hdf5/testpar/t_pread.c

941 lines
29 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Collective file open optimization tests
*
*/
#include "h5test.h"
#include "testpar.h"
/* The collection of files is included below to aid
* an external "cleanup" process if required.
*
* Note that the code below relies on the ordering of this array
* since each set of three is used by the tests either to construct
* or to read and validate.
*/
#define NFILENAME 9
const char *FILENAMES[NFILENAME + 1]={"t_pread_data_file",
"reloc_t_pread_data_file",
"prefix_file",
"t_pread_group_0_file",
"reloc_t_pread_group_0_file",
"prefix_file_0",
"t_pread_group_1_file",
"reloc_t_pread_group_1_file",
"prefix_file_1",
NULL};
#define FILENAME_BUF_SIZE 1024
#define COUNT 1000
hbool_t pass = true;
static const char *random_hdf5_text =
"Now is the time for all first-time-users of HDF5 to read their \
manual or go thru the tutorials!\n\
While you\'re at it, now is also the time to read up on MPI-IO.";
static const char *hitchhiker_quote =
"A common mistake that people make when trying to design something\n\
completely foolproof is to underestimate the ingenuity of complete\n\
fools.\n";
static int generate_test_file(MPI_Comm comm, int mpi_rank, int group);
static int test_parallel_read(MPI_Comm comm, int mpi_rank, int group);
static char *test_argv0 = NULL;
extern char *dirname(char *path); /* Avoids additional includes */
/*-------------------------------------------------------------------------
* Function: generate_test_file
*
* Purpose: This function is called to produce an HDF5 data file
* whose superblock is relocated to a non-zero offset by
* utilizing the 'h5jam' utility to write random text
* at the start of the file. Unlike simple concatenation
* of files, h5jam is used to place the superblock on a
* power-of-2 boundary.
*
* Since data will be read back and validated, we generate
* data in a predictable manner rather than randomly.
* For now, we simply use the global mpi_rank of the writing
* process as a starting component for the data generation.
* Subsequent writes are increments from the initial start
* value.
*
* In the overall scheme of running the test, we'll call
* this function twice: first as a collection of all MPI
* processes and then a second time with the processes split
* more or less in half. Each sub group will operate
* collectively on their assigned file. This split into
* subgroups validates that parallel groups can successfully
* open and read data independantly from the other parallel
* operations taking place.
*
* Return: Success: 0
*
* Failure: 1
*
* Programmer: Richard Warren
* 10/1/17
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
generate_test_file( MPI_Comm comm, int mpi_rank, int group_id )
{
FILE *header = NULL;
const char *fcn_name = "generate_test_file()";
const char *failure_mssg = NULL;
char *group_filename = NULL;
char data_filename[FILENAME_BUF_SIZE];
char reloc_data_filename[FILENAME_BUF_SIZE];
char prolog_filename[FILENAME_BUF_SIZE];
int file_index = 0;
int group_size;
int group_rank;
int local_failure = 0;
int global_failures = 0;
hsize_t count = COUNT;
hsize_t i;
hsize_t offset;
hsize_t dims[1] = {0};
hid_t file_id = -1;
hid_t memspace = -1;
hid_t filespace = -1;
hid_t fapl_id = -1;
hid_t dxpl_id = -1;
hid_t dset_id = -1;
float nextValue;
float *data_slice = NULL;
pass = true;
HDassert(comm != MPI_COMM_NULL);
if ( (MPI_Comm_rank(comm, &group_rank)) != MPI_SUCCESS) {
pass = FALSE;
failure_mssg = "generate_test_file: MPI_Comm_rank failed.\n";
}
if ( (MPI_Comm_size(comm, &group_size)) != MPI_SUCCESS) {
pass = FALSE;
failure_mssg = "generate_test_file: MPI_Comm_size failed.\n";
}
if ( mpi_rank == 0 ) {
HDfprintf(stdout, "Constructing test files...");
}
/* Setup the file names
* The test specfic filenames are stored as consecutive
* array entries in the global 'FILENAMES' array above.
* Here, we simply decide on the starting index for
* file construction. The reading portion of the test
* will have a similar setup process...
*/
if ( pass ) {
if ( comm == MPI_COMM_WORLD ) { /* Test 1 */
file_index = 0;
}
else if ( group_id == 0 ) { /* Test 2 group 0 */
file_index = 3;
}
else { /* Test 2 group 1 */
file_index = 6;
}
/* The 'group_filename' is just a temp variable and
* is used to call into the h5_fixname function. No
* need to worry that we reassign it for each file!
