hdf5/test/mirror_vfd.c
Dana Robinson ca3659a014 HD prefix updates in src/ and test/
Adds missing HD prefixes to API calls in src and test.

Adds some extra processing to bin/checkposix to keep the noise
levels down when running the script (not comprehensive).
2020-10-23 17:13:05 -07:00

2641 lines
82 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Purpose: Test the Mirror VFD functionality.
*/
/* WARNING: The use of realpath() is probably system-dependent, as are
* other things here such as the socket calls.
* Notable to realpath() in particular is the use of "PATH_MAX", which
* apparently has some major potential issues if paths are abused.
* http://insanecoding.blogspot.com/2007/11/pathmax-simply-isnt.html
* so BE CAREFUL about the paths we throw around?
*/
#include "h5test.h"
#include "cache_common.h"
#include "genall5.h"
#ifdef H5_HAVE_MIRROR_VFD
#include "H5FDmirror_priv.h" /* Private header for the mirror VFD */
/* For future consideration, IP address and port number might be
* environment variables?
*/
#define SERVER_IP_ADDRESS "127.0.0.1"
/* Primary listening port on server. */
#define SERVER_HANDSHAKE_PORT 3000
#define DATABUFFER_SIZE 128
#define DSET_NAME_LEN 16
/* Parameters for the "large chunked dataset" writing */
#define MAX_DSET_COUNT 255
#define DSET_DIM 32
#define CHUNK_DIM 8
#define CONCURRENT_COUNT 3 /* Number of files in concurrent test */
/* Macro: LOGPRINT()
* Prints logging and debugging messages to the output stream based
* on the level of verbosity.
* 0 : no logging
* 1 : errors only
* 2 : details
* 3 : all
*/
#define DEFAULT_VERBOSITY 1
static unsigned int g_verbosity = DEFAULT_VERBOSITY;
/* Macro for selective debug printing / logging */
#define LOGPRINT(lvl, ...) \
do { \
if ((lvl) <= g_verbosity) { \
HDfprintf(g_log_stream, __VA_ARGS__); \
HDfflush(g_log_stream); \
} \
} while (0)
#define MIRROR_RW_DIR "mirror_rw/"
#define MIRROR_WO_DIR "mirror_wo/"
/* String buffer for error messages */
#define MIRR_MESG_SIZE 128
static char mesg[MIRR_MESG_SIZE + 1];
/* Convenience structure for passing file names via helper functions.
*/
struct mirrortest_filenames {
char rw[H5FD_SPLITTER_PATH_MAX + 1];
char wo[H5FD_SPLITTER_PATH_MAX + 1];
char log[H5FD_SPLITTER_PATH_MAX + 1];
};
static FILE *g_log_stream = NULL; /* initialized at runtime */
static herr_t _verify_datasets(unsigned min_dset, unsigned max_dset, hid_t *filespace_id, hid_t *dataset_id,
hid_t memspace_id);
static herr_t _create_chunking_ids(hid_t file_id, unsigned min_dset, unsigned max_dset, hsize_t *chunk_dims,
hsize_t *dset_dims, hid_t *dataspace_ids, hid_t *filespace_ids,
hid_t *dataset_ids, hid_t *memspace_id);
static herr_t _close_chunking_ids(unsigned min_dset, unsigned max_dset, hid_t *dataspace_ids,
hid_t *filespace_ids, hid_t *dataset_ids, hid_t *memspace_id);
static herr_t _populate_filepath(const char *dirname, const char *_basename, hid_t fapl_id, char *path_out,
hbool_t h5suffix);
static hid_t create_mirroring_split_fapl(const char *_basename, struct mirrortest_filenames *names);
static void mybzero(void *dest, size_t size);
/* ----------------------------------------------------------------------------
* Function: mybzero
*
* Purpose: Have bzero simplicity and abstraction in (possible) absence of
* it being available.
*
* Programmer: Jacob Smith
* 2020-03-30
* ----------------------------------------------------------------------------
*/
static void
mybzero(void *dest, size_t size)
{
size_t i = 0;
char * s = NULL;
HDassert(dest != NULL);
s = (char *)dest;
for (i = 0; i < size; i++) {
*(s + i) = 0;
}
} /* end mybzero() */
/* ----------------------------------------------------------------------------
* Function: _populate_filepath
*
* Purpose: Given a directory name and a base name, concatenate the two and
* run h5fixname() to get the "actual" path to the intented target.
* `h5suffix' should be FALSE to keep the base name unaltered;
* TRUE will append the '.h5' h5suffix to the basename...
* FALSE -> h5fixname_no_suffix(), TRUE -> h5fixname()
* <h5fixname_prefix> / <dirname> / <_basename> <h5prefix?>
*
* Programmer: Jacob Smith
* 2019-08-16
* ----------------------------------------------------------------------------
*/
static herr_t
_populate_filepath(const char *dirname, const char *_basename, hid_t fapl_id, char *path_out,
hbool_t h5suffix)
{
char _path[H5FD_SPLITTER_PATH_MAX];
if ((_basename == NULL) || (*_basename == 0) || (dirname == NULL) || (*dirname == 0) ||
(path_out == NULL)) {
TEST_ERROR;
}
if (HDsnprintf(_path, H5FD_SPLITTER_PATH_MAX, "%s%s%s", dirname,
(dirname[HDstrlen(dirname)] == '/') ? "" : "/", /* slash iff needed */
_basename) > H5FD_SPLITTER_PATH_MAX) {
TEST_ERROR;
}
if (h5suffix == TRUE) {
if (h5_fixname(_path, fapl_id, path_out, H5FD_SPLITTER_PATH_MAX) == NULL) {
TEST_ERROR;
}
}
else {
if (h5_fixname_no_suffix(_path, fapl_id, path_out, H5FD_SPLITTER_PATH_MAX) == NULL) {
TEST_ERROR;
}
}
return SUCCEED;
error:
return FAIL;
} /* end _populate_filepath() */
/* ---------------------------------------------------------------------------
* Function: build_paths
*
* Purpose: Convenience function to create the three file paths used in
* most mirror tests.
*
* Return: SUCCEED/FAIL
*
* Programmer: Jacob Smith
* 2019-08-16
* ---------------------------------------------------------------------------
*/
static herr_t
build_paths(const char *_basename, H5FD_splitter_vfd_config_t *splitter_config,
struct mirrortest_filenames *names)
{
char baselogname[H5FD_SPLITTER_PATH_MAX];
if (_populate_filepath(MIRROR_RW_DIR, _basename, splitter_config->rw_fapl_id, names->rw, TRUE) == FAIL) {
TEST_ERROR;
}
if (_populate_filepath(MIRROR_WO_DIR, _basename, splitter_config->wo_fapl_id, names->wo, TRUE) == FAIL) {
TEST_ERROR;
}
if (_basename == NULL || *_basename == 0)
return FAIL;
if (HDsnprintf(baselogname, H5FD_SPLITTER_PATH_MAX, "%s_err.log", _basename) > H5FD_SPLITTER_PATH_MAX) {
TEST_ERROR;
}
if (_populate_filepath(MIRROR_WO_DIR, baselogname, splitter_config->wo_fapl_id, names->log, FALSE) ==
FAIL) {
TEST_ERROR;
}
return SUCCEED;
error:
return FAIL;
} /* end build_paths() */
/* ---------------------------------------------------------------------------
* Function: test_fapl_configuration
*
* Purpose: Test FAPL configuration and examination.
*
* Return: Success: 0
* Failure: -1
*
* Programmer: Jacob Smith
* 2019-03-12
* ---------------------------------------------------------------------------
*/
static int
test_fapl_configuration(void)
{
hid_t fapl_id;
H5FD_mirror_fapl_t mirror_conf = {
H5FD_MIRROR_FAPL_MAGIC, /* magic */
H5FD_MIRROR_CURR_FAPL_T_VERSION, /* version */
SERVER_HANDSHAKE_PORT, /* handhake_port */
SERVER_IP_ADDRESS, /* remote_ip "IP address" */
};
H5FD_mirror_fapl_t fa_out = {0, 0, 0, ""};
TESTING("Mirror fapl configuration (set/get)");
fapl_id = H5Pcreate(H5P_FILE_ACCESS);
if (H5I_INVALID_HID == fapl_id) {
TEST_ERROR;
}
if (H5Pset_fapl_mirror(fapl_id, &mirror_conf) == FAIL) {
TEST_ERROR;
}
if (H5Pget_fapl_mirror(fapl_id, &fa_out) == FAIL) {
TEST_ERROR;
}
if (H5FD_MIRROR_FAPL_MAGIC != fa_out.magic) {
TEST_ERROR;
}
if (H5FD_MIRROR_CURR_FAPL_T_VERSION != fa_out.version) {
TEST_ERROR;
}
if (SERVER_HANDSHAKE_PORT != fa_out.handshake_port) {
TEST_ERROR;
}
if (HDstrncmp(SERVER_IP_ADDRESS, (const char *)fa_out.remote_ip, H5FD_MIRROR_MAX_IP_LEN)) {
TEST_ERROR;
}
if (H5Pclose(fapl_id) == FAIL) {
TEST_ERROR;
}
PASSED();
return 0;
error:
if (H5I_INVALID_HID != fapl_id) {
(void)H5Pclose(fapl_id);
}
return -1;
} /* end test_fapl_configuration() */
#define PRINT_BUFFER_DIFF(act, exp, len) \
do { \
size_t _x = 0; \
while ((act)[_x] == (exp)[_x]) { \
_x++; \
} \
if (_x != (len)) { \
size_t _y = 0; \
HDprintf("First bytes differ at %zu\n", _x); \
HDprintf("exp "); \
for (_y = _x; _y < (len); _y++) { \
HDprintf("%02X", (unsigned char)(exp)[_y]); \
} \
HDprintf("\nact "); \
for (_y = _x; _y < (len); _y++) { \
HDprintf("%02X", (unsigned char)(act)[_y]); \
} \
HDprintf("\n"); \
} \
} while (0); /* end PRINT_BUFFER_DIFF */
/* ---------------------------------------------------------------------------
* Function: test_xmit_encode_decode
*
* Purpose: Test byte-encoding operations for network transport.
*
* Return: Success: 0
* Failure: -1
*
* Programmer: Jacob Smith
* 2020-02-02
* ---------------------------------------------------------------------------
*/
static int
test_xmit_encode_decode(void)
{
H5FD_mirror_xmit_t xmit_mock; /* re-used header in various xmit tests */
TESTING("Mirror encode/decode of xmit elements");
/* Set bogus values matching expected; encoding doesn't care
* Use sequential values to easily generate the expected buffer with a
* for loop.
