hdf5/test/dtypes.c
Robb Matzke 8baa675250 [svn-r1362]
Changes since 19990616
----------------------

./src/H5T.c
./src/H5Tconv.c
	All conversion functions take an extra argument called
	`stride' which is the number of bytes to advance the source
	and destination pointers after each element is converted. If
	the value is zero then the old behavior is preserved (source
	and destination values are packed). This feature was necessary
	to implement the compound datatype conversion optimizations
	and it causes a minor change to the API (application-defined
	type conversion functions take an extra size_t stride
	argument).

./src/H5Tconv.c
	An additional compound data type conversion function was added
	which is applied unless the destination type is larger than
	the source type. I'm measuring significant performance
	increases for certain operations:

	    Test Name    Struct-Conv    Noop-Conv
			 New(Old) MB/s  New(Old) MB/s
	    ----------   -------------  -------------
	    Reordering   2.062(0.3936)  54087(0.9047)
	    Subsetting   2.901(0.6581)  40192(1.1100)
	    Shrinking    1.976(0.3925)  33628(1.1500)
	    ----------   -------------  -------------

./test/dtypes.c
	Added various compound datatype conversion tests.

	Fixed return values from functions.

./src/H5T.c
	Conversion timers are updated only if H5T debugging is turned
	on a runtime (in addition to compile time). This allows the
	data type layer to be compiled with debugging support without
	having to pay a big runtime penalty if the debugging isn't
	actually used.

./src/H5A.c
./src/H5D.c
./src/H5Ofill.c
./src/H5P.c
./src/H5T.c
./src/H5Tconv.c
./src/H5Tpkg.h
./src/H5Tprivate.h
./src/H5Tpublic.h
	Added the stride argument to the H5T_convert() calls. The
	stride is always zero, which means that the source and
	destination data values are packed.

./configure.in
./configure			[REGENERATED]
	If API tracing is turned off then libhdf5.settings will say
	`no' instead of nothing.

./test/flush1.c
./test/flush2.c
	Added better error messages in a couple places.
1999-06-18 10:12:18 -05:00

3596 lines
103 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (C) 1997 NCSA
* All rights reserved.
*
* Programmer: Robb Matzke <matzke@llnl.gov>
* Tuesday, December 9, 1997
*
* Purpose: Tests the data type interface (H5T)
*/
#include <h5test.h>
/* Number of times to run each test */
#define NTESTS 1
/* Define if you want to see a count of overflows */
#undef SHOW_OVERFLOWS
/*
* Offset from alinged memory returned by malloc(). This can be used to test
* that type conversions handle non-aligned buffers correctly.
*/
#define ALIGNMENT 1
/*
* Define if you want to test alignment code on a machine that doesn't
* normally require alignment. When set, all native data types must be aligned
* on a byte boundary equal to the data size.
*/
#define TEST_ALIGNMENT
/* Alignment test stuff */
#ifdef TEST_ALIGNMENT
#define H5T_PACKAGE
#include <H5Tpkg.h>
#endif
#define SET_ALIGNMENT(TYPE,VAL) \
H5T_NATIVE_##TYPE##_ALIGN_g=MAX(H5T_NATIVE_##TYPE##_ALIGN_g, VAL)
const char *FILENAME[] = {
"dtypes1",
"dtypes2",
NULL
};
typedef struct complex_t {
double re;
double im;
} complex_t;
/*
* Count up or down depending on whether the machine is big endian or little
* endian. If local variable `endian' is H5T_ORDER_BE then the result will
* be I, otherwise the result will be Z-(I+1).
*/
#define ENDIAN(Z,I) (H5T_ORDER_BE==endian?(I):(Z)-((I)+1))
typedef enum flt_t {
FLT_FLOAT, FLT_DOUBLE, FLT_LDOUBLE, FLT_OTHER
} flt_t;
typedef enum int_t {
INT_CHAR, INT_UCHAR, INT_SHORT, INT_USHORT, INT_INT, INT_UINT,
INT_LONG, INT_ULONG, INT_LLONG, INT_ULLONG, INT_OTHER
} int_t;
/* Count the number of overflows */
#ifdef SHOW_OVERFLOWS
static int noverflows_g = 0;
#endif
/* Skip overflow tests if non-zero */
static int skip_overflow_tests_g = 0;
/* Don't use hardware conversions if set */
static int without_hardware_g = 0;
/* Count opaque conversions */
static int num_opaque_conversions_g = 0;
/*
* Although we check whether a floating point overflow generates a SIGFPE and
* turn off overflow tests in that case, it might still be possible for an
* overflow condition to occur. Once a SIGFPE is raised the program cannot
* be allowed to continue (cf. Posix signals) so in order to recover from a
* SIGFPE we run tests that might generate one in a child process.
*/
#if defined(HAVE_FORK) && defined(HAVE_WAITPID)
# define HANDLE_SIGFPE
#endif
/* Allocates memory aligned on a certain boundary. */
#define aligned_malloc(Z) ((void*)((char*)malloc(ALIGNMENT+Z)+ALIGNMENT))
#define aligned_free(M) free((char*)(M)-ALIGNMENT)
void some_dummy_func(float x);
/*-------------------------------------------------------------------------
* Function: fpe_handler
*
* Purpose: Exit with 255
*
* Return: void
*
* Programmer: Robb Matzke
* Monday, July 6, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
fpe_handler(int UNUSED signo)
{
SKIPPED();
puts(" Test skipped due to SIGFPE.");
#ifndef HANDLE_SIGFPE
puts(" Remaining tests could not be run.");
puts(" Please turn off SIGFPE on overflows and try again.");
#endif
exit(255);
}
/*-------------------------------------------------------------------------
* Function: overflow_handler
*
* Purpose: Gets called for all data type conversion overflows.
*
* Return: Success: 0
*
* Failure: -1
*
* Programmer: Robb Matzke
* Tuesday, July 7, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
#ifdef SHOW_OVERFLOWS
static herr_t
overflow_handler(hid_t UNUSED src_id, hid_t UNUSED dst_id,
void UNUSED *src_buf, void UNUSED *dst_buf)
{
noverflows_g++;
return -1;
}
#endif
/*-------------------------------------------------------------------------
* Function: some_dummy_func
*
* Purpose: A dummy function to help check for overflow.
*
* Note: DO NOT DECLARE THIS FUNCTION STATIC OR THE COMPILER MIGHT
* PROMOTE ARGUMENT `x' TO DOUBLE AND DEFEAT THE OVERFLOW
* CHECKING.
*
* Return: void
*
* Programmer: Robb Matzke
* Tuesday, July 21, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
some_dummy_func(float x)
{
char s[128];
sprintf(s, "%g", x);
}
/*-------------------------------------------------------------------------
* Function: generates_sigfpe
*
* Purpose: Determines if SIGFPE is generated from overflows. We must be
* able to fork() and waitpid() in order for this test to work
* properly. Sets skip_overflow_tests_g to non-zero if they
* would generate SIGBUS, zero otherwise.
*
* Programmer: Robb Matzke
* Tuesday, July 21, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
generates_sigfpe(void)
{
#if defined(HAVE_FORK) && defined(HAVE_WAITPID)
pid_t pid;
int status;
size_t i, j;
double d;
unsigned char *dp = (unsigned char*)&d;
float f;
fflush(stdout);
fflush(stderr);
if ((pid=fork())<0) {
perror("fork");
exit(1);
} else if (0==pid) {
for (i=0; i<2000; i++) {
for (j=0; j<sizeof(double); j++) dp[j] = rand();
f = (float)d;
some_dummy_func(f);
}
exit(0);
}
while (pid!=waitpid(pid, &status, 0)) /*void*/;
if (WIFEXITED(status) && 0==WEXITSTATUS(status)) {
puts("Floating-point overflow cases will be tested.");
skip_overflow_tests_g = FALSE;
} else if (WIFSIGNALED(status) && SIGFPE==WTERMSIG(status)) {
puts("Floating-point overflow cases cannot be safely tested.");
skip_overflow_tests_g = TRUE;
/* delete the core dump file that SIGFPE may have created */
unlink("core");
}
#else
puts("Cannot determine if floating-point overflows generate a SIGFPE;");
puts("assuming yes.");
puts("Overflow cases will not be tested.");
skip_overflow_tests_g = TRUE;
#endif
}
/*-------------------------------------------------------------------------
* Function: reset_hdf5
*
* Purpose: Reset the hdf5 library. This causes statistics to be printed
* and counters to be reset.
*
* Return: void
*
* Programmer: Robb Matzke
* Monday, November 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
reset_hdf5(void)
{
h5_reset();
#ifdef SHOW_OVERFLOWS
H5Tset_overflow(overflow_handler);
#endif
if (without_hardware_g) h5_no_hwconv();
#ifdef TEST_ALIGNMENT
SET_ALIGNMENT(SCHAR, SIZEOF_CHAR);
SET_ALIGNMENT(UCHAR, SIZEOF_CHAR);
SET_ALIGNMENT(SHORT, SIZEOF_SHORT);
SET_ALIGNMENT(USHORT, SIZEOF_SHORT);
SET_ALIGNMENT(INT, SIZEOF_INT);
SET_ALIGNMENT(UINT, SIZEOF_INT);
SET_ALIGNMENT(LONG, SIZEOF_LONG);
SET_ALIGNMENT(ULONG, SIZEOF_LONG);
SET_ALIGNMENT(LLONG, SIZEOF_LONG_LONG);
SET_ALIGNMENT(ULLONG, SIZEOF_LONG_LONG);
SET_ALIGNMENT(FLOAT, SIZEOF_FLOAT);
SET_ALIGNMENT(DOUBLE, SIZEOF_DOUBLE);
SET_ALIGNMENT(LDOUBLE, SIZEOF_LONG_DOUBLE);
#endif
}
/*-------------------------------------------------------------------------
* Function: test_classes
*
* Purpose: Test type classes
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Tuesday, December 9, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_classes(void)
{
H5T_class_t tcls;
TESTING("H5Tget_class()");
if ((tcls=H5Tget_class(H5T_NATIVE_INT))<0) goto error;
if (H5T_INTEGER!=tcls) {
FAILED();
puts(" Invalid type class for H5T_NATIVE_INT");
goto error;
}
if ((tcls=H5Tget_class(H5T_NATIVE_DOUBLE))<0) goto error;
if (H5T_FLOAT!=tcls) {
FAILED();
puts(" Invalid type class for H5T_NATIVE_DOUBLE");
goto error;
}
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_copy
*
* Purpose: Are we able to copy a data type?