*/
group_filename = FILENAMES[file_index];
HDassert( group_filename );
/* Assign the 'data_filename' */
if ( h5_fixname(group_filename, H5P_DEFAULT, data_filename,
sizeof(data_filename)) == NULL ) {
pass = FALSE;
failure_mssg = "h5_fixname(0) failed.\n";
}
}
if ( pass ) {
group_filename = FILENAMES[file_index+1];
HDassert( group_filename );
/* Assign the 'reloc_data_filename' */
if ( h5_fixname(group_filename, H5P_DEFAULT, reloc_data_filename,
sizeof(reloc_data_filename)) == NULL ) {
pass = FALSE;
failure_mssg = "h5_fixname(1) failed.\n";
}
}
if ( pass ) {
group_filename = FILENAMES[file_index+2];
HDassert( group_filename );
/* Assign the 'prolog_filename' */
if ( h5_fixname(group_filename, H5P_DEFAULT, prolog_filename,
sizeof(prolog_filename)) == NULL ) {
pass = FALSE;
failure_mssg = "h5_fixname(2) failed.\n";
}
}
/* setup data to write */
if ( pass ) {
if ( (data_slice = (float *)HDmalloc(COUNT * sizeof(float))) == NULL ) {
pass = FALSE;
failure_mssg = "malloc of data_slice failed.\n";
}
}
if ( pass ) {
nextValue = (float)(mpi_rank * COUNT);
for(i=0; i<COUNT; i++) {
data_slice[i] = nextValue;
nextValue += 1;
}
}
/* setup FAPL */
if ( pass ) {
if ( (fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Pcreate(H5P_FILE_ACCESS) failed.\n";
}
}
if ( pass ) {
if ( (H5Pset_fapl_mpio(fapl_id, comm, MPI_INFO_NULL)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Pset_fapl_mpio() failed\n";
}
}
/* create the data file */
if ( pass ) {
if ( (file_id = H5Fcreate(data_filename, H5F_ACC_TRUNC,
H5P_DEFAULT, fapl_id)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Fcreate() failed.\n";
}
}
/* create and write the dataset */
if ( pass ) {
if ( (dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Pcreate(H5P_DATASET_XFER) failed.\n";
}
}
if ( pass ) {
if ( (H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Pset_dxpl_mpio() failed.\n";
}
}
if ( pass ) {
dims[0] = COUNT;
if ( (memspace = H5Screate_simple(1, dims, NULL)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Screate_simple(1, dims, NULL) failed (1).\n";
}
}
if ( pass ) {
dims[0] *= (hsize_t)group_size;
if ( (filespace = H5Screate_simple(1, dims, NULL)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Screate_simple(1, dims, NULL) failed (2).\n";
}
}
if ( pass ) {
offset = (hsize_t)group_rank * (hsize_t)COUNT;
if ( (H5Sselect_hyperslab(filespace, H5S_SELECT_SET, &offset,
NULL, &count, NULL)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Sselect_hyperslab() failed.\n";
}
}
if ( pass ) {
if ( (dset_id = H5Dcreate2(file_id, "dataset0", H5T_NATIVE_FLOAT,
filespace, H5P_DEFAULT, H5P_DEFAULT,
H5P_DEFAULT)) < 0 ) {
pass = false;
failure_mssg = "H5Dcreate2() failed.\n";
}
}
if ( pass ) {
if ( (H5Dwrite(dset_id, H5T_NATIVE_FLOAT, memspace,
filespace, dxpl_id, data_slice)) < 0 ) {
pass = false;
failure_mssg = "H5Dwrite() failed.\n";
}
}
/* close file, etc. */
if ( pass || (dset_id != -1)) {
if ( H5Dclose(dset_id) < 0 ) {
pass = false;
failure_mssg = "H5Dclose(dset_id) failed.\n";
}
}
if ( pass || (memspace != -1) ) {
if ( H5Sclose(memspace) < 0 ) {
pass = false;
failure_mssg = "H5Sclose(memspace) failed.\n";
}
}
if ( pass || (filespace != -1) ) {
if ( H5Sclose(filespace) < 0 ) {
pass = false;
failure_mssg = "H5Sclose(filespace) failed.\n";
}
}
if ( pass || (file_id != -1) ) {
if ( H5Fclose(file_id) < 0 ) {
pass = false;
failure_mssg = "H5Fclose(file_id) failed.\n";
}
}
if ( pass || (dxpl_id != -1) ) {
if ( H5Pclose(dxpl_id) < 0 ) {
pass = false;
failure_mssg = "H5Pclose(dxpl_id) failed.\n";
}
}
if ( pass || (fapl_id != -1) ) {
if ( H5Pclose(fapl_id) < 0 ) {
pass = false;
failure_mssg = "H5Pclose(fapl_id) failed.\n";
}
}
/* Add a userblock to the head of the datafile.
