hdf5/src/H5V.c
Quincey Koziol 9c9ee2008c [svn-r21919] Description:
Refactor function name macros and simplify the FUNC_ENTER macros, to clear
away the cruft and prepare for further cleanups.

Tested on:
    Mac OSX/64 10.7.3 (amazon) w/debug, production & parallel
2012-02-08 22:13:27 -05:00

1713 lines
57 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the files COPYING and Copyright.html. COPYING can be found at the root *
* of the source code distribution tree; Copyright.html can be found at the *
* root level of an installed copy of the electronic HDF5 document set and *
* is linked from the top-level documents page. It can also be found at *
* http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have *
* access to either file, you may request a copy from help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Programmer: Robb Matzke <matzke@llnl.gov>
* Friday, October 10, 1997
*/
#include "H5private.h"
#include "H5Eprivate.h"
#include "H5Oprivate.h"
#include "H5Vprivate.h"
/* Local typedefs */
typedef struct H5V_memcpy_ud_t {
unsigned char *dst; /* Pointer to destination buffer */
const unsigned char *src; /* Pointer to source buffer */
} H5V_memcpy_ud_t;
/* Local macros */
#define H5V_HYPER_NDIMS H5O_LAYOUT_NDIMS
/* Local prototypes */
static void
H5V_stride_optimize1(unsigned *np/*in,out*/, hsize_t *elmt_size/*in,out*/,
const hsize_t *size, hsize_t *stride1);
static void
H5V_stride_optimize2(unsigned *np/*in,out*/, hsize_t *elmt_size/*in,out*/,
const hsize_t *size, hsize_t *stride1, hsize_t *stride2);
#ifdef LATER
static void
H5V_stride_copy2(hsize_t nelmts, hsize_t elmt_size,
unsigned dst_n, const hsize_t *dst_size, const ssize_t *dst_stride, void *_dst,
unsigned src_n, const hsize_t *src_size, const ssize_t *src_stride, const void *_src);
#endif /* LATER */
/*-------------------------------------------------------------------------
* Function: H5V_stride_optimize1
*
* Purpose: Given a stride vector which references elements of the
* specified size, optimize the dimensionality, the stride
* vector, and the element size to minimize the dimensionality
* and the number of memory accesses.
*
* All arguments are passed by reference and their values may be
* modified by this function.
*
* Return: None
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
H5V_stride_optimize1(unsigned *np/*in,out*/, hsize_t *elmt_size/*in,out*/,
const hsize_t *size, hsize_t *stride1)
{
FUNC_ENTER_NOAPI_NOINIT_NOERR
/*
* This has to be true because if we optimize the dimensionality down to
* zero we still must make one reference.
*/
assert(1 == H5V_vector_reduce_product(0, NULL));
/*
* Combine adjacent memory accesses
*/
while (*np && stride1[*np-1]>0 &&
(hsize_t)(stride1[*np-1])==*elmt_size) {
*elmt_size *= size[*np-1];
if (--*np)
stride1[*np-1] += size[*np] * stride1[*np];
}
FUNC_LEAVE_NOAPI_VOID
}
/*-------------------------------------------------------------------------
* Function: H5V_stride_optimize2
*
* Purpose: Given two stride vectors which reference elements of the
* specified size, optimize the dimensionality, the stride
* vectors, and the element size to minimize the dimensionality
* and the number of memory accesses.
*
* All arguments are passed by reference and their values may be
* modified by this function.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
* Unrolled loops for common cases
* Quincey Koziol
* ?, ? ?, 2001?
*
*-------------------------------------------------------------------------
*/
static void
H5V_stride_optimize2(unsigned *np/*in,out*/, hsize_t *elmt_size/*in,out*/,
const hsize_t *size, hsize_t *stride1, hsize_t *stride2)
{
FUNC_ENTER_NOAPI_NOINIT_NOERR
/*
* This has to be true because if we optimize the dimensionality down to
* zero we still must make one reference.
*/
assert(1 == H5V_vector_reduce_product(0, NULL));
assert (*elmt_size>0);
/*
* Combine adjacent memory accesses
*/
/* Unroll loop for common cases */
switch(*np) {
case 1: /* For 0-D datasets (dunno if this ever gets used...) */
if(stride1[0] == *elmt_size && stride2[0] == *elmt_size) {
*elmt_size *= size[0];
--*np; /* *np decrements to a value of 0 now */
} /* end if */
break;
case 2: /* For 1-D datasets */
if(stride1[1] == *elmt_size && stride2[1] == *elmt_size) {
*elmt_size *= size[1];
--*np; /* *np decrements to a value of 1 now */
stride1[0] += size[1] * stride1[1];
stride2[0] += size[1] * stride2[1];
if(stride1[0] == *elmt_size && stride2[0] == *elmt_size) {
*elmt_size *= size[0];
--*np; /* *np decrements to a value of 0 now */
} /* end if */
} /* end if */
break;
case 3: /* For 2-D datasets */
if(stride1[2] == *elmt_size && stride2[2] == *elmt_size) {
*elmt_size *= size[2];
--*np; /* *np decrements to a value of 2 now */
stride1[1] += size[2] * stride1[2];
stride2[1] += size[2] * stride2[2];
if(stride1[1] == *elmt_size && stride2[1] == *elmt_size) {
*elmt_size *= size[1];
--*np; /* *np decrements to a value of 1 now */
stride1[0] += size[1] * stride1[1];
stride2[0] += size[1] * stride2[1];
if(stride1[0] == *elmt_size && stride2[0] == *elmt_size) {
*elmt_size *= size[0];
--*np; /* *np decrements to a value of 0 now */
} /* end if */
} /* end if */
} /* end if */
break;
case 4: /* For 3-D datasets */
if(stride1[3] == *elmt_size && stride2[3] == *elmt_size) {
*elmt_size *= size[3];
--*np; /* *np decrements to a value of 3 now */
stride1[2] += size[3] * stride1[3];
stride2[2] += size[3] * stride2[3];
if(stride1[2] == *elmt_size && stride2[2] == *elmt_size) {
*elmt_size *= size[2];
--*np; /* *np decrements to a value of 2 now */
stride1[1] += size[2] * stride1[2];
stride2[1] += size[2] * stride2[2];
if(stride1[1] == *elmt_size && stride2[1] == *elmt_size) {
*elmt_size *= size[1];
--*np; /* *np decrements to a value of 1 now */
stride1[0] += size[1] * stride1[1];
stride2[0] += size[1] * stride2[1];
if(stride1[0] == *elmt_size && stride2[0] == *elmt_size) {
*elmt_size *= size[0];
--*np; /* *np decrements to a value of 0 now */
} /* end if */
} /* end if */
} /* end if */
} /* end if */
break;
default:
while (*np &&
stride1[*np-1] == *elmt_size &&
stride2[*np-1] == *elmt_size) {
*elmt_size *= size[*np-1];
if (--*np) {
stride1[*np-1] += size[*np] * stride1[*np];
stride2[*np-1] += size[*np] * stride2[*np];
}
}
break;
} /* end switch */
FUNC_LEAVE_NOAPI_VOID
}
/*-------------------------------------------------------------------------
* Function: H5V_hyper_stride
*
* Purpose: Given a description of a hyperslab, this function returns
* (through STRIDE[]) the byte strides appropriate for accessing
* all bytes of the hyperslab and the byte offset where the
* striding will begin. The SIZE can be passed to the various
* stride functions.
