hdf5/test/hyperslab.c
Patrick Lu 68985e9d3c [svn-r1191] moved some code around to fix a crash.
code is surounded by #ifdef WIN32
1999-04-16 14:20:28 -05:00

1249 lines
31 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (C) 1997 NCSA
* All rights reserved.
*
* Programmer: Robb Matzke <matzke@llnl.gov>
* Friday, October 10, 1997
*
* Purpose: Hyperslab operations are rather complex, so this file
* attempts to test them extensively so we can be relatively
* sure they really work. We only test 1d, 2d, and 3d cases
* because testing general dimensionalities would require us to
* rewrite much of the hyperslab stuff.
*/
#include <H5private.h>
#include <H5MMprivate.h>
#include <H5Vprivate.h>
#ifndef HAVE_FUNCTION
#undef __FUNCTION__
#define __FUNCTION__ ""
#endif
#define AT() printf (" at %s:%d in %s()\n",__FILE__,__LINE__,__FUNCTION__);
#define TEST_SMALL 0x0001
#define TEST_MEDIUM 0x0002
#define VARIABLE_SRC 0
#define VARIABLE_DST 1
#define VARIABLE_BOTH 2
/*-------------------------------------------------------------------------
* Function: init_full
*
* Purpose: Initialize full array.
*
* Return: void
*
* Programmer: Robb Matzke
* Friday, October 10, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static uintn
init_full(uint8_t *array, size_t nx, size_t ny, size_t nz)
{
size_t i, j, k;
uint8_t acc = 128;
uintn total = 0;
for (i=0; i<nx; i++) {
for (j=0; j<ny; j++) {
for (k=0; k<nz; k++) {
total += acc;
*array++ = acc++;
}
}
}
return total;
}
/*-------------------------------------------------------------------------
* Function: print_array
*
* Purpose: Prints the values in an array
*
* Return: void
*
* Programmer: Robb Matzke
* Friday, October 10, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
print_array(uint8_t *array, size_t nx, size_t ny, size_t nz)
{
size_t i, j, k;
for (i=0; i<nx; i++) {
if (nz>1) {
printf("i=%lu:\n", (unsigned long)i);
} else {
printf("%03lu:", (unsigned long)i);
}
for (j=0; j<ny; j++) {
if (nz>1)
printf("%03lu:", (unsigned long)j);
for (k=0; k<nz; k++) {
printf(" %3d", *array++);
}
if (nz>1)
printf("\n");
}
printf("\n");
}
}
/*-------------------------------------------------------------------------
* Function: print_ref
*
* Purpose: Prints the reference value
*
* Return: Success: 0
*
* Failure:
*
* Programmer: Robb Matzke
* Friday, October 10, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
print_ref(size_t nx, size_t ny, size_t nz)
{
uint8_t *array;
array = H5MM_calloc(nx*ny*nz*sizeof(uint8_t));
printf("Reference array:\n");
init_full(array, nx, ny, nz);
print_array(array, nx, ny, nz);
}
/*-------------------------------------------------------------------------
* Function: test_fill
*
* Purpose: Tests the H5V_hyper_fill() function.
*
* Return: Success: SUCCEED
*
* Failure: FAIL
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
test_fill(size_t nx, size_t ny, size_t nz,
size_t di, size_t dj, size_t dk,
size_t ddx, size_t ddy, size_t ddz)
{
uint8_t *dst = NULL; /*destination array */
hsize_t hs_size[3]; /*hyperslab size */
hsize_t dst_size[3]; /*destination total size */
hssize_t dst_offset[3]; /*offset of hyperslab in dest */
uintn ref_value; /*reference value */
uintn acc; /*accumulator */
size_t i, j, k, dx, dy, dz; /*counters */
size_t u, v, w;
int ndims; /*hyperslab dimensionality */
char dim[64], s[256]; /*temp string */
uintn fill_value; /*fill value */
/*
* Dimensionality.