* We will use this to for a functional test of the
* file open optimization. This is superblock
* relocation is done by the rank 0 process associated
* with the communicator being used. For test 1, we
* utilize MPI_COMM_WORLD, so group_rank 0 is the
* same as mpi_rank 0. For test 2 which utilizes
* two groups resulting from an MPI_Comm_split, we
* will have parallel groups and hence two
* group_rank(0) processes. Each parallel group
* will create a unique file with different text
* headers and different data.
*
* We also delete files that are no longer needed.
*/
if ( group_rank == 0 ) {
const char *text_to_write;
size_t bytes_to_write;
if (group_id == 0)
text_to_write = random_hdf5_text;
else
text_to_write = hitchhiker_quote;
bytes_to_write = strlen(text_to_write);
if ( pass ) {
if ( (header = HDfopen(prolog_filename, "w+")) == NULL ) {
pass = FALSE;
failure_mssg = "HDfopen(prolog_filename, \"w+\") failed.\n";
}
}
if ( pass ) {
if ( HDfwrite(text_to_write, 1, bytes_to_write, header) !=
bytes_to_write ) {
pass = FALSE;
failure_mssg = "Unable to write header file.\n";
}
}
if ( pass || (header != NULL) ) {
if ( HDfclose(header) != 0 ) {
pass = FALSE;
failure_mssg = "HDfclose() failed.\n";
}
}
if ( pass ) {
char cmd[256];
char exe_path[256];
char *relative_path = "../tools/src/h5jam";
char *exe_dirname = relative_path;
/* We're checking for the existance of the h5jam utility
* With Cmake testing, all binaries are in the same directory
* e.g. the same location where this executable is found.
* We've copied the argv[0] argument and check to see
* if h5jam is co-located here. Otherwise, the autotools
* put things into directories, hence the relative path.
*/
if (test_argv0 != NULL) {
HDstrncpy(exe_path, test_argv0, sizeof(exe_path));
if ( (exe_dirname = (char *)dirname(exe_path)) != NULL) {
HDsprintf(cmd, "%s/h5jam", exe_dirname);
if ( HDaccess(cmd, F_OK) != 0)
exe_dirname = relative_path;
}
}
HDsprintf(cmd, "%s/h5jam -i %s -u %s -o %s",
exe_dirname,
data_filename,
prolog_filename, reloc_data_filename);
if ( system(cmd) != 0 ) {
pass = FALSE;
failure_mssg = "invocation of h5jam failed.\n";
}
}
HDremove(prolog_filename);
HDremove(data_filename);
}
/* collect results from other processes.
* Only overwrite the failure message if no preveious error
* has been detected
*/
local_failure = ( pass ? 0 : 1 );
/* This is a global all reduce (NOT group specific) */
if ( MPI_Allreduce(&local_failure, &global_failures, 1,
MPI_INT, MPI_SUM, MPI_COMM_WORLD) != MPI_SUCCESS ) {
if ( pass ) {
pass = FALSE;
failure_mssg = "MPI_Allreduce() failed.\n";
}
} else if ( ( pass ) && ( global_failures > 0 ) ) {
pass = FALSE;
failure_mssg = "One or more processes report failure.\n";
}
/* report results */
if ( mpi_rank == 0 ) {
if ( pass ) {
HDfprintf(stdout, "Done.\n");
} else {
HDfprintf(stdout, "FAILED.\n");
HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n",
fcn_name, failure_mssg);
}
}
/* free data_slice if it has been allocated */
if ( data_slice != NULL ) {
HDfree(data_slice);
data_slice = NULL;
}
return(! pass);
} /* generate_test_file() */
/*-------------------------------------------------------------------------
* Function: test_parallel_read
*
* Purpose: This actually tests the superblock optimization
* and covers the two primary cases we're interested in.
