hdf5/test/tselect.c
Quincey Koziol d641030436 [svn-r10951] Purpose:
Bug fix

Description:
    Hyperslab selections that had a selection offset and were applied to a
chunked dataset could get into an infinite loop or core dump if the same
selection was used multiple times, with different selection offsets.

Solution:
    "Normalize" the selection with the selection offset, generate the
selections for the chunks overlapped and then "denormalize" the selection.

Platforms tested:
    FreeBSD 4.11 (sleipnir)
    Too minor to require h5committest
2005-06-18 00:10:22 -05:00

7221 lines
270 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the files COPYING and Copyright.html. COPYING can be found at the root *
* of the source code distribution tree; Copyright.html can be found at the *
* root level of an installed copy of the electronic HDF5 document set and *
* is linked from the top-level documents page. It can also be found at *
* http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html. If you do not have *
* access to either file, you may request a copy from hdfhelp@ncsa.uiuc.edu. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/***********************************************************
*
* Test program: tselect
*
* Test the Dataspace selection functionality
*
*************************************************************/
#define H5S_PACKAGE /*suppress error about including H5Spkg */
/* Define this macro to indicate that the testing APIs should be available */
#define H5S_TESTING
#include "testhdf5.h"
#include "hdf5.h"
#include "H5Spkg.h" /* Dataspaces */
#define FILENAME "tselect.h5"
/* 3-D dataset with fixed dimensions */
#define SPACE1_NAME "Space1"
#define SPACE1_RANK 3
#define SPACE1_DIM1 3
#define SPACE1_DIM2 15
#define SPACE1_DIM3 13
/* 2-D dataset with fixed dimensions */
#define SPACE2_NAME "Space2"
#define SPACE2_RANK 2
#define SPACE2_DIM1 30
#define SPACE2_DIM2 26
#define SPACE2A_RANK 1
#define SPACE2A_DIM1 (SPACE2_DIM1*SPACE2_DIM2)
/* 2-D dataset with fixed dimensions */
#define SPACE3_NAME "Space3"
#define SPACE3_RANK 2
#define SPACE3_DIM1 15
#define SPACE3_DIM2 26
/* 3-D dataset with fixed dimensions */
#define SPACE4_NAME "Space4"
#define SPACE4_RANK 3
#define SPACE4_DIM1 11
#define SPACE4_DIM2 13
#define SPACE4_DIM3 17
/* Number of random hyperslabs to test */
#define NHYPERSLABS 10
/* Number of random hyperslab tests performed */
#define NRAND_HYPER 100
/* 5-D dataset with fixed dimensions */
#define SPACE5_NAME "Space5"
#define SPACE5_RANK 5
#define SPACE5_DIM1 10
#define SPACE5_DIM2 10
#define SPACE5_DIM3 10
#define SPACE5_DIM4 10
#define SPACE5_DIM5 10
/* 1-D dataset with same size as 5-D dataset */
#define SPACE6_NAME "Space6"
#define SPACE6_RANK 1
#define SPACE6_DIM1 (SPACE5_DIM1*SPACE5_DIM2*SPACE5_DIM3*SPACE5_DIM4*SPACE5_DIM5)
/* 2-D dataset with easy dimension sizes */
#define SPACE7_NAME "Space7"
#define SPACE7_RANK 2
#define SPACE7_DIM1 10
#define SPACE7_DIM2 10
#define SPACE7_FILL 254
#define SPACE7_CHUNK_DIM1 5
#define SPACE7_CHUNK_DIM2 5
#define SPACE7_NPOINTS 8
/* 4-D dataset with fixed dimensions */
#define SPACE8_NAME "Space8"
#define SPACE8_RANK 4
#define SPACE8_DIM1 11
#define SPACE8_DIM2 13
#define SPACE8_DIM3 17
#define SPACE8_DIM4 19
/* Another 2-D dataset with easy dimension sizes */
#define SPACE9_NAME "Space9"
#define SPACE9_RANK 2
#define SPACE9_DIM1 12
#define SPACE9_DIM2 12
/* Element selection information */
#define POINT1_NPOINTS 10
/* Chunked dataset information */
#define DATASETNAME "ChunkArray"
#define NX_SUB 87 /* hyperslab dimensions */
#define NY_SUB 61
#define NZ_SUB 181
#define NX 87 /* output buffer dimensions */
#define NY 61
#define NZ 181
#define RANK_F 3 /* File dataspace rank */
#define RANK_M 3 /* Memory dataspace rank */
#define X 87 /* dataset dimensions */
#define Y 61
#define Z 181
#define CHUNK_X 87 /* chunk dimensions */
#define CHUNK_Y 61
#define CHUNK_Z 181
/* Basic chunk size */
#define SPACE10_DIM1 180
#define SPACE10_CHUNK_SIZE 12
/* Information for bounds checking test */
#define SPACE11_RANK 2
#define SPACE11_DIM1 100
#define SPACE11_DIM2 100
#define SPACE11_NPOINTS 4
/* Information for offsets w/chunks test #2 */
#define SPACE12_RANK 1
#define SPACE12_DIM0 25
#define SPACE12_CHUNK_DIM0 5
/* Location comparison function */
int compare_size_t(const void *s1, const void *s2);
herr_t test_select_hyper_iter1(void *elem,hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data);
herr_t test_select_point_iter1(void *elem,hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data);
herr_t test_select_all_iter1(void *elem,hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data);
herr_t test_select_none_iter1(void *elem,hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data);
herr_t test_select_hyper_iter2(void *_elem, hid_t type_id, unsigned ndim, const hsize_t *point, void *_operator_data);
herr_t test_select_hyper_iter3(void *elem,hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data);
/****************************************************************
**
** test_select_hyper_iter1(): Iterator for checking hyperslab iteration
**
****************************************************************/
herr_t
test_select_hyper_iter1(void *_elem, hid_t UNUSED type_id, unsigned UNUSED ndim, const hsize_t UNUSED *point, void *_operator_data)
{
uint8_t *tbuf=(uint8_t *)_elem, /* temporary buffer pointer */
**tbuf2=(uint8_t **)_operator_data; /* temporary buffer handle */
if(*tbuf!=**tbuf2)
return(-1);
else {
(*tbuf2)++;
return(0);
}
} /* end test_select_hyper_iter1() */
/****************************************************************
**
** test_select_hyper(): Test basic H5S (dataspace) selection code.
** Tests hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper(hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
H5S_class_t ext_type; /* Extent type */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions\n"));
/* Allocate write & read buffers */
wbuf=malloc(sizeof(uint8_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=calloc(sizeof(uint8_t),SPACE3_DIM1*SPACE3_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint8_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Verify extent type */
ext_type = H5Sget_simple_extent_type(sid1);
VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");
/* Test selecting stride==0 to verify failure */
start[0]=1; start[1]=0; start[2]=0;
stride[0]=0; stride[1]=0; stride[2]=0;
count[0]=2; count[1]=15; count[2]=13;
block[0]=1; block[1]=1; block[2]=1;
H5E_BEGIN_TRY {
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
} H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
/* Test selecting stride<block to verify failure */
start[0]=1; start[1]=0; start[2]=0;
stride[0]=1; stride[1]=1; stride[2]=1;
count[0]=2; count[1]=15; count[2]=13;
block[0]=2; block[1]=2; block[2]=2;
H5E_BEGIN_TRY {
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
} H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
/* Select 2x15x13 hyperslab for disk dataset */
start[0]=1; start[1]=0; start[2]=0;
stride[0]=1; stride[1]=1; stride[2]=1;
count[0]=2; count[1]=15; count[2]=13;
block[0]=1; block[1]=1; block[2]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 15x26 hyperslab for memory dataset */
start[0]=15; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=15; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,xfer_plist,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Exercise check for NULL buffer and valid selection */
H5E_BEGIN_TRY {
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,xfer_plist,NULL);
} H5E_END_TRY;
VERIFY(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=15; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 0x26 hyperslab to OR into current selection (should be a NOOP) */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=0; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_OR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,xfer_plist,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Exercise check for NULL buffer and valid selection */
H5E_BEGIN_TRY {
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,xfer_plist,NULL);
} H5E_END_TRY;
VERIFY(ret, FAIL, "H5Dread");
/* Check that the values match with a dataset iterator */
tbuf=wbuf+(15*SPACE2_DIM2);
ret = H5Diterate(rbuf,H5T_NATIVE_UCHAR,sid2,test_select_hyper_iter1,&tbuf);
CHECK(ret, FAIL, "H5Diterate");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper() */
struct pnt_iter {
hsize_t coord[POINT1_NPOINTS*2][SPACE2_RANK]; /* Coordinates for point selection */
uint8_t *buf; /* Buffer the points are in */
int offset; /* Which point we are looking at */
};
/****************************************************************
**
** test_select_point_iter1(): Iterator for checking point iteration
** (This is really ugly code, not a very good example of correct usage - QAK)
**
****************************************************************/
herr_t
test_select_point_iter1(void *_elem, hid_t UNUSED type_id, unsigned UNUSED ndim, const hsize_t UNUSED *point, void *_operator_data)
{
uint8_t *elem=(uint8_t *)_elem; /* Pointer to the element to examine */
uint8_t *tmp; /* temporary ptr to element in operator data */
struct pnt_iter *pnt_info=(struct pnt_iter *)_operator_data;
tmp=pnt_info->buf+(pnt_info->coord[pnt_info->offset][0]*SPACE2_DIM2)+pnt_info->coord[pnt_info->offset][1];
if(*elem!=*tmp)
return(-1);
else {
pnt_info->offset++;
return(0);
}
} /* end test_select_point_iter1() */
/****************************************************************
**
** test_select_point(): Test basic H5S (dataspace) selection code.
** Tests element selections between dataspaces of various sizes
** and dimensionalities.
**
****************************************************************/
static void
test_select_point(hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
hsize_t temp_coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
hsize_t temp_coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
hsize_t temp_coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i,j; /* Counters */
struct pnt_iter pi; /* Custom Pointer iterator struct */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Element Selection Functions\n"));
/* Allocate write & read buffers */
wbuf=malloc(sizeof(uint8_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=calloc(sizeof(uint8_t),SPACE3_DIM1*SPACE3_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint8_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for write buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select sequence of ten points for disk dataset */
coord1[0][0]=0; coord1[0][1]=10; coord1[0][2]= 5;
coord1[1][0]=1; coord1[1][1]= 2; coord1[1][2]= 7;
coord1[2][0]=2; coord1[2][1]= 4; coord1[2][2]= 9;
coord1[3][0]=0; coord1[3][1]= 6; coord1[3][2]=11;
coord1[4][0]=1; coord1[4][1]= 8; coord1[4][2]=13;
coord1[5][0]=2; coord1[5][1]=12; coord1[5][2]= 0;
coord1[6][0]=0; coord1[6][1]=14; coord1[6][2]= 2;
coord1[7][0]=1; coord1[7][1]= 0; coord1[7][2]= 4;
coord1[8][0]=2; coord1[8][1]= 1; coord1[8][2]= 6;
coord1[9][0]=0; coord1[9][1]= 3; coord1[9][2]= 8;
ret = H5Sselect_elements(sid1,H5S_SELECT_SET,POINT1_NPOINTS,(const hsize_t **)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Verify correct elements selected */
H5Sget_select_elem_pointlist(sid1,(hsize_t)0,(hsize_t)POINT1_NPOINTS,(hsize_t *)temp_coord1);
for(i=0; i<POINT1_NPOINTS; i++) {
VERIFY(temp_coord1[i][0],coord1[i][0],"H5Sget_select_elem_pointlist");
VERIFY(temp_coord1[i][1],coord1[i][1],"H5Sget_select_elem_pointlist");
VERIFY(temp_coord1[i][2],coord1[i][2],"H5Sget_select_elem_pointlist");
} /* end for */
ret = (int)H5Sget_select_npoints(sid1);
VERIFY(ret, 10, "H5Sget_select_npoints");
/* Append another sequence of ten points to disk dataset */
coord1[0][0]=0; coord1[0][1]= 2; coord1[0][2]= 0;
coord1[1][0]=1; coord1[1][1]=10; coord1[1][2]= 8;
coord1[2][0]=2; coord1[2][1]= 8; coord1[2][2]=10;
coord1[3][0]=0; coord1[3][1]= 7; coord1[3][2]=12;
coord1[4][0]=1; coord1[4][1]= 3; coord1[4][2]=11;
coord1[5][0]=2; coord1[5][1]= 1; coord1[5][2]= 1;
coord1[6][0]=0; coord1[6][1]=13; coord1[6][2]= 7;
coord1[7][0]=1; coord1[7][1]=14; coord1[7][2]= 6;
coord1[8][0]=2; coord1[8][1]= 2; coord1[8][2]= 5;
coord1[9][0]=0; coord1[9][1]= 6; coord1[9][2]=13;
ret = H5Sselect_elements(sid1,H5S_SELECT_APPEND,POINT1_NPOINTS,(const hsize_t **)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Verify correct elements selected */
H5Sget_select_elem_pointlist(sid1,(hsize_t)POINT1_NPOINTS,(hsize_t)POINT1_NPOINTS,(hsize_t *)temp_coord1);
for(i=0; i<POINT1_NPOINTS; i++) {
VERIFY(temp_coord1[i][0],coord1[i][0],"H5Sget_select_elem_pointlist");
VERIFY(temp_coord1[i][1],coord1[i][1],"H5Sget_select_elem_pointlist");
VERIFY(temp_coord1[i][2],coord1[i][2],"H5Sget_select_elem_pointlist");
} /* end for */
ret = (int)H5Sget_select_npoints(sid1);
VERIFY(ret, 20, "H5Sget_select_npoints");
/* Select sequence of ten points for memory dataset */
coord2[0][0]=12; coord2[0][1]= 3;
coord2[1][0]=15; coord2[1][1]=13;
coord2[2][0]= 7; coord2[2][1]=25;
coord2[3][0]= 0; coord2[3][1]= 6;
coord2[4][0]=13; coord2[4][1]= 0;
coord2[5][0]=24; coord2[5][1]=11;
coord2[6][0]=12; coord2[6][1]=21;
coord2[7][0]=29; coord2[7][1]= 4;
coord2[8][0]= 8; coord2[8][1]= 8;
coord2[9][0]=19; coord2[9][1]=17;
ret = H5Sselect_elements(sid2,H5S_SELECT_SET,POINT1_NPOINTS,(const hsize_t **)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Verify correct elements selected */
H5Sget_select_elem_pointlist(sid2,(hsize_t)0,(hsize_t)POINT1_NPOINTS,(hsize_t *)temp_coord2);
for(i=0; i<POINT1_NPOINTS; i++) {
VERIFY(temp_coord2[i][0],coord2[i][0],"H5Sget_select_elem_pointlist");
VERIFY(temp_coord2[i][1],coord2[i][1],"H5Sget_select_elem_pointlist");
} /* end for */
/* Save points for later iteration */
/* (these are in the second half of the buffer, because we are prepending */
/* the next list of points to the beginning of the point selection list) */
HDmemcpy(((char *)pi.coord)+sizeof(coord2),coord2,sizeof(coord2));
ret = (int)H5Sget_select_npoints(sid2);
VERIFY(ret, 10, "H5Sget_select_npoints");
/* Append another sequence of ten points to memory dataset */
coord2[0][0]=24; coord2[0][1]= 0;
coord2[1][0]= 2; coord2[1][1]=25;
coord2[2][0]=13; coord2[2][1]=17;
coord2[3][0]= 8; coord2[3][1]= 3;
coord2[4][0]=29; coord2[4][1]= 4;
coord2[5][0]=11; coord2[5][1]=14;
coord2[6][0]= 5; coord2[6][1]=22;
coord2[7][0]=12; coord2[7][1]= 2;
coord2[8][0]=21; coord2[8][1]=12;
coord2[9][0]= 9; coord2[9][1]=18;
ret = H5Sselect_elements(sid2,H5S_SELECT_PREPEND,POINT1_NPOINTS,(const hsize_t **)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Verify correct elements selected */
H5Sget_select_elem_pointlist(sid2,(hsize_t)0,(hsize_t)POINT1_NPOINTS,(hsize_t *)temp_coord2);
for(i=0; i<POINT1_NPOINTS; i++) {
VERIFY(temp_coord2[i][0],coord2[i][0],"H5Sget_select_elem_pointlist");
VERIFY(temp_coord2[i][1],coord2[i][1],"H5Sget_select_elem_pointlist");
} /* end for */
ret = (int)H5Sget_select_npoints(sid2);
VERIFY(ret, 20, "H5Sget_select_npoints");
/* Save points for later iteration */
HDmemcpy(pi.coord,coord2,sizeof(coord2));
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,xfer_plist,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select sequence of points for read dataset */
coord3[0][0]= 0; coord3[0][1]= 2;
coord3[1][0]= 4; coord3[1][1]= 8;
coord3[2][0]=13; coord3[2][1]=13;
coord3[3][0]=14; coord3[3][1]=20;
coord3[4][0]= 7; coord3[4][1]= 9;
coord3[5][0]= 2; coord3[5][1]= 0;
coord3[6][0]= 9; coord3[6][1]=19;
coord3[7][0]= 1; coord3[7][1]=22;
coord3[8][0]=12; coord3[8][1]=21;
coord3[9][0]=11; coord3[9][1]= 6;
ret = H5Sselect_elements(sid2,H5S_SELECT_SET,POINT1_NPOINTS,(const hsize_t **)coord3);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Verify correct elements selected */
H5Sget_select_elem_pointlist(sid2,(hsize_t)0,(hsize_t)POINT1_NPOINTS,(hsize_t *)temp_coord3);
for(i=0; i<POINT1_NPOINTS; i++) {
VERIFY(temp_coord3[i][0],coord3[i][0],"H5Sget_select_elem_pointlist");
VERIFY(temp_coord3[i][1],coord3[i][1],"H5Sget_select_elem_pointlist");
} /* end for */
ret = (int)H5Sget_select_npoints(sid2);
VERIFY(ret, 10, "H5Sget_select_npoints");
/* Append another sequence of ten points to disk dataset */
coord3[0][0]=14; coord3[0][1]=25;
coord3[1][0]= 0; coord3[1][1]= 0;
coord3[2][0]=11; coord3[2][1]=11;
coord3[3][0]= 5; coord3[3][1]=14;
coord3[4][0]= 3; coord3[4][1]= 5;
coord3[5][0]= 2; coord3[5][1]= 2;
coord3[6][0]= 7; coord3[6][1]=13;
coord3[7][0]= 9; coord3[7][1]=16;
coord3[8][0]=12; coord3[8][1]=22;
coord3[9][0]=13; coord3[9][1]= 9;
ret = H5Sselect_elements(sid2,H5S_SELECT_APPEND,POINT1_NPOINTS,(const hsize_t **)coord3);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Verify correct elements selected */
H5Sget_select_elem_pointlist(sid2,(hsize_t)POINT1_NPOINTS,(hsize_t)POINT1_NPOINTS,(hsize_t *)temp_coord3);
for(i=0; i<POINT1_NPOINTS; i++) {
VERIFY(temp_coord3[i][0],coord3[i][0],"H5Sget_select_elem_pointlist");
VERIFY(temp_coord3[i][1],coord3[i][1],"H5Sget_select_elem_pointlist");
} /* end for */
ret = (int)H5Sget_select_npoints(sid2);
VERIFY(ret, 20, "H5Sget_select_npoints");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,xfer_plist,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Check that the values match with a dataset iterator */
pi.buf=wbuf;
pi.offset=0;
ret = H5Diterate(rbuf,H5T_NATIVE_UCHAR,sid2,test_select_point_iter1,&pi);
CHECK(ret, FAIL, "H5Diterate");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_point() */
/****************************************************************
**
** test_select_all_iter1(): Iterator for checking all iteration
**
**
****************************************************************/
herr_t
test_select_all_iter1(void *_elem, hid_t UNUSED type_id, unsigned UNUSED ndim, const hsize_t UNUSED *point, void *_operator_data)
{
uint8_t *tbuf=(uint8_t *)_elem, /* temporary buffer pointer */
**tbuf2=(uint8_t **)_operator_data; /* temporary buffer handle */
if(*tbuf!=**tbuf2)
return(-1);
else {
(*tbuf2)++;
return(0);
}
} /* end test_select_all_iter1() */
/****************************************************************
**
** test_select_none_iter1(): Iterator for checking none iteration
** (This is never supposed to be called, so it always returns -1)
**
****************************************************************/
herr_t
test_select_none_iter1(void UNUSED *_elem, hid_t UNUSED type_id, unsigned UNUSED ndim, const hsize_t UNUSED *point, void UNUSED *_operator_data)
{
return(-1);
} /* end test_select_none_iter1() */
/****************************************************************
**
** test_select_all(): Test basic H5S (dataspace) selection code.
** Tests "all" selections.
**
****************************************************************/
static void
test_select_all(hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1; /* Dataspace ID */
hsize_t dims1[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3};
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i,j,k; /* Counters */
herr_t ret; /* Generic return value */
H5S_class_t ext_type; /* Extent type */
/* Output message about test being performed */
MESSAGE(5, ("Testing 'All' Selection Functions\n"));
/* Allocate write & read buffers */
wbuf=malloc(sizeof(uint8_t)*SPACE4_DIM1*SPACE4_DIM2*SPACE4_DIM3);
rbuf=calloc(sizeof(uint8_t),SPACE4_DIM1*SPACE4_DIM2*SPACE4_DIM3);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE4_DIM1; i++)
for(j=0; j<SPACE4_DIM2; j++)
for(k=0; k<SPACE4_DIM3; k++)
*tbuf++=(uint8_t)(((i*SPACE4_DIM2)+j)*SPACE4_DIM3)+k;
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE4_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Verify extent type */
ext_type = H5Sget_simple_extent_type(sid1);
VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_INT,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,H5S_ALL,H5S_ALL,xfer_plist,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,H5S_ALL,H5S_ALL,xfer_plist,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Check that the values match with a dataset iterator */
tbuf=wbuf;
ret = H5Diterate(rbuf,H5T_NATIVE_UCHAR,sid1,test_select_all_iter1,&tbuf);
CHECK(ret, FAIL, "H5Diterate");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_all() */