*
* The dimensionality of the whole array, the hyperslab, and the
* returned stride array is N. The whole array dimensions are
* TOTAL_SIZE and the hyperslab is at offset OFFSET and has
* dimensions SIZE.
*
* The stride and starting point returned will cause the
* hyperslab elements to be referenced in C order.
*
* Return: Success: Byte offset from beginning of array to start
* of striding.
*
* Failure: abort() -- should never fail
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
* Unrolled loops for common cases
* Quincey Koziol
* ?, ? ?, 2001?
*
*-------------------------------------------------------------------------
*/
hsize_t
H5V_hyper_stride(unsigned n, const hsize_t *size,
const hsize_t *total_size, const hsize_t *offset,
hsize_t *stride/*out*/)
{
hsize_t skip; /*starting point byte offset */
hsize_t acc; /*accumulator */
int i; /*counter */
hsize_t ret_value; /* Return value */
FUNC_ENTER_NOAPI_NOINIT_NOERR
assert(n <= H5V_HYPER_NDIMS);
assert(size);
assert(total_size);
assert(stride);
/* init */
assert(n>0);
stride[n-1] = 1;
skip = offset ? offset[n-1] : 0;
switch(n) {
case 2: /* 1-D dataset */
assert (total_size[1]>=size[1]);
stride[0] = total_size[1]-size[1]; /*overflow checked*/
acc = total_size[1];
skip += acc * (offset ? offset[0] : 0);
break;
case 3: /* 2-D dataset */
assert (total_size[2]>=size[2]);
stride[1] = total_size[2]-size[2]; /*overflow checked*/
acc = total_size[2];
skip += acc * (offset ? (hsize_t)offset[1] : 0);
assert (total_size[1]>=size[1]);
stride[0] = acc * (total_size[1] - size[1]); /*overflow checked*/
acc *= total_size[1];
skip += acc * (offset ? (hsize_t)offset[0] : 0);
break;
case 4: /* 3-D dataset */
assert (total_size[3]>=size[3]);
stride[2] = total_size[3]-size[3]; /*overflow checked*/
acc = total_size[3];
skip += acc * (offset ? (hsize_t)offset[2] : 0);
assert (total_size[2]>=size[2]);
stride[1] = acc * (total_size[2] - size[2]); /*overflow checked*/
acc *= total_size[2];
skip += acc * (offset ? (hsize_t)offset[1] : 0);
assert (total_size[1]>=size[1]);
stride[0] = acc * (total_size[1] - size[1]); /*overflow checked*/
acc *= total_size[1];
skip += acc * (offset ? (hsize_t)offset[0] : 0);
break;
default:
/* others */
for (i=(int)(n-2), acc=1; i>=0; --i) {
assert (total_size[i+1]>=size[i+1]);
stride[i] = acc * (total_size[i+1] - size[i+1]); /*overflow checked*/
acc *= total_size[i+1];
skip += acc * (offset ? (hsize_t)offset[i] : 0);
}
break;
} /* end switch */
/* Set return value */
ret_value=skip;
FUNC_LEAVE_NOAPI(ret_value)
}
/*-------------------------------------------------------------------------
* Function: H5V_hyper_eq
*
* Purpose: Determines whether two hyperslabs are equal. This function
* assumes that both hyperslabs are relative to the same array,
* for if not, they could not possibly be equal.
*
* Return: Success: TRUE if the hyperslabs are equal (that is,
* both refer to exactly the same elements of an
* array)
*
* FALSE otherwise.
*
* Failure: TRUE the rank is zero or if both hyperslabs
* are of zero size.
*
* Programmer: Robb Matzke
* Friday, October 17, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
htri_t
H5V_hyper_eq(unsigned n,
const hsize_t *offset1, const hsize_t *size1,
const hsize_t *offset2, const hsize_t *size2)
{
hsize_t nelmts1 = 1, nelmts2 = 1;
unsigned i;
htri_t ret_value=TRUE; /* Return value */
/* Use FUNC_ENTER_NOAPI_NOINIT_NOERR here to avoid performance issues */
FUNC_ENTER_NOAPI_NOINIT_NOERR
if (n == 0) HGOTO_DONE(TRUE)
for (i=0; i<n; i++) {
if ((offset1 ? offset1[i] : 0) != (offset2 ? offset2[i] : 0))
HGOTO_DONE(FALSE)
if ((size1 ? size1[i] : 0) != (size2 ? size2[i] : 0))
HGOTO_DONE(FALSE)
if (0 == (nelmts1 *= (size1 ? size1[i] : 0)))
HGOTO_DONE(FALSE)
if (0 == (nelmts2 *= (size2 ? size2[i] : 0)))
HGOTO_DONE(FALSE)
}
done:
FUNC_LEAVE_NOAPI(ret_value)
}
/*-------------------------------------------------------------------------
* Function: H5V_hyper_disjointp
*
* Purpose: Determines if two hyperslabs are disjoint.
*
* Return: Success: FALSE if they are not disjoint.
* TRUE if they are disjoint.
*
* Failure: A hyperslab of zero size is disjoint from all
* other hyperslabs.
*
* Programmer: Robb Matzke
* Thursday, October 16, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
htri_t
H5V_hyper_disjointp(unsigned n,
const hsize_t *offset1, const uint32_t *size1,
const hsize_t *offset2, const uint32_t *size2)
{
unsigned u;
htri_t ret_value = FALSE; /* Return value */
/* Use FUNC_ENTER_NOAPI_NOINIT_NOERR here to avoid performance issues */
FUNC_ENTER_NOAPI_NOINIT_NOERR
if(!n || !size1 || !size2)
HGOTO_DONE(TRUE)
for(u = 0; u < n; u++) {
HDassert(size1[u] < HSIZET_MAX);
HDassert(size2[u] < HSIZET_MAX);
if(0 == size1[u] || 0 == size2[u])
HGOTO_DONE(TRUE)
if(((offset1 ? offset1[u] : 0) < (offset2 ? offset2[u] : 0) &&
((offset1 ? offset1[u] : 0) + size1[u] <= (offset2 ? offset2[u] : 0))) ||
((offset2 ? offset2[u] : 0) < (offset1 ? offset1[u] : 0) &&
((offset2 ? offset2[u] : 0) + size2[u] <= (offset1 ? offset1[u] : 0))))
HGOTO_DONE(TRUE)
} /* end for */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5V_hyper_disjointp() */
/*-------------------------------------------------------------------------
* Function: H5V_hyper_fill
*
* Purpose: Similar to memset() except it operates on hyperslabs...
