hdf5/perform/pio_perf.c

1716 lines
61 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the files COPYING and Copyright.html. COPYING can be found at the root *
* of the source code distribution tree; Copyright.html can be found at the *
* root level of an installed copy of the electronic HDF5 document set and *
* is linked from the top-level documents page. It can also be found at *
* http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have *
* access to either file, you may request a copy from help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Parallel HDF5 Performance Testing Code
* --------------------------------------
*
* Portable code to test performance on the different platforms we support.
* This is what the report should look like:
*
* nprocs = Max#Procs
* IO API = POSIXIO
* # Files = 1, # of dsets = 1000, Elements per dset = 37000
* Write Results = x MB/s
* Read Results = x MB/s
* # Files = 1, # of dsets = 3000, Elements per dset = 37000
* Write Results = x MB/s
* Read Results = x MB/s
*
* . . .
*
* IO API = MPIO
* # Files = 1, # of dsets = 1000, Elements per dset = 37000
* Write Results = x MB/s
* Read Results = x MB/s
* # Files = 1, # of dsets = 3000, Elements per dset = 37000
* Write Results = x MB/s
* Read Results = x MB/s
*
* . . .
*
* IO API = PHDF5
* # Files = 1, # of dsets = 1000, Elements per dset = 37000
* Write Results = x MB/s
* Read Results = x MB/s
* # Files = 1, # of dsets = 3000, Elements per dset = 37000
* Write Results = x MB/s
* Read Results = x MB/s
*
* . . .
*
* nprocs = Max#Procs / 2
*
* . . .
*
*/
/* system header files */
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include "hdf5.h"
#ifdef H5_HAVE_PARALLEL
/* library header files */
#include <mpi.h>
/* our header files */
#include "pio_perf.h"
/* useful macros */
#define TAB_SPACE 4
#define ONE_KB 1024
#define ONE_MB (ONE_KB * ONE_KB)
#define ONE_GB (ONE_MB * ONE_KB)
#define PIO_POSIX 0x1
#define PIO_MPI 0x2
#define PIO_HDF5 0x4
/* report 0.0 in case t is zero too */
#define MB_PER_SEC(bytes,t) (((t)==0.0) ? 0.0 : ((((double)bytes) / ONE_MB) / (t)))
#ifndef TRUE
#define TRUE 1
#endif /* TRUE */
#ifndef FALSE
#define FALSE (!TRUE)
#endif /* FALSE */
/* global variables */
FILE *output; /* output file */
int comm_world_rank_g; /* my rank in MPI_COMM_RANK */
int comm_world_nprocs_g;/* num. of processes of MPI_COMM_WORLD */
MPI_Comm pio_comm_g; /* Communicator to run the PIO */
int pio_mpi_rank_g; /* MPI rank of pio_comm_g */
int pio_mpi_nprocs_g; /* Number of processes of pio_comm_g */
int pio_debug_level = 0;/* The debug level:
* 0 - Off
* 1 - Minimal
* 2 - Some more
* 3 - Maximal
* 4 - Maximal & then some
*/
/* local variables */
static const char *progname = "h5perf";
/*
* Command-line options: The user can specify short or long-named
* parameters. The long-named ones can be partially spelled. When
* adding more, make sure that they don't clash with each other.
*/
#if 1
static const char *s_opts = "a:A:B:cCd:D:e:F:ghi:Imno:p:P:stT:wx:X:";
#else
static const char *s_opts = "a:A:bB:cCd:D:e:F:ghi:Imno:p:P:stT:wx:X:";
#endif /* 1 */
static struct long_options l_opts[] = {
{ "align", require_arg, 'a' },
{ "alig", require_arg, 'a' },
{ "ali", require_arg, 'a' },
{ "al", require_arg, 'a' },
{ "api", require_arg, 'A' },
{ "ap", require_arg, 'A' },
#if 0
/* a sighting of the elusive binary option */
{ "binary", no_arg, 'b' },
{ "binar", no_arg, 'b' },
{ "bina", no_arg, 'b' },
{ "bin", no_arg, 'b' },
{ "bi", no_arg, 'b' },
#endif /* 0 */
{ "block-size", require_arg, 'B' },
{ "block-siz", require_arg, 'B' },
{ "block-si", require_arg, 'B' },
{ "block-s", require_arg, 'B' },
{ "block-", require_arg, 'B' },
{ "block", require_arg, 'B' },
{ "bloc", require_arg, 'B' },
{ "blo", require_arg, 'B' },
{ "bl", require_arg, 'B' },
{ "chunk", no_arg, 'c' },
{ "chun", no_arg, 'c' },
{ "chu", no_arg, 'c' },
{ "ch", no_arg, 'c' },
{ "collective", no_arg, 'C' },
{ "collectiv", no_arg, 'C' },
{ "collecti", no_arg, 'C' },
{ "collect", no_arg, 'C' },
{ "collec", no_arg, 'C' },
{ "colle", no_arg, 'C' },
{ "coll", no_arg, 'C' },
{ "col", no_arg, 'C' },
{ "co", no_arg, 'C' },
{ "debug", require_arg, 'D' },
{ "debu", require_arg, 'D' },
{ "deb", require_arg, 'D' },
{ "de", require_arg, 'D' },
{ "geometry", no_arg, 'g' },
{ "geometr", no_arg, 'g' },
{ "geomet", no_arg, 'g' },
{ "geome", no_arg, 'g' },
{ "geom", no_arg, 'g' },
{ "geo", no_arg, 'g' },
{ "ge", no_arg, 'g' },
{ "help", no_arg, 'h' },
{ "hel", no_arg, 'h' },
{ "he", no_arg, 'h' },
{ "interleaved", require_arg, 'I' },
{ "interleave", require_arg, 'I' },
{ "interleav", require_arg, 'I' },
{ "interlea", require_arg, 'I' },
{ "interle", require_arg, 'I' },
{ "interl", require_arg, 'I' },
{ "inter", require_arg, 'I' },
{ "inte", require_arg, 'I' },
{ "int", require_arg, 'I' },
{ "in", require_arg, 'I' },
{ "max-num-processes", require_arg, 'P' },
{ "max-num-processe", require_arg, 'P' },
{ "max-num-process", require_arg, 'P' },
{ "max-num-proces", require_arg, 'P' },
{ "max-num-proce", require_arg, 'P' },
{ "max-num-proc", require_arg, 'P' },
{ "max-num-pro", require_arg, 'P' },
{ "max-num-pr", require_arg, 'P' },
{ "max-num-p", require_arg, 'P' },
{ "min-num-processes", require_arg, 'p' },
{ "min-num-processe", require_arg, 'p' },
{ "min-num-process", require_arg, 'p' },
{ "min-num-proces", require_arg, 'p' },
{ "min-num-proce", require_arg, 'p' },
{ "min-num-proc", require_arg, 'p' },
{ "min-num-pro", require_arg, 'p' },
{ "min-num-pr", require_arg, 'p' },
{ "min-num-p", require_arg, 'p' },
{ "max-xfer-size", require_arg, 'X' },
{ "max-xfer-siz", require_arg, 'X' },
{ "max-xfer-si", require_arg, 'X' },
{ "max-xfer-s", require_arg, 'X' },
{ "max-xfer", require_arg, 'X' },
{ "max-xfe", require_arg, 'X' },
{ "max-xf", require_arg, 'X' },
{ "max-x", require_arg, 'X' },
{ "min-xfer-size", require_arg, 'x' },