/****************************************************************
**
** test_select_all_hyper(): Test basic H5S (dataspace) selection code.
** Tests "all" and hyperslab selections.
**
****************************************************************/
static void
test_select_all_hyper(hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
H5S_class_t ext_type; /* Extent type */
/* Output message about test being performed */
MESSAGE(5, ("Testing 'All' Selection Functions\n"));
/* Allocate write & read buffers */
wbuf=malloc(sizeof(uint8_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=calloc(sizeof(uint8_t),SPACE3_DIM1*SPACE3_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint8_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE3_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Verify extent type */
ext_type = H5Sget_simple_extent_type(sid1);
VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");
/* Select entire 15x26 extent for disk dataset */
ret = H5Sselect_all(sid1);
CHECK(ret, FAIL, "H5Sselect_all");
/* Select 15x26 hyperslab for memory dataset */
start[0]=15; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=15; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,xfer_plist,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=15; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select no extent for disk dataset */
ret = H5Sselect_none(sid1);
CHECK(ret, FAIL, "H5Sselect_all");
/* Read selection from disk (should fail with no selection defined) */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,xfer_plist,rbuf);
VERIFY(ret, FAIL, "H5Dread");
/* Select entire 15x26 extent for disk dataset */
ret = H5Sselect_all(sid1);
CHECK(ret, FAIL, "H5Sselect_all");
/* Read selection from disk (should work now) */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,xfer_plist,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Check that the values match with a dataset iterator */
tbuf=wbuf+(15*SPACE2_DIM2);
ret = H5Diterate(rbuf,H5T_NATIVE_UCHAR,sid2,test_select_all_iter1,&tbuf);
CHECK(ret, FAIL, "H5Diterate");
/* A quick check to make certain that iterating through a "none" selection works */
ret = H5Sselect_none(sid2);
CHECK(ret, FAIL, "H5Sselect_all");
ret = H5Diterate(rbuf,H5T_NATIVE_UCHAR,sid2,test_select_none_iter1,&tbuf);
CHECK(ret, FAIL, "H5Diterate");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_all_hyper() */
/****************************************************************
**
** test_select_combo(): Test basic H5S (dataspace) selection code.
** Tests combinations of element and hyperslab selections between
** dataspaces of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_combo(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Combination of Hyperslab & Element Selection Functions\n"));
/* Allocate write & read buffers */
wbuf=HDmalloc(sizeof(uint8_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=HDcalloc(sizeof(uint8_t),SPACE3_DIM1*SPACE3_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint8_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for write buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select sequence of ten points for disk dataset */
coord1[0][0]=0; coord1[0][1]=10; coord1[0][2]= 5;
coord1[1][0]=1; coord1[1][1]= 2; coord1[1][2]= 7;
coord1[2][0]=2; coord1[2][1]= 4; coord1[2][2]= 9;
coord1[3][0]=0; coord1[3][1]= 6; coord1[3][2]=11;
coord1[4][0]=1; coord1[4][1]= 8; coord1[4][2]=13;
coord1[5][0]=2; coord1[5][1]=12; coord1[5][2]= 0;
coord1[6][0]=0; coord1[6][1]=14; coord1[6][2]= 2;
coord1[7][0]=1; coord1[7][1]= 0; coord1[7][2]= 4;
coord1[8][0]=2; coord1[8][1]= 1; coord1[8][2]= 6;
coord1[9][0]=0; coord1[9][1]= 3; coord1[9][2]= 8;
ret = H5Sselect_elements(sid1,H5S_SELECT_SET,POINT1_NPOINTS,(const hsize_t **)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Select 1x10 hyperslab for writing memory dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=1; count[1]=10;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 10x1 hyperslab for reading memory dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=10; count[1]=1;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for(i=0; i<POINT1_NPOINTS; i++) {
tbuf=wbuf+i;
tbuf2=rbuf+(i*SPACE3_DIM2);
if(*tbuf!=*tbuf2)
TestErrPrintf("element values don't match!, i=%d\n",i);
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf);
HDfree(rbuf);
} /* test_select_combo() */
int
compare_size_t(const void *s1, const void *s2)
{
if(*(const size_t *)s1<*(const size_t *)s2)
return(-1);
else
if(*(const size_t *)s1>*(const size_t *)s2)
return(1);
else
return(0);
}
/****************************************************************
**
** test_select_hyper_stride(): Test H5S (dataspace) selection code.
** Tests strided hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper_stride(hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
uint16_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
size_t loc1[72]={ /* Gruesomely ugly way to make certain hyperslab locations are checked correctly */
27, 28, 29, 53, 54, 55, 79, 80, 81, /* Block #1 */
32, 33, 34, 58, 59, 60, 84, 85, 86, /* Block #2 */
157,158,159,183,184,185,209,210,211, /* Block #3 */
162,163,164,188,189,190,214,215,216, /* Block #4 */
287,288,289,313,314,315,339,340,341, /* Block #5 */
292,293,294,318,319,320,344,345,346, /* Block #6 */
417,418,419,443,444,445,469,470,471, /* Block #7 */
422,423,424,448,449,450,474,475,476, /* Block #8 */
};
size_t loc2[72]={
0, 1, 2, 26, 27, 28, /* Block #1 */
4, 5, 6, 30, 31, 32, /* Block #2 */
8, 9, 10, 34, 35, 36, /* Block #3 */
12, 13, 14, 38, 39, 40, /* Block #4 */
104,105,106,130,131,132, /* Block #5 */
108,109,110,134,135,136, /* Block #6 */
112,113,114,138,139,140, /* Block #7 */
116,117,118,142,143,144, /* Block #8 */
208,209,210,234,235,236, /* Block #9 */
212,213,214,238,239,240, /* Block #10 */
216,217,218,242,243,244, /* Block #11 */
220,221,222,246,247,248, /* Block #12 */
};
int i,j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n"));
/* Allocate write & read buffers */
wbuf=HDmalloc(sizeof(uint16_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=HDcalloc(sizeof(uint16_t),SPACE3_DIM1*SPACE3_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint16_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x3x3 count with a stride of 2x4x3 & 1x2x2 block hyperslab for disk dataset */
start[0]=0; start[1]=0; start[2]=0;
stride[0]=2; stride[1]=4; stride[2]=3;
count[0]=2; count[1]=3; count[2]=3;
block[0]=1; block[1]=2; block[2]=2;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 4x2 count with a stride of 5x5 & 3x3 block hyperslab for memory dataset */
start[0]=1; start[1]=1;
stride[0]=5; stride[1]=5;
count[0]=4; count[1]=2;
block[0]=3; block[1]=3;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_STD_U16LE,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_USHORT,sid2,sid1,xfer_plist,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 3x4 count with a stride of 4x4 & 2x3 block hyperslab for memory dataset */
start[0]=0; start[1]=0;
stride[0]=4; stride[1]=4;
count[0]=3; count[1]=4;
block[0]=2; block[1]=3;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_USHORT,sid2,sid1,xfer_plist,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Sort the locations into the proper order */
qsort(loc1,72,sizeof(size_t),compare_size_t);
qsort(loc2,72,sizeof(size_t),compare_size_t);
/* Compare data read with data written out */
for(i=0; i<72; i++) {
tbuf=wbuf+loc1[i];
tbuf2=rbuf+loc2[i];
if(*tbuf!=*tbuf2) {
printf("%d: hyperslab values don't match!, loc1[%d]=%d, loc2[%d]=%d\n",__LINE__,i,(int)loc1[i],i,(int)loc2[i]);
printf("wbuf=%p, tbuf=%p, rbuf=%p, tbuf2=%p\n",(void *)wbuf,(void *)tbuf,(void *)rbuf,(void *)tbuf2);
TestErrPrintf("*tbuf=%u, *tbuf2=%u\n",(unsigned)*tbuf,(unsigned)*tbuf2);
} /* end if */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf);
HDfree(rbuf);
} /* test_select_hyper_stride() */
/****************************************************************
**
** test_select_hyper_contig(): Test H5S (dataspace) selection code.
** Tests contiguous hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper_contig(hid_t dset_type, hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims2[] = {SPACE2_DIM2, SPACE2_DIM1};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
uint16_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Contiguous Hyperslabs Functionality\n"));
/* Allocate write & read buffers */
wbuf=HDmalloc(sizeof(uint16_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=HDcalloc(sizeof(uint16_t),SPACE2_DIM1*SPACE2_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint16_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 12x10 count with a stride of 1x3 & 3x3 block hyperslab for disk dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=3;
count[0]=12; count[1]=10;
block[0]=1; block[1]=3;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 4x5 count with a stride of 3x6 & 3x6 block hyperslab for memory dataset */
start[0]=0; start[1]=0;
stride[0]=3; stride[1]=6;
count[0]=4; count[1]=5;
block[0]=3; block[1]=6;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",dset_type,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_USHORT,sid2,sid1,xfer_plist,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 6x5 count with a stride of 2x6 & 2x6 block hyperslab for disk dataset */
start[0]=0; start[1]=0;
stride[0]=2; stride[1]=6;
count[0]=6; count[1]=5;
block[0]=2; block[1]=6;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 3x15 count with a stride of 4x2 & 4x2 block hyperslab for memory dataset */
start[0]=0; start[1]=0;
stride[0]=4; stride[1]=2;
count[0]=3; count[1]=15;
block[0]=4; block[1]=2;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_USHORT,sid2,sid1,xfer_plist,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
if(HDmemcmp(rbuf,wbuf,sizeof(uint16_t)*30*12)) {
TestErrPrintf("hyperslab values don't match! Line=%d\n",__LINE__);
#ifdef QAK
for(i=0, tbuf=wbuf; i<12; i++)
for(j=0; j<30; j++)
printf("i=%d, j=%d, *wbuf=%u, *rbuf=%u\n",i,j,(unsigned)*(wbuf+i*30+j),(unsigned)*(rbuf+i*30+j));
#endif /* QAK */
} /* end if */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf);
HDfree(rbuf);
} /* test_select_hyper_contig() */
/****************************************************************
**
** test_select_hyper_contig2(): Test H5S (dataspace) selection code.
** Tests more contiguous hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper_contig2(hid_t dset_type, hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims2[] = {SPACE8_DIM4, SPACE8_DIM3, SPACE8_DIM2, SPACE8_DIM1};
hsize_t start[SPACE8_RANK]; /* Starting location of hyperslab */
hsize_t count[SPACE8_RANK]; /* Element count of hyperslab */
uint16_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i,j,k,l; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing More Contiguous Hyperslabs Functionality\n"));
/* Allocate write & read buffers */
wbuf=HDmalloc(sizeof(uint16_t)*SPACE8_DIM1*SPACE8_DIM2*SPACE8_DIM3*SPACE8_DIM4);
rbuf=HDcalloc(sizeof(uint16_t),SPACE8_DIM1*SPACE8_DIM2*SPACE8_DIM3*SPACE8_DIM4);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE8_DIM1; i++)
for(j=0; j<SPACE8_DIM2; j++)
for(k=0; k<SPACE8_DIM3; k++)
for(l=0; l<SPACE8_DIM4; l++)
*tbuf++=(uint16_t)((i*SPACE8_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select contiguous hyperslab for disk dataset */
start[0]=0; start[1]=0; start[2]=0; start[3]=0;
count[0]=2; count[1]=SPACE8_DIM3; count[2]=SPACE8_DIM2; count[3]=SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select contiguous hyperslab in memory */
start[0]=0; start[1]=0; start[2]=0; start[3]=0;
count[0]=2; count[1]=SPACE8_DIM3; count[2]=SPACE8_DIM2; count[3]=SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",dset_type,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_USHORT,sid2,sid1,xfer_plist,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select contiguous hyperslab in memory */
start[0]=0; start[1]=0; start[2]=0; start[3]=0;
count[0]=2; count[1]=SPACE8_DIM3; count[2]=SPACE8_DIM2; count[3]=SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select contiguous hyperslab in memory */
start[0]=0; start[1]=0; start[2]=0; start[3]=0;
count[0]=2; count[1]=SPACE8_DIM3; count[2]=SPACE8_DIM2; count[3]=SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_USHORT,sid2,sid1,xfer_plist,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
if(HDmemcmp(rbuf,wbuf,sizeof(uint16_t)*2*SPACE8_DIM3*SPACE8_DIM2*SPACE8_DIM1)) {
TestErrPrintf("Error: hyperslab values don't match!\n");
#ifdef QAK
for(i=0, tbuf=wbuf; i<12; i++)
for(j=0; j<30; j++)
printf("i=%d, j=%d, *wbuf=%u, *rbuf=%u\n",i,j,(unsigned)*(wbuf+i*30+j),(unsigned)*(rbuf+i*30+j));
#endif /* QAK */
} /* end if */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf);
HDfree(rbuf);
} /* test_select_hyper_contig2() */
/****************************************************************
**
** test_select_hyper_contig3(): Test H5S (dataspace) selection code.
** Tests contiguous hyperslabs of various sizes and dimensionalities.
** This test uses a hyperslab that is contiguous in the lowest dimension,
** not contiguous in a dimension, then has a selection across the entire next
** dimension (which should be "flattened" out also).
**
****************************************************************/
static void
test_select_hyper_contig3(hid_t dset_type, hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims2[] = {SPACE8_DIM4, SPACE8_DIM3, SPACE8_DIM2, SPACE8_DIM1};
hsize_t start[SPACE8_RANK]; /* Starting location of hyperslab */
hsize_t count[SPACE8_RANK]; /* Element count of hyperslab */
uint16_t *wbuf, /* Buffer to write to disk */
*rbuf, /* Buffer read from disk */
*tbuf, *tbuf2; /* Temporary buffer pointers */
unsigned i,j,k,l; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Yet More Contiguous Hyperslabs Functionality\n"));
/* Allocate write & read buffers */
wbuf=HDmalloc(sizeof(uint16_t)*SPACE8_DIM1*SPACE8_DIM2*SPACE8_DIM3*SPACE8_DIM4);
rbuf=HDcalloc(sizeof(uint16_t),SPACE8_DIM1*SPACE8_DIM2*SPACE8_DIM3*SPACE8_DIM4);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE8_DIM4; i++)
for(j=0; j<SPACE8_DIM3; j++)
for(k=0; k<SPACE8_DIM2; k++)
for(l=0; l<SPACE8_DIM1; l++)
*tbuf++=(uint16_t)((k*SPACE8_DIM2)+l);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select semi-contiguous hyperslab for disk dataset */
start[0]=0; start[1]=0; start[2]=SPACE8_DIM2/2; start[3]=0;
count[0]=2; count[1]=SPACE8_DIM3; count[2]=SPACE8_DIM2/2; count[3]=SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select semi-contiguous hyperslab in memory */
start[0]=0; start[1]=0; start[2]=SPACE8_DIM2/2; start[3]=0;
count[0]=2; count[1]=SPACE8_DIM3; count[2]=SPACE8_DIM2/2; count[3]=SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",dset_type,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_USHORT,sid2,sid1,xfer_plist,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select semi-contiguous hyperslab in memory */
start[0]=0; start[1]=0; start[2]=SPACE8_DIM2/2; start[3]=0;
count[0]=2; count[1]=SPACE8_DIM3; count[2]=SPACE8_DIM2/2; count[3]=SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select semi-contiguous hyperslab in memory */
start[0]=0; start[1]=0; start[2]=SPACE8_DIM2/2; start[3]=0;
count[0]=2; count[1]=SPACE8_DIM3; count[2]=SPACE8_DIM2/2; count[3]=SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_USHORT,sid2,sid1,xfer_plist,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for(i=0, tbuf=wbuf,tbuf2=rbuf; i<SPACE8_DIM4; i++)
for(j=0; j<SPACE8_DIM3; j++)
for(k=0; k<SPACE8_DIM2; k++)
for(l=0; l<SPACE8_DIM1; l++,tbuf++,tbuf2++)
if( (i>=start[0] && i<(start[0]+count[0])) &&
(j>=start[1] && j<(start[1]+count[1])) &&
(k>=start[2] && k<(start[2]+count[2])) &&
(l>=start[3] && l<(start[3]+count[3])) ) {
if(*tbuf!=*tbuf2) {
printf("Error: hyperslab values don't match!\n");
TestErrPrintf("Line: %d, i=%u, j=%u, k=%u, l=%u, *tbuf=%u,*tbuf2=%u\n",__LINE__,i,j,k,l,(unsigned)*tbuf,(unsigned)*tbuf2);
} /* end if */
} /* end if */
else {
if(*tbuf2!=0) {
printf("Error: invalid data in read buffer!\n");
TestErrPrintf("Line: %d, i=%u, j=%u, k=%u, l=%u, *tbuf=%u,*tbuf2=%u\n",__LINE__,i,j,k,l,(unsigned)*tbuf,(unsigned)*tbuf2);
} /* end if */
} /* end else */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf);
HDfree(rbuf);
} /* test_select_hyper_contig3() */
/****************************************************************
**
** test_select_hyper_copy(): Test H5S (dataspace) selection code.
** Tests copying hyperslab selections
**
****************************************************************/
static void
test_select_hyper_copy(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t data1,data2; /* Dataset IDs */
hid_t sid1,sid2,sid3; /* Dataspace IDs */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
uint16_t *wbuf, /* buffer to write to disk */
*rbuf, /* 1st buffer read from disk */
*rbuf2, /* 2nd buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n"));
/* Allocate write & read buffers */
wbuf=HDmalloc(sizeof(uint16_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=HDcalloc(sizeof(uint16_t),SPACE3_DIM1*SPACE3_DIM2);
rbuf2=HDcalloc(sizeof(uint16_t),SPACE3_DIM1*SPACE3_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint16_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x3x3 count with a stride of 2x4x3 & 1x2x2 block hyperslab for disk dataset */
start[0]=0; start[1]=0; start[2]=0;
stride[0]=2; stride[1]=4; stride[2]=3;
count[0]=2; count[1]=3; count[2]=3;
block[0]=1; block[1]=2; block[2]=2;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 4x2 count with a stride of 5x5 & 3x3 block hyperslab for memory dataset */
start[0]=1; start[1]=1;
stride[0]=5; stride[1]=5;
count[0]=4; count[1]=2;
block[0]=3; block[1]=3;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Make a copy of the dataspace to write */
sid3 = H5Scopy(sid2);
CHECK(sid3, FAIL, "H5Scopy");
/* Create a dataset */
data1=H5Dcreate(fid1,"Dataset1",H5T_STD_U16LE,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(data1,H5T_STD_U16LE,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create another dataset */
data2=H5Dcreate(fid1,"Dataset2",H5T_STD_U16LE,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(data2,H5T_STD_U16LE,sid3,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid3);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 3x4 count with a stride of 4x4 & 2x3 block hyperslab for memory dataset */
start[0]=0; start[1]=0;
stride[0]=4; stride[1]=4;
count[0]=3; count[1]=4;
block[0]=2; block[1]=3;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Make a copy of the dataspace to read */
sid3 = H5Scopy(sid2);
CHECK(sid3, FAIL, "H5Scopy");
/* Read selection from disk */
ret=H5Dread(data1,H5T_STD_U16LE,sid2,sid1,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Read selection from disk */
ret=H5Dread(data2,H5T_STD_U16LE,sid3,sid1,H5P_DEFAULT,rbuf2);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
if(HDmemcmp(rbuf,rbuf2,sizeof(uint16_t)*SPACE3_DIM1*SPACE3_DIM2)) {
TestErrPrintf("hyperslab values don't match! Line=%d\n",__LINE__);
#ifdef QAK
for(i=0; i<SPACE3_DIM1; i++)
for(j=0; j<SPACE3_DIM2; j++)
if((unsigned)*(rbuf+i*SPACE3_DIM2+j)!=(unsigned)*(rbuf2+i*SPACE3_DIM2+j))
printf("i=%d, j=%d, *rbuf=%u, *rbuf2=%u\n",i,j,(unsigned)*(rbuf+i*SPACE3_DIM2+j),(unsigned)*(rbuf2+i*SPACE3_DIM2+j));
#endif /* QAK */
} /* end if */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close 2nd memory dataspace */
ret = H5Sclose(sid3);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(data1);
CHECK(ret, FAIL, "H5Dclose");
/* Close Dataset */
ret = H5Dclose(data2);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf);
HDfree(rbuf);
HDfree(rbuf2);
} /* test_select_hyper_copy() */
/****************************************************************
**
** test_select_point_copy(): Test H5S (dataspace) selection code.
** Tests copying point selections
**
****************************************************************/
static void
test_select_point_copy(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t data1,data2; /* Dataset IDs */
hid_t sid1,sid2,sid3; /* Dataspace IDs */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
uint16_t *wbuf, /* buffer to write to disk */
*rbuf, /* 1st buffer read from disk */
*rbuf2, /* 2nd buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n"));
/* Allocate write & read buffers */
wbuf=HDmalloc(sizeof(uint16_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=HDcalloc(sizeof(uint16_t),SPACE3_DIM1*SPACE3_DIM2);
rbuf2=HDcalloc(sizeof(uint16_t),SPACE3_DIM1*SPACE3_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint16_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select sequence of ten points for disk dataset */
coord1[0][0]=0; coord1[0][1]=10; coord1[0][2]= 5;
coord1[1][0]=1; coord1[1][1]= 2; coord1[1][2]= 7;
coord1[2][0]=2; coord1[2][1]= 4; coord1[2][2]= 9;
coord1[3][0]=0; coord1[3][1]= 6; coord1[3][2]=11;
coord1[4][0]=1; coord1[4][1]= 8; coord1[4][2]=13;
coord1[5][0]=2; coord1[5][1]=12; coord1[5][2]= 0;
coord1[6][0]=0; coord1[6][1]=14; coord1[6][2]= 2;
coord1[7][0]=1; coord1[7][1]= 0; coord1[7][2]= 4;
coord1[8][0]=2; coord1[8][1]= 1; coord1[8][2]= 6;
coord1[9][0]=0; coord1[9][1]= 3; coord1[9][2]= 8;
ret = H5Sselect_elements(sid1,H5S_SELECT_SET,POINT1_NPOINTS,(const hsize_t **)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Select sequence of ten points for write dataset */
coord2[0][0]=12; coord2[0][1]= 3;
coord2[1][0]=15; coord2[1][1]=13;
coord2[2][0]= 7; coord2[2][1]=25;
coord2[3][0]= 0; coord2[3][1]= 6;
coord2[4][0]=13; coord2[4][1]= 0;
coord2[5][0]=24; coord2[5][1]=11;
coord2[6][0]=12; coord2[6][1]=21;
coord2[7][0]=29; coord2[7][1]= 4;
coord2[8][0]= 8; coord2[8][1]= 8;
coord2[9][0]=19; coord2[9][1]=17;
ret = H5Sselect_elements(sid2,H5S_SELECT_SET,POINT1_NPOINTS,(const hsize_t **)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Make a copy of the dataspace to write */
sid3 = H5Scopy(sid2);
CHECK(sid3, FAIL, "H5Scopy");
/* Create a dataset */
data1=H5Dcreate(fid1,"Dataset1",H5T_STD_U16LE,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(data1,H5T_STD_U16LE,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create another dataset */
data2=H5Dcreate(fid1,"Dataset2",H5T_STD_U16LE,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(data2,H5T_STD_U16LE,sid3,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid3);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select sequence of points for read dataset */
coord3[0][0]= 0; coord3[0][1]= 2;
coord3[1][0]= 4; coord3[1][1]= 8;
coord3[2][0]=13; coord3[2][1]=13;
coord3[3][0]=14; coord3[3][1]=25;
coord3[4][0]= 7; coord3[4][1]= 9;
coord3[5][0]= 2; coord3[5][1]= 0;
coord3[6][0]= 9; coord3[6][1]=19;
coord3[7][0]= 1; coord3[7][1]=22;
coord3[8][0]=12; coord3[8][1]=21;
coord3[9][0]=11; coord3[9][1]= 6;
ret = H5Sselect_elements(sid2,H5S_SELECT_SET,POINT1_NPOINTS,(const hsize_t **)coord3);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Make a copy of the dataspace to read */
sid3 = H5Scopy(sid2);
CHECK(sid3, FAIL, "H5Scopy");
/* Read selection from disk */
ret=H5Dread(data1,H5T_STD_U16LE,sid2,sid1,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Read selection from disk */
ret=H5Dread(data2,H5T_STD_U16LE,sid3,sid1,H5P_DEFAULT,rbuf2);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
if(HDmemcmp(rbuf,rbuf2,sizeof(uint16_t)*SPACE3_DIM1*SPACE3_DIM2))
TestErrPrintf("point values don't match!\n");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close 2nd memory dataspace */
ret = H5Sclose(sid3);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(data1);
CHECK(ret, FAIL, "H5Dclose");
/* Close Dataset */
ret = H5Dclose(data2);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf);
HDfree(rbuf);
HDfree(rbuf2);