*/
xmit_mock.magic = 0x00010203;
xmit_mock.version = 0x04;
xmit_mock.session_token = 0x05060708;
xmit_mock.xmit_count = 0x090A0B0C;
xmit_mock.op = 0x0D;
/* Test uint8_t encode/decode
*/
do {
unsigned char buf[8];
unsigned char expected[8];
const uint8_t v = 200;
unsigned char out = 0;
/* Start of buffer uint8_t
*/
mybzero(buf, 8);
mybzero(expected, 8);
expected[0] = 200;
out = 0;
if (H5FD__mirror_xmit_encode_uint8(buf, v) != 1) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, 8);
TEST_ERROR;
}
if (H5FD__mirror_xmit_decode_uint8(&out, buf) != 1) {
TEST_ERROR;
}
if (v != out) {
TEST_ERROR;
}
/* Middle of buffer uint8_t
*/
mybzero(buf, 8);
mybzero(expected, 8);
expected[3] = v;
out = 0;
if (H5FD__mirror_xmit_encode_uint8((buf + 3), v) != 1) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, 8);
TEST_ERROR;
}
if (H5FD__mirror_xmit_decode_uint8(&out, (buf + 3)) != 1) {
TEST_ERROR;
}
if (v != out) {
TEST_ERROR;
}
/* End of buffer uint8_t
*/
mybzero(buf, 8);
mybzero(expected, 8);
expected[7] = v;
out = 0;
if (H5FD__mirror_xmit_encode_uint8((buf + 7), v) != 1) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, 8);
TEST_ERROR;
}
if (H5FD__mirror_xmit_decode_uint8(&out, (buf + 7)) != 1) {
TEST_ERROR;
}
if (v != out) {
TEST_ERROR;
}
} while (0); /* end uint8_t en/decode */
/* Test uint16_t encode/decode
*/
do {
unsigned char buf[8];
unsigned char expected[8];
const uint16_t v = 0x8F02;
uint16_t out = 0;
/* Start of buffer uint16_t
*/
mybzero(buf, 8);
mybzero(expected, 8);
expected[0] = 0x8F;
expected[1] = 0x02;
out = 0;
if (H5FD__mirror_xmit_encode_uint16(buf, v) != 2) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, 8);
TEST_ERROR;
}
if (H5FD__mirror_xmit_decode_uint16(&out, buf) != 2) {
TEST_ERROR;
}
if (out != v) {
TEST_ERROR;
}
/* Middle of buffer uint16_t
*/
mybzero(buf, 8);
mybzero(expected, 8);
expected[3] = 0x8F;
expected[4] = 0x02;
out = 0;
if (H5FD__mirror_xmit_encode_uint16((buf + 3), v) != 2) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, 8);
TEST_ERROR;
}
if (H5FD__mirror_xmit_decode_uint16(&out, (buf + 3)) != 2) {
TEST_ERROR;
}
if (out != v) {
TEST_ERROR;
}
/* slice */
if (H5FD__mirror_xmit_decode_uint16(&out, (buf + 4)) != 2) {
TEST_ERROR;
}
if (out != 0x0200) {
TEST_ERROR;
}
/* End of buffer uint16_t
*/
mybzero(buf, 8);
mybzero(expected, 8);
expected[6] = 0x8F;
expected[7] = 0x02;
out = 0;
if (H5FD__mirror_xmit_encode_uint16((buf + 6), v) != 2) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, 8);
TEST_ERROR;
}
if (H5FD__mirror_xmit_decode_uint16(&out, (buf + 6)) != 2) {
TEST_ERROR;
}
if (out != v) {
TEST_ERROR;
}
} while (0); /* end uint16_t en/decode */
/* Test uint32_t encode/decode
*/
do {
unsigned char buf[8];
unsigned char expected[8];
const uint32_t v = 0x8F020048;
uint32_t out = 0;
/* Start of buffer uint32_t
*/
mybzero(buf, 8);
mybzero(expected, 8);
expected[0] = 0x8F;
expected[1] = 0x02;
expected[2] = 0x00;
expected[3] = 0x48;
out = 0;
if (H5FD__mirror_xmit_encode_uint32(buf, v) != 4) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, 8);
TEST_ERROR;
}
if (H5FD__mirror_xmit_decode_uint32(&out, buf) != 4) {
TEST_ERROR;
}
if (out != v) {
TEST_ERROR;
}
/* Middle of buffer uint32_t
*/
mybzero(buf, 8);
mybzero(expected, 8);
expected[3] = 0x8F;
expected[4] = 0x02;
expected[5] = 0x00;
expected[6] = 0x48;
out = 0;
if (H5FD__mirror_xmit_encode_uint32((buf + 3), v) != 4) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, 8);
TEST_ERROR;
}
if (H5FD__mirror_xmit_decode_uint32(&out, (buf + 3)) != 4) {
TEST_ERROR;
}
if (out != v) {
TEST_ERROR;
}
/* slice */
if (H5FD__mirror_xmit_decode_uint32(&out, (buf + 4)) != 4) {
TEST_ERROR;
}
if (out != 0x02004800) {
TEST_ERROR;
}
/* End of buffer uint32_t
*/
mybzero(buf, 8);
mybzero(expected, 8);
expected[4] = 0x8F;
expected[5] = 0x02;
expected[6] = 0x00;
expected[7] = 0x48;
out = 0;
if (H5FD__mirror_xmit_encode_uint32((buf + 4), v) != 4) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, 8);
TEST_ERROR;
}
if (H5FD__mirror_xmit_decode_uint32(&out, (buf + 4)) != 4) {
TEST_ERROR;
}
if (out != v) {
TEST_ERROR;
}
} while (0); /* end uint32_t en/decode */
/* Test uint64_t encode/decode
*/
do {
unsigned char buf[16];
unsigned char expected[16];
const uint64_t v = 0x90DCBE17939CE4BB;
uint64_t out = 0;
/* Start of buffer uint64_t
*/
mybzero(buf, 16);
mybzero(expected, 16);
expected[0] = 0x90;
expected[1] = 0xDC;
expected[2] = 0xBE;
expected[3] = 0x17;
expected[4] = 0x93;
expected[5] = 0x9C;
expected[6] = 0xE4;
expected[7] = 0xBB;
out = 0;
if (H5FD__mirror_xmit_encode_uint64(buf, v) != 8) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, 16) != 0) {
PRINT_BUFFER_DIFF(buf, expected, 16);
TEST_ERROR;
}
if (H5FD__mirror_xmit_decode_uint64(&out, buf) != 8) {
TEST_ERROR;
}
if (out != v) {
TEST_ERROR;
}
/* Middle of buffer uint64_t
*/
mybzero(buf, 16);
mybzero(expected, 16);
expected[3] = 0x90;
expected[4] = 0xDC;
expected[5] = 0xBE;
expected[6] = 0x17;
expected[7] = 0x93;
expected[8] = 0x9C;
expected[9] = 0xE4;
expected[10] = 0xBB;
out = 0;
if (H5FD__mirror_xmit_encode_uint64((buf + 3), v) != 8) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, 16) != 0) {
PRINT_BUFFER_DIFF(buf, expected, 16);
TEST_ERROR;
}
if (H5FD__mirror_xmit_decode_uint64(&out, (buf + 3)) != 8) {
TEST_ERROR;
}
if (out != v) {
TEST_ERROR;
}
/* slice */
if (H5FD__mirror_xmit_decode_uint64(&out, (buf + 6)) != 8) {
TEST_ERROR;
}
if (out != 0x17939CE4BB000000) {
TEST_ERROR;
}
/* End of buffer uint64_t
*/
mybzero(buf, 16);
mybzero(expected, 16);
expected[8] = 0x90;
expected[9] = 0xDC;
expected[10] = 0xBE;
expected[11] = 0x17;
expected[12] = 0x93;
expected[13] = 0x9C;
expected[14] = 0xE4;
expected[15] = 0xBB;
out = 0;
if (H5FD__mirror_xmit_encode_uint64((buf + 8), v) != 8) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, 16) != 0) {
PRINT_BUFFER_DIFF(buf, expected, 16);
TEST_ERROR;
}
if (H5FD__mirror_xmit_decode_uint64(&out, (buf + 8)) != 8) {
TEST_ERROR;
}
if (out != v) {
TEST_ERROR;
}
} while (0); /* end uint64_t en/decode */
/* Test xmit header structure encode/decode
* Write bogus but easily verifiable data to inside a buffer, and compare.
* Then decode the buffer and compare the structure contents.
* Then repeat from a different offset in the buffer and compare.
*/
do {
unsigned char buf[H5FD_MIRROR_XMIT_HEADER_SIZE + 8];
unsigned char expected[H5FD_MIRROR_XMIT_HEADER_SIZE + 8];
H5FD_mirror_xmit_t xmit_out;
size_t i = 0;
/* sanity check */
if (14 != H5FD_MIRROR_XMIT_HEADER_SIZE) {
FAIL_PUTS_ERROR("Header size definition does not match test\n");
}
/* Populate the expected buffer; expect end padding of 0xFF
*/
HDmemset(expected, 0xFF, H5FD_MIRROR_XMIT_HEADER_SIZE + 8);
for (i = 0; i < H5FD_MIRROR_XMIT_HEADER_SIZE; i++) {
expected[i + 2] = (unsigned char)i;
}
/* Encode, and compare buffer contents
* Initial buffer is filled with 0xFF to match expected padding
*/
HDmemset(buf, 0xFF, H5FD_MIRROR_XMIT_HEADER_SIZE + 8);
if (H5FD_mirror_xmit_encode_header((buf + 2), &xmit_mock) != H5FD_MIRROR_XMIT_HEADER_SIZE) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, H5FD_MIRROR_XMIT_HEADER_SIZE + 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, H5FD_MIRROR_XMIT_HEADER_SIZE + 8);
TEST_ERROR;
}
/* Decode from buffer
*/
if (H5FD_mirror_xmit_decode_header(&xmit_out, (buf + 2)) != H5FD_MIRROR_XMIT_HEADER_SIZE) {
TEST_ERROR;
}
if (xmit_out.magic != xmit_mock.magic)
TEST_ERROR;
if (xmit_out.version != xmit_mock.version)
TEST_ERROR;
if (xmit_out.session_token != xmit_mock.session_token)
TEST_ERROR;
if (xmit_out.xmit_count != xmit_mock.xmit_count)
TEST_ERROR;
if (xmit_out.op != xmit_mock.op)
TEST_ERROR;
/* Decode from different offset in buffer
* Observe changes when ingesting the padding
*/
if (H5FD_mirror_xmit_decode_header(&xmit_out, (buf)) != H5FD_MIRROR_XMIT_HEADER_SIZE) {
TEST_ERROR;
}
if (xmit_out.magic != 0xFFFF0001)
TEST_ERROR;
if (xmit_out.version != 0x02)
TEST_ERROR;
if (xmit_out.session_token != 0x03040506)
TEST_ERROR;
if (xmit_out.xmit_count != 0x0708090A)
TEST_ERROR;
if (xmit_out.op != 0x0B)
TEST_ERROR;
} while (0); /* end xmit header en/decode */
/* Test xmit set-eoa structure encode/decode
* Write bogus but easily verifiable data to inside a buffer, and compare.