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Tuesday, December 9, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_copy(void)
{
hid_t a_copy;
herr_t status;
TESTING("H5Tcopy()");
if ((a_copy = H5Tcopy(H5T_NATIVE_SHORT)) < 0) goto error;
if (H5Tclose(a_copy) < 0) goto error;
/* We should not be able to close a built-in byte */
H5E_BEGIN_TRY {
status = H5Tclose (H5T_NATIVE_SCHAR);
} H5E_END_TRY;
if (status>=0) {
FAILED();
puts (" Should not be able to close a predefined type!");
goto error;
}
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_1
*
* Purpose: Tests various things about compound data types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Wednesday, January 7, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_1(void)
{
complex_t tmp;
hid_t complex_id;
TESTING("compound data types");
/* Create the empty type */
if ((complex_id = H5Tcreate(H5T_COMPOUND, sizeof tmp))<0) goto error;
/* Add a couple fields */
if (H5Tinsert(complex_id, "real", HOFFSET(complex_t, re),
H5T_NATIVE_DOUBLE)<0) goto error;
if (H5Tinsert(complex_id, "imaginary", HOFFSET(complex_t, im),
H5T_NATIVE_DOUBLE)<0) goto error;
if (H5Tclose (complex_id)<0) goto error;
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_2
*
* Purpose: Tests a compound type conversion where the source and
* destination are the same except for the order of the
* elements.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, June 17, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_2(void)
{
struct st {
int a, b, c[4], d, e;
} *s_ptr;
struct dt {
int e, d, c[4], b, a;
} *d_ptr;
const int nelmts = 200000;
const size_t four = 4;
unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
hid_t st=-1, dt=-1;
int i;
TESTING("compound element reordering");
/* Sizes should be the same, but be careful just in case */
buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
bkg = malloc(nelmts * sizeof(struct dt));
orig = malloc(nelmts * sizeof(struct st));
for (i=0; i<nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
s_ptr->a = i*8+0;
s_ptr->b = i*8+1;
s_ptr->c[0] = i*8+2;
s_ptr->c[1] = i*8+3;
s_ptr->c[2] = i*8+4;
s_ptr->c[3] = i*8+5;
s_ptr->d = i*8+6;
s_ptr->e = i*8+7;
}
memcpy(buf, orig, nelmts*sizeof(struct st));
/* Build hdf5 datatypes */
if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
H5Tinsert(st, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 ||
H5Tinsert_array(st, "c", HOFFSET(struct st, c), 1, &four, NULL,
H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0)
goto error;
if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
H5Tinsert(dt, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(dt, "b", HOFFSET(struct dt, b), H5T_NATIVE_INT)<0 ||
H5Tinsert_array(dt, "c", HOFFSET(struct dt, c), 1, &four, NULL,
H5T_NATIVE_INT)<0 ||
H5Tinsert(dt, "d", HOFFSET(struct dt, d), H5T_NATIVE_INT)<0 ||
H5Tinsert(dt, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0)
goto error;
/* Perform the conversion */
if (H5Tconvert(st, dt, nelmts, buf, bkg)<0) goto error;
/* Compare results */
for (i=0; i<nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
d_ptr = ((struct dt*)buf) + i;
if (s_ptr->a != d_ptr->a ||
s_ptr->b != d_ptr->b ||
s_ptr->c[0] != d_ptr->c[0] ||
s_ptr->c[1] != d_ptr->c[1] ||
s_ptr->c[2] != d_ptr->c[2] ||
s_ptr->c[3] != d_ptr->c[3] ||
s_ptr->d != d_ptr->d ||
s_ptr->e != d_ptr->e) {
FAILED();
printf(" i=%d\n", i);
printf(" src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2],
s_ptr->c[3], s_ptr->d, s_ptr->e);
printf(" dst={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
d_ptr->a, d_ptr->b, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2],
d_ptr->c[3], d_ptr->d, d_ptr->e);
goto error;
}
}
/* Release resources */
free(buf);
free(bkg);
free(orig);
if (H5Tclose(st)<0 || H5Tclose(dt)<0) goto error;
PASSED();
reset_hdf5();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_3
*
* Purpose: Tests compound conversions where the source and destination
* are the same except the destination is missing a couple
* members which appear in the source.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, June 17, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_3(void)
{
struct st {
int a, b, c[4], d, e;
} *s_ptr;
struct dt {
int a, c[4], e;
} *d_ptr;
const int nelmts = 200000;
const size_t four = 4;
unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
hid_t st=-1, dt=-1;
int i;
TESTING("compound subset conversions");
/* Initialize */
buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
bkg = malloc(nelmts * sizeof(struct dt));
orig = malloc(nelmts * sizeof(struct st));
for (i=0; i<nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
s_ptr->a = i*8+0;
s_ptr->b = i*8+1;
s_ptr->c[0] = i*8+2;
s_ptr->c[1] = i*8+3;
s_ptr->c[2] = i*8+4;
s_ptr->c[3] = i*8+5;
s_ptr->d = i*8+6;
s_ptr->e = i*8+7;
}
memcpy(buf, orig, nelmts*sizeof(struct st));
/* Build hdf5 datatypes */
if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
H5Tinsert(st, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 ||
H5Tinsert_array(st, "c", HOFFSET(struct st, c), 1, &four, NULL,
H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0)
goto error;
if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
H5Tinsert(dt, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 ||
H5Tinsert_array(dt, "c", HOFFSET(struct dt, c), 1, &four, NULL,
H5T_NATIVE_INT)<0 ||
H5Tinsert(dt, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0)
goto error;
/* Perform the conversion */
if (H5Tconvert(st, dt, nelmts, buf, bkg)<0) goto error;
/* Compare results */
for (i=0; i<nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
d_ptr = ((struct dt*)buf) + i;
if (s_ptr->a != d_ptr->a ||
s_ptr->c[0] != d_ptr->c[0] ||
s_ptr->c[1] != d_ptr->c[1] ||
s_ptr->c[2] != d_ptr->c[2] ||
s_ptr->c[3] != d_ptr->c[3] ||
s_ptr->e != d_ptr->e) {
FAILED();
printf(" i=%d\n", i);
printf(" src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2],
s_ptr->c[3], s_ptr->d, s_ptr->e);
printf(" dst={a=%d, c=[%d,%d,%d,%d], e=%d\n",
d_ptr->a, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2],
d_ptr->c[3], d_ptr->e);
goto error;
}
}
/* Release resources */
free(buf);
free(bkg);
free(orig);
if (H5Tclose(st)<0 || H5Tclose(dt)<0) goto error;
PASSED();
reset_hdf5();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_4
*
* Purpose: Tests compound conversions when the destination has the same
* fields as the source but one or more of the fields are
* smaller.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, June 17, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_4(void)
{
struct st {
int a, b, c[4], d, e;
} *s_ptr;
struct dt {
short b;
int a, c[4];
short d;
int e;
} *d_ptr;
const int nelmts = 200000;
const size_t four = 4;
unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
hid_t st=-1, dt=-1;
int i;
TESTING("compound element shrinking & reordering");
/* Sizes should be the same, but be careful just in case */
buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
bkg = malloc(nelmts * sizeof(struct dt));
orig = malloc(nelmts * sizeof(struct st));
for (i=0; i<nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
s_ptr->a = i*8+0;
s_ptr->b = (i*8+1) & 0x7fff;
s_ptr->c[0] = i*8+2;
s_ptr->c[1] = i*8+3;
s_ptr->c[2] = i*8+4;
s_ptr->c[3] = i*8+5;
s_ptr->d = (i*8+6) & 0x7fff;
s_ptr->e = i*8+7;
}
memcpy(buf, orig, nelmts*sizeof(struct st));
/* Build hdf5 datatypes */
if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
H5Tinsert(st, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 ||
H5Tinsert_array(st, "c", HOFFSET(struct st, c), 1, &four, NULL,
H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0)
goto error;
if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
H5Tinsert(dt, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(dt, "b", HOFFSET(struct dt, b), H5T_NATIVE_SHORT)<0 ||
H5Tinsert_array(dt, "c", HOFFSET(struct dt, c), 1, &four, NULL,
H5T_NATIVE_INT)<0 ||
H5Tinsert(dt, "d", HOFFSET(struct dt, d), H5T_NATIVE_SHORT)<0 ||
H5Tinsert(dt, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0)
goto error;
/* Perform the conversion */
if (H5Tconvert(st, dt, nelmts, buf, bkg)<0) goto error;
/* Compare results */
for (i=0; i<nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
d_ptr = ((struct dt*)buf) + i;
if (s_ptr->a != d_ptr->a ||
s_ptr->b != d_ptr->b ||
s_ptr->c[0] != d_ptr->c[0] ||
s_ptr->c[1] != d_ptr->c[1] ||
s_ptr->c[2] != d_ptr->c[2] ||
s_ptr->c[3] != d_ptr->c[3] ||
s_ptr->d != d_ptr->d ||
s_ptr->e != d_ptr->e) {
FAILED();
printf(" i=%d\n", i);
printf(" src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2],
s_ptr->c[3], s_ptr->d, s_ptr->e);
printf(" dst={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
d_ptr->a, d_ptr->b, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2],
d_ptr->c[3], d_ptr->d, d_ptr->e);
goto error;
}
}
/* Release resources */
free(buf);
free(bkg);
free(orig);
if (H5Tclose(st)<0 || H5Tclose(dt)<0) goto error;
PASSED();
reset_hdf5();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_transient
*
* Purpose: Tests transient data types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, June 4, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_transient (hid_t fapl)
{
static hsize_t ds_size[2] = {10, 20};
hid_t file=-1, type=-1, space=-1, dset=-1, t2=-1;
char filename[1024];
herr_t status;
TESTING("transient data types");
h5_fixname(FILENAME[0], fapl, filename, sizeof filename);
if ((file=H5Fcreate (filename, H5F_ACC_TRUNC|H5F_ACC_DEBUG,
H5P_DEFAULT, fapl))<0) goto error;
if ((space = H5Screate_simple (2, ds_size, ds_size))<0) goto error;
/* Predefined types cannot be modified or closed */
H5E_BEGIN_TRY {
status = H5Tset_precision (H5T_NATIVE_INT, 256);
} H5E_END_TRY;
if (status>=0) {
FAILED();
puts (" Predefined types should not be modifiable!");
goto error;
}
H5E_BEGIN_TRY {
status = H5Tclose (H5T_NATIVE_INT);
} H5E_END_TRY;
if (status>=0) {
FAILED();
puts (" Predefined types should not be closable!");
goto error;
}
/* Copying a predefined type results in a modifiable copy */
if ((type=H5Tcopy (H5T_NATIVE_INT))<0) goto error;
if (H5Tset_precision (type, 256)<0) goto error;
/* It should not be possible to create an attribute for a transient type */
H5E_BEGIN_TRY {
status = H5Acreate (type, "attr1", H5T_NATIVE_INT, space, H5P_DEFAULT);
} H5E_END_TRY;
if (status>=0) {
FAILED();
puts (" Attributes should not be allowed for transient types!");
goto error;
}
/* Create a dataset from a transient data type */
if (H5Tclose (type)<0) goto error;
if ((type = H5Tcopy (H5T_NATIVE_INT))<0) goto error;
if ((dset=H5Dcreate (file, "dset1", type, space, H5P_DEFAULT))<0)
goto error;
/* The type returned from a dataset should not be modifiable */
if ((t2 = H5Dget_type (dset))<0) goto error;
H5E_BEGIN_TRY {
status = H5Tset_precision (t2, 256);
} H5E_END_TRY;
if (status>=0) {
FAILED();
puts (" Dataset data types should not be modifiable!");
goto error;
}
if (H5Tclose (t2)<0) goto error;
/*
* Close the dataset and reopen it, testing that it's type is still
* read-only.