} /* test_select_point_copy() */
/****************************************************************
**
** test_select_hyper_offset(): Test basic H5S (dataspace) selection code.
** Tests hyperslabs of various sizes and dimensionalities with selection
** offsets.
**
****************************************************************/
static void
test_select_hyper_offset(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
hssize_t offset[SPACE1_RANK]; /* Offset of selection */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
htri_t valid; /* Generic boolean return value */
H5S_class_t ext_type; /* Extent type */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with Offsets\n"));
/* Allocate write & read buffers */
wbuf=HDmalloc(sizeof(uint8_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=HDcalloc(sizeof(uint8_t),SPACE3_DIM1*SPACE3_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint8_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Verify extent type */
ext_type = H5Sget_simple_extent_type(sid1);
VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");
/* Select 2x15x13 hyperslab for disk dataset */
start[0]=1; start[1]=0; start[2]=0;
stride[0]=1; stride[1]=1; stride[2]=1;
count[0]=2; count[1]=15; count[2]=13;
block[0]=1; block[1]=1; block[2]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Check a valid offset */
offset[0]=-1; offset[1]=0; offset[2]=0;
ret = H5Soffset_simple(sid1,offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid1);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Check an invalid offset */
offset[0]=10; offset[1]=0; offset[2]=0;
ret = H5Soffset_simple(sid1,offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid1);
VERIFY(valid, FALSE, "H5Sselect_valid");
/* Reset offset */
offset[0]=0; offset[1]=0; offset[2]=0;
ret = H5Soffset_simple(sid1,offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid1);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Select 15x26 hyperslab for memory dataset */
start[0]=15; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=15; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Choose a valid offset for the memory dataspace */
offset[0]=-10; offset[1]=0;
ret = H5Soffset_simple(sid2,offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid2);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=15; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for(i=0; i<SPACE3_DIM1; i++) {
tbuf=wbuf+((i+5)*SPACE2_DIM2);
tbuf2=rbuf+(i*SPACE3_DIM2);
for(j=0; j<SPACE3_DIM2; j++, tbuf++, tbuf2++) {
if(*tbuf!=*tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%u, *tbuf2=%u\n",__LINE__,i,j,(unsigned)*tbuf,(unsigned)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf);
HDfree(rbuf);
} /* test_select_hyper_offset() */
/****************************************************************
**
** test_select_hyper_offset2(): Test basic H5S (dataspace) selection code.
** Tests optimized hyperslab I/O with selection offsets.
**
****************************************************************/
static void
test_select_hyper_offset2(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
hsize_t start[SPACE7_RANK]; /* Starting location of hyperslab */
hsize_t count[SPACE7_RANK]; /* Element count of hyperslab */
hssize_t offset[SPACE7_RANK]; /* Offset of selection */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
htri_t valid; /* Generic boolean return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing More Hyperslab Selection Functions with Offsets\n"));
/* Allocate write & read buffers */
wbuf=HDmalloc(sizeof(uint8_t)*SPACE7_DIM1*SPACE7_DIM2);
rbuf=HDcalloc(sizeof(uint8_t),SPACE7_DIM1*SPACE7_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
for(j=0; j<SPACE7_DIM2; j++)
*tbuf++=(uint8_t)((i*SPACE7_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 4x10 hyperslab for disk dataset */
start[0]=1; start[1]=0;
count[0]=4; count[1]=10;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Set offset */
offset[0]=1; offset[1]=0;
ret = H5Soffset_simple(sid1,offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid1);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Select 4x10 hyperslab for memory dataset */
start[0]=1; start[1]=0;
count[0]=4; count[1]=10;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Choose a valid offset for the memory dataspace */
offset[0]=2; offset[1]=0;
ret = H5Soffset_simple(sid2,offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid2);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for(i=0; i<4; i++) {
tbuf=wbuf+((i+3)*SPACE7_DIM2);
tbuf2=rbuf+((i+3)*SPACE7_DIM2);
for(j=0; j<SPACE7_DIM2; j++, tbuf++, tbuf2++) {
if(*tbuf!=*tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%u, *tbuf2=%u\n",__LINE__,i,j,(unsigned)*tbuf,(unsigned)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf);
HDfree(rbuf);
} /* test_select_hyper_offset2() */
/****************************************************************
**
** test_select_point_offset(): Test basic H5S (dataspace) selection code.
** Tests element selections between dataspaces of various sizes
** and dimensionalities with selection offsets.
**
****************************************************************/
static void
test_select_point_offset(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
hssize_t offset[SPACE1_RANK]; /* Offset of selection */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
htri_t valid; /* Generic boolean return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Element Selection Functions\n"));
/* Allocate write & read buffers */
wbuf=HDmalloc(sizeof(uint8_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=HDcalloc(sizeof(uint8_t),SPACE3_DIM1*SPACE3_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint8_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for write buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select sequence of ten points for disk dataset */
coord1[0][0]=0; coord1[0][1]=10; coord1[0][2]= 5;
coord1[1][0]=1; coord1[1][1]= 2; coord1[1][2]= 7;
coord1[2][0]=2; coord1[2][1]= 4; coord1[2][2]= 9;
coord1[3][0]=0; coord1[3][1]= 6; coord1[3][2]=11;
coord1[4][0]=1; coord1[4][1]= 8; coord1[4][2]=12;
coord1[5][0]=2; coord1[5][1]=12; coord1[5][2]= 0;
coord1[6][0]=0; coord1[6][1]=14; coord1[6][2]= 2;
coord1[7][0]=1; coord1[7][1]= 0; coord1[7][2]= 4;
coord1[8][0]=2; coord1[8][1]= 1; coord1[8][2]= 6;
coord1[9][0]=0; coord1[9][1]= 3; coord1[9][2]= 8;
ret = H5Sselect_elements(sid1,H5S_SELECT_SET,POINT1_NPOINTS,(const hsize_t **)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Check a valid offset */
offset[0]=0; offset[1]=0; offset[2]=1;
ret = H5Soffset_simple(sid1,offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid1);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Check an invalid offset */
offset[0]=10; offset[1]=0; offset[2]=0;
ret = H5Soffset_simple(sid1,offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid1);
VERIFY(valid, FALSE, "H5Sselect_valid");
/* Reset offset */
offset[0]=0; offset[1]=0; offset[2]=0;
ret = H5Soffset_simple(sid1,offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid1);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Select sequence of ten points for write dataset */
coord2[0][0]=12; coord2[0][1]= 3;
coord2[1][0]=15; coord2[1][1]=13;
coord2[2][0]= 7; coord2[2][1]=24;
coord2[3][0]= 0; coord2[3][1]= 6;
coord2[4][0]=13; coord2[4][1]= 0;
coord2[5][0]=24; coord2[5][1]=11;
coord2[6][0]=12; coord2[6][1]=21;
coord2[7][0]=23; coord2[7][1]= 4;
coord2[8][0]= 8; coord2[8][1]= 8;
coord2[9][0]=19; coord2[9][1]=17;
ret = H5Sselect_elements(sid2,H5S_SELECT_SET,POINT1_NPOINTS,(const hsize_t **)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Choose a valid offset for the memory dataspace */
offset[0]=5; offset[1]=1;
ret = H5Soffset_simple(sid2,offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid2);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select sequence of points for read dataset */
coord3[0][0]= 0; coord3[0][1]= 2;
coord3[1][0]= 4; coord3[1][1]= 8;
coord3[2][0]=13; coord3[2][1]=13;
coord3[3][0]=14; coord3[3][1]=25;
coord3[4][0]= 7; coord3[4][1]= 9;
coord3[5][0]= 2; coord3[5][1]= 0;
coord3[6][0]= 9; coord3[6][1]=19;
coord3[7][0]= 1; coord3[7][1]=22;
coord3[8][0]=12; coord3[8][1]=21;
coord3[9][0]=11; coord3[9][1]= 6;
ret = H5Sselect_elements(sid2,H5S_SELECT_SET,POINT1_NPOINTS,(const hsize_t **)coord3);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for(i=0; i<POINT1_NPOINTS; i++) {
tbuf=wbuf+((coord2[i][0]+offset[0])*SPACE2_DIM2)+coord2[i][1]+offset[1];
tbuf2=rbuf+(coord3[i][0]*SPACE3_DIM2)+coord3[i][1];
if(*tbuf!=*tbuf2)
TestErrPrintf("element values don't match!, i=%d\n",i);
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf);
HDfree(rbuf);
} /* test_select_point_offset() */
/****************************************************************
**
** test_select_hyper_union(): Test basic H5S (dataspace) selection code.
** Tests unions of hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper_union(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hid_t xfer; /* Dataset Transfer Property List ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
size_t begin[SPACE2_DIM1]= /* Offset within irregular block */
{0,0,0,0,0,0,0,0,0,0, /* First ten rows start at offset 0 */
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}; /* Next eighteen rows start at offset 5 */
size_t len[SPACE2_DIM1]= /* Len of each row within irregular block */
{10,10,10,10,10,10,10,10, /* First eight rows are 10 long */
20,20, /* Next two rows are 20 long */
15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15}; /* Next eighteen rows are 15 long */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
hsize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of hyperslabs\n"));
/* Allocate write & read buffers */
wbuf=HDmalloc(sizeof(uint8_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=HDcalloc(sizeof(uint8_t),SPACE3_DIM1*SPACE3_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint8_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Test simple case of one block overlapping another */
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x15x13 hyperslab for disk dataset */
start[0]=1; start[1]=0; start[2]=0;
stride[0]=1; stride[1]=1; stride[2]=1;
count[0]=2; count[1]=15; count[2]=13;
block[0]=1; block[1]=1; block[2]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid1);
VERIFY(npoints, 2*15*13, "H5Sget_select_npoints");
/* Select 8x26 hyperslab for memory dataset */
start[0]=15; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=8; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Union overlapping 8x26 hyperslab for memory dataset (to form a 15x26 selection) */
start[0]=22; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=8; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_OR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 15*26, "H5Sget_select_npoints");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=15; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for(i=0; i<SPACE3_DIM1; i++) {
tbuf=wbuf+((i+15)*SPACE2_DIM2);
tbuf2=rbuf+(i*SPACE3_DIM2);
for(j=0; j<SPACE3_DIM2; j++, tbuf++, tbuf2++) {
if(*tbuf!=*tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",__LINE__,i,j,(int)*tbuf,(int)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Test simple case of several block overlapping another */
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x15x13 hyperslab for disk dataset */
start[0]=1; start[1]=0; start[2]=0;
stride[0]=1; stride[1]=1; stride[2]=1;
count[0]=2; count[1]=15; count[2]=13;
block[0]=1; block[1]=1; block[2]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 8x15 hyperslab for memory dataset */
start[0]=15; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=8; count[1]=15;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Union overlapping 8x15 hyperslab for memory dataset (to form a 15x15 selection) */
start[0]=22; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=8; count[1]=15;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_OR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Union overlapping 15x15 hyperslab for memory dataset (to form a 15x26 selection) */
start[0]=15; start[1]=11;
stride[0]=1; stride[1]=1;
count[0]=15; count[1]=15;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_OR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 15*26, "H5Sget_select_npoints");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset2",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=15; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for(i=0; i<SPACE3_DIM1; i++) {
tbuf=wbuf+((i+15)*SPACE2_DIM2);
tbuf2=rbuf+(i*SPACE3_DIM2);
for(j=0; j<SPACE3_DIM2; j++, tbuf++, tbuf2++) {
if(*tbuf!=*tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",__LINE__,i,j,(int)*tbuf,(int)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Test disjoint case of two non-overlapping blocks */
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x15x13 hyperslab for disk dataset */
start[0]=1; start[1]=0; start[2]=0;
stride[0]=1; stride[1]=1; stride[2]=1;
count[0]=2; count[1]=15; count[2]=13;
block[0]=1; block[1]=1; block[2]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 7x26 hyperslab for memory dataset */
start[0]=1; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=7; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Union non-overlapping 8x26 hyperslab for memory dataset (to form a 15x26 disjoint selection) */
start[0]=22; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=8; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_OR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 15*26, "H5Sget_select_npoints");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset3",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=15; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for(i=0; i<SPACE3_DIM1; i++) {
/* Jump over gap in middle */
if(i<7)
tbuf=wbuf+((i+1)*SPACE2_DIM2);
else
tbuf=wbuf+((i+15)*SPACE2_DIM2);
tbuf2=rbuf+(i*SPACE3_DIM2);
for(j=0; j<SPACE3_DIM2; j++, tbuf++, tbuf2++) {
if(*tbuf!=*tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",__LINE__,i,j,(int)*tbuf,(int)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Test disjoint case of two non-overlapping blocks with hyperslab caching turned off */
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x15x13 hyperslab for disk dataset */
start[0]=1; start[1]=0; start[2]=0;
stride[0]=1; stride[1]=1; stride[2]=1;
count[0]=2; count[1]=15; count[2]=13;
block[0]=1; block[1]=1; block[2]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 7x26 hyperslab for memory dataset */
start[0]=1; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=7; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Union non-overlapping 8x26 hyperslab for memory dataset (to form a 15x26 disjoint selection) */
start[0]=22; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=8; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_OR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 15*26, "H5Sget_select_npoints");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset4",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate");
xfer = H5Pcreate (H5P_DATASET_XFER);
CHECK(xfer, FAIL, "H5Pcreate");
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,xfer,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=15; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,xfer,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Close transfer property list */
ret = H5Pclose(xfer);
CHECK(ret, FAIL, "H5Pclose");
/* Compare data read with data written out */
for(i=0; i<SPACE3_DIM1; i++) {
/* Jump over gap in middle */
if(i<7)
tbuf=wbuf+((i+1)*SPACE2_DIM2);
else
tbuf=wbuf+((i+15)*SPACE2_DIM2);
tbuf2=rbuf+(i*SPACE3_DIM2);
for(j=0; j<SPACE3_DIM2; j++, tbuf++, tbuf2++) {
if(*tbuf!=*tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",__LINE__,i,j,(int)*tbuf,(int)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Test case of two blocks which overlap corners and must be split */
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x15x13 hyperslab for disk dataset */
start[0]=1; start[1]=0; start[2]=0;
stride[0]=1; stride[1]=1; stride[2]=1;
count[0]=2; count[1]=15; count[2]=13;
block[0]=1; block[1]=1; block[2]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 10x10 hyperslab for memory dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=10; count[1]=10;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Union overlapping 15x20 hyperslab for memory dataset (forming a irregularly shaped region) */
start[0]=8; start[1]=5;
stride[0]=1; stride[1]=1;
count[0]=20; count[1]=15;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_OR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 15*26, "H5Sget_select_npoints");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset5",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=15; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for(i=0,tbuf2=rbuf; i<SPACE2_DIM1; i++) {
tbuf=wbuf+(i*SPACE2_DIM2)+begin[i];
for(j=0; j<(int)len[i]; j++, tbuf++, tbuf2++) {
if(*tbuf!=*tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",__LINE__,i,j,(int)*tbuf,(int)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf);
HDfree(rbuf);
} /* test_select_hyper_union() */
#ifdef NEW_HYPERSLAB_API
/****************************************************************
**
** test_select_hyper_union_stagger(): Test basic H5S (dataspace) selection code.
** Tests unions of staggered hyperslabs. (Uses H5Scombine_hyperslab
** and H5Sselect_select instead of H5Sselect_hyperslab)
**
****************************************************************/
static void
test_select_hyper_union_stagger(void)
{
hid_t file_id; /* File ID */
hid_t dset_id; /* Dataset ID */
hid_t dataspace; /* File dataspace ID */
hid_t memspace; /* Memory dataspace ID */
hid_t tmp_space; /* Temporary dataspace ID */
hid_t tmp2_space; /* Another emporary dataspace ID */
hsize_t dimsm[2]={7,7}; /* Memory array dimensions */
hsize_t dimsf[2]={6,5}; /* File array dimensions */
hsize_t count[2]={3,1}; /* 1st Hyperslab size */
hsize_t count2[2]={3,1}; /* 2nd Hyperslab size */
hsize_t count3[2]={2,1}; /* 3rd Hyperslab size */
hssize_t offset[2]={0,0}; /* 1st Hyperslab offset */
hssize_t offset2[2]={2,1}; /* 2nd Hyperslab offset */
hssize_t offset3[2]={4,2}; /* 3rd Hyperslab offset */
hsize_t count_out[2]={4,2}; /* Hyperslab size in memory */
hssize_t offset_out[2]={0,3}; /* Hyperslab offset in memory */
int data[6][5]; /* Data to write */
int data_out[7][7]; /* Data read in */
int input_loc[8][2]={{0,0},
{1,0},
{2,0},
{2,1},
{3,1},
{4,1},
{4,2},
{5,2}};
int output_loc[8][2]={{0,3},
{0,4},
{1,3},
{1,4},
{2,3},
{2,4},
{3,3},
{3,4}};
int dsetrank=2; /* File Dataset rank */
int memrank=2; /* Memory Dataset rank */
int i,j; /* Local counting variables */
herr_t error;
hsize_t stride[2]={1,1};
hsize_t block[2]={1,1};
/* Initialize data to write */
for(i=0; i<6; i++)
for(j=0; j<5; j++)
data[i][j] = j*10 + i;
/* Create file */
file_id=H5Fcreate(FILENAME,H5F_ACC_TRUNC,H5P_DEFAULT,H5P_DEFAULT);
CHECK(file_id, FAIL, "H5Fcreate");
/* Create File Dataspace */
dataspace=H5Screate_simple(dsetrank,dimsf,NULL);
CHECK(dataspace, FAIL, "H5Screate_simple");
/* Create File Dataset */
dset_id=H5Dcreate(file_id,"IntArray",H5T_NATIVE_INT,dataspace,H5P_DEFAULT);
CHECK(dset_id, FAIL, "H5Dcreate");
/* Write File Dataset */
error=H5Dwrite(dset_id,H5T_NATIVE_INT,dataspace,dataspace,H5P_DEFAULT,data);
CHECK(error, FAIL, "H5Dwrite");
/* Close things */
error=H5Sclose(dataspace);
CHECK(error, FAIL, "H5Sclose");
error=H5Dclose(dset_id);
CHECK(error, FAIL, "H5Dclose");
error=H5Fclose(file_id);
CHECK(error, FAIL, "H5Fclose");
/* Initialize intput buffer */
memset(data_out,0,7*7*sizeof(int));
/* Open file */
file_id=H5Fopen(FILENAME,H5F_ACC_RDONLY,H5P_DEFAULT);
CHECK(file_id, FAIL, "H5Fopen");
/* Open dataset */
dset_id=H5Dopen(file_id,"IntArray");
CHECK(dset_id, FAIL, "H5Dopen");
/* Get the dataspace */
dataspace=H5Dget_space(dset_id);
CHECK(dataspace, FAIL, "H5Dget_space");
/* Select the hyperslabs */
error=H5Sselect_hyperslab(dataspace,H5S_SELECT_SET,offset,stride,count,block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
tmp_space=H5Scombine_hyperslab(dataspace,H5S_SELECT_OR,offset2,stride,count2,block);
CHECK(tmp_space, FAIL, "H5Scombine_hyperslab");
/* Copy the file dataspace and select hyperslab */
tmp2_space=H5Scopy(dataspace);
CHECK(tmp2_space, FAIL, "H5Scopy");
error=H5Sselect_hyperslab(tmp2_space,H5S_SELECT_SET,offset3,stride,count3,block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Combine the copied dataspace with the temporary dataspace */
error=H5Sselect_select(tmp_space,H5S_SELECT_OR,tmp2_space);
CHECK(error, FAIL, "H5Sselect_select");
/* Create Memory Dataspace */
memspace=H5Screate_simple(memrank,dimsm,NULL);
CHECK(memspace, FAIL, "H5Screate_simple");
/* Select hyperslab in memory */
error=H5Sselect_hyperslab(memspace,H5S_SELECT_SET,offset_out,stride,count_out,block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Read File Dataset */
error=H5Dread(dset_id,H5T_NATIVE_INT,memspace,tmp_space,H5P_DEFAULT,data_out);
CHECK(error, FAIL, "H5Dread");
/* Verify input data */
for(i=0; i<8; i++) {
if(data[input_loc[i][0]][input_loc[i][1]]!=data_out[output_loc[i][0]][output_loc[i][1]]) {
printf("input data #%d is wrong!\n",i);
printf("input_loc=[%d][%d]\n",input_loc[i][0],input_loc[i][1]);
printf("output_loc=[%d][%d]\n",output_loc[i][0],output_loc[i][1]);
printf("data=%d\n",data[input_loc[i][0]][input_loc[i][1]]);
TestErrPrintf("data_out=%d\n",data_out[output_loc[i][0]][output_loc[i][1]]);
} /* end if */
} /* end for */
/* Close things */
error=H5Sclose(tmp2_space);
CHECK(error, FAIL, "H5Sclose");
error=H5Sclose(tmp_space);
CHECK(error, FAIL, "H5Sclose");
error=H5Sclose(dataspace);
CHECK(error, FAIL, "H5Sclose");
error=H5Sclose(memspace);
CHECK(error, FAIL, "H5Sclose");
error=H5Dclose(dset_id);
CHECK(error, FAIL, "H5Dclose");
error=H5Fclose(file_id);
CHECK(error, FAIL, "H5Fclose");