*
* Fills a hyperslab of array BUF with some value VAL. BUF
* is treated like a C-order array with N dimensions where the
* size of each dimension is TOTAL_SIZE[]. The hyperslab which
* will be filled with VAL begins at byte offset OFFSET[] from
* the minimum corner of BUF and continues for SIZE[] bytes in
* each dimension.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Robb Matzke
* Friday, October 10, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
H5V_hyper_fill(unsigned n, const hsize_t *_size,
const hsize_t *total_size, const hsize_t *offset, void *_dst,
unsigned fill_value)
{
uint8_t *dst = (uint8_t*)_dst; /*cast for ptr arithmetic */
hsize_t size[H5V_HYPER_NDIMS]; /*a modifiable copy of _size */
hsize_t dst_stride[H5V_HYPER_NDIMS]; /*destination stride info */
hsize_t dst_start; /*byte offset to start of stride*/
hsize_t elmt_size = 1; /*bytes per element */
herr_t ret_value; /*function return status */
#ifndef NDEBUG
unsigned u;
#endif
FUNC_ENTER_NOAPI_NOINIT_NOERR
/* check args */
assert(n > 0 && n <= H5V_HYPER_NDIMS);
assert(_size);
assert(total_size);
assert(dst);
#ifndef NDEBUG
for (u = 0; u < n; u++) {
assert(_size[u] > 0);
assert(total_size[u] > 0);
}
#endif
/* Copy the size vector so we can modify it */
H5V_vector_cpy(n, size, _size);
/* Compute an optimal destination stride vector */
dst_start = H5V_hyper_stride(n, size, total_size, offset, dst_stride);
H5V_stride_optimize1(&n, &elmt_size, size, dst_stride);
/* Copy */
ret_value = H5V_stride_fill(n, elmt_size, size, dst_stride, dst+dst_start,
fill_value);
FUNC_LEAVE_NOAPI(ret_value)
}
/*-------------------------------------------------------------------------
* Function: H5V_hyper_copy
*
* Purpose: Copies a hyperslab from the source to the destination.
*
* A hyperslab is a logically contiguous region of
* multi-dimensional size SIZE of an array whose dimensionality
* is N and whose total size is DST_TOTAL_SIZE or SRC_TOTAL_SIZE.
* The minimum corner of the hyperslab begins at a
* multi-dimensional offset from the minimum corner of the DST
* (destination) or SRC (source) array. The sizes and offsets
* are assumed to be in C order, that is, the first size/offset
* varies the slowest while the last varies the fastest in the
* mapping from N-dimensional space to linear space. This
* function assumes that the array elements are single bytes (if
* your array has multi-byte elements then add an additional
* dimension whose size is that of your element).
*
* The SRC and DST array may be the same array, but the results
* are undefined if the source hyperslab overlaps the
* destination hyperslab.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Robb Matzke
* Friday, October 10, 1997
*
* Modifications:
* Unrolled loops for common cases
* Quincey Koziol
* ?, ? ?, 2001?
*
*-------------------------------------------------------------------------
*/
herr_t
H5V_hyper_copy(unsigned n, const hsize_t *_size,
/*destination*/
const hsize_t *dst_size, const hsize_t *dst_offset,
void *_dst,
/*source*/
const hsize_t *src_size, const hsize_t *src_offset,
const void *_src)
{
const uint8_t *src = (const uint8_t*)_src; /*cast for ptr arithmtc */
uint8_t *dst = (uint8_t*) _dst; /*cast for ptr arithmtc */
hsize_t size[H5V_HYPER_NDIMS]; /*a modifiable _size */
hsize_t src_stride[H5V_HYPER_NDIMS]; /*source stride info */
hsize_t dst_stride[H5V_HYPER_NDIMS]; /*dest stride info */
hsize_t dst_start, src_start; /*offset to start at */
hsize_t elmt_size = 1; /*element size in bytes */
herr_t ret_value; /*return status */
#ifndef NDEBUG
unsigned u;
#endif
FUNC_ENTER_NOAPI_NOINIT_NOERR
/* check args */
assert(n > 0 && n <= H5V_HYPER_NDIMS);
assert(_size);
assert(dst_size);
assert(src_size);
assert(dst);
assert(src);
#ifndef NDEBUG
for (u = 0; u < n; u++) {
assert(_size[u] > 0);
assert(dst_size[u] > 0);
assert(src_size[u] > 0);
}
#endif
/* Copy the size vector so we can modify it */
H5V_vector_cpy(n, size, _size);
/* Compute stride vectors for source and destination */
#ifdef NO_INLINED_CODE
dst_start = H5V_hyper_stride(n, size, dst_size, dst_offset, dst_stride);
src_start = H5V_hyper_stride(n, size, src_size, src_offset, src_stride);
#else /* NO_INLINED_CODE */
/* in-line version of two calls to H5V_hyper_stride() */
{
hsize_t dst_acc; /*accumulator */
hsize_t src_acc; /*accumulator */
int ii; /*counter */
/* init */
assert(n>0);
dst_stride[n-1] = 1;
src_stride[n-1] = 1;
dst_start = dst_offset ? dst_offset[n-1] : 0;
src_start = src_offset ? src_offset[n-1] : 0;
/* Unroll loop for common cases */
switch(n) {
case 2:
assert (dst_size[1]>=size[1]);
assert (src_size[1]>=size[1]);
dst_stride[0] = dst_size[1] - size[1]; /*overflow checked*/
src_stride[0] = src_size[1] - size[1]; /*overflow checked*/
dst_acc = dst_size[1];
src_acc = src_size[1];
dst_start += dst_acc * (dst_offset ? dst_offset[0] : 0);
src_start += src_acc * (src_offset ? src_offset[0] : 0);
break;
case 3:
assert (dst_size[2]>=size[2]);
assert (src_size[2]>=size[2]);
dst_stride[1] = dst_size[2] - size[2]; /*overflow checked*/
src_stride[1] = src_size[2] - size[2]; /*overflow checked*/
dst_acc = dst_size[2];
src_acc = src_size[2];
dst_start += dst_acc * (dst_offset ? dst_offset[1] : 0);
src_start += src_acc * (src_offset ? src_offset[1] : 0);
assert (dst_size[1]>=size[1]);
assert (src_size[1]>=size[1]);
dst_stride[0] = dst_acc * (dst_size[1] - size[1]); /*overflow checked*/
src_stride[0] = src_acc * (src_size[1] - size[1]); /*overflow checked*/