* Then decode the buffer and compare the structure contents.
* Then repeat from a different offset in the buffer and compare.
*/
do {
unsigned char buf[H5FD_MIRROR_XMIT_EOA_SIZE + 8];
unsigned char expected[H5FD_MIRROR_XMIT_EOA_SIZE + 8];
H5FD_mirror_xmit_eoa_t xmit_in;
H5FD_mirror_xmit_eoa_t xmit_out;
size_t i = 0;
/* sanity check */
if ((14 + 9) != H5FD_MIRROR_XMIT_EOA_SIZE) {
FAIL_PUTS_ERROR("Header size definition does not match test\n");
}
if (xmit_mock.op != 0x0D) {
FAIL_PUTS_ERROR("shared header structure is not in expected state");
}
/* Populate the expected buffer; expect end padding of 0xFF
*/
HDmemset(expected, 0xFF, H5FD_MIRROR_XMIT_EOA_SIZE + 8);
for (i = 0; i < H5FD_MIRROR_XMIT_EOA_SIZE; i++) {
expected[i + 2] = (unsigned char)i;
}
/* Set xmit_in
*/
xmit_in.pub = xmit_mock; /* shared/common */
xmit_in.type = 0x0E;
xmit_in.eoa_addr = 0x0F10111213141516;
/* Encode, and compare buffer contents
* Initial buffer is filled with 0xFF to match expected padding
*/
HDmemset(buf, 0xFF, H5FD_MIRROR_XMIT_EOA_SIZE + 8);
if (H5FD_mirror_xmit_encode_set_eoa((buf + 2), &xmit_in) != H5FD_MIRROR_XMIT_EOA_SIZE) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, H5FD_MIRROR_XMIT_EOA_SIZE + 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, H5FD_MIRROR_XMIT_EOA_SIZE + 8);
TEST_ERROR;
}
/* Decode from buffer
*/
if (H5FD_mirror_xmit_decode_set_eoa(&xmit_out, (buf + 2)) != H5FD_MIRROR_XMIT_EOA_SIZE) {
TEST_ERROR;
}
if (xmit_out.pub.magic != xmit_mock.magic)
TEST_ERROR;
if (xmit_out.pub.version != xmit_mock.version)
TEST_ERROR;
if (xmit_out.pub.session_token != xmit_mock.session_token)
TEST_ERROR;
if (xmit_out.pub.xmit_count != xmit_mock.xmit_count)
TEST_ERROR;
if (xmit_out.pub.op != xmit_mock.op)
TEST_ERROR;
if (xmit_out.type != 0x0E)
TEST_ERROR;
if (xmit_out.eoa_addr != 0x0F10111213141516)
TEST_ERROR;
/* Decode from different offset in buffer
* Observe changes when ingesting the padding
*/
if (H5FD_mirror_xmit_decode_set_eoa(&xmit_out, (buf)) != H5FD_MIRROR_XMIT_EOA_SIZE) {
TEST_ERROR;
}
if (xmit_out.pub.magic != 0xFFFF0001)
TEST_ERROR;
if (xmit_out.pub.version != 0x02)
TEST_ERROR;
if (xmit_out.pub.session_token != 0x03040506)
TEST_ERROR;
if (xmit_out.pub.xmit_count != 0x0708090A)
TEST_ERROR;
if (xmit_out.pub.op != 0x0B)
TEST_ERROR;
if (xmit_out.type != 0x0C)
TEST_ERROR;
if (xmit_out.eoa_addr != 0x0D0E0F1011121314)
TEST_ERROR;
} while (0); /* end xmit set-eoa en/decode */
/* Test xmit lock structure encode/decode
* Write bogus but easily verifiable data to inside a buffer, and compare.
* Then decode the buffer and compare the structure contents.
* Then repeat from a different offset in the buffer and compare.
*/
do {
unsigned char buf[H5FD_MIRROR_XMIT_LOCK_SIZE + 8];
unsigned char expected[H5FD_MIRROR_XMIT_LOCK_SIZE + 8];
H5FD_mirror_xmit_lock_t xmit_in;
H5FD_mirror_xmit_lock_t xmit_out;
size_t i = 0;
/* sanity check */
if ((14 + 8) != H5FD_MIRROR_XMIT_LOCK_SIZE) {
FAIL_PUTS_ERROR("Header size definition does not match test\n");
}
if (xmit_mock.op != 0x0D) {
FAIL_PUTS_ERROR("shared header structure is not in expected state");
}
/* Populate the expected buffer; expect end padding of 0xFF
*/
HDmemset(expected, 0xFF, H5FD_MIRROR_XMIT_LOCK_SIZE + 8);
for (i = 0; i < H5FD_MIRROR_XMIT_LOCK_SIZE; i++) {
expected[i + 2] = (unsigned char)i;
}
/* Set xmit_in
*/
xmit_in.pub = xmit_mock; /* shared/common */
xmit_in.rw = 0x0E0F101112131415;
/* Encode, and compare buffer contents
* Initial buffer is filled with 0xFF to match expected padding
*/
HDmemset(buf, 0xFF, H5FD_MIRROR_XMIT_LOCK_SIZE + 8);
if (H5FD_mirror_xmit_encode_lock((buf + 2), &xmit_in) != H5FD_MIRROR_XMIT_LOCK_SIZE) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, H5FD_MIRROR_XMIT_LOCK_SIZE + 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, H5FD_MIRROR_XMIT_LOCK_SIZE + 8);
TEST_ERROR;
}
/* Decode from buffer
*/
if (H5FD_mirror_xmit_decode_lock(&xmit_out, (buf + 2)) != H5FD_MIRROR_XMIT_LOCK_SIZE) {
TEST_ERROR;
}
if (xmit_out.pub.magic != xmit_mock.magic)
TEST_ERROR;
if (xmit_out.pub.version != xmit_mock.version)
TEST_ERROR;
if (xmit_out.pub.session_token != xmit_mock.session_token)
TEST_ERROR;
if (xmit_out.pub.xmit_count != xmit_mock.xmit_count)
TEST_ERROR;
if (xmit_out.pub.op != xmit_mock.op)
TEST_ERROR;
if (xmit_out.rw != 0x0E0F101112131415)
TEST_ERROR;
/* Decode from different offset in buffer
* Observe changes when ingesting the padding
*/
if (H5FD_mirror_xmit_decode_lock(&xmit_out, (buf)) != H5FD_MIRROR_XMIT_LOCK_SIZE) {
TEST_ERROR;
}
if (xmit_out.pub.magic != 0xFFFF0001)
TEST_ERROR;
if (xmit_out.pub.version != 0x02)
TEST_ERROR;
if (xmit_out.pub.session_token != 0x03040506)
TEST_ERROR;
if (xmit_out.pub.xmit_count != 0x0708090A)
TEST_ERROR;
if (xmit_out.pub.op != 0x0B)
TEST_ERROR;
if (xmit_out.rw != 0x0C0D0E0F10111213)
TEST_ERROR;
} while (0); /* end xmit lock en/decode */
/* Test xmit open structure encode/decode
* Write bogus but easily verifiable data to inside a buffer, and compare.
* Then decode the buffer and compare the structure contents.
* Then repeat from a different offset in the buffer and compare.
*
* Verifies that the first zero character in the filepath will end the
* string, with all following bytes in the encoded buffer being zeroed.
*/
do {
unsigned char buf[H5FD_MIRROR_XMIT_OPEN_SIZE + 8];
unsigned char expected[H5FD_MIRROR_XMIT_OPEN_SIZE + 8];
H5FD_mirror_xmit_open_t xmit_in;
H5FD_mirror_xmit_open_t xmit_out;
size_t i = 0;
/* sanity check */
if ((14 + 20 + 4097) != H5FD_MIRROR_XMIT_OPEN_SIZE) {
FAIL_PUTS_ERROR("Header size definition does not match test\n");
}
if (xmit_mock.op != 0x0D) {
FAIL_PUTS_ERROR("shared header structure is not in expected state");
}
/* Populate the expected buffer; expect end padding of 0xFF
*/
HDmemset(expected, 0xFF, H5FD_MIRROR_XMIT_OPEN_SIZE + 8);
for (i = 0; i < H5FD_MIRROR_XMIT_OPEN_SIZE; i++) {
/* 0x100 is "zero" in a byte, so encode will treat it as a NULL-
* terminator in the filepath string. Expect all zeroes following.
*/
expected[i + 2] = (i > 0xFF) ? 0 : (unsigned char)i;
}
/* Set xmit_in
*/
xmit_in.pub = xmit_mock; /* shared/common */
xmit_in.flags = 0x0E0F1011;
xmit_in.maxaddr = 0x1213141516171819;
xmit_in.size_t_blob = 0x1A1B1C1D1E1F2021;
for (i = 0x22; i < H5FD_MIRROR_XMIT_FILEPATH_MAX + 0x22; i++) {
/* nonzero values repeat after 0x100, but will not be encoded */
xmit_in.filename[i - 0x22] = (char)(i % 0x100);
}
xmit_in.filename[H5FD_MIRROR_XMIT_FILEPATH_MAX - 1] = 0;
/* Encode, and compare buffer contents
* Initial buffer is filled with 0xFF to match expected padding
*/
HDmemset(buf, 0xFF, H5FD_MIRROR_XMIT_OPEN_SIZE + 8);
if (H5FD_mirror_xmit_encode_open((buf + 2), &xmit_in) != H5FD_MIRROR_XMIT_OPEN_SIZE) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, H5FD_MIRROR_XMIT_OPEN_SIZE + 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, H5FD_MIRROR_XMIT_OPEN_SIZE + 8);
TEST_ERROR;
}
/* Decode from buffer
*/
if (H5FD_mirror_xmit_decode_open(&xmit_out, (buf + 2)) != H5FD_MIRROR_XMIT_OPEN_SIZE) {
TEST_ERROR;
}
if (xmit_out.pub.magic != xmit_mock.magic)
TEST_ERROR;
if (xmit_out.pub.version != xmit_mock.version)
TEST_ERROR;
if (xmit_out.pub.session_token != xmit_mock.session_token)
TEST_ERROR;
if (xmit_out.pub.xmit_count != xmit_mock.xmit_count)
TEST_ERROR;
if (xmit_out.pub.op != xmit_mock.op)
TEST_ERROR;
if (xmit_out.flags != xmit_in.flags)
TEST_ERROR;
if (xmit_out.maxaddr != xmit_in.maxaddr)
TEST_ERROR;
if (xmit_out.size_t_blob != xmit_in.size_t_blob)
TEST_ERROR;
if (HDstrncmp(xmit_out.filename, xmit_in.filename, H5FD_MIRROR_XMIT_FILEPATH_MAX) != 0) {
PRINT_BUFFER_DIFF(xmit_out.filename, xmit_in.filename, H5FD_MIRROR_XMIT_FILEPATH_MAX);
TEST_ERROR;
}
/* Decode from different offset in buffer
* Observe changes when ingesting the padding
*/
if (H5FD_mirror_xmit_decode_open(&xmit_out, (buf)) != H5FD_MIRROR_XMIT_OPEN_SIZE) {
TEST_ERROR;
}
if (xmit_out.pub.magic != 0xFFFF0001)
TEST_ERROR;
if (xmit_out.pub.version != 0x02)
TEST_ERROR;
if (xmit_out.pub.session_token != 0x03040506)
TEST_ERROR;
if (xmit_out.pub.xmit_count != 0x0708090A)
TEST_ERROR;
if (xmit_out.pub.op != 0x0B)
TEST_ERROR;
if (xmit_out.flags != 0x0C0D0E0F)
TEST_ERROR;
if (xmit_out.maxaddr != 0x1011121314151617)
TEST_ERROR;
if (xmit_out.size_t_blob != 0x18191A1B1C1D1E1F)
TEST_ERROR;
/* update expected "filepath" in structure */
for (i = 0x20; i < H5FD_MIRROR_XMIT_FILEPATH_MAX + 0x20; i++) {
xmit_in.filename[i - 0x20] = (i > 0xFF) ? 0 : (char)i;
}
if (HDstrncmp(xmit_out.filename, xmit_in.filename, H5FD_MIRROR_XMIT_FILEPATH_MAX) != 0) {
PRINT_BUFFER_DIFF(xmit_out.filename, xmit_in.filename, H5FD_MIRROR_XMIT_FILEPATH_MAX);
TEST_ERROR;
}
} while (0); /* end xmit open en/decode */
/* Test xmit reply structure encode/decode
* Write bogus but easily verifiable data to inside a buffer, and compare.