}
/****************************************************************
**
** test_select_hyper_union_3d(): Test basic H5S (dataspace) selection code.
** Tests unions of hyperslabs in 3-D (Uses H5Scombine_hyperslab
** and H5Scombine_select instead of H5Sselect_hyperslab)
**
****************************************************************/
static void
test_select_hyper_union_3d(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hid_t tmp_space; /* Temporary Dataspace ID */
hid_t tmp2_space; /* Another temporary Dataspace ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
struct row_list {
size_t z;
size_t y;
size_t x;
size_t l;
} rows[]= { /* Array of x,y,z coordinates & length for each row written from memory */
{0,0,0,6}, /* 1st face of 3-D object */
{0,1,0,6},
{0,2,0,6},
{0,3,0,6},
{0,4,0,6},
{1,0,0,6}, /* 2nd face of 3-D object */
{1,1,0,6},
{1,2,0,6},
{1,3,0,6},
{1,4,0,6},
{2,0,0,6}, /* 3rd face of 3-D object */
{2,1,0,10},
{2,2,0,10},
{2,3,0,10},
{2,4,0,10},
{2,5,2,8},
{2,6,2,8},
{3,0,0,6}, /* 4th face of 3-D object */
{3,1,0,10},
{3,2,0,10},
{3,3,0,10},
{3,4,0,10},
{3,5,2,8},
{3,6,2,8},
{4,0,0,6}, /* 5th face of 3-D object */
{4,1,0,10},
{4,2,0,10},
{4,3,0,10},
{4,4,0,10},
{4,5,2,8},
{4,6,2,8},
{5,1,2,8}, /* 6th face of 3-D object */
{5,2,2,8},
{5,3,2,8},
{5,4,2,8},
{5,5,2,8},
{5,6,2,8},
{6,1,2,8}, /* 7th face of 3-D object */
{6,2,2,8},
{6,3,2,8},
{6,4,2,8},
{6,5,2,8},
{6,6,2,8},
{7,1,2,8}, /* 8th face of 3-D object */
{7,2,2,8},
{7,3,2,8},
{7,4,2,8},
{7,5,2,8},
{7,6,2,8}};
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i,j,k; /* Counters */
herr_t ret; /* Generic return value */
hsize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of 3-D hyperslabs\n"));
/* Allocate write & read buffers */
wbuf=HDmalloc(sizeof(uint8_t)*SPACE4_DIM1*SPACE4_DIM2*SPACE4_DIM3);
rbuf=HDcalloc(sizeof(uint8_t),SPACE3_DIM1*SPACE3_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE4_DIM1; i++)
for(j=0; j<SPACE4_DIM2; j++)
for(k=0; k<SPACE4_DIM3; k++)
*tbuf++=(uint8_t)((((i*SPACE4_DIM2)+j)*SPACE4_DIM3)+k);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Test case of two blocks which overlap corners and must be split */
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE4_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x15x13 hyperslab for disk dataset */
start[0]=1; start[1]=0; start[2]=0;
stride[0]=1; stride[1]=1; stride[2]=1;
count[0]=2; count[1]=15; count[2]=13;
block[0]=1; block[1]=1; block[2]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 5x5x6 hyperslab for memory dataset */
start[0]=0; start[1]=0; start[2]=0;
stride[0]=1; stride[1]=1; stride[2]=1;
count[0]=5; count[1]=5; count[2]=6;
block[0]=1; block[1]=1; block[2]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Union overlapping 15x20 hyperslab for memory dataset (forming a irregularly shaped region) */
start[0]=2; start[1]=1; start[2]=2;
stride[0]=1; stride[1]=1; stride[2]=1;
count[0]=6; count[1]=6; count[2]=8;
block[0]=1; block[1]=1; block[2]=1;
tmp_space = H5Scombine_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(tmp_space, FAIL, "H5Sselect_hyperslab");
/* Combine dataspaces and create new dataspace */
tmp2_space = H5Scombine_select(sid2,H5S_SELECT_OR,tmp_space);
CHECK(tmp2_space, FAIL, "H5Scombin_select");
npoints = H5Sget_select_npoints(tmp2_space);
VERIFY(npoints, 15*26, "H5Sget_select_npoints");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,tmp2_space,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close temporary dataspaces */
ret = H5Sclose(tmp_space);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(tmp2_space);
CHECK(ret, FAIL, "H5Sclose");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=15; count[1]=26;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for(i=0,tbuf2=rbuf; i<(int)(sizeof(rows)/sizeof(struct row_list)); i++) {
tbuf=wbuf+(rows[i].z*SPACE4_DIM3*SPACE4_DIM2)+(rows[i].y*SPACE4_DIM3)+rows[i].x;
for(j=0; j<(int)rows[i].l; j++, tbuf++, tbuf2++) {
if(*tbuf!=*tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",__LINE__,i,j,(int)*tbuf,(int)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf);
HDfree(rbuf);
} /* test_select_hyper_union_3d() */
#endif /* NEW_HYPERSLAB_API */
/****************************************************************
**
** test_select_hyper_and_2d(): Test basic H5S (dataspace) selection code.
** Tests 'and' of hyperslabs in 2-D
**
****************************************************************/
static void
test_select_hyper_and_2d(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims2[] = {SPACE2A_DIM1};
hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
hsize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with intersection of 2-D hyperslabs\n"));
/* Allocate write & read buffers */
wbuf=malloc(sizeof(uint8_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=calloc(sizeof(uint8_t),SPACE2_DIM1*SPACE2_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint8_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 10x10 hyperslab for disk dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=10; count[1]=10;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Intersect overlapping 10x10 hyperslab */
start[0]=5; start[1]=5;
stride[0]=1; stride[1]=1;
count[0]=10; count[1]=10;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_AND,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid1);
VERIFY(npoints, 5*5, "H5Sget_select_npoints");
/* Select 25 hyperslab for memory dataset */
start[0]=0;
stride[0]=1;
count[0]=25;
block[0]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 5*5, "H5Sget_select_npoints");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Read entire dataset from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,H5S_ALL,H5S_ALL,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Initialize write buffer */
for(i=0, tbuf=rbuf, tbuf2=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++, tbuf++) {
if((i>=5 && i<=9) && (j>=5 && j<=9)) {
if(*tbuf!=*tbuf2)
printf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",__LINE__,i,j,(int)*tbuf,(int)*tbuf2);
tbuf2++;
} /* end if */
else {
if(*tbuf!=0)
printf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n",__LINE__,i,j,(int)*tbuf);
} /* end else */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_and_2d() */
/****************************************************************
**
** test_select_hyper_xor_2d(): Test basic H5S (dataspace) selection code.
** Tests 'xor' of hyperslabs in 2-D
**
****************************************************************/
static void
test_select_hyper_xor_2d(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims2[] = {SPACE2A_DIM1};
hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
hsize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with XOR of 2-D hyperslabs\n"));
/* Allocate write & read buffers */
wbuf=malloc(sizeof(uint8_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=calloc(sizeof(uint8_t),SPACE2_DIM1*SPACE2_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint8_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 10x10 hyperslab for disk dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=10; count[1]=10;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Intersect overlapping 10x10 hyperslab */
start[0]=5; start[1]=5;
stride[0]=1; stride[1]=1;
count[0]=10; count[1]=10;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_XOR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid1);
VERIFY(npoints, 150, "H5Sget_select_npoints");
/* Select 25 hyperslab for memory dataset */
start[0]=0;
stride[0]=1;
count[0]=150;
block[0]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 150, "H5Sget_select_npoints");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Read entire dataset from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,H5S_ALL,H5S_ALL,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Initialize write buffer */
for(i=0, tbuf=rbuf, tbuf2=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++, tbuf++) {
if(((i>=0 && i<=4) && (j>=0 && j<=9)) ||
((i>=5 && i<=9) && ((j>=0 && j<=4) || (j>=10 && j<=14))) ||
((i>=10 && i<=14) && (j>=5 && j<=14))) {
if(*tbuf!=*tbuf2)
printf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",__LINE__,i,j,(int)*tbuf,(int)*tbuf2);
tbuf2++;
} /* end if */
else {
if(*tbuf!=0)
printf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n",__LINE__,i,j,(int)*tbuf);
} /* end else */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_xor_2d() */
/****************************************************************
**
** test_select_hyper_notb_2d(): Test basic H5S (dataspace) selection code.
** Tests 'notb' of hyperslabs in 2-D
**
****************************************************************/
static void
test_select_hyper_notb_2d(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims2[] = {SPACE2A_DIM1};
hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
hsize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTB of 2-D hyperslabs\n"));
/* Allocate write & read buffers */
wbuf=malloc(sizeof(uint8_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=calloc(sizeof(uint8_t),SPACE2_DIM1*SPACE2_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint8_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 10x10 hyperslab for disk dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=10; count[1]=10;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Intersect overlapping 10x10 hyperslab */
start[0]=5; start[1]=5;
stride[0]=1; stride[1]=1;
count[0]=10; count[1]=10;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_NOTB,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid1);
VERIFY(npoints, 75, "H5Sget_select_npoints");
/* Select 75 hyperslab for memory dataset */
start[0]=0;
stride[0]=1;
count[0]=75;
block[0]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 75, "H5Sget_select_npoints");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Read entire dataset from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,H5S_ALL,H5S_ALL,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Initialize write buffer */
for(i=0, tbuf=rbuf, tbuf2=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++, tbuf++) {
if(((i>=0 && i<=4) && (j>=0 && j<=9)) ||
((i>=5 && i<=9) && (j>=0 && j<=4))) {
if(*tbuf!=*tbuf2)
printf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",__LINE__,i,j,(int)*tbuf,(int)*tbuf2);
tbuf2++;
} /* end if */
else {
if(*tbuf!=0)
printf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n",__LINE__,i,j,(int)*tbuf);
} /* end else */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_notb_2d() */
/****************************************************************
**
** test_select_hyper_nota_2d(): Test basic H5S (dataspace) selection code.
** Tests 'nota' of hyperslabs in 2-D
**
****************************************************************/
static void
test_select_hyper_nota_2d(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims2[] = {SPACE2A_DIM1};
hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
hsize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTA of 2-D hyperslabs\n"));
/* Allocate write & read buffers */
wbuf=HDmalloc(sizeof(uint8_t)*SPACE2_DIM1*SPACE2_DIM2);
rbuf=HDcalloc(sizeof(uint8_t),SPACE2_DIM1*SPACE2_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++)
*tbuf++=(uint8_t)((i*SPACE2_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 10x10 hyperslab for disk dataset */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=10; count[1]=10;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Intersect overlapping 10x10 hyperslab */
start[0]=5; start[1]=5;
stride[0]=1; stride[1]=1;
count[0]=10; count[1]=10;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_NOTA,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid1);
VERIFY(npoints, 75, "H5Sget_select_npoints");
/* Select 75 hyperslab for memory dataset */
start[0]=0;
stride[0]=1;
count[0]=75;
block[0]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 75, "H5Sget_select_npoints");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
/* Write selection to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Read entire dataset from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,H5S_ALL,H5S_ALL,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Initialize write buffer */
for(i=0, tbuf=rbuf, tbuf2=wbuf; i<SPACE2_DIM1; i++)
for(j=0; j<SPACE2_DIM2; j++, tbuf++) {
if(((i>=10 && i<=14) && (j>=5 && j<=14)) ||
((i>=5 && i<=9) && (j>=10 && j<=14))) {
if(*tbuf!=*tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",__LINE__,i,j,(int)*tbuf,(int)*tbuf2);
tbuf2++;
} /* end if */
else {
if(*tbuf!=0)
TestErrPrintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n",__LINE__,i,j,(int)*tbuf);
} /* end else */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf);
HDfree(rbuf);
} /* test_select_hyper_nota_2d() */
/****************************************************************
**
** test_select_hyper_iter2(): Iterator for checking hyperslab iteration
**
****************************************************************/
herr_t
test_select_hyper_iter2(void *_elem, hid_t UNUSED type_id, unsigned ndim, const hsize_t *point, void *_operator_data)
{
int *tbuf=(int *)_elem, /* temporary buffer pointer */
**tbuf2=(int **)_operator_data; /* temporary buffer handle */
unsigned u; /* Local counting variable */
if(*tbuf!=**tbuf2) {
TestErrPrintf("Error in hyperslab iteration!\n");
printf("location: { ");
for(u=0; u<ndim; u++) {
printf("%2d",(int)point[u]);
if(u<(ndim-1))
printf(", ");
} /* end for */
printf("}\n");
printf("*tbuf=%d, **tbuf2=%d\n",*tbuf,**tbuf2);
return(-1);
} /* end if */
else {
(*tbuf2)++;
return(0);
}
} /* end test_select_hyper_iter2() */
/****************************************************************
**
** test_select_hyper_union_random_5d(): Test basic H5S (dataspace) selection code.
** Tests random unions of 5-D hyperslabs
**
****************************************************************/
static void
test_select_hyper_union_random_5d(hid_t read_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE5_DIM1, SPACE5_DIM2, SPACE5_DIM3, SPACE5_DIM4, SPACE5_DIM5};
hsize_t dims2[] = {SPACE6_DIM1};
hsize_t start[SPACE5_RANK]; /* Starting location of hyperslab */
hsize_t count[SPACE5_RANK]; /* Element count of hyperslab */
int *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i,j,k,l,m; /* Counters */
herr_t ret; /* Generic return value */
hssize_t npoints, /* Number of elements in file selection */
npoints2; /* Number of elements in memory selection */
unsigned seed; /* Random number seed for each test */
unsigned test_num; /* Count of tests being executed */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with random unions of 5-D hyperslabs\n"));
/* Allocate write & read buffers */
wbuf=HDmalloc(sizeof(int)*SPACE5_DIM1*SPACE5_DIM2*SPACE5_DIM3*SPACE5_DIM4*SPACE5_DIM5);
rbuf=HDcalloc(sizeof(int),SPACE5_DIM1*SPACE5_DIM2*SPACE5_DIM3*SPACE5_DIM4*SPACE5_DIM5);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE5_DIM1; i++)
for(j=0; j<SPACE5_DIM2; j++)
for(k=0; k<SPACE5_DIM3; k++)
for(l=0; l<SPACE5_DIM4; l++)
for(m=0; m<SPACE5_DIM5; m++)
*tbuf++=(int)(((((((i*SPACE5_DIM2)+j)*SPACE5_DIM3)+k)*SPACE5_DIM4)+l)*SPACE5_DIM5)+m;
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE5_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_INT,sid1,H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate");
/* Write entire dataset to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_INT,H5S_ALL,H5S_ALL,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE6_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Get initial random # seed */
seed=(unsigned)time(NULL)+(unsigned)clock();
/* Crunch through a bunch of random hyperslab reads from the file dataset */
for(test_num=0; test_num<NRAND_HYPER; test_num++) {
/* Save random # seed for later use */
/* (Used in case of errors, to regenerate the hyperslab sequence) */
#ifndef QAK
seed+=(unsigned)clock();
#else /* QAK */
seed=987909620;
#endif /* QAK */
srand(seed);
#ifdef QAK
printf("test_num=%d, seed=%u\n",test_num,seed);
#endif /* QAK */
#ifndef QAK
for(i=0; i<NHYPERSLABS; i++) {
#else /* QAK */
for(i=0; i<2; i++) {
#endif /* QAK */
#ifdef QAK
printf("hyperslab=%d\n",i);
#endif /* QAK */
/* Select random hyperslab location & size for selection */
for(j=0; j<SPACE5_RANK; j++) {
start[j]=rand()%dims1[j];
count[j]=(rand()%(dims1[j]-start[j]))+1;
#ifdef QAK
printf("start[%d]=%d, count[%d]=%d (end[%d]=%d)\n",j,(int)start[j],j,(int)count[j],j,(int)(start[j]+count[j]-1));
#endif /* QAK */
} /* end for */
/* Select hyperslab */
ret = H5Sselect_hyperslab(sid1,(i==0 ? H5S_SELECT_SET : H5S_SELECT_OR),start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end for */
/* Get the number of elements selected */
npoints=H5Sget_select_npoints(sid1);
CHECK(npoints, 0, "H5Sget_select_npoints");
/* Select linear 1-D hyperslab for memory dataset */
start[0]=0;
count[0]=npoints;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints2 = H5Sget_select_npoints(sid2);
VERIFY(npoints, npoints2, "H5Sget_select_npoints");
#ifdef QAK
printf("random I/O, before H5Dread(), npoints=%lu\n",(unsigned long)npoints);
{
hsize_t blocks[128][2][SPACE5_RANK];
hssize_t nblocks;
int k;
nblocks=H5Sget_select_hyper_nblocks(sid1);
printf("nblocks=%d\n",(int)nblocks);
H5Sget_select_hyper_blocklist(sid1,0,nblocks,blocks);
for(j=0; j<nblocks; j++) {
printf("Block #%d, start = {",j);
for(k=0; k<SPACE5_RANK; k++) {
printf("%d",blocks[j][0][k]);
if(k<(SPACE5_RANK-1))
printf(", ");
else
printf("}, end = {");
} /* end for */
for(k=0; k<SPACE5_RANK; k++) {
printf("%d",blocks[j][1][k]);
if(k<(SPACE5_RANK-1))
printf(", ");
else
printf("}\n");
} /* end for */
} /* end for */
}
#endif /* QAK */
/* Read selection from disk */
ret=H5Dread(dataset,H5T_NATIVE_INT,sid2,sid1,read_plist,rbuf);
CHECK(ret, FAIL, "H5Dread");
#ifdef QAK
printf("random I/O, after H5Dread()\n");
#endif /* QAK */
/* Compare data read with data written out */
tbuf=rbuf;
ret = H5Diterate(wbuf,H5T_NATIVE_INT,sid1,test_select_hyper_iter2,&tbuf);
if(ret<0) {
TestErrPrintf("Random hyperslabs for seed %u failed!\n",seed);
break;
}
/* Set the read buffer back to all zeroes */
memset(rbuf,0,SPACE6_DIM1);
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf);
HDfree(rbuf);
} /* test_select_hyper_union_random_5d() */
/****************************************************************
**
** test_select_hyper_chunk(): Test basic H5S (dataspace) selection code.
** Tests large hyperslab selection in chunked dataset
**
****************************************************************/
static void
test_select_hyper_chunk(hid_t fapl_plist, hid_t xfer_plist)
{
hsize_t dimsf[3]; /* dataset dimensions */
hsize_t chunk_dimsf[3] = {CHUNK_X, CHUNK_Y, CHUNK_Z}; /* chunk sizes */
short *data; /* data to write */
short *tmpdata; /* data to write */
/*
* Data and output buffer initialization.
*/
hid_t file, dataset; /* handles */
hid_t dataspace;
hid_t memspace;
hid_t plist;
hsize_t dimsm[3]; /* memory space dimensions */
hsize_t dims_out[3]; /* dataset dimensions */
herr_t status;
short *data_out; /* output buffer */
short *tmpdata_out; /* output buffer */
hsize_t count[3]; /* size of the hyperslab in the file */
hsize_t offset[3]; /* hyperslab offset in the file */
hsize_t count_out[3]; /* size of the hyperslab in memory */
hsize_t offset_out[3]; /* hyperslab offset in memory */
int i, j, k, status_n, rank;
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab I/O on Large Chunks\n"));
/* Allocate the transfer buffers */
data = HDmalloc(sizeof(short)*X*Y*Z);
data_out = HDcalloc(NX*NY*NZ,sizeof(short));
/*
* Data buffer initialization.
*/
tmpdata = data;
for (j = 0; j < X; j++)
for (i = 0; i < Y; i++)
for (k = 0; k < Z; k++)
*tmpdata++ = (short)((k+1)%256);
/*
* Create a new file using H5F_ACC_TRUNC access,
* the default file creation properties, and the default file
* access properties.
*/
file = H5Fcreate (FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_plist);
CHECK(file, FAIL, "H5Fcreate");
/*
* Describe the size of the array and create the data space for fixed
* size dataset.
*/
dimsf[0] = X;
dimsf[1] = Y;
dimsf[2] = Z;
dataspace = H5Screate_simple (RANK_F, dimsf, NULL);
CHECK(dataspace, FAIL, "H5Screate_simple");
/*
* Create a new dataset within the file using defined dataspace and
* chunking properties.
*/
plist = H5Pcreate (H5P_DATASET_CREATE);
CHECK(plist, FAIL, "H5Pcreate");
status = H5Pset_chunk (plist, RANK_F, chunk_dimsf);
CHECK(status, FAIL, "H5Pset_chunk");
dataset = H5Dcreate (file, DATASETNAME, H5T_NATIVE_UCHAR, dataspace, plist);
CHECK(dataset, FAIL, "H5Dcreate");
/*
* Define hyperslab in the dataset.
*/
offset[0] = 0;
offset[1] = 0;
offset[2] = 0;
count[0] = NX_SUB;
count[1] = NY_SUB;
count[2] = NZ_SUB;
status = H5Sselect_hyperslab (dataspace, H5S_SELECT_SET, offset, NULL,
count, NULL);
CHECK(status, FAIL, "H5Sselect_hyperslab");
/*
* Define the memory dataspace.
*/
dimsm[0] = NX;
dimsm[1] = NY;
dimsm[2] = NZ;
memspace = H5Screate_simple (RANK_M, dimsm, NULL);
CHECK(memspace, FAIL, "H5Screate_simple");
/*
* Define memory hyperslab.
*/
offset_out[0] = 0;
offset_out[1] = 0;
offset_out[2] = 0;
count_out[0] = NX_SUB;
count_out[1] = NY_SUB;
count_out[2] = NZ_SUB;
status = H5Sselect_hyperslab (memspace, H5S_SELECT_SET, offset_out, NULL,
count_out, NULL);
CHECK(status, FAIL, "H5Sselect_hyperslab");
/*
* Write the data to the dataset using hyperslabs
*/
status = H5Dwrite (dataset, H5T_NATIVE_SHORT, memspace, dataspace,
xfer_plist, data);
CHECK(status, FAIL, "H5Dwrite");
/*
* Close/release resources.