*/
if (0 == nz) {
if (0 == ny) {
ndims = 1;
ny = nz = 1;
sprintf(dim, "%lu", (unsigned long) nx);
} else {
ndims = 2;
nz = 1;
sprintf(dim, "%lux%lu", (unsigned long) nx, (unsigned long) ny);
}
} else {
ndims = 3;
sprintf(dim, "%lux%lux%lu",
(unsigned long) nx, (unsigned long) ny, (unsigned long) nz);
}
sprintf(s, "Testing hyperslab fill %-11s variable hyperslab", dim);
printf("%-70s", s);
fflush(stdout);
/* Allocate array */
dst = H5MM_calloc(nx*ny*nz);
init_full(dst, nx, ny, nz);
for (i = 0; i < nx; i += di) {
for (j = 0; j < ny; j += dj) {
for (k = 0; k < nz; k += dk) {
for (dx = 1; dx <= nx - i; dx += ddx) {
for (dy = 1; dy <= ny - j; dy += ddy) {
for (dz = 1; dz <= nz - k; dz += ddz) {
/* Describe the hyperslab */
dst_size[0] = nx;
dst_size[1] = ny;
dst_size[2] = nz;
dst_offset[0] = (hssize_t)i;
dst_offset[1] = (hssize_t)j;
dst_offset[2] = (hssize_t)k;
hs_size[0] = dx;
hs_size[1] = dy;
hs_size[2] = dz;
for (fill_value=0;
fill_value<256;
fill_value+=64) {
/*
* Initialize the full array, then subtract the
* original * fill values and add the new ones.
*/
ref_value = init_full(dst, nx, ny, nz);
for (u=dst_offset[0];
u<dst_offset[0]+dx;
u++) {
for (v = dst_offset[1];
v < dst_offset[1] + dy;
v++) {
for (w = dst_offset[2];
w < dst_offset[2] + dz;
w++) {
ref_value -= dst[u*ny*nz+v*nz+w];
}
}
}
ref_value += fill_value * dx * dy * dz;
/* Fill the hyperslab with some value */
H5V_hyper_fill(ndims, hs_size, dst_size,
dst_offset, dst, fill_value);
/*
* Sum the array and compare it to the
* reference value.
*/
acc = 0;
for (u = 0; u < nx; u++) {
for (v = 0; v < ny; v++) {
for (w = 0; w < nz; w++) {
acc += dst[u*ny*nz + v*nz + w];
}
}
}
if (acc != ref_value) {
puts("*FAILED*");
if (!isatty(1)) {
/*
* Print debugging info unless output
* is going directly to a terminal.
*/
AT();
printf(" acc != ref_value\n");
printf(" i=%lu, j=%lu, k=%lu, "
"dx=%lu, dy=%lu, dz=%lu, "
"fill=%d\n",
(unsigned long)i,
(unsigned long)j,
(unsigned long)k,
(unsigned long)dx,
(unsigned long)dy,
(unsigned long)dz,
fill_value);
print_ref(nx, ny, nz);
printf("\n Result is:\n");
print_array(dst, nx, ny, nz);
}
goto error;
}
}
}
}
}
}
}
}
puts(" PASSED");
H5MM_xfree(dst);
return SUCCEED;
error:
H5MM_xfree(dst);
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: test_copy
*
* Purpose: Tests H5V_hyper_copy().
*
* The NX, NY, and NZ arguments are the size for the source and
* destination arrays. You may pass zero for NZ or for NY and
* NZ to test the 2-d and 1-d cases respectively.
*
* A hyperslab is copied from/to (depending on MODE) various
* places in SRC and DST beginning at 0,0,0 and increasing
* location by DI,DJ,DK in the x, y, and z directions.
*
* For each hyperslab location, various sizes of hyperslabs are
* tried beginning with 1x1x1 and increasing the size in each
* dimension by DDX,DDY,DDZ.
*
* Return: Success: SUCCEED
*
* Failure: FAIL
*
* Programmer: Robb Matzke
* Friday, October 10, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
test_copy(int mode,
size_t nx, size_t ny, size_t nz,
size_t di, size_t dj, size_t dk,
size_t ddx, size_t ddy, size_t ddz)
{
uint8_t *src = NULL; /*source array */
uint8_t *dst = NULL; /*destination array */
hsize_t hs_size[3]; /*hyperslab size */
hsize_t dst_size[3]; /*destination total size */
hsize_t src_size[3]; /*source total size */
hssize_t dst_offset[3]; /*offset of hyperslab in dest */
hssize_t src_offset[3]; /*offset of hyperslab in source */
uintn ref_value; /*reference value */
uintn acc; /*accumulator */
hsize_t i, j, k, dx, dy, dz; /*counters */
hsize_t u, v, w;
int ndims; /*hyperslab dimensionality */
char dim[64], s[256]; /*temp string */
const char *sub;
/*
* Dimensionality.