{ "min-xfer-siz", require_arg, 'x' },
{ "min-xfer-si", require_arg, 'x' },
{ "min-xfer-s", require_arg, 'x' },
{ "min-xfer", require_arg, 'x' },
{ "min-xfe", require_arg, 'x' },
{ "min-xf", require_arg, 'x' },
{ "min-x", require_arg, 'x' },
{ "mpi-posix", no_arg, 'm' },
{ "mpi-posi", no_arg, 'm' },
{ "mpi-pos", no_arg, 'm' },
{ "mpi-po", no_arg, 'm' },
{ "mpi-p", no_arg, 'm' },
{ "mpi-", no_arg, 'm' },
{ "mpi", no_arg, 'm' },
{ "mp", no_arg, 'm' },
{ "num-bytes", require_arg, 'e' },
{ "num-byte", require_arg, 'e' },
{ "num-byt", require_arg, 'e' },
{ "num-by", require_arg, 'e' },
{ "num-b", require_arg, 'e' },
{ "num-dsets", require_arg, 'd' },
{ "num-dset", require_arg, 'd' },
{ "num-dse", require_arg, 'd' },
{ "num-ds", require_arg, 'd' },
{ "num-d", require_arg, 'd' },
{ "num-files", require_arg, 'F' },
{ "num-file", require_arg, 'F' },
{ "num-fil", require_arg, 'F' },
{ "num-fi", require_arg, 'F' },
{ "num-f", require_arg, 'F' },
{ "num-iterations", require_arg, 'i' },
{ "num-iteration", require_arg, 'i' },
{ "num-iteratio", require_arg, 'i' },
{ "num-iterati", require_arg, 'i' },
{ "num-iterat", require_arg, 'i' },
{ "num-itera", require_arg, 'i' },
{ "num-iter", require_arg, 'i' },
{ "num-ite", require_arg, 'i' },
{ "num-it", require_arg, 'i' },
{ "num-i", require_arg, 'i' },
{ "output", require_arg, 'o' },
{ "outpu", require_arg, 'o' },
{ "outp", require_arg, 'o' },
{ "out", require_arg, 'o' },
{ "ou", require_arg, 'o' },
{ "threshold", require_arg, 'T' },
{ "threshol", require_arg, 'T' },
{ "thresho", require_arg, 'T' },
{ "thresh", require_arg, 'T' },
{ "thres", require_arg, 'T' },
{ "thre", require_arg, 'T' },
{ "thr", require_arg, 'T' },
{ "th", require_arg, 'T' },
{ "write-only", require_arg, 'w' },
{ "write-onl", require_arg, 'w' },
{ "write-on", require_arg, 'w' },
{ "write-o", require_arg, 'w' },
{ "write", require_arg, 'w' },
{ "writ", require_arg, 'w' },
{ "wri", require_arg, 'w' },
{ "wr", require_arg, 'w' },
{ NULL, 0, '\0' }
};
struct options {
long io_types; /* bitmask of which I/O types to test */
const char *output_file; /* file to print report to */
long num_dsets; /* number of datasets */
long num_files; /* number of files */
off_t num_bpp; /* number of bytes per proc per dset */
int num_iters; /* number of iterations */
int max_num_procs; /* maximum number of processes to use */
int min_num_procs; /* minimum number of processes to use */
size_t max_xfer_size; /* maximum transfer buffer size */
size_t min_xfer_size; /* minimum transfer buffer size */
size_t blk_size; /* Block size */
unsigned interleaved; /* Interleaved vs. contiguous blocks */
unsigned collective; /* Collective vs. independent I/O */
unsigned dim2d; /* 1D vs. 2D geometry */
int print_times; /* print times as well as throughputs */
int print_raw; /* print raw data throughput info */
off_t h5_alignment; /* alignment in HDF5 file */
off_t h5_threshold; /* threshold for alignment in HDF5 file */
int h5_use_chunks; /* Make HDF5 dataset chunked */
int h5_write_only; /* Perform the write tests only */
unsigned h5_use_mpi_posix; /* Use MPI-posix VFD for HDF5 I/O (instead of MPI-I/O VFD) */
int verify; /* Verify data correctness */
};
typedef struct _minmax {
double min;
double max;
double sum;
int num;
} minmax;
/* local functions */
static off_t parse_size_directive(const char *size);
static struct options *parse_command_line(int argc, char *argv[]);
static void run_test_loop(struct options *options);
static int run_test(iotype iot, parameters parms, struct options *opts);
static void output_all_info(minmax *mm, int count, int indent_level);
static void get_minmax(minmax *mm, double val);
static minmax accumulate_minmax_stuff(minmax *mm, int count);
static int create_comm_world(int num_procs, int *doing_pio);
static int destroy_comm_world(void);
static void output_results(const struct options *options, const char *name,
minmax *table, int table_size, off_t data_size);
static void output_times(const struct options *options, const char *name,
minmax *table, int table_size);
static void output_report(const char *fmt, ...);
static void print_indent(register int indent);
static void usage(const char *prog);
static void report_parameters(struct options *opts);
/*
* Function: main
* Purpose: Start things up. Initialize MPI and then call the test looping
* function.
* Return: EXIT_SUCCESS or EXIT_FAILURE
* Programmer: Bill Wendling, 30. October 2001
* Modifications:
*/
int
main(int argc, char **argv)
{
int ret;
int exit_value = EXIT_SUCCESS;
struct options *opts = NULL;
output = stdout;
/* initialize MPI and get the maximum num of processors we started with */
MPI_Init(&argc, &argv);
ret = MPI_Comm_size(MPI_COMM_WORLD, &comm_world_nprocs_g);
if (ret != MPI_SUCCESS) {
fprintf(stderr, "%s: MPI_Comm_size call failed\n", progname);
if (ret == MPI_ERR_COMM)
fprintf(stderr, "invalid MPI communicator\n");
else
fprintf(stderr, "invalid argument\n");
exit_value = EXIT_FAILURE;
goto finish;
}
ret = MPI_Comm_rank(MPI_COMM_WORLD, &comm_world_rank_g);
if (ret != MPI_SUCCESS) {
fprintf(stderr, "%s: MPI_Comm_rank call failed\n", progname);
if (ret == MPI_ERR_COMM)
fprintf(stderr, "invalid MPI communicator\n");
else
fprintf(stderr, "invalid argument\n");
exit_value = EXIT_FAILURE;
goto finish;
}
pio_comm_g = MPI_COMM_WORLD;
h5_set_info_object();
opts = parse_command_line(argc, argv);
if (!opts) {
exit_value = EXIT_FAILURE;
goto finish;
}
if (opts->output_file) {
if ((output = fopen(opts->output_file, "w")) == NULL) {
fprintf(stderr, "%s: cannot open output file\n", progname);
perror(opts->output_file);
goto finish;
}
}
if ((pio_debug_level == 0 && comm_world_rank_g == 0) || pio_debug_level > 0)
report_parameters(opts);
run_test_loop(opts);
finish:
MPI_Finalize();
free(opts);
return exit_value;
}
/*
* Function: run_test_loop
* Purpose: Run the I/O tests. Write the results to OUTPUT.
