hdf5/release_docs/RELEASE.txt
Egbert Eich b16ec83d4b
Check for overflow when calculating on-disk attribute data size (#2459)
* Remove duplicate code

Signed-off-by: Egbert Eich <eich@suse.com>

* Add test case for CVE-2021-37501

Bogus sizes in this test case causes the on-disk data size
calculation in H5O__attr_decode() to overflow so that the
calculated size becomes 0. This causes the read to overflow
and h5dump to segfault.
This test case was crafted, the test file was not directly
generated by HDF5.
Test case from:
https://github.com/ST4RF4LL/Something_Found/blob/main/HDF5_v1.13.0_h5dump_heap_overflow.md
2023-03-02 11:17:49 -06:00

722 lines
27 KiB
Plaintext

HDF5 version 1.15.0 currently under development
================================================================================
INTRODUCTION
============
This document describes the differences between this release and the previous
HDF5 release. It contains information on the platforms tested and known
problems in this release. For more details check the HISTORY*.txt files in the
HDF5 source.
Note that documentation in the links below will be updated at the time of each
final release.
Links to HDF5 documentation can be found on The HDF5 web page:
https://portal.hdfgroup.org/display/HDF5/HDF5
The official HDF5 releases can be obtained from:
https://www.hdfgroup.org/downloads/hdf5/
Changes from Release to Release and New Features in the HDF5-1.13.x release series
can be found at:
https://portal.hdfgroup.org/display/HDF5/Release+Specific+Information
If you have any questions or comments, please send them to the HDF Help Desk:
help@hdfgroup.org
CONTENTS
========
- New Features
- Support for new platforms and languages
- Bug Fixes since HDF5-1.13.3
- Platforms Tested
- Known Problems
- CMake vs. Autotools installations
New Features
============
Configuration:
-------------
- Added new option to build libaec and zlib inline with CMake.
Using the CMake FetchContent module, the external filters can populate
content at configure time via any method supported by the ExternalProject
module. Whereas ExternalProject_Add() downloads at build time, the
FetchContent module makes content available immediately, allowing the
configure step to use the content in commands like add_subdirectory(),
include() or file() operations.
The HDF options (and defaults) for using this are:
BUILD_SZIP_WITH_FETCHCONTENT:BOOL=OFF
LIBAEC_USE_LOCALCONTENT:BOOL=OFF
BUILD_ZLIB_WITH_FETCHCONTENT:BOOL=OFF
ZLIB_USE_LOCALCONTENT:BOOL=OFF
The CMake variables to control the path and file names:
LIBAEC_TGZ_ORIGPATH:STRING
LIBAEC_TGZ_ORIGNAME:STRING
ZLIB_TGZ_ORIGPATH:STRING
ZLIB_TGZ_ORIGNAME:STRING
See the CMakeFilters.cmake and config/cmake/cacheinit.cmake files for usage.
(ADB - 2023/02/21)
- Removal of MPE support
The ability to build with MPE instrumentation has been removed along with
the following configure options:
Autotools:
--with-mpe=
CMake has never supported building with MPE support.
(DER - 2022/11/08)
- Removal of dmalloc support
The ability to build with dmalloc support has been removed along with
the following configure options:
Autotools:
--with-dmalloc=
CMake:
HDF5_ENABLE_USING_DMALLOC
(DER - 2022/11/08)
- Removal of memory allocation sanity checks configure options
With the removal of the memory allocation sanity checks feature, the
following configure options are no longer necessary and have been
removed:
Autotools:
--enable-memory-alloc-sanity-check
CMake:
HDF5_MEMORY_ALLOC_SANITY_CHECK
HDF5_ENABLE_MEMORY_STATS
(DER - 2022/11/03)
Library:
--------
- Added a Subfiling VFD configuration file prefix environment variable
The Subfiling VFD now checks for values set in a new environment
variable "H5FD_SUBFILING_CONFIG_FILE_PREFIX" to determine if the
application has specified a pathname prefix to apply to the file
path for its configuration file. For example, this can be useful
for cases where the application wishes to write subfiles to a
machine's node-local storage while placing the subfiling configuration
file on a file system readable by all machine nodes.