* Then decode the buffer and compare the structure contents.
* Then repeat from a different offset in the buffer and compare.
*
* Verifies that the first zero character in the filepath will end the
* string, with all following bytes in the encoded buffer being zeroed.
*/
do {
unsigned char buf[H5FD_MIRROR_XMIT_REPLY_SIZE + 8];
unsigned char expected[H5FD_MIRROR_XMIT_REPLY_SIZE + 8];
H5FD_mirror_xmit_reply_t xmit_in;
H5FD_mirror_xmit_reply_t xmit_out;
size_t i = 0;
/* sanity check */
if ((14 + 4 + 256) != H5FD_MIRROR_XMIT_REPLY_SIZE) {
FAIL_PUTS_ERROR("Header size definition does not match test\n");
}
if (xmit_mock.op != 0x0D) {
FAIL_PUTS_ERROR("shared header structure is not in expected state");
}
/* Populate the expected buffer; expect end padding of 0xFF
*/
HDmemset(expected, 0xFF, H5FD_MIRROR_XMIT_REPLY_SIZE + 8);
for (i = 0; i < H5FD_MIRROR_XMIT_REPLY_SIZE; i++) {
/* 0x100 is "zero" in a byte, so encode will treat it as a NULL-
* terminator in the filepath string. Expect all zeroes following.
*/
expected[i + 2] = (i > 0xFF) ? 0 : (unsigned char)i;
}
/* Set xmit_in
*/
xmit_in.pub = xmit_mock; /* shared/common */
xmit_in.status = 0x0E0F1011;
for (i = 0x12; i < H5FD_MIRROR_STATUS_MESSAGE_MAX + 0x12; i++) {
/* nonzero values repeat after 0x100, but will not be encoded */
xmit_in.message[i - 0x12] = (char)(i % 0x100);
}
xmit_in.message[H5FD_MIRROR_STATUS_MESSAGE_MAX - 1] = 0;
/* Encode, and compare buffer contents
* Initial buffer is filled with 0xFF to match expected padding
*/
HDmemset(buf, 0xFF, H5FD_MIRROR_XMIT_REPLY_SIZE + 8);
if (H5FD_mirror_xmit_encode_reply((buf + 2), &xmit_in) != H5FD_MIRROR_XMIT_REPLY_SIZE) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, H5FD_MIRROR_XMIT_REPLY_SIZE + 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, H5FD_MIRROR_XMIT_REPLY_SIZE + 8);
TEST_ERROR;
}
/* Decode from buffer
*/
if (H5FD_mirror_xmit_decode_reply(&xmit_out, (buf + 2)) != H5FD_MIRROR_XMIT_REPLY_SIZE) {
TEST_ERROR;
}
if (xmit_out.pub.magic != xmit_mock.magic)
TEST_ERROR;
if (xmit_out.pub.version != xmit_mock.version)
TEST_ERROR;
if (xmit_out.pub.session_token != xmit_mock.session_token)
TEST_ERROR;
if (xmit_out.pub.xmit_count != xmit_mock.xmit_count)
TEST_ERROR;
if (xmit_out.pub.op != xmit_mock.op)
TEST_ERROR;
if (xmit_out.status != xmit_in.status)
TEST_ERROR;
if (HDstrncmp(xmit_out.message, xmit_in.message, H5FD_MIRROR_STATUS_MESSAGE_MAX) != 0) {
PRINT_BUFFER_DIFF(xmit_out.message, xmit_in.message, H5FD_MIRROR_STATUS_MESSAGE_MAX);
TEST_ERROR;
}
/* Decode from different offset in buffer
* Observe changes when ingesting the padding
*/
if (H5FD_mirror_xmit_decode_reply(&xmit_out, (buf)) != H5FD_MIRROR_XMIT_REPLY_SIZE) {
TEST_ERROR;
}
if (xmit_out.pub.magic != 0xFFFF0001)
TEST_ERROR;
if (xmit_out.pub.version != 0x02)
TEST_ERROR;
if (xmit_out.pub.session_token != 0x03040506)
TEST_ERROR;
if (xmit_out.pub.xmit_count != 0x0708090A)
TEST_ERROR;
if (xmit_out.pub.op != 0x0B)
TEST_ERROR;
if (xmit_out.status != 0x0C0D0E0F)
TEST_ERROR;
/* update expected "message" in structure */
for (i = 0x10; i < H5FD_MIRROR_STATUS_MESSAGE_MAX + 0x10; i++) {
xmit_in.message[i - 0x10] = (i > 0xFF) ? 0 : (char)i;
}
if (HDstrncmp(xmit_out.message, xmit_in.message, H5FD_MIRROR_STATUS_MESSAGE_MAX) != 0) {
PRINT_BUFFER_DIFF(xmit_out.message, xmit_in.message, H5FD_MIRROR_STATUS_MESSAGE_MAX);
TEST_ERROR;
}
} while (0); /* end xmit reply en/decode */
/* Test xmit write structure encode/decode
* Write bogus but easily verifiable data to inside a buffer, and compare.
* Then decode the buffer and compare the structure contents.
* Then repeat from a different offset in the buffer and compare.
*/
do {
unsigned char buf[H5FD_MIRROR_XMIT_WRITE_SIZE + 8];
unsigned char expected[H5FD_MIRROR_XMIT_WRITE_SIZE + 8];
H5FD_mirror_xmit_write_t xmit_in;
H5FD_mirror_xmit_write_t xmit_out;
size_t i = 0;
/* sanity check */
if ((14 + 17) != H5FD_MIRROR_XMIT_WRITE_SIZE) {
FAIL_PUTS_ERROR("Header size definition does not match test\n");
}
if (xmit_mock.op != 0x0D) {
FAIL_PUTS_ERROR("shared header structure is not in expected state");
}
/* Populate the expected buffer; expect end padding of 0xFF
*/
HDmemset(expected, 0xFF, H5FD_MIRROR_XMIT_WRITE_SIZE + 8);
for (i = 0; i < H5FD_MIRROR_XMIT_WRITE_SIZE; i++) {
expected[i + 2] = (unsigned char)i;
}
/* Set xmit_in
*/
xmit_in.pub = xmit_mock; /* shared/common */
xmit_in.type = 0x0E;
xmit_in.offset = 0x0F10111213141516;
xmit_in.size = 0x1718191A1B1C1D1E;
/* Encode, and compare buffer contents
* Initial buffer is filled with 0xFF to match expected padding
*/
HDmemset(buf, 0xFF, H5FD_MIRROR_XMIT_WRITE_SIZE + 8);
if (H5FD_mirror_xmit_encode_write((buf + 2), &xmit_in) != H5FD_MIRROR_XMIT_WRITE_SIZE) {
TEST_ERROR;
}
if (HDmemcmp(buf, expected, H5FD_MIRROR_XMIT_WRITE_SIZE + 8) != 0) {
PRINT_BUFFER_DIFF(buf, expected, H5FD_MIRROR_XMIT_WRITE_SIZE + 8);
TEST_ERROR;
}
/* Decode from buffer
*/
if (H5FD_mirror_xmit_decode_write(&xmit_out, (buf + 2)) != H5FD_MIRROR_XMIT_WRITE_SIZE) {
TEST_ERROR;
}
if (xmit_out.pub.magic != xmit_mock.magic)
TEST_ERROR;
if (xmit_out.pub.version != xmit_mock.version)
TEST_ERROR;
if (xmit_out.pub.session_token != xmit_mock.session_token)
TEST_ERROR;
if (xmit_out.pub.xmit_count != xmit_mock.xmit_count)
TEST_ERROR;
if (xmit_out.pub.op != xmit_mock.op)
TEST_ERROR;
if (xmit_out.type != 0x0E)
TEST_ERROR;
if (xmit_out.offset != 0x0F10111213141516)
TEST_ERROR;
if (xmit_out.size != 0x1718191A1B1C1D1E)
TEST_ERROR;
/* Decode from different offset in buffer
* Observe changes when ingesting the padding
*/
if (H5FD_mirror_xmit_decode_write(&xmit_out, (buf)) != H5FD_MIRROR_XMIT_WRITE_SIZE) {
TEST_ERROR;
}
if (xmit_out.pub.magic != 0xFFFF0001)
TEST_ERROR;
if (xmit_out.pub.version != 0x02)
TEST_ERROR;
if (xmit_out.pub.session_token != 0x03040506)
TEST_ERROR;
if (xmit_out.pub.xmit_count != 0x0708090A)
TEST_ERROR;
if (xmit_out.pub.op != 0x0B)
TEST_ERROR;
if (xmit_out.type != 0x0C)
TEST_ERROR;
if (xmit_out.offset != 0x0D0E0F1011121314)
TEST_ERROR;
if (xmit_out.size != 0x15161718191A1B1C)
TEST_ERROR;
} while (0); /* end xmit write en/decode */
PASSED();
return 0;
error:
return -1;
} /* end test_xmit_encode_decode */
/* ---------------------------------------------------------------------------
* Function: create_mirroring_split_fapl
*
* Purpose: Create and populate a mirroring FAPL ID.