dst_acc *= dst_size[1];
src_acc *= src_size[1];
dst_start += dst_acc * (dst_offset ? dst_offset[0] : 0);
src_start += src_acc * (src_offset ? src_offset[0] : 0);
break;
case 4:
assert (dst_size[3]>=size[3]);
assert (src_size[3]>=size[3]);
dst_stride[2] = dst_size[3] - size[3]; /*overflow checked*/
src_stride[2] = src_size[3] - size[3]; /*overflow checked*/
dst_acc = dst_size[3];
src_acc = src_size[3];
dst_start += dst_acc * (dst_offset ? dst_offset[2] : 0);
src_start += src_acc * (src_offset ? src_offset[2] : 0);
assert (dst_size[2]>=size[2]);
assert (src_size[2]>=size[2]);
dst_stride[1] = dst_acc * (dst_size[2] - size[2]); /*overflow checked*/
src_stride[1] = src_acc * (src_size[2] - size[2]); /*overflow checked*/
dst_acc *= dst_size[2];
src_acc *= src_size[2];
dst_start += dst_acc * (dst_offset ? dst_offset[1] : 0);
src_start += src_acc * (src_offset ? src_offset[1] : 0);
assert (dst_size[1]>=size[1]);
assert (src_size[1]>=size[1]);
dst_stride[0] = dst_acc * (dst_size[1] - size[1]); /*overflow checked*/
src_stride[0] = src_acc * (src_size[1] - size[1]); /*overflow checked*/
dst_acc *= dst_size[1];
src_acc *= src_size[1];
dst_start += dst_acc * (dst_offset ? dst_offset[0] : 0);
src_start += src_acc * (src_offset ? src_offset[0] : 0);
break;
default:
/* others */
for (ii=(int)(n-2), dst_acc=1, src_acc=1; ii>=0; --ii) {
assert (dst_size[ii+1]>=size[ii+1]);
assert (src_size[ii+1]>=size[ii+1]);
dst_stride[ii] = dst_acc * (dst_size[ii+1] - size[ii+1]); /*overflow checked*/
src_stride[ii] = src_acc * (src_size[ii+1] - size[ii+1]); /*overflow checked*/
dst_acc *= dst_size[ii+1];
src_acc *= src_size[ii+1];
dst_start += dst_acc * (dst_offset ? dst_offset[ii] : 0);
src_start += src_acc * (src_offset ? src_offset[ii] : 0);
}
break;
} /* end switch */
}
#endif /* NO_INLINED_CODE */
/* Optimize the strides as a pair */
H5V_stride_optimize2(&n, &elmt_size, size, dst_stride, src_stride);
/* Perform the copy in terms of stride */
ret_value = H5V_stride_copy(n, elmt_size, size,
dst_stride, dst+dst_start, src_stride, src+src_start);
FUNC_LEAVE_NOAPI(ret_value)
}
/*-------------------------------------------------------------------------
* Function: H5V_stride_fill
*
* Purpose: Fills all bytes of a hyperslab with the same value using
* memset().
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
H5V_stride_fill(unsigned n, hsize_t elmt_size, const hsize_t *size,
const hsize_t *stride, void *_dst, unsigned fill_value)
{
uint8_t *dst = (uint8_t*)_dst; /*cast for ptr arithmetic */
hsize_t idx[H5V_HYPER_NDIMS]; /*1-origin indices */
hsize_t nelmts; /*number of elements to fill */
hsize_t i; /*counter */
int j; /*counter */
hbool_t carry; /*subtraction carray value */
FUNC_ENTER_NOAPI_NOINIT_NOERR
assert (elmt_size < SIZET_MAX);
H5V_vector_cpy(n, idx, size);
nelmts = H5V_vector_reduce_product(n, size);
for (i=0; i<nelmts; i++) {
/* Copy an element */
H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
HDmemset(dst, (int)fill_value, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */
/* Decrement indices and advance pointer */
for (j=(int)(n-1), carry=TRUE; j>=0 && carry; --j) {
dst += stride[j];
if (--idx[j])
carry = FALSE;
else {
assert(size);
idx[j] = size[j];
} /* end else */
}
}
FUNC_LEAVE_NOAPI(SUCCEED)
}
/*-------------------------------------------------------------------------
* Function: H5V_stride_copy
*
* Purpose: Uses DST_STRIDE and SRC_STRIDE to advance through the arrays
* DST and SRC while copying bytes from SRC to DST. This
* function minimizes the number of calls to memcpy() by
* combining various strides, but it will never touch memory
* outside the hyperslab defined by the strides.
*
* Note: If the src_stride is all zero and elmt_size is one, then it's
* probably more efficient to use H5V_stride_fill() instead.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
H5V_stride_copy(unsigned n, hsize_t elmt_size, const hsize_t *size,
const hsize_t *dst_stride, void *_dst,
const hsize_t *src_stride, const void *_src)
{
uint8_t *dst = (uint8_t*)_dst; /*cast for ptr arithmetic*/
const uint8_t *src = (const uint8_t*) _src; /*cast for ptr arithmetic*/
hsize_t idx[H5V_HYPER_NDIMS]; /*1-origin indices */
hsize_t nelmts; /*num elements to copy */
hsize_t i; /*counter */
int j; /*counters */
hbool_t carry; /*carray for subtraction*/
FUNC_ENTER_NOAPI_NOINIT_NOERR
assert (elmt_size<SIZET_MAX);
if (n) {
H5V_vector_cpy(n, idx, size);
nelmts = H5V_vector_reduce_product(n, size);
for (i=0; i<nelmts; i++) {
/* Copy an element */
H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
HDmemcpy(dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */
/* Decrement indices and advance pointers */
for (j=(int)(n-1), carry=TRUE; j>=0 && carry; --j) {
src += src_stride[j];
dst += dst_stride[j];
if (--idx[j])
carry = FALSE;
else {
assert(size);
idx[j] = size[j];
}
}
}
} else {
H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
HDmemcpy (dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */
}
FUNC_LEAVE_NOAPI(SUCCEED)
}
/*-------------------------------------------------------------------------
* Function: H5V_stride_copy_s
*
* Purpose: Uses DST_STRIDE and SRC_STRIDE to advance through the arrays
* DST and SRC while copying bytes from SRC to DST. This
* function minimizes the number of calls to memcpy() by
* combining various strides, but it will never touch memory
* outside the hyperslab defined by the strides.