(JTH - 2023/02/22)
- Overhauled the Virtual Object Layer (VOL)
The virtual object layer (VOL) was added in HDF5 1.12.0 but the initial
implementation required API-breaking changes to better support optional
operations and pass-through VOL connectors. The original VOL API is
now considered deprecated and VOL users and connector authors should
target the 1.14 VOL API.
The specific changes are too extensive to document in a release note, so
VOL users and connector authors should consult the updated VOL connector
author's guide and the 1.12-1.14 VOL migration guide.
(DER - 2022/12/28)
- H5VLquery_optional() signature change
The last parameter of this API call has changed from a pointer to hbool_t
to a pointer to uint64_t. Due to the changes in how optional operations
are handled in the 1.14 VOL API, we cannot make the old API call work
with the new scheme, so there is no API compatibility macro for it.
(DER - 2022/12/28)
- H5I_free_t callback signature change
In order to support asynchronous operations and future IDs, the signature
of the H5I_free_t callback has been modified to take a second 'request'
parameter. Due to the nature of the internal library changes, no API
compatibility macro is available for this change.
(DER - 2022/12/28)
- Fix for CVE-2019-8396
Malformed HDF5 files may have truncated content which does not match
the expected size. When H5O__pline_decode() attempts to decode these it
may read past the end of the allocated space leading to heap overflows
as bounds checking is incomplete.
The fix ensures each element is within bounds before reading.
(2022/11/09 - HDFFV-10712, CVE-2019-8396, GitHub #2209)
- Removal of memory allocation sanity checks feature
This feature added heap canaries and statistics tracking for internal
library memory operations. Unfortunately, the heap canaries caused
problems when library memory operations were mixed with standard C
library memory operations (such as in the filter pipeline, where
buffers may have to be reallocated). Since any platform with a C
compiler also usually has much more sophisticated memory sanity
checking tools than the HDF5 library provided (e.g., valgrind), we
have decided to to remove the feature entirely.
In addition to the configure changes described above, this also removes
the following from the public API:
H5get_alloc_stats()
H5_alloc_stats_t
(DER - 2022/11/03)
Parallel Library:
-----------------
-
Fortran Library:
----------------
-
C++ Library:
------------
-
Java Library:
-------------
-
Tools:
------
-
High-Level APIs:
----------------
-
C Packet Table API:
-------------------
-
Internal header file:
---------------------
-
Documentation:
--------------
- Ported the existing VOL Connector Author Guide document to doxygen.
Added new dox file, VOLConnGuide.dox.
(ADB - 2022/12/20)
Support for new platforms, languages and compilers
==================================================
-
Bug Fixes since HDF5-1.13.3 release
===================================
Library
-------
- Fix CVE-2021-37501 / GHSA-rfgw-5vq3-wrjf
Check for overflow when calculating on-disk attribute data size.
A bogus hdf5 file may contain dataspace messages with sizes
which lead to the on-disk data sizes to exceed what is addressable.
When calculating the size, make sure, the multiplication does not
overflow.
The test case was crafted in a way that the overflow caused the
size to be 0.
(EFE - 2023/02/11 GH-2458)
- Fixed an issue with collective metadata writes of global heap data
New test failures in parallel netCDF started occurring with debug
builds of HDF5 due to an assertion failure and this was reported in
GitHub issue #2433. The assertion failure began happening after the
collective metadata write pathway in the library was updated to use
vector I/O so that parallel-enabled HDF5 Virtual File Drivers (other
than the existing MPI I/O VFD) can support collective metadata writes.
The assertion failure was fixed by updating collective metadata writes
to treat global heap metadata as raw data, as done elsewhere in the
library.
(JTH - 2023/02/16, GH #2433)
- Seg fault on file close
h5debug fails at file close with core dump on a file that has an
illegal file size in its cache image. In H5F_dest(), the library
performs all the closing operations for the file and keeps track of
the error encountered when reading the file cache image.
At the end of the routine, it frees the file's file structure and
returns error. Due to the error return, the file object is not removed
from the ID node table. This eventually causes assertion failure in
H5VL__native_file_close() when the library finally exits and tries to
access that file object in the table for closing.