*/
if (H5Dclose (dset)<0) goto error;
if ((dset=H5Dopen (file, "dset1"))<0) goto error;
if ((t2 = H5Dget_type (dset))<0) goto error;
H5E_BEGIN_TRY {
status = H5Tset_precision (t2, 256);
} H5E_END_TRY;
if (status>=0) {
FAILED();
puts (" Dataset data types should not be modifiable!");
goto error;
}
if (H5Tclose (t2)<0) goto error;
/*
* Get the dataset data type by applying H5Tcopy() to the dataset. The
* result should be modifiable.
*/
if ((t2=H5Tcopy (dset))<0) goto error;
if (H5Tset_precision (t2, 256)<0) goto error;
if (H5Tclose (t2)<0) goto error;
H5Dclose (dset);
H5Fclose (file);
H5Tclose (type);
H5Sclose (space);
PASSED();
return 0;
error:
H5E_BEGIN_TRY {
H5Tclose (t2);
H5Tclose (type);
H5Sclose (space);
H5Dclose (dset);
H5Fclose (file);
} H5E_END_TRY;
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_named
*
* Purpose: Tests named data types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Monday, June 1, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_named (hid_t fapl)
{
hid_t file=-1, type=-1, space=-1, dset=-1, t2=-1, attr1=-1;
herr_t status;
static hsize_t ds_size[2] = {10, 20};
hsize_t i;
unsigned attr_data[10][20];
char filename[1024];
TESTING("named data types");
h5_fixname(FILENAME[1], fapl, filename, sizeof filename);
if ((file=H5Fcreate (filename, H5F_ACC_TRUNC|H5F_ACC_DEBUG,
H5P_DEFAULT, fapl))<0) goto error;
if ((space = H5Screate_simple (2, ds_size, ds_size))<0) goto error;
/* Predefined types cannot be committed */
H5E_BEGIN_TRY {
status = H5Tcommit (file, "test_named_1 (should not exist)",
H5T_NATIVE_INT);
} H5E_END_TRY;
if (status>=0) {
FAILED();
puts (" Predefined types should not be committable!");
goto error;
}
/* Copy a predefined data type and commit the copy */
if ((type = H5Tcopy (H5T_NATIVE_INT))<0) goto error;
if (H5Tcommit (file, "native-int", type)<0) goto error;
if ((status=H5Tcommitted (type))<0) goto error;
if (0==status) {
FAILED();
puts (" H5Tcommitted() returned false!");
goto error;
}
/* We should not be able to modify a type after it has been committed. */
H5E_BEGIN_TRY {
status = H5Tset_precision (type, 256);
} H5E_END_TRY;
if (status>=0) {
FAILED();
puts (" Committed type is not constant!");
goto error;
}
/* We should not be able to re-commit a committed type */
H5E_BEGIN_TRY {
status = H5Tcommit(file, "test_named_2 (should not exist)", type);
} H5E_END_TRY;
if (status>=0) {
FAILED();
puts (" Committed types should not be recommitted!");
goto error;
}
/* It should be possible to define an attribute for the named type */
if ((attr1=H5Acreate (type, "attr1", H5T_NATIVE_UCHAR, space,
H5P_DEFAULT))<0) goto error;
for (i=0; i<ds_size[0]*ds_size[1]; i++) attr_data[0][i] = i;/*tricky*/
if (H5Awrite(attr1, H5T_NATIVE_UINT, attr_data)<0) goto error;
if (H5Aclose (attr1)<0) goto error;
/*
* Copying a committed type should result in a transient type which is
* not locked.
*/
if ((t2 = H5Tcopy (type))<0) goto error;
if ((status=H5Tcommitted (t2))<0) goto error;
if (status) {
FAILED();
puts (" Copying a named type should result in a transient type!");
goto error;
}
if (H5Tset_precision (t2, 256)<0) goto error;
if (H5Tclose (t2)<0) goto error;
/*
* Close the committed type and reopen it. It should return a named type.
*/
if (H5Tclose (type)<0) goto error;
if ((type=H5Topen (file, "native-int"))<0) goto error;
if ((status=H5Tcommitted (type))<0) goto error;
if (!status) {
FAILED();
puts (" Opened named types should be named types!");
goto error;
}
/* Create a dataset that uses the named type */
if ((dset = H5Dcreate (file, "dset1", type, space, H5P_DEFAULT))<0) {
goto error;
}
/* Get the dataset's data type and make sure it's a named type */
if ((t2 = H5Dget_type (dset))<0) goto error;
if ((status=H5Tcommitted (t2))<0) goto error;
if (!status) {
FAILED();
puts (" Dataset type should be a named type!");
goto error;
}
/* Close the dataset, then close its type, then reopen the dataset */
if (H5Dclose (dset)<0) goto error;
if (H5Tclose (t2)<0) goto error;
if ((dset = H5Dopen (file, "dset1"))<0) goto error;
/* Get the dataset's type and make sure it's named */
if ((t2 = H5Dget_type (dset))<0) goto error;
if ((status=H5Tcommitted (t2))<0) goto error;
if (!status) {
FAILED();
puts (" Dataset type should be a named type!");
goto error;
}
/*
* Close the dataset and create another with the type returned from the
* first dataset.
*/
if (H5Dclose (dset)<0) goto error;
if ((dset=H5Dcreate (file, "dset2", t2, space, H5P_DEFAULT))<0) {
goto error;
}
/* Reopen the second dataset and make sure the type is shared */
if (H5Tclose (t2)<0) goto error;
if (H5Dclose (dset)<0) goto error;
if ((dset = H5Dopen (file, "dset2"))<0) goto error;
if ((t2 = H5Dget_type (dset))<0) goto error;
if ((status=H5Tcommitted (t2))<0) goto error;
if (!status) {
FAILED();
puts (" Dataset type should be a named type!");
goto error;
}
if (H5Tclose (t2)<0) goto error;
/*
* Get the dataset data type by applying H5Tcopy() to the dataset. The
* result should be modifiable.
*/
if ((t2=H5Tcopy (dset))<0) goto error;
if (H5Tset_precision (t2, 256)<0) goto error;
if (H5Tclose (t2)<0) goto error;
/* Clean up */
if (H5Dclose (dset)<0) goto error;
if (H5Tclose (type)<0) goto error;
if (H5Sclose (space)<0) goto error;
if (H5Fclose (file)<0) goto error;
PASSED();
return 0;
error:
H5E_BEGIN_TRY {
H5Tclose (t2);
H5Tclose (type);
H5Sclose (space);
H5Dclose (dset);
H5Fclose (file);
} H5E_END_TRY;
return 1;
}
/*-------------------------------------------------------------------------
* Function: mkstr
*
* Purpose: Create a new string data type
*
* Return: Success: New type
*
* Failure: -1
*
* Programmer: Robb Matzke
* Monday, August 10, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static hid_t
mkstr(size_t len, H5T_str_t strpad)
{
hid_t t;
if ((t=H5Tcopy(H5T_C_S1))<0) return -1;
if (H5Tset_size(t, len)<0) return -1;
if (H5Tset_strpad(t, strpad)<0) return -1;
return t;
}
/*-------------------------------------------------------------------------
* Function: test_conv_str_1
*
* Purpose: Test string conversions
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Monday, August 10, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_str_1(void)
{
char *buf=NULL;
hid_t src_type, dst_type;
TESTING("string conversions");
/*
* Convert a null-terminated string to a shorter and longer null
* terminated string.
*/
src_type = mkstr(10, H5T_STR_NULLTERM);
dst_type = mkstr(5, H5T_STR_NULLTERM);
buf = calloc(2, 10);
memcpy(buf, "abcdefghi\0abcdefghi\0", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcd\0abcd\0abcdefghi\0", 20)) {
FAILED();
puts(" Truncated C-string test failed");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcd\0\0\0\0\0\0abcd\0\0\0\0\0\0", 20)) {
FAILED();
puts(" Extended C-string test failed");
goto error;
}
free(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* Convert a null padded string to a shorter and then longer string.
*/
src_type = mkstr(10, H5T_STR_NULLPAD);
dst_type = mkstr(5, H5T_STR_NULLPAD);
buf = calloc(2, 10);
memcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcdeabcdeabcdefghij", 20)) {
FAILED();
puts(" Truncated C buffer test failed");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
FAILED();
puts(" Extended C buffer test failed");
goto error;
}
free(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* Convert a space-padded string to a shorter and then longer string.
*/
src_type = mkstr(10, H5T_STR_SPACEPAD);
dst_type = mkstr(5, H5T_STR_SPACEPAD);
buf = calloc(2, 10);
memcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcdeabcdeabcdefghij", 20)) {
FAILED();
puts(" Truncated Fortran-string test failed");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcde abcde ", 20)) {
FAILED();
puts(" Extended Fortran-string test failed");
goto error;
}
free(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* What happens if a null-terminated string is not null terminated? If
* the conversion is to an identical string then nothing happens but if
* the destination is a different size or type of string then the right
* thing should happen.