*
* Note: If the src_stride is all zero and elmt_size is one, then it's
* probably more efficient to use H5V_stride_fill() instead.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
H5V_stride_copy_s(unsigned n, hsize_t elmt_size, const hsize_t *size,
const hssize_t *dst_stride, void *_dst,
const hssize_t *src_stride, const void *_src)
{
uint8_t *dst = (uint8_t*)_dst; /*cast for ptr arithmetic*/
const uint8_t *src = (const uint8_t*) _src; /*cast for ptr arithmetic*/
hsize_t idx[H5V_HYPER_NDIMS]; /*1-origin indices */
hsize_t nelmts; /*num elements to copy */
hsize_t i; /*counter */
int j; /*counters */
hbool_t carry; /*carray for subtraction*/
FUNC_ENTER_NOAPI_NOINIT_NOERR
assert (elmt_size<SIZET_MAX);
if (n) {
H5V_vector_cpy(n, idx, size);
nelmts = H5V_vector_reduce_product(n, size);
for (i=0; i<nelmts; i++) {
/* Copy an element */
H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
HDmemcpy(dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */
/* Decrement indices and advance pointers */
for (j=(int)(n-1), carry=TRUE; j>=0 && carry; --j) {
src += src_stride[j];
dst += dst_stride[j];
if (--idx[j])
carry = FALSE;
else {
assert(size);
idx[j] = size[j];
}
}
}
} else {
H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
HDmemcpy (dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */
}
FUNC_LEAVE_NOAPI(SUCCEED)
}
#ifdef LATER
/*-------------------------------------------------------------------------
* Function: H5V_stride_copy2
*
* Purpose: Similar to H5V_stride_copy() except the source and
* destination each have their own dimensionality and size and
* we copy exactly NELMTS elements each of size ELMT_SIZE. The
* size counters wrap if NELMTS is more than a size counter.
*
* Return: None
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
H5V_stride_copy2(hsize_t nelmts, hsize_t elmt_size,
/* destination */
unsigned dst_n, const hsize_t *dst_size,
const hsize_t *dst_stride,
void *_dst,
/* source */
unsigned src_n, const hsize_t *src_size,
const hsize_t *src_stride,
const void *_src)
{
uint8_t *dst = (uint8_t *) _dst;
const uint8_t *src = (const uint8_t *) _src;
hsize_t dst_idx[H5V_HYPER_NDIMS];
hsize_t src_idx[H5V_HYPER_NDIMS];
hsize_t i; /* Local index variable */
int j; /* Local index variable */
hbool_t carry;
FUNC_ENTER_NOAPI_NOINIT_NOERR
assert (elmt_size < SIZET_MAX);
assert(dst_n>0);
assert(src_n>0);
H5V_vector_cpy(dst_n, dst_idx, dst_size);
H5V_vector_cpy(src_n, src_idx, src_size);
for (i=0; i<nelmts; i++) {
/* Copy an element */
H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
HDmemcpy(dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */
/* Decrement indices and advance pointers */
for (j=(int)(dst_n-1), carry=TRUE; j>=0 && carry; --j) {
dst += dst_stride[j];
if (--dst_idx[j])
carry = FALSE;
else {
assert(dst_size);
dst_idx[j] = dst_size[j];
} /* end else */
}
for (j=(int)(src_n-1), carry=TRUE; j>=0 && carry; --j) {
src += src_stride[j];
if (--src_idx[j])
carry = FALSE;
else {
assert(src_size);
src_idx[j] = src_size[j];
} /* end else */
}
}
FUNC_LEAVE_NOAPI_VOID
}
#endif /* LATER */
/*-------------------------------------------------------------------------
* Function: H5V_array_fill
*
* Purpose: Fills all bytes of an array with the same value using
* memset(). Increases amount copied by power of two until the
* halfway point is crossed, then copies the rest in one swoop.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Quincey Koziol
* Thursday, June 18, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
H5V_array_fill(void *_dst, const void *src, size_t size, size_t count)
{
size_t copy_size; /* size of the buffer to copy */
size_t copy_items; /* number of items currently copying*/
size_t items_left; /* number of items left to copy */
uint8_t *dst=(uint8_t*)_dst;/* alias for pointer arithmetic */
FUNC_ENTER_NOAPI_NOINIT_NOERR
assert (dst);
assert (src);
assert (size < SIZET_MAX && size > 0);
assert (count < SIZET_MAX && count > 0);
HDmemcpy(dst, src, size); /* copy first item */
/* Initialize counters, etc. while compensating for first element copied */
copy_size = size;
copy_items = 1;
items_left = count - 1;
dst += size;
/* copy until we've copied at least half of the items */
while (items_left >= copy_items)
{
HDmemcpy(dst, _dst, copy_size); /* copy the current chunk */
dst += copy_size; /* move the offset for the next chunk */
items_left -= copy_items; /* decrement the number of items left */
copy_size *= 2; /* increase the size of the chunk to copy */
copy_items *= 2; /* increase the count of items we are copying */
} /* end while */
if (items_left > 0) /* if there are any items left to copy */
HDmemcpy(dst, _dst, items_left * size);
FUNC_LEAVE_NOAPI(SUCCEED)
} /* H5V_array_fill() */
/*-------------------------------------------------------------------------
* Function: H5V_array_down
*
* Purpose: Given a set of dimension sizes, calculate the size of each
* "down" slice. This is the size of the dimensions for all the
* dimensions below the current one, which is used for indexing
* offsets in this dimension.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Quincey Koziol
* Monday, April 28, 2003
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
H5V_array_down(unsigned n, const hsize_t *total_size, hsize_t *down)
{
hsize_t acc; /*accumulator */
int i; /*counter */
FUNC_ENTER_NOAPI_NOINIT_NOERR
assert(n <= H5V_HYPER_NDIMS);
assert(total_size);
assert(down);
/* Build the sizes of each dimension in the array */
/* (From fastest to slowest) */
for(i=(int)(n-1),acc=1; i>=0; i--) {
down[i]=acc;
acc *= total_size[i];
} /* end for */
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5V_array_down() */
/*-------------------------------------------------------------------------
* Function: H5V_array_offset_pre
*
* Purpose: Given a coordinate description of a location in an array, this
* function returns the byte offset of the coordinate.
*
* The dimensionality of the whole array, and the offset is N.
* The whole array dimensions are TOTAL_SIZE and the coordinate
* is at offset OFFSET.
*
* Return: Success: Byte offset from beginning of array to element offset
* Failure: abort() -- should never fail
*
* Programmer: Quincey Koziol
* Tuesday, June 22, 1999
*
* Modifications:
* Use precomputed accumulator array
* Quincey Koziol
* Saturday, April 26, 2003
*
*-------------------------------------------------------------------------
*/
hsize_t
H5V_array_offset_pre(unsigned n, const hsize_t *acc, const hsize_t *offset)
{
int i; /*counter */
hsize_t ret_value; /* Return value */
FUNC_ENTER_NOAPI_NOINIT_NOERR
assert(n <= H5V_HYPER_NDIMS);
assert(acc);
assert(offset);
/* Compute offset in array */
for (i=(int)(n-1), ret_value=0; i>=0; --i)
ret_value += acc[i] * offset[i];
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5V_array_offset_pre() */
/*-------------------------------------------------------------------------
* Function: H5V_array_offset
*
* Purpose: Given a coordinate description of a location in an array, this
* function returns the byte offset of the coordinate.