*/
if (0 == nz) {
if (0 == ny) {
ndims = 1;
ny = nz = 1;
sprintf(dim, "%lu", (unsigned long) nx);
} else {
ndims = 2;
nz = 1;
sprintf(dim, "%lux%lu", (unsigned long) nx, (unsigned long) ny);
}
} else {
ndims = 3;
sprintf(dim, "%lux%lux%lu",
(unsigned long) nx, (unsigned long) ny, (unsigned long) nz);
}
switch (mode) {
case VARIABLE_SRC:
/*
* The hyperslab "travels" through the source array but the
* destination hyperslab is always at the origin of the destination
* array.
*/
sub = "variable source";
break;
case VARIABLE_DST:
/*
* We always read a hyperslab from the origin of the source and copy it
* to a hyperslab at various locations in the destination.
*/
sub = "variable destination";
break;
case VARIABLE_BOTH:
/*
* We read the hyperslab from various locations in the source and copy
* it to the same location in the destination.
*/
sub = "sync source & dest ";
break;
default:
abort();
}
sprintf(s, "Testing hyperslab copy %-11s %s", dim, sub);
printf("%-70s", s);
fflush(stdout);
/*
* Allocate arrays
*/
src = H5MM_calloc(nx*ny*nz);
dst = H5MM_calloc(nx*ny*nz);
init_full(src, nx, ny, nz);
for (i=0; i<nx; i+=di) {
for (j=0; j<ny; j+=dj) {
for (k=0; k<nz; k+=dk) {
for (dx=1; dx<=nx-i; dx+=ddx) {
for (dy=1; dy<=ny-j; dy+=ddy) {
for (dz=1; dz<=nz-k; dz+=ddz) {
/*
* Describe the source and destination hyperslabs
* and the arrays to which they belong.
*/
hs_size[0] = dx;
hs_size[1] = dy;
hs_size[2] = dz;
dst_size[0] = src_size[0] = nx;
dst_size[1] = src_size[1] = ny;
dst_size[2] = src_size[2] = nz;
switch (mode) {
case VARIABLE_SRC:
dst_offset[0] = 0;
dst_offset[1] = 0;
dst_offset[2] = 0;
src_offset[0] = (hssize_t)i;
src_offset[1] = (hssize_t)j;
src_offset[2] = (hssize_t)k;
break;
case VARIABLE_DST:
dst_offset[0] = (hssize_t)i;
dst_offset[1] = (hssize_t)j;
dst_offset[2] = (hssize_t)k;
src_offset[0] = 0;
src_offset[1] = 0;
src_offset[2] = 0;
break;
case VARIABLE_BOTH:
dst_offset[0] = (hssize_t)i;
dst_offset[1] = (hssize_t)j;
dst_offset[2] = (hssize_t)k;
src_offset[0] = (hssize_t)i;
src_offset[1] = (hssize_t)j;
src_offset[2] = (hssize_t)k;
break;
default:
abort();
}
/*
* Sum the main array directly to get a reference
* value to compare against later.
*/
ref_value = 0;
for (u=src_offset[0]; u<src_offset[0]+dx; u++) {
for (v=src_offset[1];
v<src_offset[1]+dy;
v++) {
for (w=src_offset[2];
w<src_offset[2]+dz;
w++) {
ref_value += src[u*ny*nz + v*nz + w];
}
}
}
/*
* Set all loc values to 1 so we can detect writing
* outside the hyperslab.
*/
for (u=0; u<nx; u++) {
for (v=0; v<ny; v++) {
for (w=0; w<nz; w++) {
dst[u*ny*nz + v*nz + w] = 1;
}
}
}
/*
* Copy a hyperslab from the global array to the
* local array.
*/
H5V_hyper_copy(ndims, hs_size,
dst_size, dst_offset, dst,
src_size, src_offset, src);
/*
* Sum the destination hyperslab. It should be
* the same as the reference value.