*/
src_type = mkstr(10, H5T_STR_NULLTERM);
dst_type = mkstr(10, H5T_STR_NULLTERM);
buf = calloc(2, 10);
memcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcdefghijabcdefghij", 20)) {
FAILED();
puts(" Non-terminated string test 1");
goto error;
}
H5Tclose(dst_type);
dst_type = mkstr(5, H5T_STR_NULLTERM);
memcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcd\0abcd\0abcdefghij", 20)) {
FAILED();
puts(" Non-terminated string test 2");
goto error;
}
memcpy(buf, "abcdeabcdexxxxxxxxxx", 20);
if (H5Tconvert(dst_type, src_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
FAILED();
puts(" Non-terminated string test 2");
goto error;
}
free(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* Test C string to Fortran and vice versa.
*/
src_type = mkstr(10, H5T_STR_NULLTERM);
dst_type = mkstr(10, H5T_STR_SPACEPAD);
buf = calloc(2, 10);
memcpy(buf, "abcdefghi\0abcdefghi\0", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcdefghi abcdefghi ", 20)) {
FAILED();
puts(" C string to Fortran test 1");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcdefghi\0abcdefghi\0", 20)) {
FAILED();
puts(" Fortran to C string test 1");
goto error;
}
if (H5Tclose(dst_type)<0) goto error;
dst_type = mkstr(5, H5T_STR_SPACEPAD);
memcpy(buf, "abcdefgh\0\0abcdefgh\0\0", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcdeabcdeabcdefgh\0\0", 20)) {
FAILED();
puts(" C string to Fortran test 2");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
FAILED();
puts(" Fortran to C string test 2");
goto error;
}
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
src_type = mkstr(5, H5T_STR_NULLTERM);
dst_type = mkstr(10, H5T_STR_SPACEPAD);
memcpy(buf, "abcd\0abcd\0xxxxxxxxxx", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcd abcd ", 20)) {
FAILED();
puts(" C string to Fortran test 3");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcd\0abcd\0abcd ", 20)) {
FAILED();
puts(" Fortran to C string test 3");
goto error;
}
free(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* Test C buffer to Fortran and vice versa.
*/
src_type = mkstr(10, H5T_STR_NULLPAD);
dst_type = mkstr(10, H5T_STR_SPACEPAD);
buf = calloc(2, 10);
memcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcdefghijabcdefghij", 20)) {
FAILED();
puts(" C buffer to Fortran test 1");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcdefghijabcdefghij", 20)) {
FAILED();
puts(" Fortran to C buffer test 1");
goto error;
}
if (H5Tclose(dst_type)<0) goto error;
dst_type = mkstr(5, H5T_STR_SPACEPAD);
memcpy(buf, "abcdefgh\0\0abcdefgh\0\0", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcdeabcdeabcdefgh\0\0", 20)) {
FAILED();
puts(" C buffer to Fortran test 2");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
FAILED();
puts(" Fortran to C buffer test 2");
goto error;
}
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
src_type = mkstr(5, H5T_STR_NULLPAD);
dst_type = mkstr(10, H5T_STR_SPACEPAD);
memcpy(buf, "abcd\0abcd\0xxxxxxxxxx", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcd abcd ", 20)) {
FAILED();
puts(" C buffer to Fortran test 3");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL)<0) goto error;
if (memcmp(buf, "abcd\0abcd\0abcd ", 20)) {
FAILED();
puts(" Fortran to C buffer test 3");
goto error;
}
free(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
PASSED();
reset_hdf5();
return 0;
error:
reset_hdf5();
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_conv_str_2
*
* Purpose: Tests C-to-Fortran and Fortran-to-C string conversion speed.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Monday, August 10, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_str_2(void)
{
char *buf=NULL, s[80];
hid_t c_type, f_type;
const size_t nelmts = 200000, ntests=NTESTS;
size_t i, j, nchars;
int ret_value = 1;
/*
* Initialize types and buffer.
*/
c_type = mkstr(8, H5T_STR_NULLPAD);
f_type = mkstr(8, H5T_STR_SPACEPAD);
buf = calloc(nelmts, 8);
for (i=0; i<nelmts; i++) {
nchars = rand() % 8;
for (j=0; j<nchars; j++) {
buf[i*8+j] = 'a' + rand()%26;
}
while (j<nchars) buf[i*8+j++] = '\0';
}
/* Do the conversions */
for (i=0; i<ntests; i++) {
if (ntests>1) {
sprintf(s, "Testing random string conversion speed (test %d/%d)",
(int)(i+1), (int)ntests);
} else {
sprintf(s, "Testing random string conversion speed");
}
printf("%-70s", s);
fflush(stdout);
if (H5Tconvert(c_type, f_type, nelmts, buf, NULL)<0) goto error;
if (H5Tconvert(f_type, c_type, nelmts, buf, NULL)<0) goto error;
PASSED();
}
ret_value = 0;
error:
if (buf) free(buf);
reset_hdf5();
return ret_value;
}
/*-------------------------------------------------------------------------
* Function: test_conv_enum_1
*
* Purpose: Test conversion speed for enum data types
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Tuesday, January 5, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_enum_1(void)
{
const int nelmts=200000, ntests=NTESTS;
int i, val, *buf=NULL;
hid_t t1, t2;
char s[80];
int ret_value = 1;
/* Build the data types */
t1 = H5Tcreate(H5T_ENUM, sizeof(int));
t2 = H5Tenum_create(H5T_NATIVE_INT);
s[1] = '\0';
for (i=0; i<26; i++) {
s[0] = 'A'+i;
H5Tenum_insert(t1, s, &i);
H5Tenum_insert(t2, s, (val=i*1000+i, &val));
}
/* Initialize the buffer */
buf = malloc(nelmts*MAX(H5Tget_size(t1), H5Tget_size(t2)));
for (i=0; i<nelmts; i++) buf[i] = rand() % 26;
/* Conversions */
for (i=0; i<ntests; i++) {
if (ntests>1) {
sprintf(s, "Testing random enum conversion O(N) (test %d/%d)",
i+1, ntests);
} else {
sprintf(s, "Testing random enum conversion O(N)");
}
printf("%-70s", s);
fflush(stdout);
if (H5Tconvert(t1, t2, nelmts, buf, NULL)<0) goto error;
PASSED();
}
for (i=0; i<ntests; i++) {
if (ntests>1) {
sprintf(s, "Testing random enum conversion O(N log N) "
"(test %d/%d)", i+1, ntests);
} else {
sprintf(s, "Testing random enum conversion O(N log N)");
}
printf("%-70s", s);
fflush(stdout);
if (H5Tconvert(t2, t1, nelmts, buf, NULL)<0) goto error;
PASSED();
}
ret_value = 0;
error:
H5Tclose(t1);
H5Tclose(t2);
if (buf) free(buf);
reset_hdf5();
return ret_value;
}
/*-------------------------------------------------------------------------
* Function: test_conv_bitfield
*
* Purpose: Test bitfield conversions.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, May 20, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_bitfield(void)
{
unsigned char buf[4];
hid_t st=-1, dt=-1;
TESTING("bitfield conversions");
/*
* First test a simple bitfield conversion:
* 1010101010101010
* ________________1010101010101010
*/
st = H5Tcopy(H5T_STD_B16LE);
dt = H5Tcopy(H5T_STD_B32LE);
buf[0] = buf[1] = 0xAA;
buf[2] = buf[3] = 0x55; /*irrelevant*/
if (H5Tconvert(st, dt, 1, buf, NULL)<0) goto error;
if (buf[0]!=0xAA || buf[1]!=0xAA || buf[2]!=0 || buf[3]!=0) {
FAILED();
printf(" s=0xaaaa, d=0x%02x%02x%02x%02x (test 1)\n",
buf[3], buf[2], buf[1], buf[0]);
goto error;
}
/*
* Test2: Offset a 12-byte value in the middle of a 16 and 32 byte
* field.
* __10 1010 1010 10__
* ____ ____ __10 1010 1010 10__ ____ ____
*/
H5Tset_precision(st, 12);
H5Tset_offset(st, 2);
H5Tset_precision(dt, 12);
H5Tset_offset(dt, 10);
buf[0] = 0xA8; buf[1] = 0x2A; buf[2] = buf[3] = 0;
if (H5Tconvert(st, dt, 1, buf, NULL)<0) goto error;
if (buf[0]!=0 || buf[1]!=0xA8 || buf[2]!=0x2A || buf[3]!=0) {
FAILED();
printf(" s=0x2AA8 d=0x%02x%02x%02x%02x (test 2)\n",
buf[3], buf[2], buf[1], buf[0]);
goto error;
}
/*
* Same as previous test except unused bits of the destination will
* be filled with ones.
