_stride[2] = 2*ny - 2*sizeof(uint8);
dst_stride[3] = sizeof(uint8);
/* Copy */
H5V_stride_copy (4, sizeof(uint8), size,
dst_stride, twice, src_stride, half);
/* Check */
s[0] = '\0';
for (i=0; i<nx; i++) {
for (j=0; j<ny; j++) {
if (half[i*ny+j] != twice[4*i*ny + 2*j]) {
sprintf (s, "half[%d][%d] != twice[%d][%d]", i, j, 2*i, 2*j);
} else if (half[i*ny+j] != twice[4*i*ny + 2*j + 1]) {
sprintf (s, "half[%d][%d] != twice[%d][%d]", i, j, 2*i, 2*j+1);
} else if (half[i*ny+j] != twice[(2*i+1)*2*ny + 2*j]) {
sprintf (s, "half[%d][%d] != twice[%d][%d]", i, j, 2*i+1, 2*j);
} else if (half[i*ny+j] != twice[(2*i+1)*2*ny + 2*j + 1]) {
sprintf (s, "half[%d][%d] != twice[%d][%d]", i, j, 2*i+1, 2*j+1);
}
if (s[0]) {
puts ("*FAILED*");
if (!isatty (1)) {
AT ();
printf (" %s\n Half is:\n", s);
print_array (half, nx, ny, 1);
printf ("\n Twice is:\n");
print_array (twice, 2*nx, 2*ny, 1);
}
goto error;
}
}
}
puts (" PASSED");
H5MM_xfree (full);
H5MM_xfree (half);
H5MM_xfree (twice);
return SUCCEED;
error:
H5MM_xfree (full);
H5MM_xfree (half);
H5MM_xfree (twice);
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: main
*
* Purpose: Test various hyperslab operations. Give the words
* `small' and/or `medium' on the command line or only `small'
* is assumed.
*
* Return: Success: exit(0)
*
* Failure: exit(non-zero)
*
* Programmer: Robb Matzke
* Friday, October 10, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
int
main (int argc, char *argv[])
{
herr_t status;
int nerrors=0;
uintn size_of_test;
/* Parse arguments or assume `small' */
if (1==argc) {
size_of_test = TEST_SMALL;
} else {
intn i;
for (i=1,size_of_test=0; i<argc; i++) {
if (!strcmp (argv[i], "small")) {
size_of_test |= TEST_SMALL;
} else if (!strcmp (argv[i], "medium")) {
size_of_test |= TEST_MEDIUM;
} else {
printf ("unrecognized argument: %s\n", argv[i]);
exit (1);
}
}
}
printf ("Test sizes: ");
if (size_of_test & TEST_SMALL) printf (" SMALL");
if (size_of_test & TEST_MEDIUM) printf (" MEDIUM");
printf ("\n");
/*
*------------------------------
* TEST HYPERSLAB FILL OPERATION
*------------------------------
*/
if (size_of_test & TEST_SMALL) {
status = test_fill (11, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_fill (11, 10, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_fill (3, 5, 5, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
}
if (size_of_test & TEST_MEDIUM) {
status = test_fill (113, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_fill (15, 11, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_fill (5, 7, 7, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
}
/*------------------------------
* TEST HYPERSLAB COPY OPERATION
*------------------------------
*/
/* exhaustive, one-dimensional test */
if (size_of_test & TEST_SMALL) {
status = test_copy (VARIABLE_SRC, 11, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_copy (VARIABLE_DST, 11, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_copy (VARIABLE_BOTH, 11, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
}
if (size_of_test & TEST_MEDIUM) {
status = test_copy (VARIABLE_SRC, 179, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_copy (VARIABLE_DST, 179, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_copy (VARIABLE_BOTH, 179, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
}
/* exhaustive, two-dimensional test */
if (size_of_test & TEST_SMALL) {
status = test_copy (VARIABLE_SRC, 11, 10, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_copy (VARIABLE_DST, 11, 10, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_copy (VARIABLE_BOTH, 11, 10, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
}
if (size_of_test & TEST_MEDIUM) {
status = test_copy (VARIABLE_SRC, 13, 19, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_copy (VARIABLE_DST, 13, 19, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_copy (VARIABLE_BOTH, 13, 19, 0, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
}
/* sparse, two-dimensional test */
if (size_of_test & TEST_MEDIUM) {
status = test_copy (VARIABLE_SRC, 73, 67, 0, 7, 11, 1, 13, 11, 1);
nerrors += status<0 ? 1 : 0;
status = test_copy (VARIABLE_DST, 73, 67, 0, 7, 11, 1, 13, 11, 1);
nerrors += status<0 ? 1 : 0;
status = test_copy (VARIABLE_BOTH, 73, 67, 0, 7, 11, 1, 13, 11, 1);
nerrors += status<0 ? 1 : 0;
}
/* exhaustive, three-dimensional test */
if (size_of_test & TEST_SMALL) {
status = test_copy (VARIABLE_SRC, 3, 5, 5, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_copy (VARIABLE_DST, 3, 5, 5, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_copy (VARIABLE_BOTH, 3, 5, 5, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
}
if (size_of_test & TEST_MEDIUM) {
status = test_copy (VARIABLE_SRC, 7, 9, 5, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_copy (VARIABLE_DST, 7, 9, 5, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
status = test_copy (VARIABLE_BOTH, 7, 9, 5, 1, 1, 1, 1, 1, 1);
nerrors += status<0 ? 1 : 0;
}
/*---------------------
* TEST MULTI-BYTE FILL
*---------------------
*/
if (size_of_test & TEST_SMALL) {
status = test_multifill (10);
nerrors += status<0 ? 1 : 0;
}
if (size_of_test & TEST_MEDIUM) {
status = test_multifill (500000);
nerrors += status<0 ? 1 : 0;
}
/*---------------------------
* TEST TRANSLATION OPERATORS
*---------------------------
*/
if (size_of_test & TEST_SMALL) {
status = test_endian (10);
nerrors += status<0 ? 1 : 0;
status = test_transpose (9, 9);
nerrors += status<0 ? 1 : 0;
status = test_transpose (3, 11);
nerrors += status<0 ? 1 : 0;
}
if (size_of_test & TEST_MEDIUM) {
status = test_endian (800000);
nerrors += status<0 ? 1 : 0;
status = test_transpose (1200, 1200);
nerrors += status<0 ? 1 : 0;
status = test_transpose (800, 1800);
nerrors += status<0 ? 1 : 0;
}
/*-------------------------
* TEST SAMPLING OPERATIONS
*-------------------------
*/
if (size_of_test & TEST_SMALL) {
status = test_sub_super (5, 10);
nerrors += status<0 ? 1 : 0;
}
if (size_of_test & TEST_MEDIUM) {
status = test_sub_super (480, 640);
nerrors += status<0 ? 1 : 0;
}
/*--- END OF TESTS ---*/
if (nerrors) {
printf ("***** %d HYPERSLAB TEST%s FAILED! *****\n",
nerrors, 1==nerrors?"":"S");
if (isatty (1)) {
printf ("(Redirect output to a pager or a file to see "
"debug output)\n");
}
exit (1);
}
printf ("All hyperslab tests passed.\n");
exit (0);
}