* Creates target files with the given base name -- ideally the
* test name -- and creates mirroring/split FAPL set to use the
* global mirroring info and a sec2 R/W channel driver.
*
* TODO: receive target IP from caller?
*
* Return: Success: HID of the top-level (splitter) FAPL, a non-negative
* value.
* Failure: H5I_INVALID_HID, a negative value.
*
* Programmer: Jacob Smith
* 2019
* ---------------------------------------------------------------------------
*/
static hid_t
create_mirroring_split_fapl(const char *_basename, struct mirrortest_filenames *names)
{
H5FD_splitter_vfd_config_t splitter_config;
H5FD_mirror_fapl_t mirror_conf;
hid_t ret_value = H5I_INVALID_HID;
if (_basename == NULL || *_basename == '\0') {
TEST_ERROR;
}
splitter_config.magic = H5FD_SPLITTER_MAGIC;
splitter_config.version = H5FD_CURR_SPLITTER_VFD_CONFIG_VERSION;
splitter_config.ignore_wo_errs = FALSE;
/* Create Splitter R/W channel driver (sec2)
*/
splitter_config.rw_fapl_id = H5Pcreate(H5P_FILE_ACCESS);
if (H5I_INVALID_HID == splitter_config.rw_fapl_id) {
TEST_ERROR;
}
if (H5Pset_fapl_sec2(splitter_config.rw_fapl_id) == FAIL) {
TEST_ERROR;
}
/* Create Splitter W/O channel driver (mirror)
*/
mirror_conf.magic = H5FD_MIRROR_FAPL_MAGIC;
mirror_conf.version = H5FD_MIRROR_CURR_FAPL_T_VERSION;
mirror_conf.handshake_port = SERVER_HANDSHAKE_PORT;
if (HDstrncpy(mirror_conf.remote_ip, SERVER_IP_ADDRESS, H5FD_MIRROR_MAX_IP_LEN) == NULL) {
TEST_ERROR;
}
splitter_config.wo_fapl_id = H5Pcreate(H5P_FILE_ACCESS);
if (H5I_INVALID_HID == splitter_config.wo_fapl_id) {
TEST_ERROR;
}
if (H5Pset_fapl_mirror(splitter_config.wo_fapl_id, &mirror_conf) == FAIL) {
TEST_ERROR;
}
/* Build r/w, w/o, and log file paths
*/
if (build_paths(_basename, &splitter_config, names) < 0) {
TEST_ERROR;
}
/* Set file paths for w/o and logfile
*/
if (HDstrncpy(splitter_config.wo_path, (const char *)names->wo, H5FD_SPLITTER_PATH_MAX) == NULL) {
TEST_ERROR;
}
if (HDstrncpy(splitter_config.log_file_path, (const char *)names->log, H5FD_SPLITTER_PATH_MAX) == NULL) {
TEST_ERROR;
}
/* Create Splitter FAPL
*/
ret_value = H5Pcreate(H5P_FILE_ACCESS);
if (H5I_INVALID_HID == ret_value) {
TEST_ERROR;
}
if (H5Pset_fapl_splitter(ret_value, &splitter_config) == FAIL) {
TEST_ERROR;
}
/* Close FAPLs created for child channels
*/
if (H5Pclose(splitter_config.rw_fapl_id) < 0) {
TEST_ERROR;
}
splitter_config.rw_fapl_id = H5I_INVALID_HID;
if (H5Pclose(splitter_config.wo_fapl_id) < 0) {
TEST_ERROR;
}
splitter_config.wo_fapl_id = H5I_INVALID_HID;
return ret_value;
error:
if (splitter_config.wo_fapl_id >= 0) {
(void)H5Pclose(splitter_config.wo_fapl_id);
}
if (splitter_config.rw_fapl_id >= 0) {
(void)H5Pclose(splitter_config.rw_fapl_id);
}
if (ret_value >= 0) {
(void)H5Pclose(ret_value);
}
return H5I_INVALID_HID;
} /* end create_mirroring_split_fapl() */
/* ---------------------------------------------------------------------------
* Function: test_create_and_close
*
* Purpose: Test/demonstrate a do-nothing file open and close.
*
* Verifying file existence and contents is part of other tests.
*
* TODO: receive target IP from caller?
*
* Return: Success: 0
* Failure: -1
*
* Programmer: Jacob Smith
* 2019-12-17
* ---------------------------------------------------------------------------
*/
static int
test_create_and_close(void)
{
struct mirrortest_filenames names;
hid_t file_id = H5I_INVALID_HID;
hid_t fapl_id = H5P_DEFAULT;
TESTING("File creation and immediate close");
/* Create FAPL for Splitter[sec2|mirror]
*/
fapl_id = create_mirroring_split_fapl("basic_create", &names);
if (H5I_INVALID_HID == fapl_id) {
TEST_ERROR;
}
/* -------------------- */
/* TEST: Create and Close */
file_id = H5Fcreate(names.rw, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
if (H5I_INVALID_HID == file_id) {
TEST_ERROR;
}
/* -------------------- */
/* Standard cleanup */
if (H5Fclose(file_id) == FAIL) {
TEST_ERROR;
}
if (fapl_id != H5P_DEFAULT && fapl_id >= 0) {
if (H5Pclose(fapl_id) == FAIL) {
TEST_ERROR;
}
}
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
(void)H5Fclose(file_id);
(void)H5Pclose(fapl_id);
}
H5E_END_TRY;
return -1;
} /* end test_create_and_close() */
/* ----------------------------------------------------------------------------
* Function: create_datasets
*
* Purpose: Given a file ID and least and greateset dataset indices, create
* populated chunked datasets in the target file from min_dset to
* (and including) max_dset.
* Uses #defined constants to determine chunk and dataset sizes
* and values.
*
* Return: SUCCEED/FAIL
*
* Programmer: Jacob Smith
* 2019-08-14
* ----------------------------------------------------------------------------
*/
static herr_t
create_datasets(hid_t file_id, unsigned min_dset, unsigned max_dset)
{
hid_t dataspace_ids[MAX_DSET_COUNT + 1];
hid_t dataset_ids[MAX_DSET_COUNT + 1];
hid_t filespace_ids[MAX_DSET_COUNT + 1];
int data_chunk[CHUNK_DIM][CHUNK_DIM];
unsigned int i, j, k, l, m;
hsize_t offset[2];
hid_t memspace_id = H5I_INVALID_HID;
hsize_t a_size[2] = {CHUNK_DIM, CHUNK_DIM};
hsize_t chunk_dims[2] = {CHUNK_DIM, CHUNK_DIM};
hsize_t dset_dims[2] = {DSET_DIM, DSET_DIM};
HDassert(file_id >= 0);
HDassert(min_dset <= max_dset);
HDassert(max_dset <= MAX_DSET_COUNT);
LOGPRINT(2, "create_dataset()\n");
/* ---------------------------------
* "Clear" ID arrays
*/
for (i = 0; i < MAX_DSET_COUNT; i++) {
LOGPRINT(3, "clearing IDs [%d]\n", i);
dataspace_ids[i] = H5I_INVALID_HID;
dataset_ids[i] = H5I_INVALID_HID;
filespace_ids[i] = H5I_INVALID_HID;
}
/* ---------------------------------
* Generate dataspace, dataset, and 'filespace' IDs
*/
if (_create_chunking_ids(file_id, min_dset, max_dset, chunk_dims, dset_dims, dataspace_ids, filespace_ids,
dataset_ids, &memspace_id) == FAIL) {
TEST_ERROR;
}
/* ---------------------------------
* Initialize (write) all datasets in a "round robin"...
* for a given chunk 'location', write chunk data to each dataset.
*/
for (i = 0; i < DSET_DIM; i += CHUNK_DIM) {
LOGPRINT(3, "i: %d\n", i);
for (j = 0; j < DSET_DIM; j += CHUNK_DIM) {
LOGPRINT(3, " j: %d\n", j);
for (m = min_dset; m <= max_dset; m++) {
LOGPRINT(3, " m: %d\n", m);
for (k = 0; k < CHUNK_DIM; k++) {
for (l = 0; l < CHUNK_DIM; l++) {
data_chunk[k][l] = (int)((DSET_DIM * DSET_DIM * m) + (DSET_DIM * (i + k)) + j + l);
LOGPRINT(3, " data_chunk[%d][%d]: %d\n", k, l, data_chunk[k][l]);
}
}
/* select on disk hyperslab */
offset[0] = (hsize_t)i;
offset[1] = (hsize_t)j;
LOGPRINT(3, " H5Sselect_hyperslab()\n");
if (H5Sselect_hyperslab(filespace_ids[m], H5S_SELECT_SET, offset, NULL, a_size, NULL) < 0) {
TEST_ERROR;
}
LOGPRINT(3, " H5Dwrite()\n");
if (H5Dwrite(dataset_ids[m], H5T_NATIVE_INT, memspace_id, filespace_ids[m], H5P_DEFAULT,
data_chunk) < 0) {
TEST_ERROR;
}
}
}
}
/* ---------------------------------
* Read and verify data from datasets
*/
if (_verify_datasets(min_dset, max_dset, filespace_ids, dataset_ids, memspace_id) == FAIL) {
TEST_ERROR;
}
/* ---------------------------------
* Cleanup
*/
if (_close_chunking_ids(min_dset, max_dset, dataspace_ids, filespace_ids, dataset_ids, &memspace_id) ==
FAIL) {
TEST_ERROR;
}
return SUCCEED;
error:
(void)_close_chunking_ids(min_dset, max_dset, dataspace_ids, filespace_ids, dataset_ids, &memspace_id);
LOGPRINT(1, "create_datasets() FAILED\n");
return FAIL;
} /* end create_datasets() */
/* ----------------------------------------------------------------------------
* Function: _create_chunking_ids
*
* Purpose: Create new IDs to be used with the associated file.