*
* - The slowest changing part of the test is the number of
* processors to use. For each loop iteration, we divide that
* number by 2 and rerun the test.
*
* - The second slowest is what type of IO API to perform. We have
* three choices: POSIXIO, MPI-IO, and PHDF5.
*
* - Then we change the size of the buffer. This information is
* inferred from the number of datasets to create and the number
* of integers to put into each dataset. The backend code figures
* this out.
*
* Return: Nothing
* Programmer: Bill Wendling, 30. October 2001
* Modifications:
* Added 2D testing (Christian Chilan, 10. August 2005)
*/
static void
run_test_loop(struct options *opts)
{
parameters parms;
int num_procs;
int doing_pio; /* if this process is doing PIO */
parms.num_files = opts->num_files;
parms.num_dsets = opts->num_dsets;
parms.num_iters = opts->num_iters;
parms.blk_size = opts->blk_size;
parms.interleaved = opts->interleaved;
parms.collective = opts->collective;
parms.dim2d = opts->dim2d;
parms.h5_align = opts->h5_alignment;
parms.h5_thresh = opts->h5_threshold;
parms.h5_use_chunks = opts->h5_use_chunks;
parms.h5_write_only = opts->h5_write_only;
parms.h5_use_mpi_posix = opts->h5_use_mpi_posix;
parms.verify = opts->verify;
/* start with max_num_procs and decrement it by half for each loop. */
/* if performance needs restart, fewer processes may be needed. */
for (num_procs = opts->max_num_procs;
num_procs >= opts->min_num_procs; num_procs >>= 1) {
register size_t buf_size;
parms.num_procs = num_procs;
if (create_comm_world(parms.num_procs, &doing_pio) != SUCCESS) {
/* do something harsh */
}
/* only processes doing PIO will run the tests */
if (doing_pio){
output_report("Number of processors = %ld\n", parms.num_procs);
/* multiply the xfer buffer size by 2 for each loop iteration */
for (buf_size = opts->min_xfer_size;
buf_size <= opts->max_xfer_size; buf_size <<= 1) {
parms.buf_size = buf_size;
if (parms.dim2d){
parms.num_bytes = (off_t)pow((double)(opts->num_bpp*parms.num_procs),2);
if (parms.interleaved)
output_report("Transfer Buffer Size: %ldx%ld bytes, File size: %.2f MBs\n",
buf_size, opts->blk_size,
((double)parms.num_dsets * (double)parms.num_bytes)
/ ONE_MB);
else
output_report("Transfer Buffer Size: %ldx%ld bytes, File size: %.2f MBs\n",
opts->blk_size, buf_size,
((double)parms.num_dsets * (double)parms.num_bytes)
/ ONE_MB);
print_indent(1);
output_report(" # of files: %ld, # of datasets: %ld, dataset size: %.2fx%.2f KBs\n",
parms.num_files, parms.num_dsets, (double)(opts->num_bpp*parms.num_procs)/ONE_KB,
(double)(opts->num_bpp*parms.num_procs)/ONE_KB);
}
else{
parms.num_bytes = (off_t)opts->num_bpp*parms.num_procs;
output_report("Transfer Buffer Size: %ld bytes, File size: %.2f MBs\n",
buf_size,((double)parms.num_dsets * (double)parms.num_bytes) / ONE_MB);
print_indent(1);
output_report(" # of files: %ld, # of datasets: %ld, dataset size: %.2f MBs\n",
parms.num_files, parms.num_dsets, (double)(opts->num_bpp*parms.num_procs)/ONE_MB);
}
if (opts->io_types & PIO_POSIX)
run_test(POSIXIO, parms, opts);
if (opts->io_types & PIO_MPI)
run_test(MPIO, parms, opts);
if (opts->io_types & PIO_HDF5)
run_test(PHDF5, parms, opts);
/* Run the tests once if buf_size==0, but then break out */
if(buf_size==0)
break;
}
if (destroy_comm_world() != SUCCESS) {
/* do something harsh */
}
}
}
}
/*
* Function: run_test
* Purpose: Inner loop call to actually run the I/O test.
* Return: Nothing
* Programmer: Bill Wendling, 18. December 2001
* Modifications:
*/
static int
run_test(iotype iot, parameters parms, struct options *opts)
{
results res;
register int i, ret_value = SUCCESS;
int comm_size;
off_t raw_size;
minmax *write_mpi_mm_table=NULL;
minmax *write_mm_table=NULL;
minmax *write_gross_mm_table=NULL;
minmax *write_raw_mm_table=NULL;
minmax *read_mpi_mm_table=NULL;
minmax *read_mm_table=NULL;
minmax *read_gross_mm_table=NULL;
minmax *read_raw_mm_table=NULL;
minmax *read_open_mm_table=NULL;
minmax *read_close_mm_table=NULL;
minmax *write_open_mm_table=NULL;
minmax *write_close_mm_table=NULL;
minmax write_mpi_mm = {0.0, 0.0, 0.0, 0};
minmax write_mm = {0.0, 0.0, 0.0, 0};
minmax write_gross_mm = {0.0, 0.0, 0.0, 0};
minmax write_raw_mm = {0.0, 0.0, 0.0, 0};
minmax read_mpi_mm = {0.0, 0.0, 0.0, 0};
minmax read_mm = {0.0, 0.0, 0.0, 0};
minmax read_gross_mm = {0.0, 0.0, 0.0, 0};
minmax read_raw_mm = {0.0, 0.0, 0.0, 0};
minmax read_open_mm = {0.0, 0.0, 0.0, 0};
minmax read_close_mm = {0.0, 0.0, 0.0, 0};
minmax write_open_mm = {0.0, 0.0, 0.0, 0};
minmax write_close_mm = {0.0, 0.0, 0.0, 0};
raw_size = parms.num_files * (off_t)parms.num_dsets * (off_t)parms.num_bytes;
parms.io_type = iot;
print_indent(2);
output_report("IO API = ");
switch (iot) {
case POSIXIO:
output_report("POSIX\n");
break;
case MPIO:
output_report("MPIO\n");
break;
case PHDF5:
if(parms.h5_use_mpi_posix)
output_report("PHDF5 (w/MPI-posix driver)\n");
else
output_report("PHDF5 (w/MPI-I/O driver)\n");
break;
}
MPI_Comm_size(pio_comm_g, &comm_size);
/* allocate space for tables minmax and that it is sufficient */
/* to initialize all elements to zeros by calloc. */
write_mpi_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax));
write_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax));
write_gross_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax));
write_raw_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax));
write_open_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax));
write_close_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax));
if (!parms.h5_write_only) {
read_mpi_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax));
read_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax));
read_gross_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax));
read_raw_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax));
read_open_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax));
read_close_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax));
}
/* Do IO iteration times, collecting statistics each time */
for (i = 0; i < parms.num_iters; ++i) {
double t;
MPI_Barrier(pio_comm_g);
res = do_pio(parms);
/* gather all of the "mpi write" times */
t = get_time(res.timers, HDF5_MPI_WRITE);
get_minmax(&write_mpi_mm, t);
write_mpi_mm_table[i] = write_mpi_mm;
/* gather all of the "write" times */
t = get_time(res.timers, HDF5_FINE_WRITE_FIXED_DIMS);
get_minmax(&write_mm, t);
write_mm_table[i] = write_mm;