*/
H5Tset_pad(dt, H5T_PAD_ONE, H5T_PAD_ONE);
buf[0] = 0xA8; buf[1] = 0x2A; buf[2] = buf[3] = 0;
if (H5Tconvert(st, dt, 1, buf, NULL)<0) goto error;
if (buf[0]!=0xff || buf[1]!=0xAB || buf[2]!=0xEA || buf[3]!=0xff) {
FAILED();
printf(" s=0x2AA8 d=0x%02x%02x%02x%02x (test 3)\n",
buf[3], buf[2], buf[1], buf[0]);
goto error;
}
H5Tclose(st);
H5Tclose(dt);
PASSED();
reset_hdf5();
return 0;
error:
H5Tclose(st);
H5Tclose(dt);
reset_hdf5();
return 1;
}
/*-------------------------------------------------------------------------
* Function: convert_opaque
*
* Purpose: A fake opaque conversion functions
*
* Return: Success: 0
*
* Failure: -1
*
* Programmer: Robb Matzke
* Friday, June 4, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
convert_opaque(hid_t UNUSED st, hid_t UNUSED dt, H5T_cdata_t *cdata,
size_t UNUSED nelmts, size_t UNUSED stride, void UNUSED *_buf,
void UNUSED *bkg)
{
if (H5T_CONV_CONV==cdata->command) num_opaque_conversions_g++;
return 0;
}
/*-------------------------------------------------------------------------
* Function: test_opaque
*
* Purpose: Test opaque datatypes
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, May 20, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_opaque(void)
{
#define OPAQUE_NELMTS 1000
hid_t st=-1, dt=-1;
herr_t status;
char buf[1]; /*not really used*/
int saved = num_opaque_conversions_g;
TESTING("opaque datatypes");
/* Build source and destination types */
if ((st=H5Tcreate(H5T_OPAQUE, 4))<0) goto error;
if (H5Tset_tag(st, "opaque source type")<0) goto error;
if ((dt=H5Tcreate(H5T_OPAQUE, 4))<0) goto error;
if (H5Tset_tag(dt, "opaque destination type")<0) goto error;
/* Make sure that we can't convert between the types yet */
H5E_BEGIN_TRY {
status = H5Tconvert(st, dt, OPAQUE_NELMTS, buf, NULL);
} H5E_END_TRY;
if (status>=0) {
FAILED();
printf(" opaque conversion should have failed but succeeded\n");
goto error;
}
/* Register a conversion function */
if (H5Tregister(H5T_PERS_HARD, "o_test", st, dt, convert_opaque)<0)
goto error;
/* Try the conversion again, this time it should work */
if (H5Tconvert(st, dt, OPAQUE_NELMTS, buf, NULL)<0) goto error;
if (saved+1 != num_opaque_conversions_g) {
FAILED();
printf(" unexpected number of opaque conversions\n");
goto error;
}
H5Tclose(st);
H5Tclose(dt);
PASSED();
return 0;
error:
if (st>0) H5Tclose(st);
if (dt>0) H5Tclose(dt);
FAILED();
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_conv_int
*
* Purpose: Test atomic number conversions.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Wednesday, June 10, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int (void)
{
unsigned char byte[4];
/*---------------------------------------------------------------------
* Test some specific overflow/underflow cases.
*---------------------------------------------------------------------
*/
TESTING("integer overflow conversions");
/* (unsigned)0x80000000 -> (unsigned)0xffff */
byte[0] = byte[1] = byte[2] = 0;
byte[3] = 0x80;
if (H5Tconvert (H5T_STD_U32LE, H5T_STD_U16LE, 1, byte, NULL)<0) {
goto error;
}
if (byte[0]!=0xff || byte[1]!=0xff) {
FAILED();
printf(" src: 0x80000000 unsigned\n");
printf(" dst: 0x%02x%02x unsigned\n", byte[1], byte[0]);
printf(" ans: 0xffff unsigned\n");
goto error;
}
/* (unsigned)0xffffffff -> (signed)0x7fff */
byte[0] = byte[1] = byte[2] = byte[3] = 0xff;
if (H5Tconvert (H5T_STD_U32LE, H5T_STD_I16LE, 1, byte, NULL)<0) {
goto error;
}
if (byte[0]!=0xff || byte[1]!=0x7f) {
FAILED();
printf(" src: 0xffffffff unsigned\n");
printf(" dst: 0x%02x%02x signed\n", byte[1], byte[0]);
printf(" ans: 0x7fff signed\n");
goto error;
}
/* (signed)0xffffffff -> (unsigned)0x0000 */
byte[0] = byte[1] = byte[2] = byte[3] = 0xff;
if (H5Tconvert (H5T_STD_I32LE, H5T_STD_U16LE, 1, byte, NULL)<0) {
goto error;
}
if (byte[0]!=0x00 || byte[1]!=0x00) {
FAILED();
printf(" src: 0xffffffff signed\n");
printf(" dst: 0x%02x%02x unsigned\n", byte[1], byte[0]);
printf(" ans: 0x0000 unsigned\n");
goto error;
}
/* (signed)0x7fffffff -> (unsigned)0xffff */
byte[0] = byte[1] = byte[2] = 0xff;
byte[3] = 0x7f;
if (H5Tconvert (H5T_STD_I32LE, H5T_STD_U16LE, 1, byte, NULL)<0) {
goto error;
}
if (byte[0]!=0xff || byte[1]!=0xff) {
FAILED();
printf(" src: 0x7fffffff signed\n");
printf(" dst: 0x%02x%02x unsigned\n", byte[1], byte[0]);
printf(" ans: 0xffff unsigned\n");
goto error;
}
/* (signed)0x7fffffff -> (signed)0x7fff */
byte[0] = byte[1] = byte[2] = 0xff;
byte[3] = 0x7f;
if (H5Tconvert (H5T_STD_I32LE, H5T_STD_I16LE, 1, byte, NULL)<0) {
goto error;
}
if (byte[0]!=0xff || byte[1]!=0x7f) {
FAILED();
printf(" src: 0x7fffffff signed\n");
printf(" dst: 0x%02x%02x signed\n", byte[1], byte[0]);
printf(" ans: 0x7fff signed\n");
goto error;
}
/* (signed)0xbfffffff -> (signed)0x8000 */
byte[0] = byte[1] = byte[2] = 0xff;
byte[3] = 0xbf;
if (H5Tconvert (H5T_STD_I32LE, H5T_STD_I16LE, 1, byte, NULL)<0) {
goto error;
}
if (byte[0]!=0x00 || byte[1]!=0x80) {
FAILED();
printf(" src: 0xbfffffff signed\n");
printf(" dst: 0x%02x%02x signed\n", byte[1], byte[0]);
printf(" ans: 0x8000 signed\n");
goto error;
}
PASSED();
reset_hdf5();
return 0;
error:
reset_hdf5();
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_conv_int_1
*
* Purpose: Test conversion of random integer values from SRC to DST.
* These types should be any combination of:
*
* H5T_NATIVE_SCHAR H5T_NATIVE_UCHAR
* H5T_NATIVE_SHORT H5T_NATIVE_USHORT
* H5T_NATIVE_INT H5T_NATIVE_UINT
* H5T_NATIVE_LONG H5T_NATIVE_ULONG
* H5T_NATIVE_LLONG H5T_NATIVE_ULLONG
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Monday, November 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int_1(const char *name, hid_t src, hid_t dst)
{
const size_t ntests=NTESTS; /*number of tests */
const size_t nelmts=200000; /*num values per test */
const size_t max_fails=8; /*max number of failures*/
size_t fails_all_tests=0; /*number of failures */
size_t fails_this_test; /*fails for this test */
char str[256]; /*hello string */
int_t src_type, dst_type; /*data types */
const char *src_type_name=NULL; /*source type name */
const char *dst_type_name=NULL; /*destination type name */
int endian; /*machine endianess */
size_t src_size, dst_size; /*type sizes */
unsigned char *buf=NULL; /*buffer for conversion */
unsigned char *saved=NULL; /*original values */
size_t i, j, k; /*counters */
unsigned char *hw=NULL; /*hardware conv result */
unsigned char src_bits[32]; /*src value in LE order */
unsigned char dst_bits[32]; /*dest value in LE order*/
size_t src_nbits; /*source length in bits */
size_t dst_nbits; /*dst length in bits */
void *aligned=NULL; /*aligned temp buffer */
signed char hw_char;
unsigned char hw_uchar;
short hw_short;
unsigned short hw_ushort;
int hw_int;
unsigned hw_uint;
long hw_long;
unsigned long hw_ulong;
long_long hw_llong;
unsigned long_long hw_ullong;
/* What are the names of the source and destination types */
if (H5Tequal(src, H5T_NATIVE_SCHAR)) {
src_type_name = "signed char";
src_type = INT_CHAR;
} else if (H5Tequal(src, H5T_NATIVE_UCHAR)) {
src_type_name = "unsigned char";
src_type = INT_UCHAR;
} else if (H5Tequal(src, H5T_NATIVE_SHORT)) {
src_type_name = "short";
src_type = INT_SHORT;
} else if (H5Tequal(src, H5T_NATIVE_USHORT)) {
src_type_name = "unsigned short";
src_type = INT_USHORT;
} else if (H5Tequal(src, H5T_NATIVE_INT)) {
src_type_name = "int";
src_type = INT_INT;
} else if (H5Tequal(src, H5T_NATIVE_UINT)) {
src_type_name = "unsigned int";
src_type = INT_UINT;
} else if (H5Tequal(src, H5T_NATIVE_LONG)) {
src_type_name = "long";
src_type = INT_LONG;
} else if (H5Tequal(src, H5T_NATIVE_ULONG)) {
src_type_name = "unsigned long";
src_type = INT_ULONG;
} else if (H5Tequal(src, H5T_NATIVE_LLONG)) {
src_type_name = "long long";
src_type = INT_LLONG;
} else if (H5Tequal(src, H5T_NATIVE_ULLONG)) {
src_type_name = "unsigned long long";
src_type = INT_ULLONG;
} else {
src_type_name = "UNKNOWN";
src_type = INT_OTHER;
}
if (H5Tequal(dst, H5T_NATIVE_SCHAR)) {
dst_type_name = "signed char";
dst_type = INT_CHAR;
} else if (H5Tequal(dst, H5T_NATIVE_UCHAR)) {
dst_type_name = "unsigned char";
dst_type = INT_UCHAR;
} else if (H5Tequal(dst, H5T_NATIVE_SHORT)) {
dst_type_name = "short";
dst_type = INT_SHORT;
} else if (H5Tequal(dst, H5T_NATIVE_USHORT)) {
dst_type_name = "unsigned short";
dst_type = INT_USHORT;
} else if (H5Tequal(dst, H5T_NATIVE_INT)) {
dst_type_name = "int";
dst_type = INT_INT;
} else if (H5Tequal(dst, H5T_NATIVE_UINT)) {
dst_type_name = "unsigned int";
dst_type = INT_UINT;
} else if (H5Tequal(dst, H5T_NATIVE_LONG)) {
dst_type_name = "long";
dst_type = INT_LONG;
} else if (H5Tequal(dst, H5T_NATIVE_ULONG)) {
dst_type_name = "unsigned long";
dst_type = INT_ULONG;
} else if (H5Tequal(dst, H5T_NATIVE_LLONG)) {
dst_type_name = "long long";
dst_type = INT_LLONG;
} else if (H5Tequal(dst, H5T_NATIVE_ULLONG)) {
dst_type_name = "unsigned long long";
dst_type = INT_ULLONG;
} else {
dst_type_name = "UNKNOWN";
dst_type = INT_OTHER;
}
/* Sanity checks */
if (INT_OTHER==src_type || INT_OTHER==dst_type) {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
FAILED();
puts(" Unknown data type.");
goto error;
}
/* Allocate buffers */
endian = H5Tget_order(H5T_NATIVE_INT);
src_size = H5Tget_size(src);
dst_size = H5Tget_size(dst);
buf = aligned_malloc(nelmts*MAX(src_size, dst_size));
saved = aligned_malloc(nelmts*MAX(src_size, dst_size));
aligned = malloc(sizeof(long_long));
#ifdef SHOW_OVERFLOWS
noverflows_g = 0;
#endif
/* The tests */
for (i=0; i<ntests; i++) {
if (ntests>1) {
sprintf(str, "Testing random %s %s -> %s conversions (test %d/%d)",
name, src_type_name, dst_type_name, (int)i+1, (int)ntests);
} else {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
}
printf("%-70s", str);
fflush(stdout);
fails_this_test=0;
/*
* Initialize the source buffers to random bits. The `buf' buffer
* will be used for the conversion while the `saved' buffer will be
* sed for the comparison later.