*/
status=H5Pclose (plist);
CHECK(status, FAIL, "H5Pclose");
status=H5Sclose (dataspace);
CHECK(status, FAIL, "H5Sclose");
status=H5Sclose (memspace);
CHECK(status, FAIL, "H5Sclose");
status=H5Dclose (dataset);
CHECK(status, FAIL, "H5Dclose");
status=H5Fclose (file);
CHECK(status, FAIL, "H5Fclose");
/*************************************************************
This reads the hyperslab from the test.h5 file just
created, into a 3-dimensional plane of the 3-dimensional
array.
************************************************************/
/*
* Open the file and the dataset.
*/
file = H5Fopen (FILENAME, H5F_ACC_RDONLY, fapl_plist);
CHECK(file, FAIL, "H5Fopen");
dataset = H5Dopen (file, DATASETNAME);
CHECK(dataset, FAIL, "H5Dopen");
dataspace = H5Dget_space (dataset); /* dataspace handle */
CHECK(dataspace, FAIL, "H5Dget_space");
rank = H5Sget_simple_extent_ndims (dataspace);
VERIFY(rank, 3, "H5Sget_simple_extent_ndims");
status_n = H5Sget_simple_extent_dims (dataspace, dims_out, NULL);
CHECK(status_n, FAIL, "H5Sget_simple_extent_dims");
VERIFY(dims_out[0], dimsf[0], "Dataset dimensions");
VERIFY(dims_out[1], dimsf[1], "Dataset dimensions");
VERIFY(dims_out[2], dimsf[2], "Dataset dimensions");
/*
* Define hyperslab in the dataset.
*/
offset[0] = 0;
offset[1] = 0;
offset[2] = 0;
count[0] = NX_SUB;
count[1] = NY_SUB;
count[2] = NZ_SUB;
status = H5Sselect_hyperslab (dataspace, H5S_SELECT_SET, offset, NULL,
count, NULL);
CHECK(status, FAIL, "H5Sselect_hyperslab");
/*
* Define the memory dataspace.
*/
dimsm[0] = NX;
dimsm[1] = NY;
dimsm[2] = NZ;
memspace = H5Screate_simple (RANK_M, dimsm, NULL);
CHECK(memspace, FAIL, "H5Screate_simple");
/*
* Define memory hyperslab.
*/
offset_out[0] = 0;
offset_out[1] = 0;
offset_out[2] = 0;
count_out[0] = NX_SUB;
count_out[1] = NY_SUB;
count_out[2] = NZ_SUB;
status = H5Sselect_hyperslab (memspace, H5S_SELECT_SET, offset_out, NULL,
count_out, NULL);
CHECK(status, FAIL, "H5Sselect_hyperslab");
/*
* Read data from hyperslab in the file into the hyperslab in
* memory and display.
*/
status = H5Dread (dataset, H5T_NATIVE_SHORT, memspace, dataspace,
xfer_plist, data_out);
CHECK(status, FAIL, "H5Dread");
/* Compare data written with data read in */
tmpdata = data;
tmpdata_out = data_out;
for (j = 0; j < X; j++)
for (i = 0; i < Y; i++)
for (k = 0; k < Z; k++,tmpdata++,tmpdata_out++) {
if(*tmpdata!=*tmpdata_out)
TestErrPrintf("Line %d: Error! j=%d, i=%d, k=%d, *tmpdata=%x, *tmpdata_out=%x\n",__LINE__,j,i,k,(unsigned)*tmpdata,(unsigned)*tmpdata_out);
} /* end for */
/*
* Close and release resources.
*/
status=H5Dclose (dataset);
CHECK(status, FAIL, "H5Dclose");
status=H5Sclose (dataspace);
CHECK(status, FAIL, "H5Sclose");
status=H5Sclose (memspace);
CHECK(status, FAIL, "H5Sclose");
status=H5Fclose (file);
CHECK(status, FAIL, "H5Fclose");
HDfree (data);
HDfree (data_out);
} /* test_select_hyper_chunk() */
/****************************************************************
**
** test_select_point_chunk(): Test basic H5S (dataspace) selection code.
** Tests combinations of hyperslab and point selections on
** chunked datasets.
**
****************************************************************/
static void
test_select_point_chunk(void)
{
hsize_t dimsf[SPACE7_RANK]; /* dataset dimensions */
hsize_t chunk_dimsf[SPACE7_RANK] = {SPACE7_CHUNK_DIM1,SPACE7_CHUNK_DIM2}; /* chunk sizes */
unsigned *data; /* data to write */
unsigned *tmpdata; /* data to write */
/*
* Data and output buffer initialization.
*/
hid_t file, dataset; /* handles */
hid_t dataspace;
hid_t pnt1_space; /* Dataspace to hold 1st point selection */
hid_t pnt2_space; /* Dataspace to hold 2nd point selection */
hid_t hyp1_space; /* Dataspace to hold 1st hyperslab selection */
hid_t hyp2_space; /* Dataspace to hold 2nd hyperslab selection */
hid_t dcpl;
herr_t ret; /* Generic return value */
unsigned *data_out; /* output buffer */
#ifdef LATER
unsigned *tmpdata_out; /* output buffer */
#endif /* LATER */
hsize_t start[SPACE7_RANK]; /* hyperslab offset */
hsize_t count[SPACE7_RANK]; /* size of the hyperslab */
hsize_t points[SPACE7_NPOINTS][SPACE7_RANK]; /* points for selection */
unsigned i, j; /* Local index variables */
/* Output message about test being performed */
MESSAGE(5, ("Testing Point Selections on Chunked Datasets\n"));
/* Allocate the transfer buffers */
data = (unsigned*)HDmalloc(sizeof(unsigned)*SPACE7_DIM1*SPACE7_DIM2);
data_out = (unsigned*)HDcalloc(SPACE7_DIM1*SPACE7_DIM2,sizeof(unsigned));
/*
* Data buffer initialization.
*/
tmpdata = data;
for (i = 0; i < SPACE7_DIM1; i++)
for (j = 0; j < SPACE7_DIM1; j++)
*tmpdata++ = ((i*SPACE7_DIM2)+j)%256;
/*
* Create a new file using H5F_ACC_TRUNC access,
* the default file creation properties and file
* access properties.
*/
file = H5Fcreate (FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(file, FAIL, "H5Fcreate");
/* Create file dataspace */
dimsf[0] = SPACE7_DIM1;
dimsf[1] = SPACE7_DIM2;
dataspace = H5Screate_simple (SPACE7_RANK, dimsf, NULL);
CHECK(dataspace, FAIL, "H5Screate_simple");
/*
* Create a new dataset within the file using defined dataspace and
* chunking properties.
*/
dcpl = H5Pcreate (H5P_DATASET_CREATE);
CHECK(dcpl, FAIL, "H5Pcreate");
ret = H5Pset_chunk (dcpl, SPACE7_RANK, chunk_dimsf);
CHECK(ret, FAIL, "H5Pset_chunk");
dataset = H5Dcreate (file, DATASETNAME, H5T_NATIVE_UCHAR, dataspace, dcpl);
CHECK(dataset, FAIL, "H5Dcreate");
/* Create 1st point selection */
pnt1_space = H5Scopy (dataspace);
CHECK(pnt1_space, FAIL, "H5Scopy");
points[0][0]=3;
points[0][1]=3;
points[1][0]=3;
points[1][1]=8;
points[2][0]=8;
points[2][1]=3;
points[3][0]=8;
points[3][1]=8;
points[4][0]=1; /* In same chunk as point #0, but "earlier" in chunk */
points[4][1]=1;
points[5][0]=1; /* In same chunk as point #1, but "earlier" in chunk */
points[5][1]=6;
points[6][0]=6; /* In same chunk as point #2, but "earlier" in chunk */
points[6][1]=1;
points[7][0]=6; /* In same chunk as point #3, but "earlier" in chunk */
points[7][1]=6;
ret = H5Sselect_elements(pnt1_space,H5S_SELECT_SET,SPACE7_NPOINTS,(const hsize_t **)points);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Create 1st hyperslab selection */
hyp1_space = H5Scopy (dataspace);
CHECK(hyp1_space, FAIL, "H5Scopy");
start[0]=2; start[1]=2;
count[0]=4; count[1]=2;
ret = H5Sselect_hyperslab(hyp1_space,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Write out data using 1st point selection for file & hyperslab for memory */
ret=H5Dwrite(dataset,H5T_NATIVE_UINT,hyp1_space,pnt1_space,H5P_DEFAULT,data);
CHECK(ret, FAIL, "H5Dwrite");
/* Create 2nd point selection */
pnt2_space = H5Scopy (dataspace);
CHECK(pnt2_space, FAIL, "H5Scopy");
points[0][0]=4;
points[0][1]=4;
points[1][0]=4;
points[1][1]=9;
points[2][0]=9;
points[2][1]=4;
points[3][0]=9;
points[3][1]=9;
points[4][0]=2; /* In same chunk as point #0, but "earlier" in chunk */
points[4][1]=2;
points[5][0]=2; /* In same chunk as point #1, but "earlier" in chunk */
points[5][1]=7;
points[6][0]=7; /* In same chunk as point #2, but "earlier" in chunk */
points[6][1]=2;
points[7][0]=7; /* In same chunk as point #3, but "earlier" in chunk */
points[7][1]=7;
ret = H5Sselect_elements(pnt2_space,H5S_SELECT_SET,SPACE7_NPOINTS,(const hsize_t **)points);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Create 2nd hyperslab selection */
hyp2_space = H5Scopy (dataspace);
CHECK(hyp2_space, FAIL, "H5Scopy");
start[0]=2; start[1]=4;
count[0]=4; count[1]=2;
ret = H5Sselect_hyperslab(hyp2_space,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Write out data using 2nd hyperslab selection for file & point for memory */
ret=H5Dwrite(dataset,H5T_NATIVE_UINT,pnt2_space,hyp2_space,H5P_DEFAULT,data);
CHECK(ret, FAIL, "H5Dwrite");
/* Close everything (except selections) */
ret=H5Pclose (dcpl);
CHECK(ret, FAIL, "H5Pclose");
ret=H5Sclose (dataspace);
CHECK(ret, FAIL, "H5Sclose");
ret=H5Dclose (dataset);
CHECK(ret, FAIL, "H5Dclose");
ret=H5Fclose (file);
CHECK(ret, FAIL, "H5Fclose");
/* Re-open file & dataset */
file = H5Fopen (FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT);
CHECK(file, FAIL, "H5Fopen");
dataset = H5Dopen (file, DATASETNAME);
CHECK(dataset, FAIL, "H5Dopen");
/* Read data using 1st point selection for file and hyperslab for memory */
ret=H5Dread(dataset,H5T_NATIVE_UINT,hyp1_space,pnt1_space,H5P_DEFAULT,data_out);
CHECK(ret, FAIL, "H5Dread");
/* Verify data (later) */
/* Read data using 2nd hyperslab selection for file and point for memory */
ret=H5Dread(dataset,H5T_NATIVE_UINT,pnt2_space,hyp2_space,H5P_DEFAULT,data_out);
CHECK(ret, FAIL, "H5Dread");
/* Verify data (later) */
/* Close everything (inclusing selections) */
ret=H5Sclose (pnt1_space);
CHECK(ret, FAIL, "H5Sclose");
ret=H5Sclose (pnt2_space);
CHECK(ret, FAIL, "H5Sclose");
ret=H5Sclose (hyp1_space);
CHECK(ret, FAIL, "H5Sclose");
ret=H5Sclose (hyp2_space);
CHECK(ret, FAIL, "H5Sclose");
ret=H5Dclose (dataset);
CHECK(ret, FAIL, "H5Dclose");
ret=H5Fclose (file);
CHECK(ret, FAIL, "H5Fclose");
free (data);
free (data_out);
} /* test_select_point_chunk() */
/****************************************************************
**
** test_select_sclar_chunk(): Test basic H5S (dataspace) selection code.
** Tests using a scalar dataspace (in memory) to access chunked datasets.
**
****************************************************************/
static void
test_select_scalar_chunk(void)
{
hid_t file_id; /* File ID */
hid_t dcpl; /* Dataset creation property list */
hid_t dsid; /* Dataset ID */
hid_t sid; /* Dataspace ID */
hid_t m_sid; /* Memory dataspace */
hsize_t dims[] = {2}; /* Dataset dimensions */
hsize_t maxdims[] = {H5S_UNLIMITED}; /* Dataset maximum dimensions */
hsize_t offset[] = {0}; /* Hyperslab start */
hsize_t count[] = {1}; /* Hyperslab count */
unsigned data = 2; /* Data to write */
herr_t ret;
/* Output message about test being performed */
MESSAGE(5, ("Testing Scalar Dataspaces and Chunked Datasets\n"));
file_id = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(file_id, FAIL, "H5Fcreate");
dcpl = H5Pcreate(H5P_DATASET_CREATE);
CHECK(dcpl, FAIL, "H5Pcreate");
dims[0] = 1024U;
ret = H5Pset_chunk(dcpl, 1, dims);
CHECK(ret, FAIL, "H5Pset_chunk");
/* Create 1-D dataspace */
sid = H5Screate_simple(1, dims, maxdims);
CHECK(sid, FAIL, "H5Screate_simple");
dsid = H5Dcreate(file_id, "dset", H5T_NATIVE_UINT, sid, dcpl);
CHECK(dsid, FAIL, "H5Dcreate");
/* Select scalar area (offset 0, count 1) */
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create scalar memory dataspace */
m_sid = H5Screate(H5S_SCALAR);
CHECK(m_sid, FAIL, "H5Screate");
/* Write out data using scalar dataspace for memory dataspace */
ret = H5Dwrite (dsid, H5T_NATIVE_UINT, m_sid, sid, H5P_DEFAULT, &data);
CHECK(ret, FAIL, "H5Dwrite");
/* Close resources */
ret = H5Sclose(m_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Dclose(dsid);
CHECK(ret, FAIL, "H5Dclose");
ret = H5Pclose(dcpl);
CHECK(ret, FAIL, "H5Pclose");
ret = H5Fclose (file_id);
CHECK(ret, FAIL, "H5Fclose");
} /* test_select_scalar_chunk() */
/****************************************************************
**
** test_select_valid(): Test basic H5S (dataspace) selection code.
** Tests selection validity
**
****************************************************************/
static void
test_select_valid(void)
{
herr_t error;
htri_t valid;
hid_t main_space, sub_space;
hsize_t safe_start[2]={1,1};
hsize_t safe_count[2]={1,1};
hsize_t start[2];
hsize_t dims[2],maxdims[2],size[2],count[2];
/* Output message about test being performed */
MESSAGE(5, ("Testing Selection Validity\n"));
count[0] = count[1] = 1;
dims[0] = dims[1] = maxdims[0] = maxdims[1] = 10;
main_space = H5Screate_simple(2,dims,maxdims);
CHECK(main_space, FAIL, "H5Screate_simple");
MESSAGE(8, ( "Case 1 : in the dimensions\nTry offset (4,4) and size(6,6), the original space is of size (10,10)\n"));
start[0] = start[1] = 4;
size[0] = size[1] = 6;
sub_space = H5Scopy(main_space);
CHECK(sub_space, FAIL, "H5Scopy");
error=H5Sselect_hyperslab(sub_space,H5S_SELECT_SET,start,size,count,size);
CHECK(error, FAIL, "H5Sselect_hyperslab");
valid=H5Sselect_valid(sub_space);
VERIFY(valid, TRUE, "H5Sselect_valid");
error=H5Sselect_hyperslab(sub_space,H5S_SELECT_OR,safe_start,NULL,safe_count,NULL);
CHECK(error, FAIL, "H5Sselect_hyperslab");
valid=H5Sselect_valid(sub_space);
VERIFY(valid, TRUE, "H5Sselect_valid");
error=H5Sclose(sub_space);
CHECK(error, FAIL, "H5Sclose");
MESSAGE(8, ( "Case 2 : exceed dimensions by 1\nTry offset (5,5) and size(6,6), the original space is of size (10,10)\n"));
start[0] = start[1] = 5;
size[0] = size[1] = 6;
sub_space = H5Scopy(main_space);
CHECK(sub_space, FAIL, "H5Scopy");
error=H5Sselect_hyperslab(sub_space,H5S_SELECT_SET,start,size,count,size);
CHECK(error, FAIL, "H5Sselect_hyperslab");
valid=H5Sselect_valid(sub_space);
VERIFY(valid, FALSE, "H5Sselect_valid");
error=H5Sselect_hyperslab(sub_space,H5S_SELECT_OR,safe_start,NULL,safe_count,NULL);
CHECK(error, FAIL, "H5Sselect_hyperslab");
valid=H5Sselect_valid(sub_space);
VERIFY(valid, FALSE, "H5Sselect_valid");
error=H5Sclose(sub_space);
CHECK(error, FAIL, "H5Sclose");
MESSAGE(8, ( "Case 3 : exceed dimensions by 2\nTry offset (6,6) and size(6,6), the original space is of size (10,10)\n"));
start[0] = start[1] = 6;
size[0] = size[1] = 6;
sub_space = H5Scopy(main_space);
CHECK(sub_space, FAIL, "H5Scopy");
error=H5Sselect_hyperslab(sub_space,H5S_SELECT_SET,start,size,count,size);
CHECK(error, FAIL, "H5Sselect_hyperslab");
valid=H5Sselect_valid(sub_space);
VERIFY(valid, FALSE, "H5Sselect_valid");
error=H5Sselect_hyperslab(sub_space,H5S_SELECT_OR,safe_start,NULL,safe_count,NULL);
CHECK(error, FAIL, "H5Sselect_hyperslab");
valid=H5Sselect_valid(sub_space);
VERIFY(valid, FALSE, "H5Sselect_valid");
error=H5Sclose(sub_space);
CHECK(error, FAIL, "H5Sclose");
error=H5Sclose(main_space);
CHECK(error, FAIL, "H5Sclose");