/* gather all of the "write" times from open to close */
t = get_time(res.timers, HDF5_GROSS_WRITE_FIXED_DIMS);
get_minmax(&write_gross_mm, t);
write_gross_mm_table[i] = write_gross_mm;
/* gather all of the raw "write" times */
t = get_time(res.timers, HDF5_RAW_WRITE_FIXED_DIMS);
get_minmax(&write_raw_mm, t);
write_raw_mm_table[i] = write_raw_mm;
/* gather all of the file open times (time from open to first write) */
t = get_time(res.timers, HDF5_FILE_WRITE_OPEN);
get_minmax(&write_open_mm, t);
write_open_mm_table[i] = write_open_mm;
/* gather all of the file close times (time from last write to close) */
t = get_time(res.timers, HDF5_FILE_WRITE_CLOSE);
get_minmax(&write_close_mm, t);
write_close_mm_table[i] = write_close_mm;
if (!parms.h5_write_only) {
/* gather all of the "mpi read" times */
t = get_time(res.timers, HDF5_MPI_READ);
get_minmax(&read_mpi_mm, t);
read_mpi_mm_table[i] = read_mpi_mm;
/* gather all of the "read" times */
t = get_time(res.timers, HDF5_FINE_READ_FIXED_DIMS);
get_minmax(&read_mm, t);
read_mm_table[i] = read_mm;
/* gather all of the "read" times from open to close */
t = get_time(res.timers, HDF5_GROSS_READ_FIXED_DIMS);
get_minmax(&read_gross_mm, t);
read_gross_mm_table[i] = read_gross_mm;
/* gather all of the raw "read" times */
t = get_time(res.timers, HDF5_RAW_READ_FIXED_DIMS);
get_minmax(&read_raw_mm, t);
read_raw_mm_table[i] = read_raw_mm;
/* gather all of the file open times (time from open to first read) */
t = get_time(res.timers, HDF5_FILE_READ_OPEN);
get_minmax(&read_open_mm, t);
read_open_mm_table[i] = read_open_mm;
/* gather all of the file close times (time from last read to close) */
t = get_time(res.timers, HDF5_FILE_READ_CLOSE);
get_minmax(&read_close_mm, t);
read_close_mm_table[i] = read_close_mm;
}
pio_time_destroy(res.timers);
}
/*
* Show various statistics
*/
/* Write statistics */
/* Print the raw data throughput if desired */
if (opts->print_raw) {
/* accumulate and output the max, min, and average "raw write" times */
if (pio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Raw Data Write details:\n");
output_all_info(write_raw_mm_table, parms.num_iters, 4);
}
output_results(opts,"Raw Data Write",write_raw_mm_table,parms.num_iters,raw_size);
} /* end if */
/* show mpi write statics */
if (pio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("MPI Write details:\n");
output_all_info(write_mpi_mm_table, parms.num_iters, 4);
}
/* We don't currently output the MPI write results */
/* accumulate and output the max, min, and average "write" times */
if (pio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Write details:\n");
output_all_info(write_mm_table, parms.num_iters, 4);
}
output_results(opts,"Write",write_mm_table,parms.num_iters,raw_size);
/* accumulate and output the max, min, and average "gross write" times */
if (pio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Write Open-Close details:\n");
output_all_info(write_gross_mm_table, parms.num_iters, 4);
}
output_results(opts,"Write Open-Close",write_gross_mm_table,parms.num_iters,raw_size);
if (opts->print_times) {
output_times(opts,"Write File Open",write_open_mm_table,parms.num_iters);
output_times(opts,"Write File Close",write_close_mm_table,parms.num_iters);
}
/* Print out time from open to first write */
if (pio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Write file open details:\n");
output_all_info(write_open_mm_table, parms.num_iters, 4);
}
/* Print out time from last write to close */
if (pio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Write file close details:\n");
output_all_info(write_close_mm_table, parms.num_iters, 4);
}
if (!parms.h5_write_only) {
/* Read statistics */
/* Print the raw data throughput if desired */
if (opts->print_raw) {
/* accumulate and output the max, min, and average "raw read" times */
if (pio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Raw Data Read details:\n");
output_all_info(read_raw_mm_table, parms.num_iters, 4);
}
output_results(opts, "Raw Data Read", read_raw_mm_table,
parms.num_iters, raw_size);
} /* end if */
/* show mpi read statics */
if (pio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("MPI Read details:\n");
output_all_info(read_mpi_mm_table, parms.num_iters, 4);
}
/* We don't currently output the MPI read results */
/* accumulate and output the max, min, and average "read" times */
if (pio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Read details:\n");
output_all_info(read_mm_table, parms.num_iters, 4);
}
output_results(opts, "Read", read_mm_table, parms.num_iters, raw_size);
/* accumulate and output the max, min, and average "gross read" times */
if (pio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Read Open-Close details:\n");
output_all_info(read_gross_mm_table, parms.num_iters, 4);
}
output_results(opts, "Read Open-Close", read_gross_mm_table,parms.num_iters, raw_size);
if (opts->print_times) {
output_times(opts,"Read File Open",read_open_mm_table,parms.num_iters);
output_times(opts,"Read File Close",read_close_mm_table,parms.num_iters);
}
/* Print out time from open to first read */
if (pio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Read file open details:\n");
output_all_info(read_open_mm_table, parms.num_iters, 4);
}
/* Print out time from last read to close */
if (pio_debug_level >= 3) {
/* output all of the times for all iterations */
print_indent(3);
output_report("Read file close details:\n");
output_all_info(read_close_mm_table, parms.num_iters, 4);
}
}
/* clean up our mess */
free(write_mpi_mm_table);
free(write_mm_table);
free(write_gross_mm_table);
free(write_raw_mm_table);
free(write_open_mm_table);
free(write_close_mm_table);
if (!parms.h5_write_only) {
free(read_mpi_mm_table);
free(read_mm_table);
free(read_gross_mm_table);
free(read_raw_mm_table);
free(read_open_mm_table);
free(read_close_mm_table);
}
return ret_value;
}
/*
* Function: output_all_info
* Purpose:
* Return: Nothing
* Programmer: Bill Wendling, 29. January 2002
* Modifications:
*/
static void
output_all_info(minmax *mm, int count, int indent_level)
{
int i;
for (i = 0; i < count; ++i) {
print_indent(indent_level);
output_report("Iteration %d:\n", i + 1);
print_indent(indent_level + 1);
output_report("Minimum Time: %.2fs\n", mm[i].min);
print_indent(indent_level + 1);
output_report("Maximum Time: %.2fs\n", mm[i].max);
}
}
/*
* Function: get_minmax
* Purpose: Gather all the min, max and total of val.