*/
acc = 0;
for (u=dst_offset[0]; u<dst_offset[0]+dx; u++) {
for (v=dst_offset[1];
v<dst_offset[1]+dy;
v++) {
for (w=dst_offset[2];
w<dst_offset[2]+dz;
w++) {
acc += dst[u*ny*nz + v*nz + w];
}
}
}
if (acc != ref_value) {
puts("*FAILED*");
if (!isatty(1)) {
/*
* Print debugging info unless output is
* going directly to a terminal.
*/
AT();
printf(" acc != ref_value\n");
printf(" i=%lu, j=%lu, k=%lu, "
"dx=%lu, dy=%lu, dz=%lu\n",
(unsigned long)i,
(unsigned long)j,
(unsigned long)k,
(unsigned long)dx,
(unsigned long)dy,
(unsigned long)dz);
print_ref(nx, ny, nz);
printf("\n Destination array is:\n");
print_array(dst, nx, ny, nz);
}
goto error;
}
/*
* Sum the entire array. It should be a fixed
* amount larger than the reference value since
* we added the border of 1's to the hyperslab.
*/
acc = 0;
for (u=0; u<nx; u++) {
for (v=0; v<ny; v++) {
for (w=0; w<nz; w++) {
acc += dst[u*ny*nz + v*nz + w];
}
}
}
/*
* The following casts are to work around an
* optimization bug in the Mongoose 7.20 Irix64
* compiler.
*/
if (acc+(unsigned)dx*(unsigned)dy*(unsigned)dz !=
ref_value + nx*ny*nz) {
puts("*FAILED*");
if (!isatty(1)) {
/*
* Print debugging info unless output is
* going directly to a terminal.
*/
AT();
printf(" acc != ref_value + nx*ny*nz - "
"dx*dy*dz\n");
printf(" i=%lu, j=%lu, k=%lu, "
"dx=%lu, dy=%lu, dz=%lu\n",
(unsigned long)i,
(unsigned long)j,
(unsigned long)k,
(unsigned long)dx,
(unsigned long)dy,
(unsigned long)dz);
print_ref(nx, ny, nz);
printf("\n Destination array is:\n");
print_array(dst, nx, ny, nz);
}
goto error;
}
}
}
}
}
}
}
puts(" PASSED");
H5MM_xfree(src);
H5MM_xfree(dst);
return SUCCEED;
error:
H5MM_xfree(src);
H5MM_xfree(dst);
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: test_multifill
*
* Purpose: Tests the H5V_stride_copy() function by using it to fill a
* hyperslab by replicating a multi-byte sequence. This might
* be useful to initialize an array of structs with a default
* struct value, or to initialize an array of floating-point
* values with a default bit-pattern.
*
* Return: Success: SUCCEED
*
* Failure: FAIL
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
test_multifill(size_t nx)
{
hsize_t i, j;
hsize_t size;
hssize_t src_stride;
hssize_t dst_stride;
char s[64];
struct a_struct {
int left;
double mid;
int right;
} fill , *src = NULL, *dst = NULL;
printf("%-70s", "Testing multi-byte fill value");
fflush(stdout);
/* Initialize the source and destination */
#ifndef WIN32
src = H5MM_malloc(nx * sizeof(*src));
dst = H5MM_malloc(nx * sizeof(*dst));
#else
/*
to match the HDfree I plan on using to free this memory
*/
src = malloc(nx * sizeof(*src));
dst = malloc(nx * sizeof(*dst));
#endif
for (i = 0; i < nx; i++) {
src[i].left = 1111111;
src[i].mid = 12345.6789;
src[i].right = 2222222;
dst[i].left = 3333333;
dst[i].mid = 98765.4321;
dst[i].right = 4444444;
}
/*
* Describe the fill value. The zero stride says to read the same thing
* over and over again.