} /* test_select_valid() */
/****************************************************************
**
** test_select_combine(): Test basic H5S (dataspace) selection code.
** Tests combining "all" and "none" selections with hyperslab
** operations.
**
****************************************************************/
static void
test_select_combine(void)
{
hid_t base_id; /* Base dataspace for test */
hid_t all_id; /* Dataspace for "all" selection */
hid_t none_id; /* Dataspace for "none" selection */
hid_t space1; /* Temporary dataspace #1 */
hsize_t start[SPACE7_RANK]; /* Hyperslab start */
hsize_t stride[SPACE7_RANK]; /* Hyperslab stride */
hsize_t count[SPACE7_RANK]; /* Hyperslab count */
hsize_t block[SPACE7_RANK]; /* Hyperslab block */
hsize_t dims[SPACE7_RANK]={SPACE7_DIM1,SPACE7_DIM2}; /* Dimensions of dataspace */
H5S_sel_type sel_type; /* Selection type */
hssize_t nblocks; /* Number of hyperslab blocks */
hsize_t blocks[128][2][SPACE7_RANK]; /* List of blocks */
herr_t error;
/* Output message about test being performed */
MESSAGE(5, ("Testing Selection Combinations\n"));
/* Create dataspace for dataset on disk */
base_id = H5Screate_simple(SPACE7_RANK, dims, NULL);
CHECK(base_id, FAIL, "H5Screate_simple");
/* Copy base dataspace and set selection to "all" */
all_id=H5Scopy(base_id);
CHECK(all_id, FAIL, "H5Scopy");
error=H5Sselect_all(all_id);
CHECK(error, FAIL, "H5Sselect_all");
sel_type=H5Sget_select_type(all_id);
VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type");
/* Copy base dataspace and set selection to "none" */
none_id=H5Scopy(base_id);
CHECK(none_id, FAIL, "H5Scopy");
error=H5Sselect_none(none_id);
CHECK(error, FAIL, "H5Sselect_all");
sel_type=H5Sget_select_type(none_id);
VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");
/* Copy "all" selection & space */
space1=H5Scopy(all_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'OR' "all" selection with another hyperslab */
start[0]=start[1]=0;
stride[0]=stride[1]=1;
count[0]=count[1]=1;
block[0]=block[1]=5;
error=H5Sselect_hyperslab(space1,H5S_SELECT_OR,start,stride,count,block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that it's still "all" selection */
sel_type=H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type");
/* Close temporary dataspace */
error=H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "all" selection & space */
space1=H5Scopy(all_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'AND' "all" selection with another hyperslab */
start[0]=start[1]=0;
stride[0]=stride[1]=1;
count[0]=count[1]=1;
block[0]=block[1]=5;
error=H5Sselect_hyperslab(space1,H5S_SELECT_AND,start,stride,count,block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is the same at the original block */
sel_type=H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
/* Verify that there is only one block */
nblocks=H5Sget_select_hyper_nblocks(space1);
VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");
/* Retrieve the block defined */
HDmemset(blocks,-1,sizeof(blocks)); /* Reset block list */
error=H5Sget_select_hyper_blocklist(space1,(hsize_t)0,(hsize_t)nblocks,(hsize_t *)blocks);
CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
/* Verify that the correct block is defined */
VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][0], (block[0]-1), "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][1], (block[1]-1), "H5Sget_select_hyper_blocklist");
/* Close temporary dataspace */
error=H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "all" selection & space */
space1=H5Scopy(all_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'XOR' "all" selection with another hyperslab */
start[0]=start[1]=0;
stride[0]=stride[1]=1;
count[0]=count[1]=1;
block[0]=block[1]=5;
error=H5Sselect_hyperslab(space1,H5S_SELECT_XOR,start,stride,count,block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is an inversion of the original block */
sel_type=H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
/* Verify that there are two blocks */
nblocks=H5Sget_select_hyper_nblocks(space1);
VERIFY(nblocks, 2, "H5Sget_select_hyper_nblocks");
/* Retrieve the block defined */
HDmemset(blocks,-1,sizeof(blocks)); /* Reset block list */
error=H5Sget_select_hyper_blocklist(space1,(hsize_t)0,(hsize_t)nblocks,(hsize_t *)blocks);
CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
/* Verify that the correct block is defined */
VERIFY(blocks[0][0][0], 0, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][0][1], 5, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][0], 4, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][1], 9, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][0][0], 5, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][0][1], 0, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][1][0], 9, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][1][1], 9, "H5Sget_select_hyper_blocklist");
/* Close temporary dataspace */
error=H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "all" selection & space */
space1=H5Scopy(all_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'NOTB' "all" selection with another hyperslab */
start[0]=start[1]=0;
stride[0]=stride[1]=1;
count[0]=count[1]=1;
block[0]=block[1]=5;
error=H5Sselect_hyperslab(space1,H5S_SELECT_NOTB,start,stride,count,block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is an inversion of the original block */
sel_type=H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
/* Verify that there are two blocks */
nblocks=H5Sget_select_hyper_nblocks(space1);
VERIFY(nblocks, 2, "H5Sget_select_hyper_nblocks");
/* Retrieve the block defined */
HDmemset(blocks,-1,sizeof(blocks)); /* Reset block list */
error=H5Sget_select_hyper_blocklist(space1,(hsize_t)0,(hsize_t)nblocks,(hsize_t *)blocks);
CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
/* Verify that the correct block is defined */
VERIFY(blocks[0][0][0], 0, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][0][1], 5, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][0], 4, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][1], 9, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][0][0], 5, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][0][1], 0, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][1][0], 9, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][1][1], 9, "H5Sget_select_hyper_blocklist");
/* Close temporary dataspace */
error=H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "all" selection & space */
space1=H5Scopy(all_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'NOTA' "all" selection with another hyperslab */
start[0]=start[1]=0;
stride[0]=stride[1]=1;
count[0]=count[1]=1;
block[0]=block[1]=5;
error=H5Sselect_hyperslab(space1,H5S_SELECT_NOTA,start,stride,count,block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is the "none" selection */
sel_type=H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");
/* Close temporary dataspace */
error=H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "none" selection & space */
space1=H5Scopy(none_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'OR' "none" selection with another hyperslab */
start[0]=start[1]=0;
stride[0]=stride[1]=1;
count[0]=count[1]=1;
block[0]=block[1]=5;
error=H5Sselect_hyperslab(space1,H5S_SELECT_OR,start,stride,count,block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is the same as the original hyperslab */
sel_type=H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
/* Verify that there is only one block */
nblocks=H5Sget_select_hyper_nblocks(space1);
VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");
/* Retrieve the block defined */
HDmemset(blocks,-1,sizeof(blocks)); /* Reset block list */
error=H5Sget_select_hyper_blocklist(space1,(hsize_t)0,(hsize_t)nblocks,(hsize_t *)blocks);
CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
/* Verify that the correct block is defined */
VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][0], (block[0]-1), "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][1], (block[1]-1), "H5Sget_select_hyper_blocklist");
/* Close temporary dataspace */
error=H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "none" selection & space */
space1=H5Scopy(none_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'AND' "none" selection with another hyperslab */
start[0]=start[1]=0;
stride[0]=stride[1]=1;
count[0]=count[1]=1;
block[0]=block[1]=5;
error=H5Sselect_hyperslab(space1,H5S_SELECT_AND,start,stride,count,block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is the "none" selection */
sel_type=H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");
/* Close temporary dataspace */
error=H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "none" selection & space */
space1=H5Scopy(none_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'XOR' "none" selection with another hyperslab */
start[0]=start[1]=0;
stride[0]=stride[1]=1;
count[0]=count[1]=1;
block[0]=block[1]=5;
error=H5Sselect_hyperslab(space1,H5S_SELECT_XOR,start,stride,count,block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is the same as the original hyperslab */
sel_type=H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
/* Verify that there is only one block */
nblocks=H5Sget_select_hyper_nblocks(space1);
VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");
/* Retrieve the block defined */
HDmemset(blocks,-1,sizeof(blocks)); /* Reset block list */
error=H5Sget_select_hyper_blocklist(space1,(hsize_t)0,(hsize_t)nblocks,(hsize_t *)blocks);
CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
/* Verify that the correct block is defined */
VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][0], (block[0]-1), "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][1], (block[1]-1), "H5Sget_select_hyper_blocklist");
/* Close temporary dataspace */
error=H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "none" selection & space */
space1=H5Scopy(none_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'NOTB' "none" selection with another hyperslab */
start[0]=start[1]=0;
stride[0]=stride[1]=1;
count[0]=count[1]=1;
block[0]=block[1]=5;
error=H5Sselect_hyperslab(space1,H5S_SELECT_NOTB,start,stride,count,block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is the "none" selection */
sel_type=H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");
/* Close temporary dataspace */
error=H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "none" selection & space */
space1=H5Scopy(none_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'NOTA' "none" selection with another hyperslab */
start[0]=start[1]=0;
stride[0]=stride[1]=1;
count[0]=count[1]=1;
block[0]=block[1]=5;
error=H5Sselect_hyperslab(space1,H5S_SELECT_NOTA,start,stride,count,block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is the same as the original hyperslab */
sel_type=H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
/* Verify that there is only one block */
nblocks=H5Sget_select_hyper_nblocks(space1);
VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");
/* Retrieve the block defined */
HDmemset(blocks,-1,sizeof(blocks)); /* Reset block list */
error=H5Sget_select_hyper_blocklist(space1,(hsize_t)0,(hsize_t)nblocks,(hsize_t *)blocks);
CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
/* Verify that the correct block is defined */
VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][0], (block[0]-1), "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][1], (block[1]-1), "H5Sget_select_hyper_blocklist");
/* Close temporary dataspace */
error=H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Close dataspaces */
error=H5Sclose(base_id);
CHECK(error, FAIL, "H5Sclose");
error=H5Sclose(all_id);
CHECK(error, FAIL, "H5Sclose");
error=H5Sclose(none_id);
CHECK(error, FAIL, "H5Sclose");
} /* test_select_combine() */
/*
* Typedef for iteration structure used in the fill value tests
*/
typedef struct {
unsigned short fill_value; /* The fill value to check */
size_t curr_coord; /* Current coordinate to examine */
hsize_t *coords; /* Pointer to selection's coordinates */
} fill_iter_info;
/****************************************************************
**
** test_select_hyper_iter3(): Iterator for checking hyperslab iteration
**
****************************************************************/
herr_t
test_select_hyper_iter3(void *_elem, hid_t UNUSED type_id, unsigned ndim, const hsize_t *point, void *_operator_data)
{
unsigned short *tbuf=(unsigned short *)_elem; /* temporary buffer pointer */
fill_iter_info *iter_info=(fill_iter_info *)_operator_data; /* Get the pointer to the iterator information */
hsize_t *coord_ptr; /* Pointer to the coordinate information for a point*/
/* Check value in current buffer location */
if(*tbuf!=iter_info->fill_value)
return(-1);
else {
/* Check number of dimensions */
if(ndim!=SPACE7_RANK)
return(-1);
else {
/* Check Coordinates */
coord_ptr=iter_info->coords+(2*iter_info->curr_coord);
iter_info->curr_coord++;
if(coord_ptr[0]!=point[0])
return(-1);
else if(coord_ptr[1]!=point[1])
return(-1);
else
return(0);
} /* end else */
} /* end else */
} /* end test_select_hyper_iter3() */
/****************************************************************
**
** test_select_fill_all(): Test basic H5S (dataspace) selection code.
** Tests filling "all" selections
**
****************************************************************/
static void
test_select_fill_all(void)
{
hid_t sid1; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
int fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
hsize_t points[SPACE7_DIM1*SPACE7_DIM2][SPACE7_RANK]; /* Coordinates of selection */
unsigned short *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling 'all' Selections\n"));
/* Allocate memory buffer */
wbuf=HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2);
/* Initialize memory buffer */
for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
for(j=0; j<SPACE7_DIM2; j++)
*tbuf++=(unsigned short)(i*SPACE7_DIM2)+j;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Space defaults to "all" selection */
/* Set fill value */
fill_value=SPACE7_FILL;
/* Fill selection in memory */
ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
for(j=0; j<SPACE7_DIM2; j++)
if(*tbuf!=(unsigned short)fill_value)
TestErrPrintf("Error! j=%d, i=%d, *tbuf=%x, fill_value=%x\n",j,i,(unsigned)*tbuf,(unsigned)fill_value);
/* Set the coordinates of the selection */
for(i=0; i<SPACE7_DIM1; i++)
for(j=0; j<SPACE7_DIM2; j++) {
points[(i*SPACE7_DIM2)+j][0]=i;
points[(i*SPACE7_DIM2)+j][1]=j;
} /* end for */
/* Initialize the iterator structure */
iter_info.fill_value=SPACE7_FILL;
iter_info.curr_coord=0;
iter_info.coords=(hsize_t *)points;
/* Iterate through selection, verifying correct data */
ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Free memory buffers */
HDfree(wbuf);
} /* test_select_fill_all() */
/****************************************************************
**
** test_select_fill_point(): Test basic H5S (dataspace) selection code.
** Tests filling "point" selections
**
****************************************************************/
static void
test_select_fill_point(hssize_t *offset)
{
hid_t sid1; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
hsize_t points[5][SPACE7_RANK] = {{2,4}, {3,8}, {8,4}, {7,5}, {7,7}};
size_t num_points=5; /* Number of points selected */
int fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
unsigned short *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
int i,j,k; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling 'point' Selections\n"));
/* Allocate memory buffer */
wbuf=HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2);
/* Initialize memory buffer */
for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
for(j=0; j<SPACE7_DIM2; j++)
*tbuf++=(unsigned short)(i*SPACE7_DIM2)+j;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Select "point" selection */
ret = H5Sselect_elements(sid1, H5S_SELECT_SET,num_points,(const hsize_t **)points);
CHECK(ret, FAIL, "H5Sselect_elements");
if(offset!=NULL) {
HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t));
/* Set offset, if provided */
ret = H5Soffset_simple(sid1,real_offset);
CHECK(ret, FAIL, "H5Soffset_simple");
} /* end if */
else
HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t));
/* Set fill value */
fill_value=SPACE7_FILL;
/* Fill selection in memory */
ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
for(j=0; j<SPACE7_DIM2; j++, tbuf++) {
for(k=0; k<(int)num_points; k++) {
if(i==(int)(points[k][0]+real_offset[0]) && j==(int)(points[k][1]+real_offset[1])) {
if(*tbuf!=(unsigned short)fill_value)
TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value);
break;
} /* end if */
} /* end for */
if(k==(int)num_points && *tbuf!=((unsigned short)(i*SPACE7_DIM2)+j))
TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j));
} /* end for */
/* Initialize the iterator structure */
iter_info.fill_value=SPACE7_FILL;
iter_info.curr_coord=0;
iter_info.coords=(hsize_t *)points;
/* Add in the offset */
for(i=0; i<(int)num_points; i++) {
points[i][0]+=real_offset[0];
points[i][1]+=real_offset[1];
} /* end for */
/* Iterate through selection, verifying correct data */
ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Free memory buffers */
HDfree(wbuf);
} /* test_select_fill_point() */
/****************************************************************
**
** test_select_fill_hyper_simple(): Test basic H5S (dataspace) selection code.
** Tests filling "simple" (i.e. one block) hyperslab selections
**
****************************************************************/
static void
test_select_fill_hyper_simple(hssize_t *offset)
{
hid_t sid1; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
hsize_t start[SPACE7_RANK]; /* Hyperslab start */
hsize_t count[SPACE7_RANK]; /* Hyperslab block size */
size_t num_points; /* Number of points in selection */
hsize_t points[16][SPACE7_RANK]; /* Coordinates selected */
int fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
unsigned short *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling Simple 'hyperslab' Selections\n"));
/* Allocate memory buffer */
wbuf=HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2);
/* Initialize memory buffer */
for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
for(j=0; j<SPACE7_DIM2; j++)
*tbuf++=(unsigned short)(i*SPACE7_DIM2)+j;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Select "hyperslab" selection */
start[0]=3; start[1]=3;
count[0]=4; count[1]=4;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
if(offset!=NULL) {
HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t));
/* Set offset, if provided */
ret = H5Soffset_simple(sid1,real_offset);
CHECK(ret, FAIL, "H5Soffset_simple");
} /* end if */
else
HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t));
/* Set fill value */
fill_value=SPACE7_FILL;
/* Fill selection in memory */
ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
for(j=0; j<SPACE7_DIM2; j++, tbuf++) {
if((i>=(int)(start[0]+real_offset[0]) && i<(int)(start[0]+count[0]+real_offset[0]))
&& (j>=(int)(start[1]+real_offset[1]) && j<(int)(start[1]+count[1]+real_offset[1]))) {
if(*tbuf!=(unsigned short)fill_value)
TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value);
} /* end if */
else {
if(*tbuf!=((unsigned short)(i*SPACE7_DIM2)+j))
TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j));
} /* end else */
} /* end for */
/* Initialize the iterator structure */
iter_info.fill_value=SPACE7_FILL;
iter_info.curr_coord=0;
iter_info.coords=(hsize_t *)points;
/* Set the coordinates of the selection (with the offset) */
for(i=0, num_points=0; i<(int)count[0]; i++)
for(j=0; j<(int)count[1]; j++, num_points++) {
points[num_points][0]=i+start[0]+real_offset[0];
points[num_points][1]=j+start[1]+real_offset[1];
} /* end for */
/* Iterate through selection, verifying correct data */
ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Free memory buffers */
HDfree(wbuf);
} /* test_select_fill_hyper_simple() */
/****************************************************************
**
** test_select_fill_hyper_regular(): Test basic H5S (dataspace) selection code.
** Tests filling "regular" (i.e. strided block) hyperslab selections
**
****************************************************************/
static void
test_select_fill_hyper_regular(hssize_t *offset)
{
hid_t sid1; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
hsize_t start[SPACE7_RANK]; /* Hyperslab start */
hsize_t stride[SPACE7_RANK]; /* Hyperslab stride size */
hsize_t count[SPACE7_RANK]; /* Hyperslab block count */
hsize_t block[SPACE7_RANK]; /* Hyperslab block size */
hsize_t points[16][SPACE7_RANK] = {
{2,2}, {2,3}, {2,6}, {2,7},
{3,2}, {3,3}, {3,6}, {3,7},
{6,2}, {6,3}, {6,6}, {6,7},
{7,2}, {7,3}, {7,6}, {7,7},
};
size_t num_points=16; /* Number of points selected */
int fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
unsigned short *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
int i,j,k; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling Regular 'hyperslab' Selections\n"));
/* Allocate memory buffer */
wbuf=HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2);
/* Initialize memory buffer */
for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
for(j=0; j<SPACE7_DIM2; j++)
*tbuf++=(unsigned short)(i*SPACE7_DIM2)+j;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Select "hyperslab" selection */
start[0]=2; start[1]=2;
stride[0]=4; stride[1]=4;
count[0]=2; count[1]=2;
block[0]=2; block[1]=2;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
if(offset!=NULL) {
HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t));
/* Set offset, if provided */
ret = H5Soffset_simple(sid1,real_offset);
CHECK(ret, FAIL, "H5Soffset_simple");
} /* end if */
else
HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t));
/* Set fill value */
fill_value=SPACE7_FILL;
/* Fill selection in memory */
ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
for(j=0; j<SPACE7_DIM2; j++, tbuf++) {
for(k=0; k<(int)num_points; k++) {
if(i==(int)(points[k][0]+real_offset[0]) && j==(int)(points[k][1]+real_offset[1])) {
if(*tbuf!=(unsigned short)fill_value)
TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value);
break;
} /* end if */
} /* end for */
if(k==(int)num_points && *tbuf!=((unsigned short)(i*SPACE7_DIM2)+j))
TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j));
} /* end for */
/* Initialize the iterator structure */
iter_info.fill_value=SPACE7_FILL;
iter_info.curr_coord=0;
iter_info.coords=(hsize_t *)points;
/* Add in the offset */
for(i=0; i<(int)num_points; i++) {
points[i][0]+=real_offset[0];
points[i][1]+=real_offset[1];
} /* end for */
/* Iterate through selection, verifying correct data */
ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Free memory buffers */
HDfree(wbuf);
} /* test_select_fill_hyper_regular() */
/****************************************************************
**
** test_select_fill_hyper_irregular(): Test basic H5S (dataspace) selection code.
** Tests filling "irregular" (i.e. combined blocks) hyperslab selections
**
****************************************************************/
static void
test_select_fill_hyper_irregular(hssize_t *offset)
{
hid_t sid1; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
hsize_t start[SPACE7_RANK]; /* Hyperslab start */
hsize_t count[SPACE7_RANK]; /* Hyperslab block count */
hsize_t points[32][SPACE7_RANK] = { /* Yes, some of the are duplicated.. */
{2,2}, {2,3}, {2,4}, {2,5},
{3,2}, {3,3}, {3,4}, {3,5},
{4,2}, {4,3}, {4,4}, {4,5},
{5,2}, {5,3}, {5,4}, {5,5},
{4,4}, {4,5}, {4,6}, {4,7},
{5,4}, {5,5}, {5,6}, {5,7},
{6,4}, {6,5}, {6,6}, {6,7},
{7,4}, {7,5}, {7,6}, {7,7},
};
hsize_t iter_points[28][SPACE7_RANK] = { /* Coordinates, as iterated through */
{2,2}, {2,3}, {2,4}, {2,5},
{3,2}, {3,3}, {3,4}, {3,5},
{4,2}, {4,3}, {4,4}, {4,5}, {4,6}, {4,7},
{5,2}, {5,3}, {5,4}, {5,5}, {5,6}, {5,7},
{6,4}, {6,5}, {6,6}, {6,7},
{7,4}, {7,5}, {7,6}, {7,7},
};
size_t num_points=32; /* Number of points selected */
size_t num_iter_points=28; /* Number of resulting points */
int fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
unsigned short *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
int i,j,k; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling Irregular 'hyperslab' Selections\n"));
/* Allocate memory buffer */
wbuf=HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2);
/* Initialize memory buffer */
for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
for(j=0; j<SPACE7_DIM2; j++)
*tbuf++=(unsigned short)(i*SPACE7_DIM2)+j;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Select first "hyperslab" selection */
start[0]=2; start[1]=2;
count[0]=4; count[1]=4;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Combine with second "hyperslab" selection */
start[0]=4; start[1]=4;
count[0]=4; count[1]=4;
ret = H5Sselect_hyperslab(sid1,H5S_SELECT_OR,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
if(offset!=NULL) {
HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t));
/* Set offset, if provided */
ret = H5Soffset_simple(sid1,real_offset);
CHECK(ret, FAIL, "H5Soffset_simple");
} /* end if */
else
HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t));
/* Set fill value */
fill_value=SPACE7_FILL;
/* Fill selection in memory */
ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
for(j=0; j<SPACE7_DIM2; j++, tbuf++) {
for(k=0; k<(int)num_points; k++) {
if(i==(int)(points[k][0]+real_offset[0]) && j==(int)(points[k][1]+real_offset[1])) {
if(*tbuf!=(unsigned short)fill_value)
TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value);
break;
} /* end if */
} /* end for */
if(k==(int)num_points && *tbuf!=((unsigned short)(i*SPACE7_DIM2)+j))
TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j));
} /* end for */
/* Initialize the iterator structure */
iter_info.fill_value=SPACE7_FILL;
iter_info.curr_coord=0;
iter_info.coords=(hsize_t *)iter_points;
/* Add in the offset */
for(i=0; i<(int)num_iter_points; i++) {
iter_points[i][0]+=real_offset[0];
iter_points[i][1]+=real_offset[1];
} /* end for */
/* Iterate through selection, verifying correct data */
ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Free memory buffers */
HDfree(wbuf);
} /* test_select_fill_hyper_irregular() */
/****************************************************************
**
** test_select_none(): Test basic H5S (dataspace) selection code.
** Tests I/O on 0-sized point selections
**
****************************************************************/
static void
test_select_none(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer to read from disk */
*tbuf; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing I/O on 0-sized Selections\n"));
/* Allocate write & read buffers */
wbuf=malloc(sizeof(uint8_t)*SPACE7_DIM1*SPACE7_DIM2);
rbuf=malloc(sizeof(uint8_t)*SPACE7_DIM1*SPACE7_DIM2);
/* Initialize write buffer */
for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
for(j=0; j<SPACE7_DIM2; j++)
*tbuf++=(uint8_t)((i*SPACE7_DIM2)+j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate");
/* Make "none" selection in both disk and memory datasets */
ret = H5Sselect_none(sid1);
CHECK(ret, FAIL, "H5Sselect_none");
ret = H5Sselect_none(sid2);
CHECK(ret, FAIL, "H5Sselect_none");
/* Attempt to read "nothing" from disk (before space is allocated) */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Write "nothing" to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Write "nothing" to disk (with a datatype conversion :-) */
ret=H5Dwrite(dataset,H5T_NATIVE_INT,sid2,sid1,H5P_DEFAULT,wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Write "nothing" to disk (with NULL buffer argument) */
ret=H5Dwrite(dataset,H5T_NATIVE_INT,sid2,sid1,H5P_DEFAULT,NULL);
CHECK(ret, FAIL, "H5Dwrite");
/* Read "nothing" from disk (with NULL buffer argument) */
ret=H5Dread(dataset,H5T_NATIVE_INT,sid2,sid1,H5P_DEFAULT,NULL);
CHECK(ret, FAIL, "H5Dread");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_none() */