* 1). That HDF5 files can be opened in parallel by
* the rank 0 process and that the superblock
* offset is correctly broadcast to the other
* parallel file readers.
* 2). That a parallel application can correctly
* handle reading multiple files by using
* subgroups of MPI_COMM_WORLD and that each
* subgroup operates as described in (1) to
* collectively read the data.
*
* The global MPI rank is used for reading and
* writing data for process specific data in the
* dataset. We do this rather simplisticly, i.e.
* rank 0: writes/reads 0-9999
* rank 1: writes/reads 1000-1999
* rank 2: writes/reads 2000-2999
* ...
*
* Return: Success: 0
*
* Failure: 1
*
* Programmer: Richard Warren
* 10/1/17
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_parallel_read(MPI_Comm comm, int mpi_rank, int group_id)
{
const char *failure_mssg;
const char *fcn_name = "test_parallel_read()";
const char *group_filename = NULL;
char reloc_data_filename[FILENAME_BUF_SIZE];
int local_failure = 0;
int global_failures = 0;
int group_size;
int group_rank;
hid_t fapl_id = -1;
hid_t file_id = -1;
hid_t dset_id = -1;
hid_t memspace = -1;
hid_t filespace = -1;
hsize_t i;
hsize_t offset;
hsize_t count = COUNT;
hsize_t dims[1] = {0};
float nextValue;
float *data_slice = NULL;
pass = TRUE;
HDassert(comm != MPI_COMM_NULL);
if ( (MPI_Comm_rank(comm, &group_rank)) != MPI_SUCCESS) {
pass = FALSE;
failure_mssg = "test_parallel_read: MPI_Comm_rank failed.\n";
}
if ( (MPI_Comm_size(comm, &group_size)) != MPI_SUCCESS) {
pass = FALSE;
failure_mssg = "test_parallel_read: MPI_Comm_size failed.\n";
}
if ( mpi_rank == 0 ) {
if ( comm == MPI_COMM_WORLD ) {
TESTING("parallel file open test 1");
}
else {
TESTING("parallel file open test 2");
}
}
/* allocate space for the data_slice array */
if ( pass ) {
if ( (data_slice = (float *)HDmalloc(COUNT * sizeof(float))) == NULL ) {
pass = FALSE;
failure_mssg = "malloc of data_slice failed.\n";
}
}
/* Select the file file name to read
* Please see the comments in the 'generate_test_file' function
* for more details...
*/
if ( pass ) {
if ( comm == MPI_COMM_WORLD ) /* test 1 */
group_filename = FILENAMES[1];
else if ( group_id == 0 ) /* test 2 group 0 */
group_filename = FILENAMES[4];
else /* test 2 group 1 */
group_filename = FILENAMES[7];
HDassert(group_filename);
if ( h5_fixname(group_filename, H5P_DEFAULT, reloc_data_filename,
sizeof(reloc_data_filename)) == NULL ) {
pass = FALSE;
failure_mssg = "h5_fixname(1) failed.\n";
}
}
/* setup FAPL */
if ( pass ) {
if ( (fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Pcreate(H5P_FILE_ACCESS) failed.\n";
}
}
if ( pass ) {
if ( (H5Pset_fapl_mpio(fapl_id, comm, MPI_INFO_NULL)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Pset_fapl_mpio() failed\n";
}
}
/* open the file -- should have user block, exercising the optimization */
if ( pass ) {
if ( (file_id = H5Fopen(reloc_data_filename,
H5F_ACC_RDONLY, fapl_id)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Fopen() failed\n";
}
}
/* open the data set */
if ( pass ) {
if ( (dset_id = H5Dopen2(file_id, "dataset0", H5P_DEFAULT)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Dopen2() failed\n";
}
}
/* setup memspace */
if ( pass ) {
dims[0] = count;
if ( (memspace = H5Screate_simple(1, dims, NULL)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Screate_simple(1, dims, NULL) failed\n";
}
}
/* setup filespace */
if ( pass ) {
if ( (filespace = H5Dget_space(dset_id)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Dget_space(dataset) failed\n";
}
}
if ( pass ) {
offset = (hsize_t)group_rank * count;
if ( (H5Sselect_hyperslab(filespace, H5S_SELECT_SET,
&offset, NULL, &count, NULL)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Sselect_hyperslab() failed\n";
}
}
/* read this processes section of the data */
if ( pass ) {
if ( (H5Dread(dset_id, H5T_NATIVE_FLOAT, memspace,
filespace, H5P_DEFAULT, data_slice)) < 0 ) {
pass = FALSE;
failure_mssg = "H5Dread() failed\n";
}
}
/* verify the data */
if ( pass ) {
nextValue = (float)((hsize_t)mpi_rank * count);
i = 0;
while ( ( pass ) && ( i < count ) ) {
/* what we really want is data_slice[i] != nextValue --
* the following is a circumlocution to shut up the
* the compiler.