* Return: Nothing
* Programmer: Bill Wendling, 21. December 2001
* Modifications:
* Use MPI_Allreduce to do it. -akc, 2002/01/11
*/
static void
get_minmax(minmax *mm, double val)
{
int myrank;
MPI_Comm_rank(pio_comm_g, &myrank);
MPI_Comm_size(pio_comm_g, &mm->num);
MPI_Allreduce(&val, &mm->max, 1, MPI_DOUBLE, MPI_MAX, pio_comm_g);
MPI_Allreduce(&val, &mm->min, 1, MPI_DOUBLE, MPI_MIN, pio_comm_g);
MPI_Allreduce(&val, &mm->sum, 1, MPI_DOUBLE, MPI_SUM, pio_comm_g);
}
/*
* Function: accumulate_minmax_stuff
* Purpose: Accumulate the minimum, maximum, and average of the times
* across all processes.
* Return: TOTAL_MM - the total of all of these.
* Programmer: Bill Wendling, 21. December 2001
* Modifications:
* Changed to use seconds instead of MB/s - QAK, 5/9/02
*/
static minmax
accumulate_minmax_stuff(minmax *mm, int count)
{
int i;
minmax total_mm;
total_mm.sum = 0.0;
total_mm.max = -DBL_MAX;
total_mm.min = DBL_MAX;
total_mm.num = count;
for (i = 0; i < count; ++i) {
double m = mm[i].max;
total_mm.sum += m;
if (m < total_mm.min)
total_mm.min = m;
if (m > total_mm.max)
total_mm.max = m;
}
return total_mm;
}
/*
* Function: create_comm_world
* Purpose: Create an MPI Comm world and store it in pio_comm_g, which
* is a global variable.
* Return: SUCCESS on success.
* FAIL otherwise.
* Programmer: Bill Wendling, 19. December 2001
* Modifications:
*/
static int
create_comm_world(int num_procs, int *doing_pio)
{
/* MPI variables */
int mrc; /* return values */
int color; /* for communicator creation */
int myrank, nprocs;
pio_comm_g = MPI_COMM_NULL;
/*
* Create a sub communicator for this PIO run. Easier to use the first N
* processes.
*/
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
if (num_procs > nprocs) {
fprintf(stderr,
"number of process(%d) must be <= number of processes in MPI_COMM_WORLD(%d)\n",
num_procs, nprocs);
goto error_done;
}
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
color = (myrank < num_procs);
mrc = MPI_Comm_split(MPI_COMM_WORLD, color, myrank, &pio_comm_g);
if (mrc != MPI_SUCCESS) {
fprintf(stderr, "MPI_Comm_split failed\n");
goto error_done;
}
if (!color) {
/* not involved in this run */
mrc = destroy_comm_world();
goto done;
}
/* determine the MPI rank in the PIO communicator */
MPI_Comm_size(pio_comm_g, &pio_mpi_nprocs_g);
MPI_Comm_rank(pio_comm_g, &pio_mpi_rank_g);
done:
*doing_pio = color;
return SUCCESS;
error_done:
destroy_comm_world();
return FAIL;
}
/*
* Function: destroy_comm_world
* Purpose: Destroy the created MPI Comm world which is stored in the
* pio_comm_g global variable.
* Return: SUCCESS on success.
* FAIL otherwise.
* Programmer: Bill Wendling, 19. December 2001
* Modifications:
*/
static int
destroy_comm_world(void)
{
int mrc = SUCCESS; /* return code */
/* release MPI resources */
if (pio_comm_g != MPI_COMM_NULL)
mrc = (MPI_Comm_free(&pio_comm_g) == MPI_SUCCESS ? SUCCESS : FAIL);
return mrc;
}
/*
* Function: output_results
* Purpose: Print information about the time & bandwidth for a given
* minmax & # of iterations.
* Return: Nothing
* Programmer: Quincey Koziol, 9. May 2002
* Modifications:
*/
static void
output_results(const struct options *opts, const char *name, minmax *table,
int table_size,off_t data_size)
{
minmax total_mm;
total_mm = accumulate_minmax_stuff(table, table_size);
print_indent(3);
output_report("%s (%d iteration(s)):\n", name,table_size);
/* Note: The maximum throughput uses the minimum amount of time & vice versa */
print_indent(4);
output_report("Maximum Throughput: %6.2f MB/s", MB_PER_SEC(data_size,total_mm.min));
if(opts->print_times)
output_report(" (%7.3f s)\n", total_mm.min);
else
output_report("\n");
print_indent(4);
output_report("Average Throughput: %6.2f MB/s",
MB_PER_SEC(data_size,total_mm.sum / total_mm.num));
if(opts->print_times)
output_report(" (%7.3f s)\n", (total_mm.sum / total_mm.num));
else
output_report("\n");
print_indent(4);
output_report("Minimum Throughput: %6.2f MB/s", MB_PER_SEC(data_size,total_mm.max));
if(opts->print_times)
output_report(" (%7.3f s)\n", total_mm.max);
else
output_report("\n");
}
static void
output_times(const struct options *opts, const char *name, minmax *table,
int table_size)
{
minmax total_mm;
total_mm = accumulate_minmax_stuff(table, table_size);
print_indent(3);
output_report("%s (%d iteration(s)):\n", name,table_size);
/* Note: The maximum throughput uses the minimum amount of time & vice versa */
print_indent(4);
output_report("Minimum Accumulated Time using %d file(s): %7.5f s\n", opts->num_files,(total_mm.min));
print_indent(4);
output_report("Average Accumulated Time using %d file(s): %7.5f s\n", opts->num_files,(total_mm.sum / total_mm.num));
print_indent(4);
output_report("Maximum Accumulated Time using %d file(s): %7.5f s\n", opts->num_files,(total_mm.max));
}
/*
* Function: output_report
* Purpose: Print a line of the report. Only do so if I'm the 0 process.
* Return: Nothing
* Programmer: Bill Wendling, 19. December 2001
* Modifications:
*/
static void
output_report(const char *fmt, ...)
{
int myrank;
MPI_Comm_rank(pio_comm_g, &myrank);
if (myrank == 0) {
va_list ap;
va_start(ap, fmt);
vfprintf(output, fmt, ap);
va_end(ap);
}
}
/*
* Function: print_indent
* Purpose: Print spaces to indent a new line of text for pretty printing
* things.