*/
for (j=0; j<nelmts*src_size; j++) buf[j] = saved[j] = rand();
/* Perform the conversion */
if (H5Tconvert(src, dst, nelmts, buf, NULL)<0) goto error;
/* Check the results from the library against hardware */
for (j=0; j<nelmts; j++) {
if (INT_CHAR==dst_type) {
hw = (unsigned char*)&hw_char;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_char = (char)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_char = (char)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_char = (char)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_char = (char)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_char = (char)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_char = (char)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_char = (char)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_char = (char)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_char = (char)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_char = (char)(*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_UCHAR==dst_type) {
hw = (unsigned char*)&hw_uchar;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(signed char));
hw_uchar = (unsigned char)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_uchar = (unsigned char)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_uchar = (unsigned char)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_uchar = (unsigned char)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_uchar = (unsigned char)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_uchar = (unsigned char)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_uchar = (unsigned char)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_uchar = (unsigned char)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_uchar = (unsigned char)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_uchar = (unsigned char)(*((unsigned long_long*)
aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_SHORT==dst_type) {
hw = (unsigned char*)&hw_short;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(signed char));
hw_short = (short)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_short = (short)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_short = (short)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_short = (short)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_short = (short)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_short = (short)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_short = (short)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_short = (short)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_short = (short)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_short = (short)(*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_USHORT==dst_type) {
hw = (unsigned char*)&hw_ushort;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(signed char));
hw_ushort = (unsigned short)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_ushort = (unsigned short)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_ushort = (unsigned short)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_ushort = (unsigned short)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_ushort = (unsigned short)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_ushort = (unsigned short)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_ushort = (unsigned short)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_ushort = (unsigned short)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_ushort = (unsigned short)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_ushort = (unsigned short)(*((unsigned long_long*)
aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_INT==dst_type) {
hw = (unsigned char*)&hw_int;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(signed char));
hw_int = (int)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_int = (int)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_int = (int)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_int = (int)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_int = (int)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_int = (int)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_int = (int)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_int = (int)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_int = (int)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_int = (int)(*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_UINT==dst_type) {
hw = (unsigned char*)&hw_uint;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(signed char));
hw_uint = (unsigned int)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_uint = (unsigned int)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_uint = (unsigned int)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_uint = (unsigned int)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_uint = (unsigned int)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_uint = (unsigned int)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_uint = (unsigned int)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_uint = (unsigned int)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_uint = (unsigned int)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_uint = (unsigned int)(*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_LONG==dst_type) {
hw = (unsigned char*)&hw_long;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(signed char));
hw_long = (long int)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_long = (long int)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_long = (long int)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_long = (long int)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_long = (long int)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_long = (long int)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_long = (long int)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_long = (long int)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_long = (long int)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_long = (long int)(*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_ULONG==dst_type) {
hw = (unsigned char*)&hw_ulong;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(signed char));
hw_ulong = (unsigned long)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_ulong = (unsigned long)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_ulong = (unsigned long)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_ulong = (unsigned long)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_ulong = (unsigned long)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_ulong = (unsigned long)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_ulong = (unsigned long)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_ulong = (unsigned long)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_ulong = (unsigned long)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_ulong = (unsigned long)(*((unsigned long_long*)
aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_LLONG==dst_type) {
hw = (unsigned char*)&hw_llong;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(signed char));
hw_llong = (long_long)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_llong = (long_long)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_llong = (long_long)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_llong = (long_long)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_llong = (long_long)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_llong = (long_long)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_llong = (long_long)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_llong = (long_long)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_llong = (long_long)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_llong = (long_long)(*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_ULLONG==dst_type) {
hw = (unsigned char*)&hw_ullong;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(signed char));
hw_ullong = (unsigned long_long)(*((signed char*)
aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_ullong = (unsigned long_long)(*((unsigned char*)
aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_ullong = (unsigned long_long)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_ullong = (unsigned long_long)(*((unsigned short*)
aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_ullong = (unsigned long_long)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_ullong = (unsigned long_long)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_ullong = (unsigned long_long)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_ullong = (unsigned long_long)(*((unsigned long*)
aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_ullong = (unsigned long_long)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_ullong = (unsigned long_long)(*((unsigned long_long*)
aligned));
break;
case INT_OTHER:
break;
}
}
/* Are the two results the same */
for (k=0; k<dst_size; k++) {
if (buf[j*dst_size+k]!=hw[k]) break;
}
if (k==dst_size) continue; /*no error*/
/*
* Convert the source and destination values to little endian
* order so we can use the HDF5 bit vector operations to test
* certain things. These routines have already been tested by
* the `bittests' program.
*/
src_nbits = 8*src_size;
for (k=0; k<src_size; k++) {
src_bits[src_size-(k+1)] = saved[j*src_size+
ENDIAN(src_size, k)];
}
dst_nbits = 8*dst_size;
for (k=0; k<dst_size; k++) {
dst_bits[dst_size-(k+1)] = buf[j*dst_size+
ENDIAN(dst_size, k)];
}
/*
* Hardware usually doesn't handle overflows too gracefully. The
* hardware conversion result during overflows is usually garbage
* so we must handle those cases differetly when checking results.
*/
if (H5T_SGN_2==H5Tget_sign(src) &&
H5T_SGN_2==H5Tget_sign(dst)) {
if (src_size>dst_size &&
0==H5T_bit_get_d(src_bits, src_nbits-1, 1) &&
H5T_bit_find(src_bits, dst_nbits-1, (src_nbits-dst_nbits),
H5T_BIT_MSB, 1)>=0) {
/*
* Source is positive and the magnitude is too large for
* the destination. The destination should be set to the
* maximum possible value: 0x7f...f
*/
if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1,
H5T_BIT_LSB, 0)<0) {
continue; /*no error*/
}
} else if (src_size>dst_size &&
1==H5T_bit_get_d(src_bits, src_nbits-1, 1) &&
H5T_bit_find(src_bits, 0, src_nbits-1, H5T_BIT_MSB,
0)+1>=(ssize_t)dst_nbits) {
/*
* Source is negative but the magnitude is too large for
* the destination. The destination should be set to the
* smallest possible value: 0x80...0
*/
if (1==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1,
H5T_BIT_LSB, 1)<0) {
continue; /*no error*/
}
}
} else if (H5T_SGN_2==H5Tget_sign(src) &&
H5T_SGN_NONE==H5Tget_sign(dst)) {
if (H5T_bit_get_d(src_bits, src_nbits-1, 1)) {
/*
* The source is negative so the result should be zero.
* The source is negative if the most significant bit is
* set. The destination is zero if all bits are zero.
*/
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 1)<0)
continue; /*no error*/
} else if (src_size>dst_size &&
H5T_bit_find(src_bits, dst_nbits-1,
src_nbits-dst_nbits, H5T_BIT_LSB,
1)>=0) {
/*
* The source is a value with a magnitude too large for
* the destination. The destination should be the
* largest possible value: 0xff...f
*/
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB,
0)<0) {
continue; /*no error*/
}
}
} else if (H5T_SGN_NONE==H5Tget_sign(src) &&
H5T_SGN_2==H5Tget_sign(dst)) {
if (src_size>=dst_size &&
H5T_bit_find(src_bits, dst_nbits-1,
(src_nbits-dst_nbits)+1, H5T_BIT_LSB, 1)>=0) {
/*
* The source value has a magnitude that is larger than
* the destination can handle. The destination should be
* set to the largest possible positive value: 0x7f...f
*/
if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB,
0)<0) {
continue; /*no error*/
}
}
} else {
if (src_size>dst_size &&
H5T_bit_find(src_bits, dst_nbits, src_nbits-dst_nbits,
H5T_BIT_LSB, 1)>=0) {
/*
* The unsigned source has a value which is too large for
* the unsigned destination. The destination should be
* set to the largest possible value: 0xff...f
*/
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB,
0)<0) {
continue; /*no error*/
}
}
}
/* Print errors */
if (0==fails_this_test++) FAILED();
printf(" test %u elmt %u\n", (unsigned)i+1, (unsigned)j);
printf(" src = ");
for (k=0; k<src_size; k++) {
printf(" %02x", saved[j*src_size+ENDIAN(src_size, k)]);
}
printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)),
"");
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(signed char));
printf(" %29d\n", *((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(unsigned char));
printf(" %29u\n", *((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
printf(" %29d\n", *((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
printf(" %29u\n", *((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
printf(" %29d\n", *((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
printf(" %29u\n", *((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
printf(" %29ld\n", *((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(unsigned long));
printf(" %29lu\n", *((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
printf(" %29"PRINTF_LL_WIDTH"d\n", *((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
printf(" %29"PRINTF_LL_WIDTH"u\n",
*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
printf(" dst = ");
for (k=0; k<dst_size; k++) {
printf(" %02x", buf[j*dst_size+ENDIAN(dst_size, k)]);
}
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)),
"");
switch (dst_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(signed char));
printf(" %29d\n", *((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(unsigned char));
printf(" %29u\n", *((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
printf(" %29d\n", *((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(unsigned short));
printf(" %29u\n", *((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
printf(" %29d\n", *((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
printf(" %29u\n", *((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
printf(" %29ld\n", *((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(unsigned long));
printf(" %29lu\n", *((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
printf(" %29"PRINTF_LL_WIDTH"d\n", *((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
printf(" %29"PRINTF_LL_WIDTH"u\n",
*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
printf(" ans = ");
for (k=0; k<dst_size; k++) {
printf(" %02x", hw[ENDIAN(dst_size, k)]);
}
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)),
"");
switch (dst_type) {
case INT_CHAR:
printf(" %29d\n", *((signed char*)hw));
break;
case INT_UCHAR:
printf(" %29u\n", *((unsigned char*)hw));
break;
case INT_SHORT:
printf(" %29d\n", *((short*)hw));
break;
case INT_USHORT:
printf(" %29u\n", *((unsigned short*)hw));
break;
case INT_INT:
printf(" %29d\n", *((int*)hw));
break;
case INT_UINT:
printf(" %29u\n", *((unsigned*)hw));
break;
case INT_LONG:
printf(" %29ld\n", *((long*)hw));
break;
case INT_ULONG:
printf(" %29lu\n", *((unsigned long*)hw));
break;
case INT_LLONG:
printf(" %29"PRINTF_LL_WIDTH"d\n", *((long_long*)hw));
break;
case INT_ULLONG:
printf(" %29"PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)hw));
break;
case INT_OTHER:
break;
}
if (++fails_all_tests>=max_fails) {
puts(" maximum failures reached, aborting test...");
goto done;
}
}
PASSED();
}
#ifdef SHOW_OVERFLOWS
if (noverflows_g>0) {
printf(" %d overflow%s in previous test\n",
noverflows_g, 1==noverflows_g?"":"s");
}
#endif
done:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) free(aligned);
fflush(stdout);
reset_hdf5(); /*print statistics*/
return (int)fails_all_tests;
error:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) free(aligned);
fflush(stdout);
reset_hdf5(); /*print statistics*/
return MAX((int)fails_all_tests, 1);
}
/*-------------------------------------------------------------------------
* Function: test_conv_int_2
*
* Purpose: Tests overlap calculates in H5T_conv_i_i(), which should be
* the same as for H5T_conv_f_f() and H5T_conv_s_s().