*/
if ( ( data_slice[i] > nextValue ) ||
( data_slice[i] < nextValue ) ) {
pass = FALSE;
failure_mssg = "Unexpected dset contents.\n";
}
nextValue += 1;
i++;
}
}
/* close file, etc. */
if ( pass || (dset_id != -1) ) {
if ( H5Dclose(dset_id) < 0 ) {
pass = false;
failure_mssg = "H5Dclose(dset_id) failed.\n";
}
}
if ( pass || (memspace != -1) ) {
if ( H5Sclose(memspace) < 0 ) {
pass = false;
failure_mssg = "H5Sclose(memspace) failed.\n";
}
}
if ( pass || (filespace != -1) ) {
if ( H5Sclose(filespace) < 0 ) {
pass = false;
failure_mssg = "H5Sclose(filespace) failed.\n";
}
}
if ( pass || (file_id != -1) ) {
if ( H5Fclose(file_id) < 0 ) {
pass = false;
failure_mssg = "H5Fclose(file_id) failed.\n";
}
}
if ( pass || (fapl_id != -1) ) {
if ( H5Pclose(fapl_id) < 0 ) {
pass = false;
failure_mssg = "H5Pclose(fapl_id) failed.\n";
}
}
/* collect results from other processes.
* Only overwrite the failure message if no previous error
* has been detected
*/
local_failure = ( pass ? 0 : 1 );
if ( MPI_Allreduce( &local_failure, &global_failures, 1,
MPI_INT, MPI_SUM, MPI_COMM_WORLD) != MPI_SUCCESS ) {
if ( pass ) {
pass = FALSE;
failure_mssg = "MPI_Allreduce() failed.\n";
}
} else if ( ( pass ) && ( global_failures > 0 ) ) {
pass = FALSE;
failure_mssg = "One or more processes report failure.\n";
}
/* report results and finish cleanup */
if ( group_rank == 0 ) {
if ( pass ) {
PASSED();
} else {
H5_FAILED();
HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n",
fcn_name, failure_mssg);
}
HDremove(reloc_data_filename);
}
/* free data_slice if it has been allocated */
if ( data_slice != NULL ) {
HDfree(data_slice);
data_slice = NULL;
}
return( ! pass );
} /* test_parallel_read() */
/*-------------------------------------------------------------------------
* Function: main
*
* Purpose: To implement a parallel test which validates whether the
* new superblock lookup functionality is working correctly.
*
* The test consists of creating two seperate HDF datasets
* in which random text is inserted at the start of each
* file using the 'j5jam' application. This forces the
* HDF5 file superblock to a non-zero offset.
* Having created the two independant files, we create two
* non-overlapping MPI groups, each of which is then tasked
* with the opening and validation of the data contained
* therein.
*
* WARNING: This test uses fork() and execve(), and
* therefore will not run on Windows.
*
* Return: Success: 0
*
* Failure: 1
*
* Programmer: Richard Warren
* 10/1/17
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
int
main( int argc, char **argv)
{
int nerrs = 0;
int which_group = 0;
int mpi_rank;
int mpi_size;
int split_size;
MPI_Comm group_comm = MPI_COMM_WORLD;
/* I don't believe that argv[0] can ever be NULL.
* It should thus be safe to dup and save as a check
* for cmake testing. Note that in our Cmake builds,
* all executables are located in the same directory.
* We assume (but we'll check) that the h5jam utility
* is in the directory as this executable. If that
* isn't true, then we can use a relative path that
* should be valid for the autotools environment.