*
* The dimensionality of the whole array, and the offset is N.
* The whole array dimensions are TOTAL_SIZE and the coordinate
* is at offset OFFSET.
*
* Return: Success: Byte offset from beginning of array to element offset
* Failure: abort() -- should never fail
*
* Programmer: Quincey Koziol
* Tuesday, June 22, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
hsize_t
H5V_array_offset(unsigned n, const hsize_t *total_size, const hsize_t *offset)
{
hsize_t acc_arr[H5V_HYPER_NDIMS]; /* Accumulated size of down dimensions */
hsize_t ret_value; /* Return value */
FUNC_ENTER_NOAPI((HDabort(), 0)) /*lint !e527 Don't worry about unreachable statement */
assert(n <= H5V_HYPER_NDIMS);
assert(total_size);
assert(offset);
/* Build the sizes of each dimension in the array */
if(H5V_array_down(n,total_size,acc_arr)<0)
HGOTO_ERROR(H5E_INTERNAL, H5E_BADVALUE, UFAIL, "can't compute down sizes")
/* Set return value */
ret_value=H5V_array_offset_pre(n,acc_arr,offset);
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5V_array_offset() */
/*-------------------------------------------------------------------------
* Function: H5V_array_calc_pre
*
* Purpose: Given a linear offset in an array, the dimensions of that
* array and the pre-computed 'down' (accumulator) sizes, this
* function computes the coordinates of that offset in the array.
*
* The dimensionality of the whole array, and the coordinates is N.
* The array dimensions are TOTAL_SIZE and the coordinates
* are returned in COORD. The linear offset is in OFFSET.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Quincey Koziol
* Thursday, July 16, 2009
*
*-------------------------------------------------------------------------
*/
static herr_t
H5V_array_calc_pre(hsize_t offset, unsigned n, const hsize_t *down,
hsize_t *coords)
{
unsigned u; /* Local index variable */
FUNC_ENTER_NOAPI_NOINIT_NOERR
/* Sanity check */
HDassert(n <= H5V_HYPER_NDIMS);
HDassert(coords);
/* Compute the coordinates from the offset */
for(u = 0; u < n; u++) {
coords[u] = offset / down[u];
offset %= down[u];
} /* end for */
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5V_array_calc_pre() */
/*-------------------------------------------------------------------------
* Function: H5V_array_calc
*
* Purpose: Given a linear offset in an array and the dimensions of that
* array, this function computes the coordinates of that offset
* in the array.
*
* The dimensionality of the whole array, and the coordinates is N.
* The array dimensions are TOTAL_SIZE and the coordinates
* are returned in COORD. The linear offset is in OFFSET.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Quincey Koziol
* Wednesday, April 16, 2003
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
H5V_array_calc(hsize_t offset, unsigned n, const hsize_t *total_size, hsize_t *coords)
{
hsize_t idx[H5V_HYPER_NDIMS]; /* Size of each dimension in bytes */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(FAIL)
/* Sanity check */
HDassert(n <= H5V_HYPER_NDIMS);
HDassert(total_size);
HDassert(coords);
/* Build the sizes of each dimension in the array */
if(H5V_array_down(n, total_size, idx) < 0)
HGOTO_ERROR(H5E_INTERNAL, H5E_BADVALUE, FAIL, "can't compute down sizes")
/* Compute the coordinates from the offset */
if(H5V_array_calc_pre(offset, n, idx, coords) < 0)
HGOTO_ERROR(H5E_INTERNAL, H5E_BADVALUE, FAIL, "can't compute coordinates")
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5V_array_calc() */
/*-------------------------------------------------------------------------
* Function: H5V_chunk_index
*
* Purpose: Given a coordinate offset (COORD), the size of each chunk
* (CHUNK), the number of chunks in each dimension (NCHUNKS)
* and the number of dimensions of all of these (NDIMS), calculate
* a "chunk index" for the chunk that the coordinate offset is
* located in.
*
* The chunk index starts at 0 and increases according to the
* fastest changing dimension, then the next fastest, etc.
*
* For example, with a 3x5 chunk size and 6 chunks in the fastest
* changing dimension and 3 chunks in the slowest changing
* dimension, the chunk indices are as follows:
*
* +-----+-----+-----+-----+-----+-----+
* | | | | | | |
* | 0 | 1 | 2 | 3 | 4 | 5 |
* | | | | | | |
* +-----+-----+-----+-----+-----+-----+
* | | | | | | |
* | 6 | 7 | 8 | 9 | 10 | 11 |
* | | | | | | |
* +-----+-----+-----+-----+-----+-----+
* | | | | | | |
* | 12 | 13 | 14 | 15 | 16 | 17 |
* | | | | | | |
* +-----+-----+-----+-----+-----+-----+
*
* The chunk index is placed in the CHUNK_IDX location for return
* from this function
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Quincey Koziol
* Monday, April 21, 2003
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
H5V_chunk_index(unsigned ndims, const hsize_t *coord, const uint32_t *chunk,
const hsize_t *down_nchunks, hsize_t *chunk_idx)
{
hsize_t scaled_coord[H5V_HYPER_NDIMS]; /* Scaled, coordinates, in terms of chunks */
unsigned u; /* Local index variable */
FUNC_ENTER_NOAPI_NOINIT_NOERR
/* Sanity check */
assert(ndims <= H5V_HYPER_NDIMS);
assert(coord);
assert(chunk);
assert(chunk_idx);
/* Compute the scaled coordinates for actual coordinates */
for(u=0; u<ndims; u++)
scaled_coord[u]=coord[u]/chunk[u];
/* Compute the chunk index */
*chunk_idx=H5V_array_offset_pre(ndims,down_nchunks,scaled_coord); /*lint !e772 scaled_coord will always be initialized */
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5V_chunk_index() */
/*-------------------------------------------------------------------------
* Function: H5V_opvv
*
* Purpose: Perform an operation on a source & destination sequences
* of offset/length pairs. Each set of sequnces has an array
* of lengths, an array of offsets, the maximum number of
* sequences and the current sequence to start at in the sequence.
*
* There may be different numbers of bytes in the source and
* destination sequences, the operation stops when either the
* source or destination sequence runs out of information.
*
* Note: The algorithm in this routine is [basically] the same as for
* H5V_memcpyvv(). Changes should be made to both!