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Friday, April 30, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int_2(void)
{
int i, j;
hid_t src_type, dst_type;
char buf[32*100];
printf("%-70s", "Testing overlap calculations");
fflush(stdout);
memset(buf, 0, sizeof buf);
for (i=1; i<=32; i++) {
for (j=1; j<=32; j++) {
/* Source type */
src_type = H5Tcopy(H5T_NATIVE_CHAR);
H5Tset_size(src_type, i);
/* Destination type */
dst_type = H5Tcopy(H5T_NATIVE_CHAR);
H5Tset_size(dst_type, j);
/*
* Conversion. If overlap calculations aren't right then an
* assertion will fail in H5T_conv_i_i()
*/
H5Tconvert(src_type, dst_type, 100, buf, NULL);
H5Tclose(src_type);
H5Tclose(dst_type);
}
}
PASSED();
return 0;
}
/*-------------------------------------------------------------------------
* Function: my_isnan
*
* Purpose: Determines whether VAL points to NaN.
*
* Return: TRUE or FALSE
*
* Programmer: Robb Matzke
* Monday, July 6, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
my_isnan(flt_t type, void *val)
{
int retval;
char s[256];
if (FLT_FLOAT==type) {
float x;
memcpy(&x, val, sizeof(float));
retval = (x!=x);
} else if (FLT_DOUBLE==type) {
double x;
memcpy(&x, val, sizeof(double));
retval = (x!=x);
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
} else if (FLT_LDOUBLE==type) {
long double x;
memcpy(&x, val, sizeof(long double));
retval = (x!=x);
#endif
} else {
return 0;
}
/*
* Sometimes NaN==NaN (e.g., DEC Alpha) so we try to print it and see if
* the result contains a NaN string.
*/
if (!retval) {
if (FLT_FLOAT==type) {
float x;
memcpy(&x, val, sizeof(float));
sprintf(s, "%g", x);
} else if (FLT_DOUBLE==type) {
double x;
memcpy(&x, val, sizeof(double));
sprintf(s, "%g", x);
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
} else if (FLT_LDOUBLE==type) {
long double x;
memcpy(&x, val, sizeof(long double));
sprintf(s, "%Lg", x);
#endif
} else {
return 0;
}
if (!strstr(s, "NaN") || !strstr(s, "NAN") || !strstr(s, "nan")) {
retval = 1;
}
}
return retval;
}
/*-------------------------------------------------------------------------
* Function: test_conv_flt_1
*
* Purpose: Test conversion of random floating point values from SRC to
* DST. These types should be H5T_NATIVE_FLOAT,
* H5T_NATIVE_DOUBLE, or H5T_NATIVE_LDOUBLE.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Tuesday, June 23, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_flt_1 (const char *name, hid_t src, hid_t dst)
{
flt_t src_type, dst_type; /*data types */
const size_t ntests=NTESTS; /*number of tests */
const size_t nelmts=200000; /*num values per test */
const size_t max_fails=8; /*max number of failures*/
size_t fails_all_tests=0; /*number of failures */
size_t fails_this_test; /*fails for this test */
const char *src_type_name = NULL; /*source type name */
const char *dst_type_name = NULL; /*destination type name */
size_t src_size, dst_size; /*type sizes */
unsigned char *buf = NULL; /*buffer for conversion */
unsigned char *saved = NULL; /*original values */
char str[256]; /*hello string */
float hw_f; /*hardware-converted */
double hw_d; /*hardware-converted */
void *aligned=NULL; /*aligned buffer */
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
long double hw_ld; /*hardware-converted */
#endif
unsigned char *hw=NULL; /*ptr to hardware-conv'd*/
size_t i, j, k; /*counters */
int endian; /*machine endianess */
#ifdef HANDLE_SIGFPE
pid_t child_pid; /*process ID of child */
int status; /*child exit status */
/*
* Some systems generage SIGFPE during floating point overflow and we
* cannot assume that we can continue from such a signal. Therefore, we
* fork here and let the child run the test and return the number of
* failures with the exit status.
*/
fflush(stdout);
fflush(stderr);
if ((child_pid=fork())<0) {
perror("fork");
return 1;
} else if (child_pid>0) {
while (child_pid!=waitpid(child_pid, &status, 0)) /*void*/;
if (WIFEXITED(status) && 255==WEXITSTATUS(status)) {
return 0; /*child exit after catching SIGFPE*/
} else if (WIFEXITED(status)) {
return WEXITSTATUS(status);
} else {
puts(" Child didn't exit normally.");
return 1;
}
}
#endif
/*
* The remainder of this function is executed only by the child if
* HANDLE_SIGFPE is defined.
*/
signal(SIGFPE,fpe_handler);
/* What are the names of the source and destination types */
if (H5Tequal(src, H5T_NATIVE_FLOAT)) {
src_type_name = "float";
src_type = FLT_FLOAT;
} else if (H5Tequal(src, H5T_NATIVE_DOUBLE)) {
src_type_name = "double";
src_type = FLT_DOUBLE;
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
} else if (H5Tequal(src, H5T_NATIVE_LDOUBLE)) {
src_type_name = "long double";
src_type = FLT_LDOUBLE;
#endif
} else {
src_type_name = "UNKNOWN";
src_type = FLT_OTHER;
}
if (H5Tequal(dst, H5T_NATIVE_FLOAT)) {
dst_type_name = "float";
dst_type = FLT_FLOAT;
} else if (H5Tequal(dst, H5T_NATIVE_DOUBLE)) {
dst_type_name = "double";
dst_type = FLT_DOUBLE;
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
} else if (H5Tequal(dst, H5T_NATIVE_LDOUBLE)) {
dst_type_name = "long double";
dst_type = FLT_LDOUBLE;
#endif
} else {
dst_type_name = "UNKNOWN";
dst_type = FLT_OTHER;
}
/* Sanity checks */
assert(sizeof(float)!=sizeof(double));
if (FLT_OTHER==src_type || FLT_OTHER==dst_type) {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
FAILED();
puts(" Unknown data type.");
goto error;
}
/* Allocate buffers */
endian = H5Tget_order(H5T_NATIVE_FLOAT);
src_size = H5Tget_size(src);
dst_size = H5Tget_size(dst);
buf = aligned_malloc(nelmts*MAX(src_size, dst_size));
saved = aligned_malloc(nelmts*MAX(src_size, dst_size));
aligned = malloc(16); /*should be big enough for any type*/
#ifdef SHOW_OVERFLOWS
noverflows_g = 0;
#endif
for (i=0; i<ntests; i++) {
/*
* If it looks like it might take a long time then print a progress
* report between each test.
*/
if (ntests>1) {
sprintf(str, "Testing random %s %s -> %s conversions (test %d/%d)",
name, src_type_name, dst_type_name, (int)i+1, (int)ntests);
} else {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
}
printf("%-70s", str);
fflush(stdout);
fails_this_test = 0;
/*
* Initialize the source buffers to random bits. The `buf' buffer
* will be used for the conversion while the `saved' buffer will be
* used for the comparison later.