/****************************************************************
**
** test_scalar_select(): Test basic H5S (dataspace) selection code.
** Tests selections on scalar dataspaces
**
****************************************************************/
static void
test_scalar_select(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1,sid2; /* Dataspace ID */
hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
hsize_t coord1[SPACE7_RANK]; /* Coordinates for point selection */
hsize_t start[SPACE7_RANK]; /* Hyperslab start */
hsize_t count[SPACE7_RANK]; /* Hyperslab block count */
uint8_t *wbuf_uint8, /* buffer to write to disk */
rval_uint8, /* value read back in */
*tbuf_uint8; /* temporary buffer pointer */
unsigned short *wbuf_ushort,/* another buffer to write to disk */
rval_ushort, /* value read back in */
*tbuf_ushort; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing I/O on Selections in Scalar Dataspaces\n"));
/* Allocate write & read buffers */
wbuf_uint8=HDmalloc(sizeof(uint8_t)*SPACE7_DIM1*SPACE7_DIM2);
wbuf_ushort=HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2);
/* Initialize write buffers */
for(i=0, tbuf_uint8=wbuf_uint8, tbuf_ushort=wbuf_ushort; i<SPACE7_DIM1; i++)
for(j=0; j<SPACE7_DIM2; j++) {
*tbuf_uint8++=(uint8_t)((i*SPACE7_DIM2)+j);
*tbuf_ushort++=(unsigned short)((j*SPACE7_DIM2)+i);
} /* end for */
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate(H5S_SCALAR);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Create a dataset */
dataset=H5Dcreate(fid1,"Dataset1",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate");
/* Select one element in memory with a point selection */
coord1[0]=0; coord1[1]= 2;
ret = H5Sselect_elements(sid2,H5S_SELECT_SET,1,(const hsize_t **)&coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Write single point to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf_uint8);
CHECK(ret, FAIL, "H5Dwrite");
/* Read scalar element from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid1,sid1,H5P_DEFAULT,&rval_uint8);
CHECK(ret, FAIL, "H5Dread");
/* Check value read back in */
if(rval_uint8!=*(wbuf_uint8+2))
TestErrPrintf("Error! rval=%u, should be: *(wbuf+2)=%u\n",(unsigned)rval_uint8,(unsigned)*(wbuf_uint8+2));
/* Write single point to disk (with a datatype conversion) */
ret=H5Dwrite(dataset,H5T_NATIVE_USHORT,sid2,sid1,H5P_DEFAULT,wbuf_ushort);
CHECK(ret, FAIL, "H5Dwrite");
/* Read scalar element from disk */
ret=H5Dread(dataset,H5T_NATIVE_USHORT,sid1,sid1,H5P_DEFAULT,&rval_ushort);
CHECK(ret, FAIL, "H5Dread");
/* Check value read back in */
if(rval_ushort!=*(wbuf_ushort+2))
TestErrPrintf("Error! rval=%u, should be: *(wbuf+2)=%u\n",(unsigned)rval_ushort,(unsigned)*(wbuf_ushort+2));
/* Select one element in memory with a hyperslab selection */
start[0]=4; start[1]=3;
count[0]=1; count[1]=1;
ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,NULL,count,NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Write single hyperslab element to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf_uint8);
CHECK(ret, FAIL, "H5Dwrite");
/* Read scalar element from disk */
ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid1,sid1,H5P_DEFAULT,&rval_uint8);
CHECK(ret, FAIL, "H5Dread");
/* Check value read back in */
if(rval_uint8!=*(wbuf_uint8+(SPACE7_DIM2*4)+3))
TestErrPrintf("Error! rval=%u, should be: *(wbuf+(SPACE7_DIM2*4)+3)=%u\n",(unsigned)rval_uint8,(unsigned)*(wbuf_uint8+(SPACE7_DIM2*4)+3));
/* Write single hyperslab element to disk (with a datatype conversion) */
ret=H5Dwrite(dataset,H5T_NATIVE_USHORT,sid2,sid1,H5P_DEFAULT,wbuf_ushort);
CHECK(ret, FAIL, "H5Dwrite");
/* Read scalar element from disk */
ret=H5Dread(dataset,H5T_NATIVE_USHORT,sid1,sid1,H5P_DEFAULT,&rval_ushort);
CHECK(ret, FAIL, "H5Dread");
/* Check value read back in */
if(rval_ushort!=*(wbuf_ushort+(SPACE7_DIM2*4)+3))
TestErrPrintf("Error! rval=%u, should be: *(wbuf+(SPACE7_DIM2*4)+3)=%u\n",(unsigned)rval_ushort,(unsigned)*(wbuf_ushort+(SPACE7_DIM2*4)+3));
/* Select no elements in memory & file with "none" selections */
ret = H5Sselect_none(sid1);
CHECK(ret, FAIL, "H5Sselect_none");
ret = H5Sselect_none(sid2);
CHECK(ret, FAIL, "H5Sselect_none");
/* Write no data to disk */
ret=H5Dwrite(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,wbuf_uint8);
CHECK(ret, FAIL, "H5Dwrite");
/* Write no data to disk (with a datatype conversion) */
ret=H5Dwrite(dataset,H5T_NATIVE_USHORT,sid2,sid1,H5P_DEFAULT,wbuf_ushort);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
HDfree(wbuf_uint8);
HDfree(wbuf_ushort);
} /* test_scalar_select() */
/****************************************************************
**
** test_scalar_select2(): Tests selections on scalar dataspace,
** verify H5Shyperslab and H5Sselect_elements fails for
** scalar dataspace.
**
****************************************************************/
static void
test_scalar_select2(void)
{
hid_t sid; /* Dataspace ID */
hsize_t coord1[1]; /* Coordinates for point selection */
hsize_t start[1]; /* Hyperslab start */
hsize_t count[1]; /* Hyperslab block count */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(6, ("Testing Selections in Scalar Dataspaces\n"));
/* Create dataspace for dataset */
sid = H5Screate(H5S_SCALAR);
CHECK(sid, FAIL, "H5Screate_simple");
/* Select one element in memory with a point selection */
coord1[0]=0;
H5E_BEGIN_TRY {
ret = H5Sselect_elements(sid,H5S_SELECT_SET,1,(const hsize_t **)&coord1);
} H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sselect_elements");
/* Select one element in memory with a hyperslab selection */
start[0]=0;
count[0]=0;
H5E_BEGIN_TRY {
ret = H5Sselect_hyperslab(sid,H5S_SELECT_SET,start,NULL,count,NULL);
} H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
/* Select no elements in memory & file with "none" selection */
ret = H5Sselect_none(sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Select all elements in memory & file with "all" selection */
ret = H5Sselect_all(sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Close disk dataspace */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_scalar_select2() */
/****************************************************************
**
** test_shape_same(): Tests selections on dataspace, verify that
** "shape same" routine is working correctly.
**
****************************************************************/
static void
test_shape_same(void)
{
hid_t all_sid; /* Dataspace ID with "all" selection */
hid_t none_sid; /* Dataspace ID with "none" selection */
hid_t single_pt_sid; /* Dataspace ID with single point selection */
hid_t mult_pt_sid; /* Dataspace ID with multiple point selection */
hid_t single_hyper_sid; /* Dataspace ID with single block hyperslab selection */
hid_t single_hyper_all_sid; /* Dataspace ID with single block hyperslab
* selection that is the entire dataspace
*/
hid_t single_hyper_pt_sid; /* Dataspace ID with single block hyperslab
* selection that is the same as the single
* point selection
*/
hid_t regular_hyper_sid; /* Dataspace ID with regular hyperslab selection */
hid_t irreg_hyper_sid; /* Dataspace ID with irregular hyperslab selection */
hid_t none_hyper_sid; /* Dataspace ID with "no hyperslabs" selection */
hid_t tmp_sid; /* Temporary dataspace ID */
hsize_t dims[] = {SPACE9_DIM1, SPACE9_DIM2};
hsize_t coord1[1][SPACE2_RANK]; /* Coordinates for single point selection */
hsize_t coord2[SPACE9_DIM2][SPACE9_RANK]; /* Coordinates for multiple point selection */
hsize_t start[SPACE9_RANK]; /* Hyperslab start */
hsize_t stride[SPACE9_RANK]; /* Hyperslab stride */
hsize_t count[SPACE9_RANK]; /* Hyperslab block count */
hsize_t block[SPACE9_RANK]; /* Hyperslab block size */
unsigned u,v; /* Local index variables */
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(6, ("Testing Same Shape Comparisons\n"));
assert(SPACE9_DIM2>=POINT1_NPOINTS);
/* Create dataspace for "all" selection */
all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(all_sid, FAIL, "H5Screate_simple");
/* Select entire extent for dataspace */
ret = H5Sselect_all(all_sid);
CHECK(ret, FAIL, "H5Sselect_all");
/* Create dataspace for "none" selection */
none_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(none_sid, FAIL, "H5Screate_simple");
/* Un-Select entire extent for dataspace */
ret = H5Sselect_none(none_sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Create dataspace for single point selection */
single_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(single_pt_sid, FAIL, "H5Screate_simple");
/* Select sequence of ten points for multiple point selection */
coord1[0][0]=2; coord1[0][1]=2;
ret = H5Sselect_elements(single_pt_sid,H5S_SELECT_SET,1,(const hsize_t **)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Create dataspace for multiple point selection */
mult_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(mult_pt_sid, FAIL, "H5Screate_simple");
/* Select sequence of ten points for multiple point selection */
coord2[0][0]=2; coord2[0][1]=2;
coord2[1][0]=7; coord2[1][1]=2;
coord2[2][0]=1; coord2[2][1]=4;
coord2[3][0]=2; coord2[3][1]=6;
coord2[4][0]=0; coord2[4][1]=8;
coord2[5][0]=3; coord2[5][1]=2;
coord2[6][0]=4; coord2[6][1]=4;
coord2[7][0]=1; coord2[7][1]=0;
coord2[8][0]=5; coord2[8][1]=1;
coord2[9][0]=9; coord2[9][1]=3;
ret = H5Sselect_elements(mult_pt_sid,H5S_SELECT_SET,POINT1_NPOINTS,(const hsize_t **)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Create dataspace for single hyperslab selection */
single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(single_hyper_sid, FAIL, "H5Screate_simple");
/* Select 10x10 hyperslab for single hyperslab selection */
start[0]=1; start[1]=1;
stride[0]=1; stride[1]=1;
count[0]=1; count[1]=1;
block[0]=(SPACE9_DIM1-2); block[1]=(SPACE9_DIM2-2);
ret = H5Sselect_hyperslab(single_hyper_sid,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for single hyperslab selection with entire extent selected */
single_hyper_all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(single_hyper_all_sid, FAIL, "H5Screate_simple");
/* Select entire extent for hyperslab selection */
start[0]=0; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=1; count[1]=1;
block[0]=SPACE9_DIM1; block[1]=SPACE9_DIM2;
ret = H5Sselect_hyperslab(single_hyper_all_sid,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for single hyperslab selection with single point selected */
single_hyper_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(single_hyper_pt_sid, FAIL, "H5Screate_simple");
/* Select entire extent for hyperslab selection */
start[0]=2; start[1]=2;
stride[0]=1; stride[1]=1;
count[0]=1; count[1]=1;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(single_hyper_pt_sid,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for regular hyperslab selection */
regular_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(regular_hyper_sid, FAIL, "H5Screate_simple");
/* Select regular, strided hyperslab selection */
start[0]=2; start[1]=2;
stride[0]=2; stride[1]=2;
count[0]=5; count[1]=2;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(regular_hyper_sid,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for irregular hyperslab selection */
irreg_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(irreg_hyper_sid, FAIL, "H5Screate_simple");
/* Create irregular hyperslab selection by OR'ing two blocks together */
start[0]=2; start[1]=2;
stride[0]=1; stride[1]=1;
count[0]=1; count[1]=1;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(irreg_hyper_sid,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0]=4; start[1]=4;
stride[0]=1; stride[1]=1;
count[0]=1; count[1]=1;
block[0]=3; block[1]=3;
ret = H5Sselect_hyperslab(irreg_hyper_sid,H5S_SELECT_OR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for "no" hyperslab selection */
none_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(none_hyper_sid, FAIL, "H5Screate_simple");
/* Create "no" hyperslab selection by XOR'ing same blocks together */
start[0]=2; start[1]=2;
stride[0]=1; stride[1]=1;
count[0]=1; count[1]=1;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(none_hyper_sid,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
ret = H5Sselect_hyperslab(none_hyper_sid,H5S_SELECT_XOR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Compare "all" selection to all the selections created */
/* Compare against itself */
check=H5S_select_shape_same_test(all_sid,all_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
/* Compare against copy of itself */
tmp_sid=H5Scopy(all_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check=H5S_select_shape_same_test(all_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "none" selection */
check=H5S_select_shape_same_test(all_sid,none_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against single point selection */
check=H5S_select_shape_same_test(all_sid,single_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against multiple point selection */
check=H5S_select_shape_same_test(all_sid,mult_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "plain" single hyperslab selection */
check=H5S_select_shape_same_test(all_sid,single_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "all" single hyperslab selection */
check=H5S_select_shape_same_test(all_sid,single_hyper_all_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
/* Compare against "single point" single hyperslab selection */
check=H5S_select_shape_same_test(all_sid,single_hyper_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against regular, strided hyperslab selection */
check=H5S_select_shape_same_test(all_sid,regular_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against irregular hyperslab selection */
check=H5S_select_shape_same_test(all_sid,irreg_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "no" hyperslab selection */
check=H5S_select_shape_same_test(all_sid,none_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare "none" selection to all the selections created */
/* Compare against itself */
check=H5S_select_shape_same_test(none_sid,none_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
/* Compare against copy of itself */
tmp_sid=H5Scopy(none_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check=H5S_select_shape_same_test(none_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check=H5S_select_shape_same_test(none_sid,all_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against single point selection */
check=H5S_select_shape_same_test(none_sid,single_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against multiple point selection */
check=H5S_select_shape_same_test(none_sid,mult_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "plain" single hyperslab selection */
check=H5S_select_shape_same_test(none_sid,single_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "all" single hyperslab selection */
check=H5S_select_shape_same_test(none_sid,single_hyper_all_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "single point" single hyperslab selection */
check=H5S_select_shape_same_test(none_sid,single_hyper_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against regular, strided hyperslab selection */
check=H5S_select_shape_same_test(none_sid,regular_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against irregular hyperslab selection */
check=H5S_select_shape_same_test(none_sid,irreg_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "no" hyperslab selection */
check=H5S_select_shape_same_test(none_sid,none_hyper_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
/* Compare single point selection to all the selections created */
/* Compare against itself */
check=H5S_select_shape_same_test(single_pt_sid,single_pt_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
/* Compare against copy of itself */
tmp_sid=H5Scopy(single_pt_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check=H5S_select_shape_same_test(single_pt_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check=H5S_select_shape_same_test(single_pt_sid,all_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "none" selection */
check=H5S_select_shape_same_test(single_pt_sid,none_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against multiple point selection */
check=H5S_select_shape_same_test(single_pt_sid,mult_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "plain" single hyperslab selection */
check=H5S_select_shape_same_test(single_pt_sid,single_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "all" single hyperslab selection */
check=H5S_select_shape_same_test(single_pt_sid,single_hyper_all_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "single point" single hyperslab selection */
check=H5S_select_shape_same_test(single_pt_sid,single_hyper_pt_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
/* Compare against regular, strided hyperslab selection */
check=H5S_select_shape_same_test(single_pt_sid,regular_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against irregular hyperslab selection */
check=H5S_select_shape_same_test(single_pt_sid,irreg_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "no" hyperslab selection */
check=H5S_select_shape_same_test(single_pt_sid,none_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare multiple point selection to all the selections created */
/* Compare against itself */
check=H5S_select_shape_same_test(mult_pt_sid,mult_pt_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
/* Compare against copy of itself */
tmp_sid=H5Scopy(mult_pt_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check=H5S_select_shape_same_test(mult_pt_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check=H5S_select_shape_same_test(mult_pt_sid,all_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "none" selection */
check=H5S_select_shape_same_test(mult_pt_sid,none_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against single point selection */
check=H5S_select_shape_same_test(mult_pt_sid,single_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "plain" single hyperslab selection */
check=H5S_select_shape_same_test(mult_pt_sid,single_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "all" single hyperslab selection */
check=H5S_select_shape_same_test(mult_pt_sid,single_hyper_all_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "single point" single hyperslab selection */
check=H5S_select_shape_same_test(mult_pt_sid,single_hyper_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against regular, strided hyperslab selection */
check=H5S_select_shape_same_test(mult_pt_sid,regular_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against irregular hyperslab selection */
check=H5S_select_shape_same_test(mult_pt_sid,irreg_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "no" hyperslab selection */
check=H5S_select_shape_same_test(mult_pt_sid,none_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare single "normal" hyperslab selection to all the selections created */
/* Compare against itself */
check=H5S_select_shape_same_test(single_hyper_sid,single_hyper_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
/* Compare against copy of itself */
tmp_sid=H5Scopy(single_hyper_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check=H5S_select_shape_same_test(single_hyper_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check=H5S_select_shape_same_test(single_hyper_sid,all_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "none" selection */
check=H5S_select_shape_same_test(single_hyper_sid,none_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against single point selection */
check=H5S_select_shape_same_test(single_hyper_sid,single_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against multiple point selection */
check=H5S_select_shape_same_test(single_hyper_sid,mult_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "all" single hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_sid,single_hyper_all_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "single point" single hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_sid,single_hyper_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against regular, strided hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_sid,regular_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against irregular hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_sid,irreg_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "no" hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_sid,none_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
#ifdef NOT_YET
/* In theory, these two selections are the same shape, but the
* H5S_select_shape_same() routine is just not this sophisticated yet and it
* would take too much effort to make this work. The worst case is that the
* non-optimized chunk mapping routines will be invoked instead of the more
* optimized routines, so this only hurts performance, not correctness
*/
/* Construct point selection which matches "plain" hyperslab selection */
/* Create dataspace for point selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
/* Select sequence of points for point selection */
for(u=1; u<(SPACE9_DIM1-1); u++) {
for(v=1; v<(SPACE9_DIM2-1); v++) {
coord2[v-1][0]=u; coord2[v-1][1]=v;
} /* end for */
ret = H5Sselect_elements(tmp_sid,H5S_SELECT_APPEND,(SPACE9_DIM2-2),(const hsize_t **)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
} /* end for */
/* Compare against hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
#endif /* NOT_YET */
/* Construct hyperslab selection which matches "plain" hyperslab selection */
/* Create dataspace for hyperslab selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
/* Un-select entire extent */
ret = H5Sselect_none(tmp_sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Select sequence of rows for hyperslab selection */
for(u=1; u<(SPACE9_DIM1-1); u++) {
start[0]=u; start[1]=1;
stride[0]=1; stride[1]=1;
count[0]=1; count[1]=1;
block[0]=1; block[1]=(SPACE9_DIM2-2);
ret = H5Sselect_hyperslab(tmp_sid,H5S_SELECT_OR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end for */
/* Compare against hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare single "all" hyperslab selection to all the selections created */
/* Compare against itself */
check=H5S_select_shape_same_test(single_hyper_all_sid,single_hyper_all_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
/* Compare against copy of itself */
tmp_sid=H5Scopy(single_hyper_all_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check=H5S_select_shape_same_test(single_hyper_all_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check=H5S_select_shape_same_test(single_hyper_all_sid,all_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
/* Compare against "none" selection */
check=H5S_select_shape_same_test(single_hyper_all_sid,none_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against single point selection */
check=H5S_select_shape_same_test(single_hyper_all_sid,single_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against multiple point selection */
check=H5S_select_shape_same_test(single_hyper_all_sid,mult_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "plain" single hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_all_sid,single_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "single point" single hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_all_sid,single_hyper_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against regular, strided hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_all_sid,regular_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against irregular hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_all_sid,irreg_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "no" hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_all_sid,none_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
#ifdef NOT_YET
/* In theory, these two selections are the same shape, but the
* H5S_select_shape_same() routine is just not this sophisticated yet and it
* would take too much effort to make this work. The worst case is that the
* non-optimized chunk mapping routines will be invoked instead of the more
* optimized routines, so this only hurts performance, not correctness
*/
/* Construct point selection which matches "all" hyperslab selection */
/* Create dataspace for point selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
/* Select sequence of points for point selection */
for(u=0; u<SPACE9_DIM1; u++) {
for(v=0; v<SPACE9_DIM2; v++) {
coord2[v][0]=u; coord2[v][1]=v;
} /* end for */
ret = H5Sselect_elements(tmp_sid,H5S_SELECT_APPEND,SPACE9_DIM2,(const hsize_t **)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
} /* end for */
/* Compare against hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_all_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
#endif /* NOT_YET */
/* Construct hyperslab selection which matches "all" hyperslab selection */
/* Create dataspace for hyperslab selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
/* Un-select entire extent */
ret = H5Sselect_none(tmp_sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Select sequence of rows for hyperslab selection */
for(u=0; u<SPACE9_DIM2; u++) {
start[0]=u; start[1]=0;
stride[0]=1; stride[1]=1;
count[0]=1; count[1]=1;
block[0]=1; block[1]=SPACE9_DIM2;
ret = H5Sselect_hyperslab(tmp_sid,H5S_SELECT_OR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end for */
/* Compare against hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_all_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare single "point" hyperslab selection to all the selections created */
/* Compare against itself */
check=H5S_select_shape_same_test(single_hyper_pt_sid,single_hyper_pt_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
/* Compare against copy of itself */
tmp_sid=H5Scopy(single_hyper_pt_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check=H5S_select_shape_same_test(single_hyper_pt_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check=H5S_select_shape_same_test(single_hyper_pt_sid,all_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "none" selection */
check=H5S_select_shape_same_test(single_hyper_pt_sid,none_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against single point selection */
check=H5S_select_shape_same_test(single_hyper_pt_sid,single_pt_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
/* Compare against multiple point selection */
check=H5S_select_shape_same_test(single_hyper_pt_sid,mult_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "plain" single hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_pt_sid,single_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "all" single hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_pt_sid,single_hyper_all_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against regular, strided hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_pt_sid,regular_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against irregular hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_pt_sid,irreg_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "no" hyperslab selection */
check=H5S_select_shape_same_test(single_hyper_pt_sid,none_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare regular, strided hyperslab selection to all the selections created */
/* Compare against itself */
check=H5S_select_shape_same_test(regular_hyper_sid,regular_hyper_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
/* Compare against copy of itself */
tmp_sid=H5Scopy(regular_hyper_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check=H5S_select_shape_same_test(regular_hyper_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check=H5S_select_shape_same_test(regular_hyper_sid,all_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "none" selection */
check=H5S_select_shape_same_test(regular_hyper_sid,none_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against single point selection */
check=H5S_select_shape_same_test(regular_hyper_sid,single_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against multiple point selection */
check=H5S_select_shape_same_test(regular_hyper_sid,mult_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "plain" single hyperslab selection */
check=H5S_select_shape_same_test(regular_hyper_sid,single_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "all" single hyperslab selection */
check=H5S_select_shape_same_test(regular_hyper_sid,single_hyper_all_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "single point" single hyperslab selection */
check=H5S_select_shape_same_test(regular_hyper_sid,single_hyper_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against irregular hyperslab selection */
check=H5S_select_shape_same_test(regular_hyper_sid,irreg_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "no" hyperslab selection */
check=H5S_select_shape_same_test(regular_hyper_sid,none_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Construct point selection which matches regular, strided hyperslab selection */
/* Create dataspace for point selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
/* Select sequence of points for point selection */
for(u=2; u<11; u+=2) {
for(v=0; v<2; v++) {
coord2[v][0]=u; coord2[v][1]=(v*2)+2;
} /* end for */
ret = H5Sselect_elements(tmp_sid,H5S_SELECT_APPEND,2,(const hsize_t **)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
} /* end for */
/* Compare against hyperslab selection */
check=H5S_select_shape_same_test(regular_hyper_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Construct hyperslab selection which matches regular, strided hyperslab selection */
/* Create dataspace for hyperslab selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
/* Un-select entire extent */
ret = H5Sselect_none(tmp_sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Select sequence of rows for hyperslab selection */
for(u=2; u<11; u+=2) {
start[0]=u; start[1]=3;
stride[0]=1; stride[1]=2;
count[0]=1; count[1]=2;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(tmp_sid,H5S_SELECT_OR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end for */
/* Compare against hyperslab selection */
check=H5S_select_shape_same_test(regular_hyper_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Construct regular hyperslab selection with an offset which matches regular, strided hyperslab selection */
/* Create dataspace for hyperslab selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
/* Select regular, strided hyperslab selection at an offset */
start[0]=1; start[1]=1;
stride[0]=2; stride[1]=2;
count[0]=5; count[1]=2;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(tmp_sid,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Compare against hyperslab selection */
check=H5S_select_shape_same_test(regular_hyper_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare irregular hyperslab selection to all the selections created */
/* Compare against itself */
check=H5S_select_shape_same_test(irreg_hyper_sid,irreg_hyper_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
/* Compare against copy of itself */
tmp_sid=H5Scopy(irreg_hyper_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check=H5S_select_shape_same_test(irreg_hyper_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check=H5S_select_shape_same_test(irreg_hyper_sid,all_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "none" selection */
check=H5S_select_shape_same_test(irreg_hyper_sid,none_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against single point selection */
check=H5S_select_shape_same_test(irreg_hyper_sid,single_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against multiple point selection */
check=H5S_select_shape_same_test(irreg_hyper_sid,mult_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "plain" single hyperslab selection */
check=H5S_select_shape_same_test(irreg_hyper_sid,single_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "all" single hyperslab selection */
check=H5S_select_shape_same_test(irreg_hyper_sid,single_hyper_all_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "single point" single hyperslab selection */
check=H5S_select_shape_same_test(irreg_hyper_sid,single_hyper_pt_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against regular, strided hyperslab selection */
check=H5S_select_shape_same_test(irreg_hyper_sid,regular_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Compare against "no" hyperslab selection */
check=H5S_select_shape_same_test(irreg_hyper_sid,none_hyper_sid);
VERIFY(check, FALSE, "H5S_select_shape_same_test");
/* Construct hyperslab selection which matches irregular hyperslab selection */
/* Create dataspace for hyperslab selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
start[0]=2; start[1]=2;
stride[0]=1; stride[1]=1;
count[0]=1; count[1]=1;
block[0]=1; block[1]=1;
ret = H5Sselect_hyperslab(tmp_sid,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select sequence of columns for hyperslab selection */
for(u=0; u<3; u++) {
start[0]=4; start[1]=u+4;
stride[0]=1; stride[1]=1;
count[0]=1; count[1]=1;
block[0]=3; block[1]=1;
ret = H5Sselect_hyperslab(tmp_sid,H5S_SELECT_OR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end for */
/* Compare against hyperslab selection */
check=H5S_select_shape_same_test(irreg_hyper_sid,tmp_sid);
VERIFY(check, TRUE, "H5S_select_shape_same_test");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Close dataspaces */
ret = H5Sclose(all_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(none_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(single_pt_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(mult_pt_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(single_hyper_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(single_hyper_all_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(single_hyper_pt_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(regular_hyper_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(irreg_hyper_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(none_hyper_sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same() */