*
* Return: Non-negative # of bytes operated on, on success/Negative on failure
*
* Programmer: Quincey Koziol
* Thursday, September 30, 2010
*
*-------------------------------------------------------------------------
*/
ssize_t
H5V_opvv(size_t dst_max_nseq, size_t *dst_curr_seq, size_t dst_len_arr[],
hsize_t dst_off_arr[],
size_t src_max_nseq, size_t *src_curr_seq, size_t src_len_arr[],
hsize_t src_off_arr[],
H5V_opvv_func_t op, void *op_data)
{
hsize_t *max_dst_off_ptr, *max_src_off_ptr; /* Pointers to max. source and destination offset locations */
hsize_t *dst_off_ptr, *src_off_ptr; /* Pointers to source and destination offset arrays */
size_t *dst_len_ptr, *src_len_ptr; /* Pointers to source and destination length arrays */
hsize_t tmp_dst_off, tmp_src_off; /* Temporary source and destination offset values */
size_t tmp_dst_len, tmp_src_len; /* Temporary source and destination length values */
size_t acc_len; /* Accumulated length of sequences */
ssize_t ret_value = 0; /* Return value (Total size of sequence in bytes) */
FUNC_ENTER_NOAPI(FAIL)
/* Sanity check */
HDassert(dst_curr_seq);
HDassert(*dst_curr_seq < dst_max_nseq);
HDassert(dst_len_arr);
HDassert(dst_off_arr);
HDassert(src_curr_seq);
HDassert(*src_curr_seq < src_max_nseq);
HDassert(src_len_arr);
HDassert(src_off_arr);
HDassert(op);
/* Set initial offset & length pointers */
dst_len_ptr = dst_len_arr + *dst_curr_seq;
dst_off_ptr = dst_off_arr + *dst_curr_seq;
src_len_ptr = src_len_arr + *src_curr_seq;
src_off_ptr = src_off_arr + *src_curr_seq;
/* Get temporary source & destination sequence offsets & lengths */
tmp_dst_len = *dst_len_ptr;
tmp_dst_off = *dst_off_ptr;
tmp_src_len = *src_len_ptr;
tmp_src_off = *src_off_ptr;
/* Compute maximum offset pointer values */
max_dst_off_ptr = dst_off_arr + dst_max_nseq;
max_src_off_ptr = src_off_arr + src_max_nseq;
/* Work through the sequences */
/* (Choose smallest sequence available initially) */
/* Source sequence is less than destination sequence */
if(tmp_src_len < tmp_dst_len) {
src_smaller:
acc_len = 0;
do {
/* Make operator callback */
if((*op)(tmp_dst_off, tmp_src_off, tmp_src_len, op_data) < 0)
HGOTO_ERROR(H5E_INTERNAL, H5E_CANTOPERATE, FAIL, "can't perform operation")
/* Accumulate number of bytes copied */
acc_len += tmp_src_len;
/* Update destination length */
tmp_dst_off += tmp_src_len;
tmp_dst_len -= tmp_src_len;
/* Advance source offset & check for being finished */
src_off_ptr++;
if(src_off_ptr >= max_src_off_ptr) {
/* Roll accumulated changes into appropriate counters */
*dst_off_ptr = tmp_dst_off;
*dst_len_ptr = tmp_dst_len;
/* Done with sequences */
goto finished;
} /* end if */
tmp_src_off = *src_off_ptr;
/* Update source information */
src_len_ptr++;
tmp_src_len = *src_len_ptr;
} while(tmp_src_len < tmp_dst_len);
/* Roll accumulated sequence lengths into return value */
ret_value += (ssize_t)acc_len;
/* Transition to next state */
if(tmp_dst_len < tmp_src_len)
goto dst_smaller;
else
goto equal;
} /* end if */
/* Destination sequence is less than source sequence */
else if(tmp_dst_len < tmp_src_len) {
dst_smaller:
acc_len = 0;
do {
/* Make operator callback */
if((*op)(tmp_dst_off, tmp_src_off, tmp_dst_len, op_data) < 0)
HGOTO_ERROR(H5E_INTERNAL, H5E_CANTOPERATE, FAIL, "can't perform operation")
/* Accumulate number of bytes copied */
acc_len += tmp_dst_len;
/* Update source length */
tmp_src_off += tmp_dst_len;
tmp_src_len -= tmp_dst_len;
/* Advance destination offset & check for being finished */
dst_off_ptr++;
if(dst_off_ptr >= max_dst_off_ptr) {
/* Roll accumulated changes into appropriate counters */
*src_off_ptr = tmp_src_off;
*src_len_ptr = tmp_src_len;
/* Done with sequences */
goto finished;
} /* end if */
tmp_dst_off = *dst_off_ptr;
/* Update destination information */
dst_len_ptr++;
tmp_dst_len = *dst_len_ptr;
} while(tmp_dst_len < tmp_src_len);
/* Roll accumulated sequence lengths into return value */
ret_value += (ssize_t)acc_len;
/* Transition to next state */
if(tmp_src_len < tmp_dst_len)
goto src_smaller;
else
goto equal;
} /* end else-if */
/* Destination sequence and source sequence are same length */
else {
equal:
acc_len = 0;
do {
/* Make operator callback */
if((*op)(tmp_dst_off, tmp_src_off, tmp_dst_len, op_data) < 0)
HGOTO_ERROR(H5E_INTERNAL, H5E_CANTOPERATE, FAIL, "can't perform operation")
/* Accumulate number of bytes copied */
acc_len += tmp_dst_len;
/* Advance source & destination offset & check for being finished */
src_off_ptr++;
dst_off_ptr++;
if(src_off_ptr >= max_src_off_ptr || dst_off_ptr >= max_dst_off_ptr)
/* Done with sequences */
goto finished;
tmp_src_off = *src_off_ptr;
tmp_dst_off = *dst_off_ptr;
/* Update source information */
src_len_ptr++;
tmp_src_len = *src_len_ptr;
/* Update destination information */
dst_len_ptr++;
tmp_dst_len = *dst_len_ptr;
} while(tmp_dst_len == tmp_src_len);
/* Roll accumulated sequence lengths into return value */
ret_value += (ssize_t)acc_len;
/* Transition to next state */
if(tmp_dst_len < tmp_src_len)
goto dst_smaller;
else
goto src_smaller;
} /* end else */
finished:
/* Roll accumulated sequence lengths into return value */
ret_value += (ssize_t)acc_len;
/* Update current sequence vectors */
*dst_curr_seq = (size_t)(dst_off_ptr - dst_off_arr);
*src_curr_seq = (size_t)(src_off_ptr - src_off_arr);
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5V_opvv() */
/*-------------------------------------------------------------------------
* Function: H5V_memcpyvv
*
* Purpose: Given source and destination buffers in memory (SRC & DST)
* copy sequences of from the source buffer into the destination
* buffer. Each set of sequnces has an array of lengths, an
* array of offsets, the maximum number of sequences and the
* current sequence to start at in the sequence.