*/
fill.left = 55555555;
fill.mid = 3.1415927;
fill.right = 66666666;
src_stride = 0;
/*
* The destination stride says to fill in one value per array element
*/
dst_stride = sizeof(fill);
/*
* Copy the fill value into each element
*/
size = nx;
H5V_stride_copy(1, (hsize_t)sizeof(double), &size,
&dst_stride, &(dst[0].mid), &src_stride, &(fill.mid));
/*
* Check
*/
s[0] = '\0';
for (i = 0; i < nx; i++) {
if (dst[i].left != 3333333) {
sprintf(s, "bad dst[%lu].left", (unsigned long)i);
} else if (dst[i].mid != fill.mid) {
sprintf(s, "bad dst[%lu].mid", (unsigned long)i);
} else if (dst[i].right != 4444444) {
sprintf(s, "bad dst[%lu].right", (unsigned long)i);
}
if (s[0]) {
puts("*FAILED*");
if (!isatty(1)) {
AT();
printf(" fill={%d,%g,%d}\n ",
fill.left, fill.mid, fill.right);
for (j = 0; j < sizeof(fill); j++) {
printf(" %02x", ((uint8_t *) &fill)[j]);
}
printf("\n dst[%lu]={%d,%g,%d}\n ",
(unsigned long)i,
dst[i].left, dst[i].mid, dst[i].right);
for (j = 0; j < sizeof(dst[i]); j++) {
printf(" %02x", ((uint8_t *) (dst + i))[j]);
}
printf("\n");
}
goto error;
}
}
puts(" PASSED");
#ifndef WIN32
H5MM_xfree(src);
H5MM_xfree(dst);
#else
/*
The above calls to H5MM_xfree crash on NT but using free does not.
*/
HDfree(src);
HDfree(dst);
#endif
return SUCCEED;
error:
H5MM_xfree(src);
H5MM_xfree(dst);
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: test_endian
*
* Purpose: Tests the H5V_stride_copy() function by using it to copy an
* array of integers and swap the byte ordering from little
* endian to big endian or vice versa depending on the hardware.
*
* Return: Success: SUCCEED
*
* Failure: FAIL
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
test_endian(size_t nx)
{
uint8_t *src = NULL; /*source array */
uint8_t *dst = NULL; /*destination array */
hssize_t src_stride[2]; /*source strides */
hssize_t dst_stride[2]; /*destination strides */
hsize_t size[2]; /*size vector */
hsize_t i, j;
printf("%-70s", "Testing endian conversion by stride");
fflush(stdout);
/* Initialize arrays */
src = H5MM_malloc(nx * 4);
init_full(src, nx, 4, 1);
dst = H5MM_calloc(nx * 4);
/* Initialize strides */
src_stride[0] = 0;
src_stride[1] = 1;
dst_stride[0] = 8;
dst_stride[1] = -1;
size[0] = nx;
size[1] = 4;
/* Copy the array */
H5V_stride_copy(2, (hsize_t)1, size, dst_stride, dst + 3, src_stride, src);
/* Compare */
for (i = 0; i < nx; i++) {
for (j = 0; j < 4; j++) {
if (src[i * 4 + j] != dst[i * 4 + 3 - j]) {
puts("*FAILED*");
if (!isatty(1)) {
/*
* Print debugging info unless output is going directly
* to a terminal.
*/
AT();
printf(" i=%lu, j=%lu\n",
(unsigned long)i, (unsigned long)j);
printf(" Source array is:\n");
print_array(src, nx, 4, 1);
printf("\n Result is:\n");
print_array(dst, nx, 4, 1);
}
goto error;
}
}
}
puts(" PASSED");
H5MM_xfree(src);
H5MM_xfree(dst);
return SUCCEED;
error:
H5MM_xfree(src);
H5MM_xfree(dst);
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: test_transpose
*
* Purpose: Copy a 2d array from here to there and transpose the elements
* as it's copied.