*
* Return: SUCCEED/FAIL
*
* Programer: Jacob Smith
* 2019
* ----------------------------------------------------------------------------
*/
static herr_t
_create_chunking_ids(hid_t file_id, unsigned min_dset, unsigned max_dset, hsize_t *chunk_dims,
hsize_t *dset_dims, hid_t *dataspace_ids, hid_t *filespace_ids, hid_t *dataset_ids,
hid_t *memspace_id)
{
char dset_name[DSET_NAME_LEN + 1];
unsigned m = 0;
hid_t dcpl_id = H5I_INVALID_HID;
LOGPRINT(2, "_create_chunking_ids()\n");
/* --------------------
* Create chunking DCPL
*/
dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
if (dcpl_id < 0) {
TEST_ERROR;
}
if (H5Pset_chunk(dcpl_id, 2, chunk_dims) == FAIL) {
TEST_ERROR;
}
/* --------------------
* Create dataspace IDs
*/
for (m = min_dset; m <= max_dset; m++) {
dataspace_ids[m] = H5Screate_simple(2, dset_dims, NULL);
if (dataspace_ids[m] < 0) {
HDsnprintf(mesg, MIRR_MESG_SIZE, "unable to create dataspace ID %d\n", m);
FAIL_PUTS_ERROR(mesg);
}
}
/* --------------------
* Create dataset IDs
*/
for (m = min_dset; m <= max_dset; m++) {
if (HDsnprintf(dset_name, DSET_NAME_LEN, "/dset%03d", m) > DSET_NAME_LEN) {
HDsnprintf(mesg, MIRR_MESG_SIZE, "unable to compose dset name %d\n", m);
FAIL_PUTS_ERROR(mesg);
}
dataset_ids[m] =
H5Dcreate(file_id, dset_name, H5T_STD_I32BE, dataspace_ids[m], H5P_DEFAULT, dcpl_id, H5P_DEFAULT);
if (dataset_ids[m] < 0) {
HDsnprintf(mesg, MIRR_MESG_SIZE, "unable to create dset ID %d\n", m);
FAIL_PUTS_ERROR(mesg);
}
}
/* --------------------
* Get file space IDs
*/
for (m = min_dset; m <= max_dset; m++) {
filespace_ids[m] = H5Dget_space(dataset_ids[m]);
if (filespace_ids[m] < 0) {
HDsnprintf(mesg, MIRR_MESG_SIZE, "unable to create filespace ID %d\n", m);
FAIL_PUTS_ERROR(mesg);
}
}
/* --------------------
* Create mem space to be used to read and write chunks
*/
*memspace_id = H5Screate_simple(2, chunk_dims, NULL);
if (*memspace_id < 0) {
TEST_ERROR;
}
/* --------------------
* Clean up the DCPL, even if there were errors before
*/
if (dcpl_id != H5P_DEFAULT && dcpl_id != H5I_INVALID_HID) {
if (H5Pclose(dcpl_id) == FAIL) {
TEST_ERROR;
}
}
return SUCCEED;
error:
if (dcpl_id != H5P_DEFAULT && dcpl_id != H5I_INVALID_HID) {
(void)H5Pclose(dcpl_id);
}
LOGPRINT(1, "_create_chunking_ids() FAILED\n");
return FAIL;
} /* end _create_chunking_ids() */
/* ----------------------------------------------------------------------------
* Function: _open_chunking_ids
*
* Purpose: Open/access IDs from the given file.
*
* Return: SUCCEED/FAIL
*
* Programmer: Jacob Smith
* 2019
* ----------------------------------------------------------------------------
*/
static herr_t
_open_chunking_ids(hid_t file_id, unsigned min_dset, unsigned max_dset, hsize_t *chunk_dims,
hid_t *filespace_ids, hid_t *dataset_ids, hid_t *memspace_id)
{
char dset_name[DSET_NAME_LEN + 1];
unsigned m = 0;
LOGPRINT(2, "_open_chunking_ids()\n");
/* --------------------
* Open dataset IDs
*/
for (m = min_dset; m <= max_dset; m++) {
if (HDsnprintf(dset_name, DSET_NAME_LEN, "/dset%03d", m) > DSET_NAME_LEN) {
HDsnprintf(mesg, MIRR_MESG_SIZE, "unable to compose dset name %d\n", m);
FAIL_PUTS_ERROR(mesg);
}
dataset_ids[m] = H5Dopen2(file_id, dset_name, H5P_DEFAULT);
if (dataset_ids[m] < 0) {
HDsnprintf(mesg, MIRR_MESG_SIZE, "unable to open dset ID %d\n", m);
FAIL_PUTS_ERROR(mesg);
}
}
/* --------------------
* Open filespace IDs
*/
for (m = min_dset; m <= max_dset; m++) {
filespace_ids[m] = H5Dget_space(dataset_ids[m]);
if (filespace_ids[m] < 0) {
HDsnprintf(mesg, MIRR_MESG_SIZE, "unable to get filespace ID %d\n", m);
FAIL_PUTS_ERROR(mesg);
}
}
/* --------------------
* Create mem space to be used to read and write chunks
*/
*memspace_id = H5Screate_simple(2, chunk_dims, NULL);
if (*memspace_id < 0) {
TEST_ERROR;
}
return SUCCEED;
error:
LOGPRINT(1, "_open_chunking_ids() FAILED\n");
return FAIL;
} /* end _open_chunking_ids() */
/* ---------------------------------------------------------------------------
* Function: _close_chunking_ids
*
* Purpose: Close IDs that were created or opened.
* Pass NULL into `dataspace_ids` when closing items opened with
* _open_chunking_ids(). (as opposed to created IDs)
*
* Return: SUCCEED/FAIL
*
* Programmer: Jacob Smith
* 2019
* ---------------------------------------------------------------------------
*/
static herr_t
_close_chunking_ids(unsigned min_dset, unsigned max_dset, hid_t *dataspace_ids, hid_t *filespace_ids,
hid_t *dataset_ids, hid_t *memspace_id)
{
unsigned m;
LOGPRINT(2, "_close_chunking_ids()\n");
for (m = min_dset; m <= max_dset; m++) {
LOGPRINT(3, "closing ids[%d]\n", m);
if (dataspace_ids) {
if (H5Sclose(dataspace_ids[m]) < 0) {
HDsnprintf(mesg, MIRR_MESG_SIZE, "unable to close dataspace_id[%d]\n", m);
FAIL_PUTS_ERROR(mesg);
}
}
if (H5Dclose(dataset_ids[m]) < 0) {
HDsnprintf(mesg, MIRR_MESG_SIZE, "unable to close dataset_id[%d]\n", m);
FAIL_PUTS_ERROR(mesg);
}
if (H5Sclose(filespace_ids[m]) < 0) {
HDsnprintf(mesg, MIRR_MESG_SIZE, "unable to close filespace_id[%d]\n", m);
FAIL_PUTS_ERROR(mesg);
}
}
if ((*memspace_id != H5I_INVALID_HID) && (H5Sclose(*memspace_id) < 0)) {
TEST_ERROR;
}
return SUCCEED;
error:
LOGPRINT(1, "_close_chunking_ids() FAILED\n");
return FAIL;
} /* end _close_chunking_ids() */
/* ---------------------------------------------------------------------------
* Function: _verify_datasets
*
* Purpose: Check that each chunk's contents are as expected, as pertaining
* to create_datasets().
*
* Return: SUCCEED/FAIL
*
* Programmer: Jacob Smith
* 2019
* ---------------------------------------------------------------------------
*/
static herr_t
_verify_datasets(unsigned min_dset, unsigned max_dset, hid_t *filespace_ids, hid_t *dataset_ids,
hid_t memspace_id)
{
unsigned i, j, k, l, m;
int data_chunk[CHUNK_DIM][CHUNK_DIM];
hsize_t offset[2];
hsize_t a_size[2] = {CHUNK_DIM, CHUNK_DIM};
LOGPRINT(2, "_verify_datasets()\n");
for (i = 0; i < DSET_DIM; i += CHUNK_DIM) {
LOGPRINT(3, "i: %d\n", i);
for (j = 0; j < DSET_DIM; j += CHUNK_DIM) {
LOGPRINT(3, " j: %d\n", j);
for (m = min_dset; m <= max_dset; m++) {
LOGPRINT(3, " m: %d\n", m);
/* select on disk hyperslab */
offset[0] = (hsize_t)i;
offset[1] = (hsize_t)j;
if (H5Sselect_hyperslab(filespace_ids[m], H5S_SELECT_SET, offset, NULL, a_size, NULL) < 0) {
TEST_ERROR;
}
if (H5Dread(dataset_ids[m], H5T_NATIVE_INT, memspace_id, filespace_ids[m], H5P_DEFAULT,
data_chunk) < 0) {
HDsnprintf(mesg, MIRR_MESG_SIZE, " H5Dread() [%d][%d][%d]\n", i, j, m);
FAIL_PUTS_ERROR(mesg);
}
for (k = 0; k < CHUNK_DIM; k++) {
for (l = 0; l < CHUNK_DIM; l++) {
if ((unsigned)data_chunk[k][l] !=
((DSET_DIM * DSET_DIM * m) + (DSET_DIM * (i + k)) + j + l)) {
HDsnprintf(mesg, MIRR_MESG_SIZE, " MISMATCH [%d][%d][%d][%d][%d]\n", i, j, m,
k, l);
FAIL_PUTS_ERROR(mesg);
}
}
}
}
}
}
return SUCCEED;
error:
LOGPRINT(1, "_verify_datasets() FAILED\n");
return FAIL;
} /* end _verify_datasets() */
/* ---------------------------------------------------------------------------
* Function: verify_datasets
*
* Purpose: Inspect the datasets in the file created by create_datasets().
* Wrapper for _verify_datasets() -- this function sets up and
* tears down accessor information.
*
* Return: SUCCEED/FAIL
*
* Programmer: Jacob Smith
* 2019
* ---------------------------------------------------------------------------
*/
static herr_t
verify_datasets(hid_t file_id, unsigned min_dset, unsigned max_dset)
{
hid_t dataset_ids[MAX_DSET_COUNT + 1];
hid_t filespace_ids[MAX_DSET_COUNT + 1];
unsigned i;
hid_t memspace_id = H5I_INVALID_HID;
hsize_t chunk_dims[2] = {CHUNK_DIM, CHUNK_DIM};
HDassert(file_id >= 0);
HDassert(min_dset <= max_dset);
HDassert(max_dset <= MAX_DSET_COUNT);
LOGPRINT(2, "verify_datasets()\n");
/* ---------------------------------
* "Clear" ID arrays
*/
for (i = 0; i < MAX_DSET_COUNT; i++) {
LOGPRINT(3, "clearing IDs [%d]\n", i);
dataset_ids[i] = H5I_INVALID_HID;
filespace_ids[i] = H5I_INVALID_HID;
}
/* ---------------------------------
* Generate dataspace, dataset, and 'filespace' IDs
*/
if (_open_chunking_ids(file_id, min_dset, max_dset, chunk_dims, filespace_ids, dataset_ids,
&memspace_id) == FAIL) {
TEST_ERROR;
}
/* ---------------------------------
* Read and verify data from datasets
*/
if (_verify_datasets(min_dset, max_dset, filespace_ids, dataset_ids, memspace_id) == FAIL) {
TEST_ERROR;
}
/* ---------------------------------
* Cleanup
*/
if (_close_chunking_ids(min_dset, max_dset, NULL, filespace_ids, dataset_ids, &memspace_id) == FAIL) {
TEST_ERROR;
}
return SUCCEED;
error:
LOGPRINT(1, "verify_datasets() FAILED\n");
(void)_close_chunking_ids(min_dset, max_dset, NULL, filespace_ids, dataset_ids, &memspace_id);
return FAIL;
} /* end verify_datasets() */
/* ---------------------------------------------------------------------------
* Function: test_basic_dataset_write
*
* Purpose: Create and close files; repoen files and write a dataset,
* close; compare files.