*/
test_argv0 = HDstrdup(argv[0]);
if ( (MPI_Init(&argc, &argv)) != MPI_SUCCESS) {
HDfprintf(stderr, "FATAL: Unable to initialize MPI\n");
HDexit(EXIT_FAILURE);
}
if ( (MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank)) != MPI_SUCCESS) {
HDfprintf(stderr, "FATAL: MPI_Comm_rank returned an error\n");
HDexit(EXIT_FAILURE);
}
if ( (MPI_Comm_size(MPI_COMM_WORLD, &mpi_size)) != MPI_SUCCESS) {
HDfprintf(stderr, "FATAL: MPI_Comm_size returned an error\n");
HDexit(EXIT_FAILURE);
}
H5open();
if ( mpi_rank == 0 ) {
HDfprintf(stdout, "========================================\n");
HDfprintf(stdout, "Collective file open optimization tests\n");
HDfprintf(stdout, " mpi_size = %d\n", mpi_size);
HDfprintf(stdout, "========================================\n");
}
if ( mpi_size < 3 ) {
if ( mpi_rank == 0 ) {
HDprintf(" Need at least 3 processes. Exiting.\n");
}
goto finish;
}
/* ------ Create two (2) MPI groups ------
*
* We split MPI_COMM_WORLD into 2 more or less equal sized
* groups. The resulting communicators will be used to generate
* two HDF files which in turn will be opened in parallel and the
* contents verified in the second read test below.
*/
split_size = mpi_size / 2;
which_group = (mpi_rank < split_size ? 0 : 1);
if ( (MPI_Comm_split(MPI_COMM_WORLD,
which_group,
0,
&group_comm)) != MPI_SUCCESS) {
HDfprintf(stderr, "FATAL: MPI_Comm_split returned an error\n");
HDexit(EXIT_FAILURE);
}
/* ------ Generate all files ------ */
/* We generate the file used for test 1 */
nerrs += generate_test_file( MPI_COMM_WORLD, mpi_rank, which_group );
if ( nerrs > 0 ) {
if ( mpi_rank == 0 ) {
HDprintf(" Test(1) file construction failed -- skipping tests.\n");
}
goto finish;
}
/* We generate the file used for test 2 */
nerrs += generate_test_file( group_comm, mpi_rank, which_group );
if ( nerrs > 0 ) {
if ( mpi_rank == 0 ) {
HDprintf(" Test(2) file construction failed -- skipping tests.\n");
}
goto finish;
}
/* Now read the generated test file (stil using MPI_COMM_WORLD) */
nerrs += test_parallel_read( MPI_COMM_WORLD, mpi_rank, which_group);
if ( nerrs > 0 ) {
if ( mpi_rank == 0 ) {
HDprintf(" Parallel read test(1) failed -- skipping tests.\n");
}
goto finish;
}
/* Update the user on our progress so far. */
if ( mpi_rank == 0 ) {
HDprintf(" Test 1 of 2 succeeded\n");
HDprintf(" -- Starting multi-group parallel read test.\n");
}
/* run the 2nd set of tests */
nerrs += test_parallel_read(group_comm, mpi_rank, which_group);
if ( nerrs > 0 ) {
if ( mpi_rank == 0 ) {
HDprintf(" Multi-group read test(2) failed\n");
}
goto finish;
}
if ( mpi_rank == 0 ) {
HDprintf(" Test 2 of 2 succeeded\n");
}
finish:
if ((group_comm != MPI_COMM_NULL) &&
(MPI_Comm_free(&group_comm)) != MPI_SUCCESS) {
HDfprintf(stderr, "MPI_Comm_free failed!\n");
}
/* make sure all processes are finished before final report, cleanup
* and exit.
*/
MPI_Barrier(MPI_COMM_WORLD);
if ( mpi_rank == 0 ) { /* only process 0 reports */
const char *header = "Collective file open optimization tests";
HDfprintf(stdout, "===================================\n");
if ( nerrs > 0 ) {
HDfprintf(stdout, "***%s detected %d failures***\n", header, nerrs);
}
else {
HDfprintf(stdout, "%s finished with no failures\n", header);
}
HDfprintf(stdout, "===================================\n");
}
/* close HDF5 library */
if (H5close() != SUCCEED) {
HDfprintf(stdout, "H5close() failed. (Ignoring)\n");
}
/* MPI_Finalize must be called AFTER H5close which may use MPI calls */
MPI_Finalize();
/* cannot just return (nerrs) because exit code is limited to 1byte */
return((nerrs > 0) ? EXIT_FAILURE : EXIT_SUCCESS );
} /* main() */