* Return: Nothing
* Programmer: Bill Wendling, 29. October 2001
* Modifications:
*/
static void
print_indent(register int indent)
{
int myrank;
MPI_Comm_rank(pio_comm_g, &myrank);
if (myrank == 0) {
indent *= TAB_SPACE;
for (; indent > 0; --indent)
fputc(' ', output);
}
}
static void
recover_size_and_print(long long val, const char *end)
{
if (val >= ONE_KB && (val % ONE_KB) == 0) {
if (val >= ONE_MB && (val % ONE_MB) == 0) {
if (val >= ONE_GB && (val % ONE_GB) == 0)
HDfprintf(output, "%HdGB%s", val / ONE_GB, end);
else
HDfprintf(output, "%HdMB%s", val / ONE_MB, end);
} else {
HDfprintf(output, "%HdKB%s", val / ONE_KB, end);
}
} else {
HDfprintf(output, "%Hd%s", val, end);
}
}
static void
print_io_api(long io_types)
{
if (io_types & PIO_POSIX)
HDfprintf(output, "posix ");
if (io_types & PIO_MPI)
HDfprintf(output, "mpiio ");
if (io_types & PIO_HDF5)
HDfprintf(output, "phdf5 ");
HDfprintf(output, "\n");
}
static void
report_parameters(struct options *opts)
{
int rank = comm_world_rank_g;
print_version("HDF5 Library"); /* print library version */
HDfprintf(output, "rank %d: ==== Parameters ====\n", rank);
HDfprintf(output, "rank %d: IO API=", rank);
print_io_api(opts->io_types);
HDfprintf(output, "rank %d: Number of files=%Hd\n", rank,
(long long)opts->num_files);
HDfprintf(output, "rank %d: Number of datasets=%Hd\n", rank,
(long long)opts->num_dsets);
HDfprintf(output, "rank %d: Number of iterations=%Hd\n", rank,
(long long)opts->num_iters);
HDfprintf(output, "rank %d: Number of processes=%d:%d\n", rank,
opts->min_num_procs, opts->max_num_procs);
if (opts->dim2d){
HDfprintf(output, "rank %d: Number of bytes per process per dataset=", rank);
recover_size_and_print((long long)(opts->num_bpp * opts->num_bpp * opts->min_num_procs), ":");
recover_size_and_print((long long)(opts->num_bpp * opts->num_bpp * opts->max_num_procs), "\n");
HDfprintf(output, "rank %d: Size of dataset(s)=", rank);
recover_size_and_print((long long)(opts->num_bpp * opts->min_num_procs), "x");
recover_size_and_print((long long)(opts->num_bpp * opts->min_num_procs), ":");
recover_size_and_print((long long)(opts->num_bpp * opts->max_num_procs), "x");
recover_size_and_print((long long)(opts->num_bpp * opts->max_num_procs), "\n");
HDfprintf(output, "rank %d: File size=", rank);
recover_size_and_print((long long)(pow(opts->num_bpp * opts->min_num_procs,2)
* opts->num_dsets), ":");
recover_size_and_print((long long)(pow(opts->num_bpp * opts->max_num_procs,2)
* opts->num_dsets), "\n");
HDfprintf(output, "rank %d: Transfer buffer size=", rank);
if(opts->interleaved){
recover_size_and_print((long long)opts->min_xfer_size, "x");
recover_size_and_print((long long)opts->blk_size, ":");
recover_size_and_print((long long)opts->max_xfer_size, "x");
recover_size_and_print((long long)opts->blk_size, "\n");
}
else{
recover_size_and_print((long long)opts->blk_size, "x");
recover_size_and_print((long long)opts->min_xfer_size, ":");
recover_size_and_print((long long)opts->blk_size, "x");
recover_size_and_print((long long)opts->max_xfer_size, "\n");
}
HDfprintf(output, "rank %d: Block size=", rank);
recover_size_and_print((long long)opts->blk_size, "x");
recover_size_and_print((long long)opts->blk_size, "\n");
}
else{
HDfprintf(output, "rank %d: Number of bytes per process per dataset=", rank);
recover_size_and_print((long long)opts->num_bpp, "\n");
HDfprintf(output, "rank %d: Size of dataset(s)=", rank);
recover_size_and_print((long long)(opts->num_bpp * opts->min_num_procs), ":");
recover_size_and_print((long long)(opts->num_bpp * opts->max_num_procs), "\n");
HDfprintf(output, "rank %d: File size=", rank);
recover_size_and_print((long long)(opts->num_bpp * opts->min_num_procs
* opts->num_dsets), ":");
recover_size_and_print((long long)(opts->num_bpp * opts->max_num_procs
* opts->num_dsets), "\n");
HDfprintf(output, "rank %d: Transfer buffer size=", rank);
recover_size_and_print((long long)opts->min_xfer_size, ":");
recover_size_and_print((long long)opts->max_xfer_size, "\n");
HDfprintf(output, "rank %d: Block size=", rank);
recover_size_and_print((long long)opts->blk_size, "\n");
}
HDfprintf(output, "rank %d: Block Pattern in Dataset=", rank);
if(opts->interleaved)
HDfprintf(output, "Interleaved\n");
else
HDfprintf(output, "Contiguous\n");
HDfprintf(output, "rank %d: I/O Method for MPI and HDF5=", rank);
if(opts->collective)
HDfprintf(output, "Collective\n");
else
HDfprintf(output, "Independent\n");
HDfprintf(output, "rank %d: Geometry=", rank);
if(opts->dim2d)
HDfprintf(output, "2D\n");
else
HDfprintf(output, "1D\n");
HDfprintf(output, "rank %d: VFL used for HDF5 I/O=", rank);
if(opts->h5_use_mpi_posix)
HDfprintf(output, "MPI-posix driver\n");
else
HDfprintf(output, "MPI-I/O driver\n");
HDfprintf(output, "rank %d: Data storage method in HDF5=", rank);
if(opts->h5_use_chunks)
HDfprintf(output, "Chunked\n");
else
HDfprintf(output, "Contiguous\n");
{
char *prefix = getenv("HDF5_PARAPREFIX");
HDfprintf(output, "rank %d: Env HDF5_PARAPREFIX=%s\n", rank,
(prefix ? prefix : "not set"));
}
HDfprintf(output, "rank %d: ", rank);
h5_dump_info_object(h5_io_info_g);
HDfprintf(output, "rank %d: ==== End of Parameters ====\n", rank);
HDfprintf(output, "\n");
}
/*
* Function: parse_command_line
* Purpose: Parse the command line options and return a STRUCT OPTIONS
* structure which will need to be freed by the calling function.