*
* TODO: receive target IP from caller?
*
* Return: Success: 0
* Failure: -1
*
* Programmer: Jacob Smith
* 2019
* ---------------------------------------------------------------------------
*/
static int
test_basic_dataset_write(void)
{
struct mirrortest_filenames names;
hid_t file_id = H5I_INVALID_HID;
hid_t fapl_id = H5P_DEFAULT;
hid_t dset_id = H5I_INVALID_HID;
hid_t dspace_id = H5I_INVALID_HID;
hid_t dtype_id = H5T_NATIVE_INT;
hsize_t dims[2] = {DATABUFFER_SIZE, DATABUFFER_SIZE};
int * buf = NULL;
int i = 0;
int j = 0;
TESTING("Mirror open and dataset writing");
/* Create FAPL for Splitter[sec2|mirror]
*/
fapl_id = create_mirroring_split_fapl("basic_write", &names);
if (H5I_INVALID_HID == fapl_id) {
TEST_ERROR;
}
/* Prepare data to be written
*/
buf = (int *)HDmalloc(DATABUFFER_SIZE * DATABUFFER_SIZE * sizeof(int));
if (NULL == buf) {
TEST_ERROR;
}
for (i = 0; i < DATABUFFER_SIZE; i++) {
for (j = 0; j < DATABUFFER_SIZE; j++) {
int k = i * DATABUFFER_SIZE + j;
buf[k] = k;
}
}
/* -------------------- */
/* TEST: Create and Close */
file_id = H5Fcreate(names.rw, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
if (H5I_INVALID_HID == file_id) {
TEST_ERROR;
}
if (H5Fclose(file_id) == FAIL) {
TEST_ERROR;
}
file_id = H5I_INVALID_HID;
/* -------------------- */
/* TEST: Repoen and Write */
file_id = H5Fopen(names.rw, H5F_ACC_RDWR, fapl_id);
if (H5I_INVALID_HID == file_id) {
TEST_ERROR;
}
dspace_id = H5Screate_simple(2, dims, NULL);
if (H5I_INVALID_HID == dspace_id) {
TEST_ERROR;
}
dset_id = H5Dcreate2(file_id, "dataset", dtype_id, dspace_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
if (H5I_INVALID_HID == dset_id) {
TEST_ERROR;
}
if (H5Dwrite(dset_id, dtype_id, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf) == FAIL) {
TEST_ERROR;
}
/* -------------------- */
/* Standard cleanup */
HDfree(buf);
buf = NULL;
if (H5Dclose(dset_id) == FAIL) {
TEST_ERROR;
}
if (H5Sclose(dspace_id) == FAIL) {
TEST_ERROR;
}
if (H5Fclose(file_id) == FAIL) {
TEST_ERROR;
}
if (fapl_id != H5P_DEFAULT && fapl_id > 0) {
if (H5Pclose(fapl_id) == FAIL) {
TEST_ERROR;
}
}
/* -------------------- */
/* TEST: Verify that the R/W and W/O files are identical */
if (h5_compare_file_bytes(names.rw, names.wo) < 0) {
TEST_ERROR;
}
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
(void)H5Fclose(file_id);
if (buf) {
HDfree(buf);
}
(void)H5Dclose(dset_id);
(void)H5Sclose(dspace_id);
if (fapl_id != H5P_DEFAULT && fapl_id > 0) {
(void)H5Pclose(fapl_id);
}
}
H5E_END_TRY;
return -1;
} /* end test_basic_dataset_write() */
/* ---------------------------------------------------------------------------
* Function: test_chunked_dataset_write
*
* Purpose: Create and close files; repoen files and write a dataset,
* close; compare files.
*
* TODO: receive target IP from caller?
*
* Return: Success: 0
* Failure: -1
*
* Programmer: Jacob Smith
* 2019
* ---------------------------------------------------------------------------
*/
static int
test_chunked_dataset_write(void)
{
struct mirrortest_filenames names;
hid_t file_id = H5I_INVALID_HID;
hid_t fapl_id = H5P_DEFAULT;
TESTING("Mirror open and dataset writing (chunked)");
/* Create FAPL for Splitter[sec2|mirror]
*/
fapl_id = create_mirroring_split_fapl("chunked_write", &names);
if (H5I_INVALID_HID == fapl_id) {
TEST_ERROR;
}
/* -------------------- */
/* TEST: Create and Close */
file_id = H5Fcreate(names.rw, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
if (H5I_INVALID_HID == file_id) {
TEST_ERROR;
}
if (H5Fclose(file_id) == FAIL) {
TEST_ERROR;
}
file_id = H5I_INVALID_HID;
/* -------------------- */
/* TEST: Reopen and Write */
file_id = H5Fopen(names.rw, H5F_ACC_RDWR, fapl_id);
if (H5I_INVALID_HID == file_id) {
TEST_ERROR;
}
/* Write datasets to file
*/
if (create_datasets(file_id, 0, MAX_DSET_COUNT) == FAIL) {
TEST_ERROR;
}
/* Close to 'flush to disk', and reopen file
*/
if (H5Fclose(file_id) == FAIL) {
TEST_ERROR;
}
file_id = H5I_INVALID_HID;
/* Reopen file
*/
file_id = H5Fopen(names.rw, H5F_ACC_RDWR, fapl_id);
if (H5I_INVALID_HID == file_id) {
TEST_ERROR;
}
/* Verify written data integrity
*/
if (verify_datasets(file_id, 0, MAX_DSET_COUNT) == FAIL) {
TEST_ERROR;
}
/* -------------------- */
/* Standard cleanup */
if (H5Fclose(file_id) == FAIL) {
TEST_ERROR;
}
file_id = H5I_INVALID_HID;
if (fapl_id != H5P_DEFAULT && fapl_id > 0) {
if (H5Pclose(fapl_id) == FAIL) {
TEST_ERROR;
}
fapl_id = H5I_INVALID_HID;
}
/* -------------------- */
/* TEST: Verify that the R/W and W/O files are identical */
if (h5_compare_file_bytes(names.rw, names.wo) < 0) {
TEST_ERROR;
}
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
(void)H5Fclose(file_id);
if (fapl_id != H5P_DEFAULT && fapl_id > 0) {
(void)H5Pclose(fapl_id);
}
}
H5E_END_TRY;
return -1;
} /* end test_chunked_dataset_write() */
/* ---------------------------------------------------------------------------
* Function: test_on_disk_zoo
*
* Purpose: Verify that the mirror can handle the passing of all the
* various on-disk data structures over the wire, as implemented
* in genall5.c:create_zoo().
*
* TODO: receive target IP from caller?
*
* Return: Success: 0
* Failure: -1
*
* Programmer: Jacob Smith
* 2019
* ---------------------------------------------------------------------------
*/
static int
test_on_disk_zoo(void)
{
const char grp_name[] = "/only";
struct mirrortest_filenames names;
hid_t file_id = H5I_INVALID_HID;
hid_t grp_id = H5I_INVALID_HID;
hid_t fapl_id = H5P_DEFAULT;
TESTING("'Zoo' of on-disk structures");
/* Create FAPL for Splitter[sec2|mirror]
*/
fapl_id = create_mirroring_split_fapl("zoo", &names);
if (H5I_INVALID_HID == fapl_id) {
TEST_ERROR;
}
/* -------------------- */
/* TEST: Create file */
file_id = H5Fcreate(names.rw, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
if (H5I_INVALID_HID == file_id) {
TEST_ERROR;
}
grp_id = H5Gcreate2(file_id, grp_name, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
if (grp_id == H5I_INVALID_HID) {
TEST_ERROR;
}
/* Create datasets in file, close (flush) and reopen, validate.
* Use of ( pass ) a conceit required for using create_ and validate_zoo()
* from cache_common and/or genall5.
*/
if (pass) {
create_zoo(file_id, grp_name, 0);
}
if (pass) {
if (H5Fclose(file_id) == FAIL) {
TEST_ERROR;
}
file_id = H5Fopen(names.rw, H5F_ACC_RDWR, fapl_id);
if (H5I_INVALID_HID == file_id) {
TEST_ERROR;
}
}
if (pass) {
validate_zoo(file_id, grp_name, 0); /* sanity-check */
}
if (!pass) {
HDprintf(failure_mssg);
TEST_ERROR;
}
/* -------------------- */
/* Standard cleanup */
if (fapl_id != H5P_DEFAULT && fapl_id >= 0) {
if (H5Pclose(fapl_id) == FAIL) {
TEST_ERROR;
}
}
if (H5Gclose(grp_id) == FAIL) {
TEST_ERROR;
}
if (H5Fclose(file_id) == FAIL) {
TEST_ERROR;
}
/* -------------------- */
/* TEST: Verify that the R/W and W/O files are identical */
if (h5_compare_file_bytes(names.rw, names.wo) < 0) {
TEST_ERROR;
}
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
(void)H5Fclose(file_id);
(void)H5Gclose(grp_id);
if (fapl_id != H5P_DEFAULT && fapl_id > 0) {
(void)H5Pclose(fapl_id);
}
}
H5E_END_TRY;
return -1;
} /* end test_on_disk_zoo() */
/* ---------------------------------------------------------------------------
* Function: test_vanishing_datasets
*
* Purpose: Verify behavior when writing to a file where data is deleted.
*
* Each dataset is populated with the value of its suffix
* (dset5 is all fives).
*
* Opens 0..15 create one new dataset each, '/dset[i]'.
* Opens 3..18 delete '/dset[1-3]'
*
* Should end with no data in file.