*
* There may be different numbers of bytes in the source and
* destination sequences, data copying stops when either the
* source or destination buffer runs out of sequence information.
*
* Note: The algorithm in this routine is [basically] the same as for
* H5V_opvv(). Changes should be made to both!
*
* Return: Non-negative # of bytes copied on success/Negative on failure
*
* Programmer: Quincey Koziol
* Friday, May 2, 2003
*
*-------------------------------------------------------------------------
*/
ssize_t
H5V_memcpyvv(void *_dst,
size_t dst_max_nseq, size_t *dst_curr_seq, size_t dst_len_arr[], hsize_t dst_off_arr[],
const void *_src,
size_t src_max_nseq, size_t *src_curr_seq, size_t src_len_arr[], hsize_t src_off_arr[])
{
unsigned char *dst; /* Destination buffer pointer */
const unsigned char *src; /* Source buffer pointer */
hsize_t *max_dst_off_ptr, *max_src_off_ptr; /* Pointers to max. source and destination offset locations */
hsize_t *dst_off_ptr, *src_off_ptr; /* Pointers to source and destination offset arrays */
size_t *dst_len_ptr, *src_len_ptr; /* Pointers to source and destination length arrays */
size_t tmp_dst_len; /* Temporary dest. length value */
size_t tmp_src_len; /* Temporary source length value */
size_t acc_len; /* Accumulated length of sequences */
ssize_t ret_value = 0; /* Return value (Total size of sequence in bytes) */
FUNC_ENTER_NOAPI_NOINIT_NOERR
/* Sanity check */
HDassert(_dst);
HDassert(dst_curr_seq);
HDassert(*dst_curr_seq < dst_max_nseq);
HDassert(dst_len_arr);
HDassert(dst_off_arr);
HDassert(_src);
HDassert(src_curr_seq);
HDassert(*src_curr_seq < src_max_nseq);
HDassert(src_len_arr);
HDassert(src_off_arr);
/* Set initial offset & length pointers */
dst_len_ptr = dst_len_arr + *dst_curr_seq;
dst_off_ptr = dst_off_arr + *dst_curr_seq;
src_len_ptr = src_len_arr + *src_curr_seq;
src_off_ptr = src_off_arr + *src_curr_seq;
/* Get temporary source & destination sequence lengths */
tmp_dst_len = *dst_len_ptr;
tmp_src_len = *src_len_ptr;
/* Compute maximum offset pointer values */
max_dst_off_ptr = dst_off_arr + dst_max_nseq;
max_src_off_ptr = src_off_arr + src_max_nseq;
/* Compute buffer offsets */
dst = (unsigned char *)_dst + *dst_off_ptr;
src = (const unsigned char *)_src + *src_off_ptr;
/* Work through the sequences */
/* (Choose smallest sequence available initially) */
/* Source sequence is less than destination sequence */
if(tmp_src_len < tmp_dst_len) {
src_smaller:
acc_len = 0;
do {
/* Copy data */
HDmemcpy(dst, src, tmp_src_len);
/* Accumulate number of bytes copied */
acc_len += tmp_src_len;
/* Update destination length */
tmp_dst_len -= tmp_src_len;
/* Advance source offset & check for being finished */
src_off_ptr++;
if(src_off_ptr >= max_src_off_ptr) {
/* Roll accumulated changes into appropriate counters */
*dst_off_ptr += acc_len;
*dst_len_ptr = tmp_dst_len;
/* Done with sequences */
goto finished;
} /* end if */
/* Update destination pointer */
dst += tmp_src_len;
/* Update source information */
src_len_ptr++;
tmp_src_len = *src_len_ptr;
src = (const unsigned char *)_src + *src_off_ptr;
} while(tmp_src_len < tmp_dst_len);
/* Roll accumulated sequence lengths into return value */
ret_value += (ssize_t)acc_len;
/* Transition to next state */
if(tmp_dst_len < tmp_src_len)
goto dst_smaller;
else
goto equal;
} /* end if */
/* Destination sequence is less than source sequence */
else if(tmp_dst_len < tmp_src_len) {
dst_smaller:
acc_len = 0;
do {
/* Copy data */
HDmemcpy(dst, src, tmp_dst_len);
/* Accumulate number of bytes copied */
acc_len += tmp_dst_len;
/* Update source length */
tmp_src_len -= tmp_dst_len;
/* Advance destination offset & check for being finished */
dst_off_ptr++;
if(dst_off_ptr >= max_dst_off_ptr) {
/* Roll accumulated changes into appropriate counters */
*src_off_ptr += acc_len;
*src_len_ptr = tmp_src_len;
/* Done with sequences */
goto finished;
} /* end if */
/* Update source pointer */
src += tmp_dst_len;
/* Update destination information */
dst_len_ptr++;
tmp_dst_len = *dst_len_ptr;
dst = (unsigned char *)_dst + *dst_off_ptr;
} while(tmp_dst_len < tmp_src_len);
/* Roll accumulated sequence lengths into return value */
ret_value += (ssize_t)acc_len;
/* Transition to next state */
if(tmp_src_len < tmp_dst_len)
goto src_smaller;
else
goto equal;
} /* end else-if */
/* Destination sequence and source sequence are same length */
else {
equal:
acc_len = 0;
do {
/* Copy data */
HDmemcpy(dst, src, tmp_dst_len);
/* Accumulate number of bytes copied */
acc_len += tmp_dst_len;
/* Advance source & destination offset & check for being finished */
src_off_ptr++;
dst_off_ptr++;
if(src_off_ptr >= max_src_off_ptr || dst_off_ptr >= max_dst_off_ptr)
/* Done with sequences */
goto finished;
/* Update source information */
src_len_ptr++;
tmp_src_len = *src_len_ptr;
src = (const unsigned char *)_src + *src_off_ptr;
/* Update destination information */
dst_len_ptr++;
tmp_dst_len = *dst_len_ptr;
dst = (unsigned char *)_dst + *dst_off_ptr;
} while(tmp_dst_len == tmp_src_len);
/* Roll accumulated sequence lengths into return value */
ret_value += (ssize_t)acc_len;
/* Transition to next state */
if(tmp_dst_len < tmp_src_len)
goto dst_smaller;
else
goto src_smaller;
} /* end else */
finished:
/* Roll accumulated sequence lengths into return value */
ret_value += (ssize_t)acc_len;
/* Update current sequence vectors */
*dst_curr_seq = (size_t)(dst_off_ptr - dst_off_arr);
*src_curr_seq = (size_t)(src_off_ptr - src_off_arr);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5V_memcpyvv() */