The closing routine, H5F_dest(), will not free the file structure if
there is error, keeping a valid file structure in the ID node table.
It will be freed later in H5VL__native_file_close() when the
library exits and terminates the file package.
(VC - 2022/12/14, HDFFV-11052, CVE-2020-10812)
- Fix CVE-2018-13867 / GHSA-j8jr-chrh-qfrf
Validate location (offset) of the accumulated metadata when comparing.
Initially, the accumulated metadata location is initialized to HADDR_UNDEF
- the highest available address. Bogus input files may provide a location
or size matching this value. Comparing this address against such bogus
values may provide false positives. Thus make sure, the value has been
initialized or fail the comparison early and let other parts of the
code deal with the bogus address/size.
Note: To avoid unnecessary checks, it is assumed that if the 'dirty'
member in the same structure is true the location is valid.
(EFE - 2022/10/10 GH-2230)
- Fix CVE-2018-16438 / GHSA-9xmm-cpf8-rgmx
Make sure info block for external links has at least 3 bytes.
According to the specification, the information block for external links
contains 1 byte of version/flag information and two 0 terminated strings
for the object linked to and the full path.
Although not very useful, the minimum string length for each (with
terminating 0) would be one byte.
Checking this helps to avoid SEGVs triggered by bogus files.
(EFE - 2022/10/09 GH-2233)
- CVE-2021-46244 / GHSA-vrxh-5gxg-rmhm
Compound datatypes may not have members of size 0
A member size of 0 may lead to an FPE later on as reported in
CVE-2021-46244. To avoid this, check for this as soon as the
member is decoded.
(EFE - 2022/10/05 GEH-2242)
- Fix CVE-2021-45830 / GHSA-5h2h-fjjr-x9m2
Make H5O__fsinfo_decode() more resilient to out-of-bound reads.
When decoding a file space info message in H5O__fsinfo_decode() make
sure each element to be decoded is still within the message. Malformed
hdf5 files may have trunkated content which does not match the
expected size. Checking this will prevent attempting to decode
unrelated data and heap overflows. So far, only free space manager
address data was checked before decoding.
(EFE - 2022/10/05 GH-2228)
- Fix CVE-2021-46242 / GHSA-x9pw-hh7v-wjpf
When evicting driver info block, NULL the corresponding entry.
Since H5C_expunge_entry() called (from H5AC_expunge_entry()) sets the flag
H5C__FLUSH_INVALIDATE_FLAG, the driver info block will be freed. NULLing
the pointer in f->shared->drvinfo will prevent use-after-free when it is
used in other functions (like H5F__dest()) - as other places will check
whether the pointer is initialized before using its value.
(EFE - 2022/09/29 GH-2254)
- Fix CVE-2021-45833 / GHSA-x57p-jwp6-4v79
Report error if dimensions of chunked storage in data layout < 2
For Data Layout Messages version 1 & 2 the specification state
that the value stored in the data field is 1 greater than the
number of dimensions in the dataspace. For version 3 this is
not explicitly stated but the implementation suggests it to be
the case.
Thus the set value needs to be at least 2. For dimensionality
< 2 an out-of-bounds access occurs.
(EFE - 2022/09/28 GH-2240)
- Fix CVE-2018-14031 / GHSA-2xc7-724c-r36j
Parent of enum datatype message must have the same size as the
enum datatype message itself.
Functions accessing the enumeration values use the size of the
enumeration datatype to determine the size of each element and
how much data to copy.
Thus the size of the enumeration and its parent need to match.
Check in H5O_dtype_decode_helper() to avoid unpleasant surprises
later.
(EFE - 2022/09/28 GH-2236)
- Fix CVE-2018-17439 / GHSA-vcxv-vp43-rch7
H5IMget_image_info(): Make sure to not exceed local array size
Malformed hdf5 files may provide more dimensions than the array dim[] in
H5IMget_image_info() is able to hold. Check number of elements first by calling
H5Sget_simple_extent_dims() with NULL for both 'dims' and 'maxdims' arguments.
This will cause the function to return only the number of dimensions.
The fix addresses a stack overflow on write.