*
* Return: Success: 0
* Failure: -1
*
* Programmer: Jacob Smith
* 2019
* ---------------------------------------------------------------------------
*/
static int
test_vanishing_datasets(void)
{
struct mirrortest_filenames names;
hid_t file_id = H5I_INVALID_HID;
hid_t fapl_id = H5I_INVALID_HID;
hid_t dset_id = H5I_INVALID_HID;
hid_t dspace_id = H5I_INVALID_HID;
hid_t mirror_fapl_id = H5I_INVALID_HID;
hsize_t dims[2] = {DATABUFFER_SIZE, DATABUFFER_SIZE};
uint32_t buf[DATABUFFER_SIZE][DATABUFFER_SIZE]; /* consider malloc? */
H5G_info_t group_info;
unsigned int i, j, k;
const unsigned int max_loops = 20;
const unsigned int max_at_one_time = 3;
TESTING("Vanishing Datasets");
/* -------------------- */
/* Set up recurrent data (FAPL, dataspace) */
/* Create FAPL for Splitter[sec2|mirror]
*/
fapl_id = create_mirroring_split_fapl("vanishing", &names);
if (H5I_INVALID_HID == fapl_id) {
TEST_ERROR;
}
dspace_id = H5Screate_simple(2, dims, NULL);
if (dspace_id < 0) {
TEST_ERROR;
}
/* create file */
file_id = H5Fcreate(names.rw, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
if (H5I_INVALID_HID == file_id) {
TEST_ERROR;
}
for (i = 0; i < max_loops; i++) {
char namebuf[DSET_NAME_LEN + 1];
/* deleting datasets */
if (i >= max_at_one_time) {
if (HDsnprintf(namebuf, DSET_NAME_LEN, "/dset%02d", (i - max_at_one_time)) > DSET_NAME_LEN) {
TEST_ERROR;
}
if (H5Ldelete(file_id, namebuf, H5P_DEFAULT) < 0) {
TEST_ERROR;
}
} /* end if deleting a dataset */
/* writing datasets */
if (i < (max_loops - max_at_one_time)) {
if (HDsnprintf(namebuf, DSET_NAME_LEN, "/dset%02d", i) > DSET_NAME_LEN) {
TEST_ERROR;
}
dset_id =
H5Dcreate2(file_id, namebuf, H5T_STD_U32LE, dspace_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
if (H5I_INVALID_HID == dset_id) {
TEST_ERROR;
}
for (j = 0; j < DATABUFFER_SIZE; j++) {
for (k = 0; k < DATABUFFER_SIZE; k++) {
buf[j][k] = (uint32_t)i;
}
}
if (H5Dwrite(dset_id, H5T_STD_U32LE, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf) < 0) {
TEST_ERROR;
}
if (H5Dclose(dset_id) < 0) {
TEST_ERROR;
}
dset_id = H5I_INVALID_HID;
} /* end if writing a dataset */
} /* end for dataset create-destroy cycles */
if (H5Fclose(file_id) < 0) {
TEST_ERROR;
}
file_id = H5I_INVALID_HID;
/* verify there are no datasets in file */
file_id = H5Fopen(names.rw, H5F_ACC_RDONLY, H5P_DEFAULT);
if (file_id < 0) {
TEST_ERROR;
}
if (H5Gget_info(file_id, &group_info) < 0) {
TEST_ERROR;
}
if (group_info.nlinks > 0) {
HDfprintf(stderr, "links in rw file: %" PRIuHSIZE "\n", group_info.nlinks);
HDfflush(stderr);
TEST_ERROR;
}
if (H5Fclose(file_id) < 0) {
TEST_ERROR;
}
file_id = H5Fopen(names.wo, H5F_ACC_RDONLY, H5P_DEFAULT);
if (file_id < 0) {
TEST_ERROR;
}
if (H5Gget_info(file_id, &group_info) < 0) {
TEST_ERROR;
}
if (group_info.nlinks > 0) {
HDfprintf(stderr, "links in wo file: %" PRIuHSIZE "\n", group_info.nlinks);
HDfflush(stderr);
TEST_ERROR;
}
if (H5Fclose(file_id) < 0) {
TEST_ERROR;
}
file_id = H5I_INVALID_HID;
if (h5_compare_file_bytes(names.rw, names.wo) < 0)
TEST_ERROR;
/* -------------------- */
/* Teardown */
if (H5Sclose(dspace_id) < 0) {
TEST_ERROR;
}
if (H5Pclose(fapl_id) < 0) {
TEST_ERROR;
}
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
if (mirror_fapl_id != H5I_INVALID_HID) {
H5Pclose(mirror_fapl_id);
}
if (fapl_id != H5I_INVALID_HID) {
H5Pclose(fapl_id);
}
if (file_id != H5I_INVALID_HID) {
H5Fclose(file_id);
}
if (dset_id != H5I_INVALID_HID) {
H5Dclose(dset_id);
}
if (dspace_id != H5I_INVALID_HID) {
H5Sclose(dspace_id);
}
}
H5E_END_TRY;
return -1;
} /* test_vanishing_datasets() */
/* ---------------------------------------------------------------------------
* Function: test_concurrent_access
*
* Purpose: Verify that more than one file may be opened at a time.
*
* TODO: receive target IP from caller?
*
* Return: Success: 0
* Failure: -1
*
* Programmer: Jacob Smith
* 2020-03-09
* ---------------------------------------------------------------------------
*/
static int
test_concurrent_access(void)
{
struct file_bundle {
struct mirrortest_filenames names;
hid_t dset_id;
hid_t fapl_id;
hid_t file_id;
} bundle[CONCURRENT_COUNT];
hid_t dspace_id = H5I_INVALID_HID;
hid_t dtype_id = H5T_NATIVE_INT;
hsize_t dims[2] = {DATABUFFER_SIZE, DATABUFFER_SIZE};
int * buf = NULL;
int i = 0;
int j = 0;
TESTING("Concurrent opened mirrored files");
/* blank bundle */
for (i = 0; i < CONCURRENT_COUNT; i++) {
bundle[i].dset_id = H5I_INVALID_HID;
bundle[i].fapl_id = H5I_INVALID_HID;
bundle[i].file_id = H5I_INVALID_HID;
*bundle[i].names.rw = '\0';
*bundle[i].names.wo = '\0';
*bundle[i].names.log = '\0';
}
/* Create FAPL for Splitter[sec2|mirror]
*/
for (i = 0; i < CONCURRENT_COUNT; i++) {
char _name[16] = "";
hid_t _fapl_id = H5I_INVALID_HID;
HDsnprintf(_name, 15, "concurrent%d", i);
_fapl_id = create_mirroring_split_fapl(_name, &bundle[i].names);
if (H5I_INVALID_HID == _fapl_id) {
TEST_ERROR;
}
bundle[i].fapl_id = _fapl_id;
}
/* Prepare data to be written
*/
buf = (int *)HDmalloc(DATABUFFER_SIZE * DATABUFFER_SIZE * sizeof(int));
if (NULL == buf) {
TEST_ERROR;
}
for (i = 0; i < DATABUFFER_SIZE; i++) {
for (j = 0; j < DATABUFFER_SIZE; j++) {
int k = i * DATABUFFER_SIZE + j;
buf[k] = k;
}
}
/* Prepare generic dataspace
*/
dspace_id = H5Screate_simple(2, dims, NULL);
if (H5I_INVALID_HID == dspace_id) {
TEST_ERROR;
}
/* -------------------- */
/* TEST: Create file and open elements */
for (i = 0; i < CONCURRENT_COUNT; i++) {
hid_t _file_id = H5I_INVALID_HID;
hid_t _dset_id = H5I_INVALID_HID;
_file_id = H5Fcreate(bundle[i].names.rw, H5F_ACC_TRUNC, H5P_DEFAULT, bundle[i].fapl_id);
if (H5I_INVALID_HID == _file_id) {
TEST_ERROR;
}
bundle[i].file_id = _file_id;
_dset_id =
H5Dcreate2(_file_id, "dataset", dtype_id, dspace_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
if (H5I_INVALID_HID == _dset_id) {
TEST_ERROR;
}
bundle[i].dset_id = _dset_id;
}
/* -------------------- */
/* TEST: Write to files */
for (i = 0; i < CONCURRENT_COUNT; i++) {
if (H5Dwrite(bundle[i].dset_id, dtype_id, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf) == FAIL) {
TEST_ERROR;
}
}
/* -------------------- */
/* TEST: Close elements */
for (i = 0; i < CONCURRENT_COUNT; i++) {
if (H5Dclose(bundle[i].dset_id) == FAIL) {
TEST_ERROR;
}
if (H5Fclose(bundle[i].file_id) == FAIL) {
TEST_ERROR;
}
if (H5Pclose(bundle[i].fapl_id) == FAIL) {
TEST_ERROR;
}
}
/* -------------------- */
/* Standard cleanup */
HDfree(buf);
buf = NULL;
if (H5Sclose(dspace_id) == FAIL) {
TEST_ERROR;
}
/* -------------------- */
/* TEST: Verify that the R/W and W/O files are identical */
for (i = 0; i < CONCURRENT_COUNT; i++) {
if (h5_compare_file_bytes(bundle[i].names.rw, bundle[i].names.wo) < 0) {
TEST_ERROR;
}
}
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
if (buf) {
HDfree(buf);
}
(void)H5Sclose(dspace_id);
for (i = 0; i < CONCURRENT_COUNT; i++) {
(void)H5Dclose(bundle[i].dset_id);
(void)H5Fclose(bundle[i].file_id);
(void)H5Pclose(bundle[i].fapl_id);
}
}
H5E_END_TRY;
return -1;
} /* end test_concurrent_access() */
/* ---------------------------------------------------------------------------
* Function: main
*
* Purpose: Run tests.
*
* Return: Success: 0
* Failure: 1
*
* Programmer: Jacob Smith
* 2019
* ---------------------------------------------------------------------------
*/
int
main(void)
{
int nerrors = 0;
h5_reset();
g_log_stream = stdout; /* default debug/logging output stream */
HDprintf("Testing Mirror VFD functionality.\n");
/* -------------------- */
/* SETUP */
/* Create directories for test-generated .h5 files
*/
if (nerrors == 0) {
if ((HDmkdir(MIRROR_RW_DIR, (mode_t)0755) < 0) && (errno != EEXIST)) {
nerrors++;
}
}
if (nerrors == 0) {
if ((HDmkdir(MIRROR_WO_DIR, (mode_t)0755) < 0) && (errno != EEXIST)) {
nerrors++;
}
}
/* -------------------- */
/* TESTS */
/* Tests return negative values; `-=' increments nerrors count */
if (nerrors == 0) {
nerrors -= test_fapl_configuration();
nerrors -= test_xmit_encode_decode();
nerrors -= test_create_and_close();
nerrors -= test_basic_dataset_write();
nerrors -= test_chunked_dataset_write();
nerrors -= test_on_disk_zoo();
nerrors -= test_vanishing_datasets();
nerrors -= test_concurrent_access();
}
if (nerrors) {
HDprintf("***** %d Mirror VFD TEST%s FAILED! *****\n", nerrors, nerrors > 1 ? "S" : "");
return EXIT_FAILURE;
}
HDprintf("All Mirror Virtual File Driver tests passed.\n");
return EXIT_SUCCESS;
} /* end main() */
#else /* H5_HAVE_MIRROR_VFD */
int
main(void)
{
h5_reset();
HDprintf("Testing Mirror VFD functionality.\n");
HDprintf("SKIPPED - Mirror VFD not built.\n");
return EXIT_SUCCESS;
}
#endif /* H5_HAVE_MIRROR_VFD */