*/
if (!skip_overflow_tests_g) {
for (j=0; j<nelmts*src_size; j++) buf[j] = saved[j] = rand();
} else {
for (j=0; j<nelmts; j++) {
/* Do it this way for alignment reasons */
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
long double temp[1];
#else
double temp[1];
#endif
if (src_size<=dst_size) {
for (k=0; k<dst_size; k++) buf[j*src_size+k] = rand();
} else {
for (k=0; k<dst_size; k++) {
((unsigned char*)temp)[k] = rand();
}
if (FLT_DOUBLE==src_type && FLT_FLOAT==dst_type) {
hw_d = *((float*)temp);
memcpy(buf+j*src_size, &hw_d, src_size);
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
} else if (FLT_LDOUBLE==src_type && FLT_FLOAT==dst_type) {
hw_ld = *((float*)temp);
memcpy(buf+j*src_size, &hw_ld, src_size);
} else if (FLT_LDOUBLE==src_type && FLT_DOUBLE==dst_type) {
hw_ld = *((double*)temp);
memcpy(buf+j*src_size, &hw_ld, src_size);
#endif
}
}
memcpy(saved+j*src_size, buf+j*src_size, src_size);
}
}
/* Perform the conversion in software */
if (H5Tconvert(src, dst, nelmts, buf, NULL)<0) goto error;
/* Check the software results against the hardware */
for (j=0; j<nelmts; j++) {
hw_f = 911.0;
hw_d = 911.0;
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
hw_ld = 911.0;
#endif
/* The hardware conversion */
if (FLT_FLOAT==src_type) {
memcpy(aligned, saved+j*sizeof(float), sizeof(float));
if (FLT_FLOAT==dst_type) {
hw_f = *((float*)aligned);
hw = (unsigned char*)&hw_f;
} else if (FLT_DOUBLE==dst_type) {
hw_d = *((float*)aligned);
hw = (unsigned char*)&hw_d;
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
} else {
hw_ld = *((float*)aligned);
hw = (unsigned char*)&hw_ld;
#endif
}
} else if (FLT_DOUBLE==src_type) {
memcpy(aligned, saved+j*sizeof(double), sizeof(double));
if (FLT_FLOAT==dst_type) {
hw_f = *((double*)aligned);
hw = (unsigned char*)&hw_f;
} else if (FLT_DOUBLE==dst_type) {
hw_d = *((double*)aligned);
hw = (unsigned char*)&hw_d;
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
} else {
hw_ld = *((double*)aligned);
hw = (unsigned char*)&hw_ld;
#endif
}
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
} else {
memcpy(aligned, saved+j*sizeof(long double),
sizeof(long double));
if (FLT_FLOAT==dst_type) {
hw_f = *((long double*)aligned);
hw = (unsigned char*)&hw_f;
} else if (FLT_DOUBLE==dst_type) {
hw_d = *((long double*)aligned);
hw = (unsigned char*)&hw_d;
} else {
hw_ld = *((long double*)aligned);
hw = (unsigned char*)&hw_ld;
}
#endif
}
/* Are the two results the same? */
for (k=0; k<dst_size; k++) {
if (buf[j*dst_size+k]!=hw[k]) break;
}
if (k==dst_size) continue; /*no error*/
#if 1
/*
* Assume same if both results are NaN. There are many NaN bit
* patterns and the software doesn't attemt to emulate the
* hardware in this regard. Instead, software uses a single bit
* pattern for NaN by setting the significand to all ones.
*/
if (FLT_FLOAT==dst_type &&
my_isnan(dst_type, (float*)buf+j) &&
my_isnan(dst_type, hw)) {
continue;
} else if (FLT_DOUBLE==dst_type &&
my_isnan(dst_type, (double*)buf+j) &&
my_isnan(dst_type, hw)) {
continue;
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
} else if (FLT_LDOUBLE==dst_type &&
my_isnan(dst_type, (long double*)buf+j) &&
my_isnan(dst_type, hw)) {
continue;
#endif
}
#endif
#if 1
/*
* Assume same if hardware result is NaN. This is because the
* hardware conversions on some machines return NaN instead of
* overflowing to +Inf or -Inf or underflowing to +0 or -0.
*/
if (my_isnan(dst_type, hw)) continue;
#endif
#if 1
/*
* Instead of matching down to the bit, just make sure the
* exponents are the same and the mantissa is the same to a
* certain precision. This is needed on machines that don't
* round as expected.
*/
{
double check_mant[2];
int check_expo[2];
if (FLT_FLOAT==dst_type) {
float x;
memcpy(&x, (float*)buf+j, sizeof(float));
check_mant[0] = frexp(x, check_expo+0);
check_mant[1] = frexp(((float*)hw)[0], check_expo+1);
} else if (FLT_DOUBLE==dst_type) {
double x;
memcpy(&x, (double*)buf+j, sizeof(double));
check_mant[0] = frexp(x, check_expo+0);
check_mant[1] = frexp(((double*)hw)[0], check_expo+1);
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
} else {
long double x;
memcpy(&x, (long double*)buf+j, sizeof(long double));
check_mant[0] = frexp(x, check_expo+0);
check_mant[1] = frexp(((long double*)hw)[0], check_expo+1);
#endif
}
if (check_expo[0]==check_expo[1] &&
fabs(check_mant[0]-check_mant[1])<0.000001) {
continue;
}
}
#endif
if (0==fails_this_test++) FAILED();
printf(" test %u, elmt %u\n", (unsigned)i+1, (unsigned)j);
printf(" src =");
for (k=0; k<src_size; k++) {
printf(" %02x", saved[j*src_size+ENDIAN(src_size,k)]);
}
printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)),
"");
if (FLT_FLOAT==src_type) {
float x;
memcpy(&x, (float*)saved+j, sizeof(float));
printf(" %29.20e\n", x);
} else if (FLT_DOUBLE==src_type) {
double x;
memcpy(&x, (double*)saved+j, sizeof(double));
printf(" %29.20e\n", x);
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
} else {
long double x;
memcpy(&x, (long double*)saved+j, sizeof(long double));
printf(" %29.20Le\n", x);
#endif
}
printf(" dst =");
for (k=0; k<dst_size; k++) {
printf(" %02x", buf[j*dst_size+ENDIAN(dst_size,k)]);
}
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)),
"");
if (FLT_FLOAT==dst_type) {
float x;
memcpy(&x, (float*)buf+j, sizeof(float));
printf(" %29.20e\n", x);
} else if (FLT_DOUBLE==dst_type) {
double x;
memcpy(&x, (double*)buf+j, sizeof(double));
printf(" %29.20e\n", x);
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
} else {
long double x;
memcpy(&x, (long double*)buf+j, sizeof(long double));
printf(" %29.20Le\n", x);
#endif
}
printf(" ans =");
for (k=0; k<dst_size; k++) {
printf(" %02x", hw[ENDIAN(dst_size,k)]);
}
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)),
"");
if (FLT_FLOAT==dst_type) {
printf(" %29.20e\n", hw_f);
} else if (FLT_DOUBLE==dst_type) {
printf(" %29.20e\n", hw_d);
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
} else {
printf(" %29.20Le\n", hw_ld);
#endif
}
if (++fails_all_tests>=max_fails) {
puts(" maximum failures reached, aborting test...");
goto done;
}
}
PASSED();
}
#ifdef SHOW_OVERFLOWS
if (noverflows_g>0) {
printf(" %d overflow%s in previous test\n",
noverflows_g, 1==noverflows_g?"":"s");
}
#endif
done:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) free(aligned);
fflush(stdout);
#ifdef HANDLE_SIGFPE
exit(MIN((int)fails_all_tests, 254));
#else
reset_hdf5();
return (int)fails_all_tests;
#endif
error:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) free(aligned);
fflush(stdout);
#ifdef HANDLE_SIGFPE
exit(MIN(MAX((int)fails_all_tests, 1), 254));
#else
reset_hdf5();
return MAX((int)fails_all_tests, 1);
#endif
}
/*-------------------------------------------------------------------------
* Function: run_integer_tests
*
* Purpose: Runs all integer tests.
*
* Return: Number of errors
*
* Programmer: Robb Matzke
* Tuesday, November 24, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
run_integer_tests(const char *name)
{
int nerrors = 0;
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UINT);
#if SIZEOF_LONG!=SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULONG);
#endif
#if SIZEOF_LONG_LONG!=SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_UINT);
#if SIZEOF_LONG!=SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULONG);
#endif
#if SIZEOF_LONG_LONG!=SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UINT);
#if SIZEOF_LONG!=SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULONG);
#endif
#if SIZEOF_LONG_LONG!=SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UINT);
#if SIZEOF_LONG!=SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULONG);
#endif
#if SIZEOF_LONG_LONG!=SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UINT);
#if SIZEOF_LONG!=SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULONG);
#endif
#if SIZEOF_LONG_LONG!=SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_INT);
#if SIZEOF_LONG!=SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULONG);
#endif
#if SIZEOF_LONG_LONG!=SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULLONG);
#endif
#if SIZEOF_LONG!=SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UINT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULONG);
#if SIZEOF_LONG_LONG!=SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULLONG);
#endif
#endif
#if SIZEOF_LONG!=SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UINT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LONG);
#if SIZEOF_LONG_LONG!=SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_ULLONG);
#endif
#endif
#if SIZEOF_LONG_LONG!=SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UINT);
#if SIZEOF_LONG!=SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULLONG);
#endif
#if SIZEOF_LONG_LONG!=SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UINT);
#if SIZEOF_LONG!=SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_ULONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LLONG);
#endif
return nerrors;
}
/*-------------------------------------------------------------------------
* Function: main
*
* Purpose: Test the data type interface.
*
* Return: Success:
*
* Failure:
*
* Programmer: Robb Matzke
* Tuesday, December 9, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
int
main(void)
{
unsigned long nerrors = 0;
hid_t fapl=-1;
reset_hdf5();
fapl = h5_fileaccess();
if (ALIGNMENT) {
printf("Testing non-aligned conversions (ALIGNMENT=%d)....\n",
ALIGNMENT);
}
/* Do the tests */
nerrors += test_classes();
nerrors += test_copy();
nerrors += test_compound_1();
nerrors += test_transient (fapl);
nerrors += test_named (fapl);
h5_cleanup (fapl); /*must happen before first reset*/
reset_hdf5();
nerrors += test_conv_str_1();
nerrors += test_conv_str_2();
nerrors += test_compound_2();
nerrors += test_compound_3();
nerrors += test_compound_4();
nerrors += test_conv_int ();
nerrors += test_conv_enum_1();
nerrors += test_conv_bitfield();
nerrors += test_opaque();
/* Does floating point overflow generate a SIGFPE? */
generates_sigfpe();
/* Test degenerate cases */
nerrors += test_conv_flt_1("noop", H5T_NATIVE_FLOAT, H5T_NATIVE_FLOAT);
nerrors += test_conv_flt_1("noop", H5T_NATIVE_DOUBLE, H5T_NATIVE_DOUBLE);
/* Test hardware integer conversion functions */
nerrors += run_integer_tests("hw");
/* Test hardware floating-point conversion functions */
nerrors += test_conv_flt_1("hw", H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_flt_1("hw", H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT);
/*----------------------------------------------------------------------
* Software tests
*----------------------------------------------------------------------
*/
without_hardware_g = TRUE;
reset_hdf5();
/* Test software integer conversion functions */
nerrors += test_conv_int_2();
nerrors += run_integer_tests("sw");
/* Test software floating-point conversion functions */
nerrors += test_conv_flt_1("sw", H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_flt_1("sw", H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT);
#if SIZEOF_LONG_DOUBLE!=SIZEOF_DOUBLE
nerrors += test_conv_flt_1("sw", H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1("sw", H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1("sw", H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT);
nerrors += test_conv_flt_1("sw", H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE);
#endif
if (nerrors) {
printf("***** %lu FAILURE%s! *****\n",
nerrors, 1==nerrors?"":"S");
exit(1);
}
printf("All data type tests passed.\n");
return 0;
}