* Return: Pointer to an OPTIONS structure
* Programmer: Bill Wendling, 31. October 2001
* Modifications:
* Added 2D testing (Christian Chilan, 10. August 2005)
*/
static struct options *
parse_command_line(int argc, char *argv[])
{
register int opt;
struct options *cl_opts;
cl_opts = (struct options *)malloc(sizeof(struct options));
cl_opts->output_file = NULL;
cl_opts->io_types = 0; /* will set default after parsing options */
cl_opts->num_dsets = 1;
cl_opts->num_files = 1;
cl_opts->num_bpp = 0;
cl_opts->num_iters = 1;
cl_opts->max_num_procs = comm_world_nprocs_g;
cl_opts->min_num_procs = 1;
cl_opts->max_xfer_size = 0;
cl_opts->min_xfer_size = 0;
cl_opts->blk_size = 0;
cl_opts->interleaved = 0; /* Default to contiguous blocks in dataset */
cl_opts->collective = 0; /* Default to independent I/O access */
cl_opts->dim2d = 0; /* Default to 1D */
cl_opts->print_times = FALSE; /* Printing times is off by default */
cl_opts->print_raw = FALSE; /* Printing raw data throughput is off by default */
cl_opts->h5_alignment = 1; /* No alignment for HDF5 objects by default */
cl_opts->h5_threshold = 1; /* No threshold for aligning HDF5 objects by default */
cl_opts->h5_use_chunks = FALSE; /* Don't chunk the HDF5 dataset by default */
cl_opts->h5_write_only = FALSE; /* Do both read and write by default */
cl_opts->h5_use_mpi_posix = FALSE; /* Don't use MPI-posix VFD for HDF5 I/O by default */
cl_opts->verify = FALSE; /* No Verify data correctness by default */
while ((opt = get_option(argc, (const char **)argv, s_opts, l_opts)) != EOF) {
switch ((char)opt) {
case 'a':
cl_opts->h5_alignment = parse_size_directive(opt_arg);
break;
case 'A':
{
const char *end = opt_arg;
while (end && *end != '\0') {
char buf[10];
int i;
memset(buf, '\0', sizeof(buf));
for (i = 0; *end != '\0' && *end != ','; ++end)
if (isalnum(*end) && i < 10)
buf[i++] = *end;
if (!HDstrcasecmp(buf, "phdf5")) {
cl_opts->io_types |= PIO_HDF5;
} else if (!HDstrcasecmp(buf, "mpiio")) {
cl_opts->io_types |= PIO_MPI;
} else if (!HDstrcasecmp(buf, "posix")) {
cl_opts->io_types |= PIO_POSIX;
} else {
fprintf(stderr, "pio_perf: invalid --api option %s\n",
buf);
exit(EXIT_FAILURE);
}
if (*end == '\0')
break;
end++;
}
}
break;
#if 0
case 'b':
/* the future "binary" option */
break;
#endif /* 0 */
case 'B':
cl_opts->blk_size = parse_size_directive(opt_arg);
break;
case 'c':
/* Turn on chunked HDF5 dataset creation */
cl_opts->h5_use_chunks = TRUE;
break;
case 'C':
cl_opts->collective = 1;
break;
case 'd':
cl_opts->num_dsets = atoi(opt_arg);
break;
case 'D':
{
const char *end = opt_arg;
while (end && *end != '\0') {
char buf[10];
int i;
memset(buf, '\0', sizeof(buf));
for (i = 0; *end != '\0' && *end != ','; ++end)
if (isalnum(*end) && i < 10)
buf[i++] = *end;
if (strlen(buf) > 1 || isdigit(buf[0])) {
size_t j;
for (j = 0; j < 10 && buf[j] != '\0'; ++j)
if (!isdigit(buf[j])) {
fprintf(stderr, "pio_perf: invalid --debug option %s\n",
buf);
exit(EXIT_FAILURE);
}
pio_debug_level = atoi(buf);
if (pio_debug_level > 4)
pio_debug_level = 4;
else if (pio_debug_level < 0)
pio_debug_level = 0;
} else {
switch (*buf) {
case 'r':
/* Turn on raw data throughput info */
cl_opts->print_raw = TRUE;
break;
case 't':
/* Turn on time printing */
cl_opts->print_times = TRUE;
break;
case 'v':
/* Turn on verify data correctness*/
cl_opts->verify = TRUE;
break;
default:
fprintf(stderr, "pio_perf: invalid --debug option %s\n", buf);
exit(EXIT_FAILURE);
}
}
if (*end == '\0')
break;
end++;
}
}
break;
case 'e':
cl_opts->num_bpp = parse_size_directive(opt_arg);
break;
case 'F':
cl_opts->num_files = atoi(opt_arg);
break;
case 'g':
cl_opts->dim2d = 1;
break;
case 'i':
cl_opts->num_iters = atoi(opt_arg);
break;
case 'I':
cl_opts->interleaved = 1;
break;
case 'm':
/* Turn on MPI-posix VFL driver for HDF5 I/O */
cl_opts->h5_use_mpi_posix = TRUE;
break;
case 'o':
cl_opts->output_file = opt_arg;
break;
case 'p':
cl_opts->min_num_procs = atoi(opt_arg);
break;
case 'P':
cl_opts->max_num_procs = atoi(opt_arg);
break;
case 'T':
cl_opts->h5_threshold = parse_size_directive(opt_arg);
break;
case 'w':
cl_opts->h5_write_only = TRUE;
break;
case 'x':
cl_opts->min_xfer_size = parse_size_directive(opt_arg);
break;
case 'X':
cl_opts->max_xfer_size = parse_size_directive(opt_arg);
break;
case 'h':
case '?':
default:
usage(progname);
free(cl_opts);
return NULL;
}
}
if (cl_opts->num_bpp == 0){
if (cl_opts->dim2d == 0)
cl_opts->num_bpp = 256 * ONE_KB;
else
cl_opts->num_bpp = 8 * ONE_KB;
}
if (cl_opts->max_xfer_size == 0)
cl_opts->max_xfer_size = cl_opts->num_bpp;
if (cl_opts->min_xfer_size == 0)
cl_opts->min_xfer_size = (cl_opts->num_bpp)/2;
if (cl_opts->blk_size == 0)
cl_opts->blk_size = (cl_opts->num_bpp)/2;
/* set default if none specified yet */
if (!cl_opts->io_types)
cl_opts->io_types = PIO_HDF5 | PIO_MPI | PIO_POSIX; /* run all API */
/* verify parameters sanity. Adjust if needed. */
/* cap xfer_size with bytes per process */
if (!cl_opts->dim2d) {
if (cl_opts->min_xfer_size > cl_opts->num_bpp)
cl_opts->min_xfer_size = cl_opts->num_bpp;
if (cl_opts->max_xfer_size > cl_opts->num_bpp)
cl_opts->max_xfer_size = cl_opts->num_bpp;
}
if (cl_opts->min_xfer_size > cl_opts->max_xfer_size)
cl_opts->min_xfer_size = cl_opts->max_xfer_size;
if (cl_opts->blk_size > cl_opts->num_bpp )
cl_opts->blk_size = cl_opts->num_bpp;
/* check range of number of processes */
if (cl_opts->min_num_procs <= 0)
cl_opts->min_num_procs = 1;
if (cl_opts->max_num_procs <= 0)
cl_opts->max_num_procs = 1;
if (cl_opts->min_num_procs > cl_opts->max_num_procs)
cl_opts->min_num_procs = cl_opts->max_num_procs;
/* check iteration */
if (cl_opts->num_iters <= 0)
cl_opts->num_iters = 1;
return cl_opts;
}
/*
* Function: parse_size_directive
* Purpose: Parse the size directive passed on the commandline. The size
* directive is an integer followed by a size indicator:
*
* K, k - Kilobyte
* M, m - Megabyte
* G, g - Gigabyte
*
* Return: The size as a off_t because this is related to file size.
* If an unknown size indicator is used, then the program will
* exit with EXIT_FAILURE as the return value.
* Programmer: Bill Wendling, 18. December 2001
* Modifications:
*/
static off_t
parse_size_directive(const char *size)
{
off_t s;
char *endptr;
s = strtol(size, &endptr, 10);
if (endptr && *endptr) {
while (*endptr != '\0' && (*endptr == ' ' || *endptr == '\t'))
++endptr;
switch (*endptr) {
case 'K':
case 'k':
s *= ONE_KB;
break;
case 'M':
case 'm':
s *= ONE_MB;
break;
case 'G':
case 'g':
s *= ONE_GB;
break;
default:
fprintf(stderr, "Illegal size specifier '%c'\n", *endptr);
exit(EXIT_FAILURE);
}
}
return s;
}
/*
* Function: usage
* Purpose: Print a usage message and then exit.