*
* Return: Success: SUCCEED
*
* Failure: FAIL
*
* Programmer: Robb Matzke
* Saturday, October 11, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
test_transpose(size_t nx, size_t ny)
{
intn *src = NULL;
intn *dst = NULL;
hsize_t i, j;
hssize_t src_stride[2], dst_stride[2];
hsize_t size[2];
char s[256];
sprintf(s, "Testing 2d transpose by stride %4lux%-lud",
(unsigned long) nx, (unsigned long) ny);
printf("%-70s", s);
fflush(stdout);
/* Initialize */
src = H5MM_malloc(nx * ny * sizeof(*src));
for (i = 0; i < nx; i++) {
for (j = 0; j < ny; j++) {
src[i * ny + j] = (intn)(i * ny + j);
}
}
dst = H5MM_calloc(nx*ny*sizeof(*dst));
/* Build stride info */
size[0] = nx;
size[1] = ny;
src_stride[0] = 0;
src_stride[1] = sizeof(*src);
dst_stride[0] = (ssize_t)((1 - nx * ny) * sizeof(*src));
dst_stride[1] = (ssize_t)(nx * sizeof(*src));
/* Copy and transpose */
if (nx == ny) {
H5V_stride_copy(2, (hsize_t)sizeof(*src), size,
dst_stride, dst,
src_stride, src);
} else {
H5V_stride_copy(2, (hsize_t)sizeof(*src), size,
dst_stride, dst,
src_stride, src);
}
/* Check */
for (i = 0; i < nx; i++) {
for (j = 0; j < ny; j++) {
if (src[i * ny + j] != dst[j * nx + i]) {
puts("*FAILED*");
if (!isatty(1)) {
AT();
printf(" diff at i=%lu, j=%lu\n",
(unsigned long)i, (unsigned long)j);
printf(" Source is:\n");
for (i = 0; i < nx; i++) {
printf("%3lu:", (unsigned long)i);
for (j = 0; j < ny; j++) {
printf(" %6d", src[i * ny + j]);
}
printf("\n");
}
printf("\n Destination is:\n");
for (i = 0; i < ny; i++) {
printf("%3lu:", (unsigned long)i);
for (j = 0; j < nx; j++) {
printf(" %6d", dst[i * nx + j]);
}
printf("\n");
}
}
goto error;
}
}
}
puts(" PASSED");
H5MM_xfree(src);
H5MM_xfree(dst);
return SUCCEED;
error:
H5MM_xfree(src);
H5MM_xfree(dst);
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: test_sub_super
*
* Purpose: Tests H5V_stride_copy() to reduce the resolution of an image
* by copying half the pixels in the X and Y directions. Then
* we use the small image and duplicate every pixel to result in
* a 2x2 square.
*
* Return: Success: SUCCEED
*
* Failure: FAIL
*
* Programmer: Robb Matzke
* Monday, October 13, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
test_sub_super(size_t nx, size_t ny)
{
uint8_t *full = NULL; /*original image */
uint8_t *half = NULL; /*image at 1/2 resolution */
uint8_t *twice = NULL; /*2x2 pixels */
hssize_t src_stride[4]; /*source stride info */
hssize_t dst_stride[4]; /*destination stride info */
hsize_t size[4]; /*number of sample points */
hsize_t i, j;
char s[256];
sprintf(s, "Testing image sampling %4lux%-4lu to %4lux%-4lu ",
(unsigned long) (2 * nx), (unsigned long) (2 * ny),
(unsigned long) nx, (unsigned long) ny);
printf("%-70s", s);
fflush(stdout);
/* Initialize */
full = H5MM_malloc(4 * nx * ny);
init_full(full, 2 * nx, 2 * ny, 1);
half = H5MM_calloc(nx*ny);
twice = H5MM_calloc(4*nx*ny);
/* Setup */
size[0] = nx;
size[1] = ny;
src_stride[0] = (ssize_t)(2 * ny);
src_stride[1] = 2;
dst_stride[0] = 0;
dst_stride[1] = 1;
/* Copy */
H5V_stride_copy(2, (hsize_t)sizeof(uint8_t), size,
dst_stride, half, src_stride, full);
/* Check */
for (i = 0; i < nx; i++) {
for (j = 0; j < ny; j++) {
if (full[4 * i * ny + 2 * j] != half[i * ny + j]) {
puts("*FAILED*");
if (!isatty(1)) {
AT();
printf(" full[%lu][%lu] != half[%lu][%lu]\n",
(unsigned long)i*2,
(unsigned long)j*2,
(unsigned long)i,
(unsigned long)j);
printf(" full is:\n");
print_array(full, 2 * nx, 2 * ny, 1);
printf("\n half is:\n");
print_array(half, nx, ny, 1);
}
goto error;
}
}
}
puts(" PASSED");
/*
* Test replicating pixels to produce an image twice as large in each
* dimension.