(EFE - 2022/09/27 HDFFV-10589, GH-2226)
Java Library
------------
-
Configuration
-------------
- Correct the CMake generated pkg-config file
The pkg-config file generated by CMake had the order and placement of the
libraries wrong. Also added support for debug library names.
Changed the order of Libs.private libraries so that dependencies come after
dependents. Did not move the compression libraries into Requires.private
because there was not a way to determine if the compression libraries had
supported pkconfig files. Still recommend that the CMake config file method
be used for building projects with CMake.
(ADB - 2023/02/16 GH-1546,GH-2259)
- Remove Javadoc generation
The use of doxygen now supersedes the requirement to build javadocs. We do not
have the resources to continue to support two documentation methods and have
chosen doxygen as our standard.
(ADB - 2022/12/19)
- Change the default for building the high-level tools
The gif2hdf5 and hdf2gif high-level tools are deprecated and will be removed
in a future release. The default build setting for them have been changed from enabled
to disabled. A user can enable the build of these tools if needed.
autotools: --enable-hlgiftools
cmake: HDF5_BUILD_HL_GIF_TOOLS=ON
(ADB - 2022/12/16)
- Change the settings of the *pc files to use the correct format
The pkg-config files generated by CMake uses incorrect syntax for the 'Requires'
settings. Changing the set to use 'lib-name = version' instead 'lib-name-version'
fixes the issue
(ADB - 2022/12/06 HDFFV-11355)
- Move MPI libraries link from PRIVATE to PUBLIC
The install dependencies were not including the need for MPI libraries when
an application or library was built with the C library. Also updated the
CMake target link command to use the newer style MPI::MPI_C link variable.
(ADB - 2022/10/27)
Tools
-----
- Fix h5repack to only print output when verbose option is selected
When timing option was added to h5repack, the check for verbose was
incorrectly implemented.
(ADB - 2022/12/02, GH #2270)
Performance
-------------
-
Fortran API
-----------
-
High-Level Library
------------------
-
Fortran High-Level APIs
-----------------------
-
Documentation
-------------
-
F90 APIs
--------
-
C++ APIs
--------
-
Testing
-------
-
Platforms Tested
===================
Linux 5.16.14-200.fc35 GNU gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9)
#1 SMP x86_64 GNU/Linux GNU Fortran (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9)
Fedora35 clang version 13.0.0 (Fedora 13.0.0-3.fc35)
(cmake and autotools)
Linux 5.11.0-34-generic GNU gcc (GCC) 9.3.0-17ubuntu1
#36-Ubuntu SMP x86_64 GNU/Linux GNU Fortran (GCC) 9.3.0-17ubuntu1
Ubuntu 20.04 Ubuntu clang version 10.0.0-4
(cmake and autotools)
Linux 5.3.18-150300-cray_shasta_c cray-mpich/8.1.16
#1 SMP x86_64 GNU/Linux Cray clang 14.0.0
(crusher) GCC 11.2.0
(cmake)
Linux 4.14.0-115.35.1.1chaos openmpi 4.0.5
#1 SMP aarch64 GNU/Linux GCC 9.2.0 (ARM-build-5)
(stria) GCC 7.2.0 (Spack GCC)
(cmake)
Linux 4.14.0-115.35.1.3chaos spectrum-mpi/rolling-release
#1 SMP ppc64le GNU/Linux clang 12.0.1
(vortex) GCC 8.3.1
XL 16.1.1
(cmake)
Linux-4.14.0-115.21.2 spectrum-mpi/rolling-release
#1 SMP ppc64le GNU/Linux clang 12.0.1, 14.0.5
(lassen) GCC 8.3.1
XL 16.1.1.2, 2021,09.22, 2022.08.05
(cmake)
Linux-4.12.14-197.99-default cray-mpich/7.7.14
#1 SMP x86_64 GNU/Linux cce 12.0.3
(theta) GCC 11.2.0
llvm 9.0
Intel 19.1.2
Linux 3.10.0-1160.36.2.el7.ppc64 gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