* Return: Nothing
* Programmer: Bill Wendling, 31. October 2001
* Modifications:
* Added 2D testing (Christian Chilan, 10. August 2005)
*/
static void
usage(const char *prog)
{
int myrank;
MPI_Comm_rank(pio_comm_g, &myrank);
if (myrank == 0) {
print_version(prog);
printf("usage: %s [OPTIONS]\n", prog);
printf(" OPTIONS\n");
printf(" -h, --help Print a usage message and exit\n");
printf(" -a S, --align=S Alignment of objects in HDF5 file [default: 1]\n");
printf(" -A AL, --api=AL Which APIs to test [default: all of them]\n");
#if 0
printf(" -b, --binary The elusive binary option\n");
#endif /* 0 */
printf(" -B S, --block-size=S Block size within transfer buffer\n");
printf(" (see below for description)\n");
printf(" [default: half the number of bytes per process\n");
printf(" per dataset]\n");
printf(" -c, --chunk Create HDF5 datasets using chunked storage\n");
printf(" [default: contiguous storage]\n");
printf(" -C, --collective Use collective I/O for MPI and HDF5 APIs\n");
printf(" [default: independent I/O)\n");
printf(" -d N, --num-dsets=N Number of datasets per file [default: 1]\n");
printf(" -D DL, --debug=DL Indicate the debugging level\n");
printf(" [default: no debugging]\n");
printf(" -e S, --num-bytes=S Number of bytes per process per dataset\n");
printf(" (see below for description)\n");
printf(" [default: 256K for 1D, 8K for 2D]\n");
printf(" -F N, --num-files=N Number of files [default: 1]\n");
printf(" -g, --geometry Use 2D geometry [default: 1D geometry]\n");
printf(" -i N, --num-iterations=N Number of iterations to perform [default: 1]\n");
printf(" -I, --interleaved Interleaved access pattern\n");
printf(" (see below for example)\n");
printf(" [default: Contiguous access pattern]\n");
printf(" -m, --mpi-posix Use MPI-posix driver for HDF5 I/O\n");
printf(" [default: use MPI-I/O driver]\n");
printf(" -o F, --output=F Output raw data into file F [default: none]\n");
printf(" -p N, --min-num-processes=N Minimum number of processes to use [default: 1]\n");
printf(" -P N, --max-num-processes=N Maximum number of processes to use\n");
printf(" [default: all MPI_COMM_WORLD processes ]\n");
printf(" -T S, --threshold=S Threshold for alignment of objects in HDF5 file\n");
printf(" [default: 1]\n");
printf(" -w, --write-only Perform write tests not the read tests\n");
printf(" -x S, --min-xfer-size=S Minimum transfer buffer size\n");
printf(" (see below for description)\n");
printf(" [default: half the number of bytes per process\n");
printf(" per dataset]\n");
printf(" -X S, --max-xfer-size=S Maximum transfer buffer size\n");
printf(" [default: the number of bytes per process per\n");
printf(" dataset]\n");
printf("\n");
printf(" F - is a filename.\n");
printf(" N - is an integer >=0.\n");
printf(" S - is a size specifier, an integer >=0 followed by a size indicator:\n");
printf(" K - Kilobyte (%d)\n", ONE_KB);
printf(" M - Megabyte (%d)\n", ONE_MB);
printf(" G - Gigabyte (%d)\n", ONE_GB);
printf("\n");
printf(" Example: '37M' is 37 megabytes or %d bytes\n", 37*ONE_MB);
printf("\n");
printf(" AL - is an API list. Valid values are:\n");
printf(" phdf5 - Parallel HDF5\n");
printf(" mpiio - MPI-I/O\n");
printf(" posix - POSIX\n");
printf("\n");
printf(" Example: --api=mpiio,phdf5\n");
printf("\n");
printf(" Dataset size:\n");
printf(" Depending on the selected geometry, each test dataset is either a linear\n");
printf(" array of size bytes-per-process * num-processes, or a square array of size\n");
printf(" (bytes-per-process * num-processes) x (bytes-per-process * num-processes).\n");
printf("\n");
printf(" Block size vs. Transfer buffer size:\n");
printf(" buffer-size controls the size of the memory buffer, which is broken into\n");
printf(" blocks and written to the file. Depending on the selected geometry, each\n");
printf(" block can be a linear array of size block-size or a square array of size\n");
printf(" block-size x block-size. The arrangement in which blocks are written is\n");
printf(" determined by the access pattern.\n");
printf("\n");
printf(" In 1D geometry, the transfer buffer is a linear array of size buffer-size.\n");
printf(" In 2D geometry, it is a rectangular array of size block-size x buffer-size\n");
printf(" or buffer-size x block-size if interleaved pattern is selected.\n");
printf("\n");
printf(" Interleaved and Contiguous patterns in 1D geometry:\n");
printf(" When contiguous access pattern is chosen, the dataset is evenly divided\n");
printf(" into num-processes regions and each process writes data to its own region.\n");
printf(" When interleaved blocks are written to a dataset, space for the first\n");
printf(" block of the first process is allocated in the dataset, then space is\n");
printf(" allocated for the first block of the second process, etc. until space is\n");
printf(" allocated for the first block of each process, then space is allocated for\n");
printf(" the second block of the first process, the second block of the second\n");
printf(" process, etc.\n");
printf("\n");
printf(" For example, with a 3 process run, 512KB bytes-per-process, 256KB transfer\n");
printf(" buffer size, and 64KB block size, each process must issue 2 transfer\n");
printf(" requests to complete access to the dataset.\n");
printf(" Contiguous blocks of the first transfer request are written like so:\n");
printf(" 1111----2222----3333----\n");
printf(" Interleaved blocks of the first transfer request are written like so:\n");
printf(" 123123123123------------\n");
printf(" The actual number of I/O operations involved in a transfer request\n");
printf(" depends on the access pattern and communication mode.\n");
printf(" When using independent I/O with interleaved pattern, each process\n");
printf(" performs 4 small non-contiguous I/O operations per transfer request.\n");
printf(" If collective I/O is turned on, the combined content of the buffers of\n");
printf(" the 3 processes will be written using one collective I/O operation\n");
printf(" per transfer request.\n");
printf("\n");
printf(" For information about access patterns in 2D geometry, please refer to the\n");
printf(" HDF5 Reference Manual.\n");
printf("\n");
printf(" DL - is a list of debugging flags. Valid values are:\n");
printf(" 1 - Minimal\n");
printf(" 2 - Not quite everything\n");
printf(" 3 - Everything\n");
printf(" 4 - The kitchen sink\n");
printf(" r - Raw data I/O throughput information\n");
printf(" t - Times as well as throughputs\n");
printf(" v - Verify data correctness\n");
printf("\n");
printf(" Example: --debug=2,r,t\n");
printf("\n");
printf(" Environment variables:\n");
printf(" HDF5_NOCLEANUP Do not remove data files if set [default remove]\n");
printf(" HDF5_MPI_INFO MPI INFO object key=value separated by ;\n");
printf(" HDF5_PARAPREFIX Paralllel data files prefix\n");
fflush(stdout);
}
}
#else /* H5_HAVE_PARALLEL */
/*
* Function: main
* Purpose: Dummy main() function for if HDF5 was configured without
* parallel stuff.
* Return: EXIT_SUCCESS
* Programmer: Bill Wendling, 14. November 2001
* Modifications:
*/
int
main(void)
{
printf("No parallel IO performance because parallel is not configured\n");
return EXIT_SUCCESS;
}
#endif /* !H5_HAVE_PARALLEL */