*/
sprintf(s, "Testing image sampling %4lux%-4lu to %4lux%-4lu ",
(unsigned long) nx, (unsigned long) ny,
(unsigned long) (2 * nx), (unsigned long) (2 * ny));
printf("%-70s", s);
fflush(stdout);
/* Setup stride */
size[0] = nx;
size[1] = ny;
size[2] = 2;
size[3] = 2;
src_stride[0] = 0;
src_stride[1] = 1;
src_stride[2] = 0;
src_stride[3] = 0;
dst_stride[0] = (ssize_t)(2 * ny);
dst_stride[1] = (ssize_t)(2 * sizeof(uint8_t) - 4 * ny);
dst_stride[2] = (ssize_t)(2 * ny - 2 * sizeof(uint8_t));
dst_stride[3] = sizeof(uint8_t);
/* Copy */
H5V_stride_copy(4, (hsize_t)sizeof(uint8_t), size,
dst_stride, twice, src_stride, half);
/* Check */
s[0] = '\0';
for (i = 0; i < nx; i++) {
for (j = 0; j < ny; j++) {
if (half[i*ny+j] != twice[4*i*ny + 2*j]) {
sprintf(s, "half[%lu][%lu] != twice[%lu][%lu]",
(unsigned long)i,
(unsigned long)j,
(unsigned long)i*2,
(unsigned long)j*2);
} else if (half[i*ny + j] != twice[4*i*ny + 2*j + 1]) {
sprintf(s, "half[%lu][%lu] != twice[%lu][%lu]",
(unsigned long)i,
(unsigned long)j,
(unsigned long)i*2,
(unsigned long)j*2+1);
} else if (half[i*ny + j] != twice[(2*i +1)*2*ny + 2*j]) {
sprintf(s, "half[%lu][%lu] != twice[%lu][%lu]",
(unsigned long)i,
(unsigned long)j,
(unsigned long)i*2+1,
(unsigned long)j*2);
} else if (half[i*ny + j] != twice[(2*i+1)*2*ny + 2*j+1]) {
sprintf(s, "half[%lu][%lu] != twice[%lu][%lu]",
(unsigned long)i,
(unsigned long)j,
(unsigned long)i*2+1,
(unsigned long)j*2+1);
}
if (s[0]) {
puts("*FAILED*");
if (!isatty(1)) {
AT();
printf(" %s\n Half is:\n", s);
print_array(half, nx, ny, 1);
printf("\n Twice is:\n");
print_array(twice, 2 * nx, 2 * ny, 1);
}
goto error;
}
}
}
puts(" PASSED");
H5MM_xfree(full);
H5MM_xfree(half);
H5MM_xfree(twice);
return SUCCEED;
error:
H5MM_xfree(full);
H5MM_xfree(half);
H5MM_xfree(twice);
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: main
*
* Purpose: Test various hyperslab operations. Give the words
* `small' and/or `medium' on the command line or only `small'
* is assumed.
*
* Return: Success: exit(0)
*
* Failure: exit(non-zero)
*
* Programmer: Robb Matzke
* Friday, October 10, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
int
main(int argc, char *argv[])
{
herr_t status;
int nerrors = 0;
uintn size_of_test;
/* Parse arguments or assume `small' */
if (1 == argc) {
size_of_test = TEST_SMALL;
} else {
intn i;
for (i = 1, size_of_test = 0; i < argc; i++) {
if (!strcmp(argv[i], "small")) {
size_of_test |= TEST_SMALL;
} else if (!strcmp(argv[i], "medium")) {
size_of_test |= TEST_MEDIUM;
} else {
printf("unrecognized argument: %s\n", argv[i]);
exit(1);
}
}
}
printf("Test sizes: ");
if (size_of_test & TEST_SMALL)
printf(" SMALL");
if (size_of_test & TEST_MEDIUM)
printf(" MEDIUM");
printf("\n");
/*
*------------------------------
* TEST HYPERSLAB FILL OPERATION
*------------------------------
*/
if (size_of_test & TEST_SMALL) {
status = test_fill(11, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_fill(11, 10, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_fill(3, 5, 5, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
}
if (size_of_test & TEST_MEDIUM) {
status = test_fill(113, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_fill(15, 11, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_fill(5, 7, 7, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
}
/*------------------------------
* TEST HYPERSLAB COPY OPERATION
*------------------------------
*/
/* exhaustive, one-dimensional test */
if (size_of_test & TEST_SMALL) {