#1 SMP ppc64be GNU/Linux g++ (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
Power8 (echidna) GNU Fortran (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
Linux 3.10.0-1160.24.1.el7 GNU C (gcc), Fortran (gfortran), C++ (g++)
#1 SMP x86_64 GNU/Linux compilers:
Centos7 Version 4.8.5 20150623 (Red Hat 4.8.5-4)
(jelly/kituo/moohan) Version 4.9.3, Version 5.3.0, Version 6.3.0,
Version 7.2.0, Version 8.3.0, Version 9.1.0
Intel(R) C (icc), C++ (icpc), Fortran (icc)
compilers:
Version 17.0.0.098 Build 20160721
GNU C (gcc) and C++ (g++) 4.8.5 compilers
with NAG Fortran Compiler Release 6.1(Tozai)
Intel(R) C (icc) and C++ (icpc) 17.0.0.098 compilers
with NAG Fortran Compiler Release 6.1(Tozai)
MPICH 3.1.4 compiled with GCC 4.9.3
MPICH 3.3 compiled with GCC 7.2.0
OpenMPI 2.1.6 compiled with icc 18.0.1
OpenMPI 3.1.3 and 4.0.0 compiled with GCC 7.2.0
PGI C, Fortran, C++ for 64-bit target on
x86_64;
Version 19.10-0
(autotools and cmake)
Linux-3.10.0-1160.0.0.1chaos openmpi-4.1.2
#1 SMP x86_64 GNU/Linux clang 6.0.0, 11.0.1
(quartz) GCC 7.3.0, 8.1.0
Intel 19.0.4, 2022.2, oneapi.2022.2
Linux-3.10.0-1160.71.1.1chaos openmpi/4.1
#1 SMP x86_64 GNU/Linux GCC 7.2.0
(skybridge) Intel/19.1
(cmake)
Linux-3.10.0-1160.66.1.1chaos openmpi/4.1
#1 SMP x86_64 GNU/Linux GCC 7.2.0
(attaway) Intel/19.1
(cmake)
Linux-3.10.0-1160.59.1.1chaos openmpi/4.1
#1 SMP x86_64 GNU/Linux Intel/19.1
(chama) (cmake)
macOS Apple M1 11.6 Apple clang version 12.0.5 (clang-1205.0.22.11)
Darwin 20.6.0 arm64 gfortran GNU Fortran (Homebrew GCC 11.2.0) 11.1.0
(macmini-m1) Intel icc/icpc/ifort version 2021.3.0 202106092021.3.0 20210609
macOS Big Sur 11.3.1 Apple clang version 12.0.5 (clang-1205.0.22.9)
Darwin 20.4.0 x86_64 gfortran GNU Fortran (Homebrew GCC 10.2.0_3) 10.2.0
(bigsur-1) Intel icc/icpc/ifort version 2021.2.0 20210228
macOS High Sierra 10.13.6 Apple LLVM version 10.0.0 (clang-1000.10.44.4)
64-bit gfortran GNU Fortran (GCC) 6.3.0
(bear) Intel icc/icpc/ifort version 19.0.4.233 20190416
macOS Sierra 10.12.6 Apple LLVM version 9.0.0 (clang-900.39.2)
64-bit gfortran GNU Fortran (GCC) 7.4.0
(kite) Intel icc/icpc/ifort version 17.0.2
Mac OS X El Capitan 10.11.6 Apple clang version 7.3.0 from Xcode 7.3
64-bit gfortran GNU Fortran (GCC) 5.2.0
(osx1011test) Intel icc/icpc/ifort version 16.0.2
Linux 2.6.32-573.22.1.el6 GNU C (gcc), Fortran (gfortran), C++ (g++)
#1 SMP x86_64 GNU/Linux compilers:
Centos6 Version 4.4.7 20120313
(platypus) Version 4.9.3, 5.3.0, 6.2.0
MPICH 3.1.4 compiled with GCC 4.9.3
PGI C, Fortran, C++ for 64-bit target on
x86_64;
Version 19.10-0
Windows 10 x64 Visual Studio 2015 w/ Intel C/C++/Fortran 18 (cmake)
Visual Studio 2017 w/ Intel C/C++/Fortran 19 (cmake)
Visual Studio 2019 w/ clang 12.0.0
with MSVC-like command-line (C/C++ only - cmake)
Visual Studio 2019 w/ Intel C/C++/Fortran oneAPI 2022 (cmake)
Visual Studio 2022 w/ clang 15.0.1
with MSVC-like command-line (C/C++ only - cmake)
Visual Studio 2022 w/ Intel C/C++/Fortran oneAPI 2022 (cmake)
Visual Studio 2019 w/ MSMPI 10.1 (C only - cmake)
Known Problems
==============
************************************************************
* _ *
* (_) *
* __ ____ _ _ __ _ __ _ _ __ __ _ *
* \ \ /\ / / _` | '__| '_ \| | '_ \ / _` | *
* \ V V / (_| | | | | | | | | | | (_| | *
* \_/\_/ \__,_|_| |_| |_|_|_| |_|\__, | *
* __/ | *
* |___/ *
* *
* Please refrain from running any program (including *
* HDF5 tests) which uses the subfiling VFD on Perlmutter *
* at the National Energy Research Scientific Computing *
* Center, NERSC. *
* Doing so may cause a system disruption due to subfiling *
* crashing Lustre. The sytem's Lustre bug is expected *
* to be resolved by 2023. *
* *
************************************************************
CMake files do not behave correctly with paths containing spaces.
Do not use spaces in paths because the required escaping for handling spaces
results in very complex and fragile build files.
ADB - 2019/05/07
At present, metadata cache images may not be generated by parallel
applications. Parallel applications can read files with metadata cache
images, but since this is a collective operation, a deadlock is possible
if one or more processes do not participate.
CPP ptable test fails on both VS2017 and VS2019 with Intel compiler, JIRA
issue: HDFFV-10628. This test will pass with VS2015 with Intel compiler.
The subsetting option in ph5diff currently will fail and should be avoided.
The subsetting option works correctly in serial h5diff.
Several tests currently fail on certain platforms:
MPI_TEST-t_bigio fails with spectrum-mpi on ppc64le platforms.
MPI_TEST-t_subfiling_vfd and MPI_TEST_EXAMPLES-ph5_subfiling fail with
cray-mpich on theta and with XL compilers on ppc64le platforms.
MPI_TEST_testphdf5_tldsc fails with cray-mpich 7.7 on cori and theta.
Known problems in previous releases can be found in the HISTORY*.txt files
in the HDF5 source. Please report any new problems found to
help@hdfgroup.org.
CMake vs. Autotools installations
=================================
While both build systems produce similar results, there are differences.
Each system produces the same set of folders on linux (only CMake works
on standard Windows); bin, include, lib and share. Autotools places the
COPYING and RELEASE.txt file in the root folder, CMake places them in
the share folder.
The bin folder contains the tools and the build scripts. Additionally, CMake
creates dynamic versions of the tools with the suffix "-shared". Autotools
installs one set of tools depending on the "--enable-shared" configuration
option.
build scripts
-------------
Autotools: h5c++, h5cc, h5fc
CMake: h5c++, h5cc, h5hlc++, h5hlcc
The include folder holds the header files and the fortran mod files. CMake
places the fortran mod files into separate shared and static subfolders,
while Autotools places one set of mod files into the include folder. Because
CMake produces a tools library, the header files for tools will appear in
the include folder.
The lib folder contains the library files, and CMake adds the pkgconfig
subfolder with the hdf5*.pc files used by the bin/build scripts created by
the CMake build. CMake separates the C interface code from the fortran code by
creating C-stub libraries for each Fortran library. In addition, only CMake
installs the tools library. The names of the szip libraries are different
between the build systems.
The share folder will have the most differences because CMake builds include
a number of CMake specific files for support of CMake's find_package and support
for the HDF5 Examples CMake project.
The issues with the gif tool are:
HDFFV-10592 CVE-2018-17433
HDFFV-10593 CVE-2018-17436
HDFFV-11048 CVE-2020-10809
These CVE issues have not yet been addressed and are avoided by not building
the gif tool by default. Enable building the High-Level tools with these options:
autotools: --enable-hltools
cmake: HDF5_BUILD_HL_TOOLS=ON