status = test_copy(VARIABLE_SRC, 11, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_copy(VARIABLE_DST, 11, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_copy(VARIABLE_BOTH, 11, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
}
if (size_of_test & TEST_MEDIUM) {
status = test_copy(VARIABLE_SRC, 179, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_copy(VARIABLE_DST, 179, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_copy(VARIABLE_BOTH, 179, 0, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
}
/* exhaustive, two-dimensional test */
if (size_of_test & TEST_SMALL) {
status = test_copy(VARIABLE_SRC, 11, 10, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_copy(VARIABLE_DST, 11, 10, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_copy(VARIABLE_BOTH, 11, 10, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
}
if (size_of_test & TEST_MEDIUM) {
status = test_copy(VARIABLE_SRC, 13, 19, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_copy(VARIABLE_DST, 13, 19, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_copy(VARIABLE_BOTH, 13, 19, 0, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
}
/* sparse, two-dimensional test */
if (size_of_test & TEST_MEDIUM) {
status = test_copy(VARIABLE_SRC, 73, 67, 0, 7, 11, 1, 13, 11, 1);
nerrors += status < 0 ? 1 : 0;
status = test_copy(VARIABLE_DST, 73, 67, 0, 7, 11, 1, 13, 11, 1);
nerrors += status < 0 ? 1 : 0;
status = test_copy(VARIABLE_BOTH, 73, 67, 0, 7, 11, 1, 13, 11, 1);
nerrors += status < 0 ? 1 : 0;
}
/* exhaustive, three-dimensional test */
if (size_of_test & TEST_SMALL) {
status = test_copy(VARIABLE_SRC, 3, 5, 5, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_copy(VARIABLE_DST, 3, 5, 5, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_copy(VARIABLE_BOTH, 3, 5, 5, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
}
if (size_of_test & TEST_MEDIUM) {
status = test_copy(VARIABLE_SRC, 7, 9, 5, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_copy(VARIABLE_DST, 7, 9, 5, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
status = test_copy(VARIABLE_BOTH, 7, 9, 5, 1, 1, 1, 1, 1, 1);
nerrors += status < 0 ? 1 : 0;
}
/*---------------------
* TEST MULTI-BYTE FILL
*---------------------
*/
if (size_of_test & TEST_SMALL) {
status = test_multifill(10);
nerrors += status < 0 ? 1 : 0;
}
if (size_of_test & TEST_MEDIUM) {
status = test_multifill(500000);
nerrors += status < 0 ? 1 : 0;
}
/*---------------------------
* TEST TRANSLATION OPERATORS
*---------------------------
*/
if (size_of_test & TEST_SMALL) {
status = test_endian(10);
nerrors += status < 0 ? 1 : 0;
status = test_transpose(9, 9);
nerrors += status < 0 ? 1 : 0;
status = test_transpose(3, 11);
nerrors += status < 0 ? 1 : 0;
}
if (size_of_test & TEST_MEDIUM) {
status = test_endian(800000);
nerrors += status < 0 ? 1 : 0;
status = test_transpose(1200, 1200);
nerrors += status < 0 ? 1 : 0;
status = test_transpose(800, 1800);
nerrors += status < 0 ? 1 : 0;
}
/*-------------------------
* TEST SAMPLING OPERATIONS
*-------------------------
*/
if (size_of_test & TEST_SMALL) {
status = test_sub_super(5, 10);
nerrors += status < 0 ? 1 : 0;
}
if (size_of_test & TEST_MEDIUM) {
status = test_sub_super(480, 640);
nerrors += status < 0 ? 1 : 0;
}
/*--- END OF TESTS ---*/
if (nerrors) {
printf("***** %d HYPERSLAB TEST%s FAILED! *****\n",
nerrors, 1 == nerrors ? "" : "S");
if (isatty(1)) {
printf("(Redirect output to a pager or a file to see "
"debug output)\n");
}
exit(1);
}
printf("All hyperslab tests passed.\n");
return 0;
}