/****************************************************************
**
** test_select_hyper_chunk_offset(): Tests selections on dataspace,
** verify that offsets for hyperslab selections are working in
** chunked datasets.
**
****************************************************************/
static void
test_select_hyper_chunk_offset(void)
{
hid_t fid; /* File ID */
hid_t sid; /* Dataspace ID */
hid_t msid; /* Memory dataspace ID */
hid_t did; /* Dataset ID */
const hsize_t mem_dims[1] = { SPACE10_DIM1 }; /* Dataspace dimensions for memory */
const hsize_t dims[1] = { 0 }; /* Dataspace initial dimensions */
const hsize_t maxdims[1] = { H5S_UNLIMITED }; /* Dataspace mam dims */
int *wbuf; /* Buffer for writing data */
int *rbuf; /* Buffer for reading data */
hid_t dcpl; /* Dataset creation property list ID */
hsize_t chunks[1]={SPACE10_CHUNK_SIZE }; /* Chunk size */
hsize_t start[1] = { 0 }; /* The start of the hyperslab */
hsize_t count[1] = { SPACE10_CHUNK_SIZE }; /* The size of the hyperslab */
int i,j; /* Local index */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(6, ("Testing hyperslab selections using offsets in chunked datasets\n"));
/* Allocate buffers */
wbuf= HDmalloc(sizeof(int)*SPACE10_DIM1);
CHECK(wbuf, NULL, "HDmalloc");
rbuf= HDmalloc(sizeof(int)*SPACE10_DIM1);
CHECK(rbuf, NULL, "HDmalloc");
/* Initialize the write buffer */
for(i=0; i<SPACE10_DIM1; i++)
wbuf[i]=i;
/* Create file */
fid = H5Fcreate (FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid, FAIL, "H5Fcreate");
/* Create a dataset creation property list */
dcpl = H5Pcreate (H5P_DATASET_CREATE);
CHECK(dcpl, FAIL, "H5Pcreate");
/* Set to chunked storage layout */
ret=H5Pset_layout (dcpl, H5D_CHUNKED);
CHECK(ret, FAIL, "H5Pset_layout");
/* Set the chunk size */
ret=H5Pset_chunk (dcpl, 1, chunks);
CHECK(ret, FAIL, "H5Pset_chunk");
/* Create dataspace for memory */
msid = H5Screate_simple (1, mem_dims, NULL);
CHECK(msid, FAIL, "H5Screate_simple");
/* Select the correct chunk in the memory dataspace */
ret=H5Sselect_hyperslab (msid, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for dataset */
sid = H5Screate_simple (1, dims, maxdims);
CHECK(sid, FAIL, "H5Screate_simple");
/* Create the dataset */
did = H5Dcreate (fid, "fooData", H5T_NATIVE_INT, sid, dcpl);
CHECK(did, FAIL, "H5Dcreate");
/* Close the dataspace */
ret=H5Sclose (sid);
CHECK(ret, FAIL, "H5Sclose");
/* Close the dataset creation property list */
ret=H5Pclose (dcpl);
CHECK(ret, FAIL, "H5Pclose");
/* Loop over writing out each chunk */
for(i=SPACE10_CHUNK_SIZE; i<=SPACE10_DIM1; i+=SPACE10_CHUNK_SIZE) {
hssize_t offset[1]; /* Offset of selection */
hid_t fsid; /* File dataspace ID */
hsize_t size[1]; /* The size to extend the dataset to */
/* Extend the dataset */
size[0] = i; /* The size to extend the dataset to */
ret=H5Dextend (did, size);
CHECK(ret, FAIL, "H5Dextend");
/* Get the (extended) dataspace from the dataset */
fsid = H5Dget_space (did);
CHECK(fsid, FAIL, "H5Dget_space");
/* Select the correct chunk in the dataset */
ret=H5Sselect_hyperslab (fsid, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Set the selection offset for the file dataspace */
offset[0] = i - SPACE10_CHUNK_SIZE;
ret=H5Soffset_simple (fsid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Set the selection offset for the memory dataspace */
offset[0] = SPACE10_DIM1-i;
ret=H5Soffset_simple (msid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Write the data to the chunk */
ret=H5Dwrite (did, H5T_NATIVE_INT, msid, fsid, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Close the file dataspace copy */
ret=H5Sclose (fsid);
CHECK(ret, FAIL, "H5Sclose");
}
/* Read the data back in */
ret=H5Dread (did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Verify the information read in */
for(i=0; i<SPACE10_DIM1; i+=SPACE10_CHUNK_SIZE)
for(j=0; j<SPACE10_CHUNK_SIZE; j++)
if(wbuf[i+j]!=rbuf[((SPACE10_DIM1-i)-SPACE10_CHUNK_SIZE)+j])
TestErrPrintf("Line: %d - Error! i=%d, j=%d, rbuf=%d, wbuf=%d\n",__LINE__,i,j,rbuf[((SPACE10_DIM1-i)-SPACE10_CHUNK_SIZE)+j],wbuf[i+j]);
/* Check with 'OR'ed set of hyperslab selections, which makes certain the
* hyperslab spanlist code gets tested. -QAK
*/
/* Re-initialize the write buffer */
for(i=0; i<SPACE10_DIM1; i++)
wbuf[i]=i*2;
/* Change the selected the region in the memory dataspace */
start[0] = 0;
count[0] = SPACE10_CHUNK_SIZE/3;
ret=H5Sselect_hyperslab (msid, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = (2*SPACE10_CHUNK_SIZE)/3;
ret=H5Sselect_hyperslab (msid, H5S_SELECT_OR, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Loop over writing out each chunk */
for(i=SPACE10_CHUNK_SIZE; i<=SPACE10_DIM1; i+=SPACE10_CHUNK_SIZE) {
hssize_t offset[1]; /* Offset of selection */
hid_t fsid; /* File dataspace ID */
hsize_t size[1]; /* The size to extend the dataset to */
/* Extend the dataset */
size[0] = i; /* The size to extend the dataset to */
ret=H5Dextend (did, size);
CHECK(ret, FAIL, "H5Dextend");
/* Get the (extended) dataspace from the dataset */
fsid = H5Dget_space (did);
CHECK(fsid, FAIL, "H5Dget_space");
/* Select the correct region in the dataset */
start[0] = 0;
ret=H5Sselect_hyperslab (fsid, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = (2*SPACE10_CHUNK_SIZE)/3;
ret=H5Sselect_hyperslab (fsid, H5S_SELECT_OR, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Set the selection offset for the file dataspace */
offset[0] = i - SPACE10_CHUNK_SIZE;
ret=H5Soffset_simple (fsid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Set the selection offset for the memory dataspace */
offset[0] = SPACE10_DIM1-i;
ret=H5Soffset_simple (msid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Write the data to the chunk */
ret=H5Dwrite (did, H5T_NATIVE_INT, msid, fsid, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Close the file dataspace copy */
ret=H5Sclose (fsid);
CHECK(ret, FAIL, "H5Sclose");
}
/* Read the data back in */
ret=H5Dread (did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Verify the information read in */
for(i=0; i<SPACE10_DIM1; i+=SPACE10_CHUNK_SIZE)
for(j=0; j<SPACE10_CHUNK_SIZE; j++)
/* We're not writing out the "middle" of each chunk, so don't check that */
if(j<(SPACE10_CHUNK_SIZE/3) || j>=((2*SPACE10_CHUNK_SIZE)/3))
if(wbuf[i+j]!=rbuf[((SPACE10_DIM1-i)-SPACE10_CHUNK_SIZE)+j])
TestErrPrintf("Line: %d - Error! i=%d, j=%d, rbuf=%d, wbuf=%d\n",__LINE__,i,j,rbuf[((SPACE10_DIM1-i)-SPACE10_CHUNK_SIZE)+j],wbuf[i+j]);
/* Close the memory dataspace */
ret=H5Sclose (msid);
CHECK(ret, FAIL, "H5Sclose");
/* Close the dataset */
ret=H5Dclose (did);
CHECK(ret, FAIL, "H5Dclose");
/* Close the file */
ret=H5Fclose (fid);
CHECK(ret, FAIL, "H5Fclose");
/* Free the buffers */
HDfree(wbuf);
HDfree(rbuf);
} /* test_select_hyper_chunk_offset() */
/****************************************************************
**
** test_select_hyper_chunk_offset2(): Tests selections on dataspace,
** another test to verify that offsets for hyperslab selections are
** working in chunked datasets.
**
****************************************************************/
static void
test_select_hyper_chunk_offset2(void)
{
hid_t file, dataset; /* handles */
hid_t dataspace;
hid_t memspace;
hid_t dcpl; /* Dataset creation property list */
herr_t status;
unsigned data_out[SPACE12_DIM0]; /* output buffer */
unsigned data_in[SPACE12_CHUNK_DIM0]; /* input buffer */
hsize_t dims[SPACE12_RANK]={SPACE12_DIM0}; /* Dimension size */
hsize_t chunk_dims[SPACE12_RANK]={SPACE12_CHUNK_DIM0}; /* Chunk size */
hsize_t start[SPACE12_RANK]; /* Start of hyperslab */
hsize_t count[SPACE12_RANK]; /* Size of hyperslab */
hssize_t offset[SPACE12_RANK]; /* hyperslab offset in the file */
unsigned u, v; /* Local index variables */
/* Output message about test being performed */
MESSAGE(6, ("Testing more hyperslab selections using offsets in chunked datasets\n"));
/* Initialize data to write out */
for (u = 0; u < SPACE12_DIM0; u++)
data_out[u] = u;
/* Create the file */
file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(file, FAIL, "H5Fcreate");
/* Create dataspace */
dataspace = H5Screate_simple(SPACE12_RANK, dims, NULL);
CHECK(dataspace, FAIL, "H5Screate_simple");
/* Create dataset creation property list */
dcpl = H5Pcreate(H5P_DATASET_CREATE);
CHECK(dcpl, FAIL, "H5Pcreate");
/* Set chunk sizes */
status = H5Pset_chunk(dcpl, SPACE12_RANK, chunk_dims);
CHECK(status, FAIL, "H5Pset_chunk");
/* Create dataset */
dataset = H5Dcreate(file, DATASETNAME, H5T_NATIVE_UINT, dataspace, dcpl);
CHECK(dataset, FAIL, "H5Dcreate");
/* Close DCPL */
status = H5Pclose(dcpl);
CHECK(status, FAIL, "H5Pclose");
/* Write out entire dataset */
status = H5Dwrite(dataset, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_out);
CHECK(status, FAIL, "H5Dclose");
/* Create memory dataspace (same size as a chunk) */
memspace = H5Screate_simple(SPACE12_RANK, chunk_dims, NULL);
CHECK(dataspace, FAIL, "H5Screate_simple");
/*
* Define hyperslab in the file dataspace.
*/
start[0] = 0;
count[0] = SPACE12_CHUNK_DIM0;
status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(status, FAIL, "H5Sselect_hyperslab");
/* Loop through retrieving data from file, checking it against data written */
for(u = 0; u < SPACE12_DIM0; u += SPACE12_CHUNK_DIM0) {
/* Set the offset of the file selection */
offset[0] = u;
status = H5Soffset_simple(dataspace, offset);
CHECK(status, FAIL, "H5Soffset_simple");
/* Read in buffer of data */
status = H5Dread(dataset, H5T_NATIVE_UINT, memspace, dataspace,
H5P_DEFAULT, data_in);
CHECK(status, FAIL, "H5Dread");
/* Check data read in */
for(v = 0; v < SPACE12_CHUNK_DIM0; v++)
if(data_out[u + v] != data_in[v])
TestErrPrintf("Error! data_out[%u]=%u, data_in[%u]=%u\n",(unsigned)(u + v), data_out[u + v], v, data_in[v]);
} /* end for */
status = H5Dclose(dataset);
CHECK(status, FAIL, "H5Dclose");
status = H5Sclose(dataspace);
CHECK(status, FAIL, "H5Sclose");
status = H5Sclose(memspace);
CHECK(status, FAIL, "H5Sclose");
status = H5Fclose(file);
CHECK(status, FAIL, "H5Fclose");
} /* test_select_hyper_chunk_offset2() */
/****************************************************************
**
** test_select_bounds(): Tests selection bounds on dataspaces,
** both with and without offsets.
**
****************************************************************/
static void
test_select_bounds(void)
{
hid_t sid; /* Dataspace ID */
const hsize_t dims[SPACE11_RANK] = { SPACE11_DIM1, SPACE11_DIM2 }; /* Dataspace dimensions */
hsize_t coord[SPACE11_NPOINTS][SPACE11_RANK]; /* Coordinates for point selection */
hsize_t start[SPACE11_RANK]; /* The start of the hyperslab */
hsize_t stride[SPACE11_RANK]; /* The stride between block starts for the hyperslab */
hsize_t count[SPACE11_RANK]; /* The number of blocks for the hyperslab */
hsize_t block[SPACE11_RANK]; /* The size of each block for the hyperslab */
hssize_t offset[SPACE11_RANK]; /* Offset amount for selection */
hsize_t low_bounds[SPACE11_RANK]; /* The low bounds for the selection */
hsize_t high_bounds[SPACE11_RANK]; /* The high bounds for the selection */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(6, ("Testing selection bounds\n"));
/* Create dataspace */
sid = H5Screate_simple (SPACE11_RANK, dims, NULL);
CHECK(sid, FAIL, "H5Screate_simple");
/* Get bounds for 'all' selection */
ret = H5Sget_select_bounds(sid,low_bounds,high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0],0,"H5Sget_select_bounds");
VERIFY(low_bounds[1],0,"H5Sget_select_bounds");
VERIFY(high_bounds[0],SPACE11_DIM1-1,"H5Sget_select_bounds");
VERIFY(high_bounds[1],SPACE11_DIM2-1,"H5Sget_select_bounds");
/* Set offset for selection */
offset[0]=1; offset[1]=1;
ret=H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Get bounds for 'all' selection with offset (which should be ignored) */
ret = H5Sget_select_bounds(sid,low_bounds,high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0],0,"H5Sget_select_bounds");
VERIFY(low_bounds[1],0,"H5Sget_select_bounds");
VERIFY(high_bounds[0],SPACE11_DIM1-1,"H5Sget_select_bounds");
VERIFY(high_bounds[1],SPACE11_DIM2-1,"H5Sget_select_bounds");
/* Reset offset for selection */
offset[0]=0; offset[1]=0;
ret=H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Set 'none' selection */
ret=H5Sselect_none(sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Get bounds for 'none' selection */
H5E_BEGIN_TRY {
ret = H5Sget_select_bounds(sid,low_bounds,high_bounds);
} H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sget_select_bounds");
/* Set point selection */
coord[0][0]= 3; coord[0][1]= 3;
coord[1][0]= 3; coord[1][1]= 96;
coord[2][0]= 96; coord[2][1]= 3;
coord[3][0]= 96; coord[3][1]= 96;
ret = H5Sselect_elements(sid,H5S_SELECT_SET,SPACE11_NPOINTS,(const hsize_t **)coord);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Get bounds for point selection */
ret = H5Sget_select_bounds(sid,low_bounds,high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0],3,"H5Sget_select_bounds");
VERIFY(low_bounds[1],3,"H5Sget_select_bounds");
VERIFY(high_bounds[0],SPACE11_DIM1-4,"H5Sget_select_bounds");
VERIFY(high_bounds[1],SPACE11_DIM2-4,"H5Sget_select_bounds");
/* Set bad offset for selection */
offset[0]=5; offset[1]=-5;
ret=H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Get bounds for hyperslab selection with negative offset */
H5E_BEGIN_TRY {
ret = H5Sget_select_bounds(sid,low_bounds,high_bounds);
} H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sget_select_bounds");
/* Set valid offset for selection */
offset[0]=2; offset[1]=-2;
ret=H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Get bounds for point selection with offset */
ret = H5Sget_select_bounds(sid,low_bounds,high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0],5,"H5Sget_select_bounds");
VERIFY(low_bounds[1],1,"H5Sget_select_bounds");
VERIFY(high_bounds[0],SPACE11_DIM1-2,"H5Sget_select_bounds");
VERIFY(high_bounds[1],SPACE11_DIM2-6,"H5Sget_select_bounds");
/* Reset offset for selection */
offset[0]=0; offset[1]=0;
ret=H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Set "regular" hyperslab selection */
start[0]= 2; start[1]= 2;
stride[0]= 10; stride[1]= 10;
count[0]= 4; count[1]= 4;
block[0]= 5; block[1]= 5;
ret = H5Sselect_hyperslab(sid,H5S_SELECT_SET,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Get bounds for hyperslab selection */
ret = H5Sget_select_bounds(sid,low_bounds,high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0],2,"H5Sget_select_bounds");
VERIFY(low_bounds[1],2,"H5Sget_select_bounds");
VERIFY(high_bounds[0],36,"H5Sget_select_bounds");
VERIFY(high_bounds[1],36,"H5Sget_select_bounds");
/* Set bad offset for selection */
offset[0]=5; offset[1]=-5;
ret=H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Get bounds for hyperslab selection with negative offset */
H5E_BEGIN_TRY {
ret = H5Sget_select_bounds(sid,low_bounds,high_bounds);
} H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sget_select_bounds");
/* Set valid offset for selection */
offset[0]=5; offset[1]=-2;
ret=H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Get bounds for hyperslab selection with offset */
ret = H5Sget_select_bounds(sid,low_bounds,high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0],7,"H5Sget_select_bounds");
VERIFY(low_bounds[1],0,"H5Sget_select_bounds");
VERIFY(high_bounds[0],41,"H5Sget_select_bounds");
VERIFY(high_bounds[1],34,"H5Sget_select_bounds");
/* Reset offset for selection */
offset[0]=0; offset[1]=0;
ret=H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Make "irregular" hyperslab selection */
start[0]= 20; start[1]= 20;
stride[0]= 20; stride[1]= 20;
count[0]= 2; count[1]= 2;
block[0]= 10; block[1]= 10;
ret = H5Sselect_hyperslab(sid,H5S_SELECT_OR,start,stride,count,block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Get bounds for hyperslab selection */
ret = H5Sget_select_bounds(sid,low_bounds,high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0],2,"H5Sget_select_bounds");
VERIFY(low_bounds[1],2,"H5Sget_select_bounds");
VERIFY(high_bounds[0],49,"H5Sget_select_bounds");
VERIFY(high_bounds[1],49,"H5Sget_select_bounds");
/* Set bad offset for selection */
offset[0]=5; offset[1]=-5;
ret=H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Get bounds for hyperslab selection with negative offset */
H5E_BEGIN_TRY {
ret = H5Sget_select_bounds(sid,low_bounds,high_bounds);
} H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sget_select_bounds");
/* Set valid offset for selection */
offset[0]=5; offset[1]=-2;
ret=H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Get bounds for hyperslab selection with offset */
ret = H5Sget_select_bounds(sid,low_bounds,high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0],7,"H5Sget_select_bounds");
VERIFY(low_bounds[1],0,"H5Sget_select_bounds");
VERIFY(high_bounds[0],54,"H5Sget_select_bounds");
VERIFY(high_bounds[1],47,"H5Sget_select_bounds");
/* Reset offset for selection */
offset[0]=0; offset[1]=0;
ret=H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Close the dataspace */
ret=H5Sclose (sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_select_bounds() */
/****************************************************************
**
** test_select(): Main H5S selection testing routine.
**
****************************************************************/
void
test_select(void)
{
hid_t plist_id; /* Property list for reading random hyperslabs */
hid_t fapl; /* Property list accessing the file */
int mdc_nelmts; /* Metadata number of elements */
size_t rdcc_nelmts; /* Raw data number of elements */
size_t rdcc_nbytes; /* Raw data number of bytes */
double rdcc_w0; /* Raw data write percentage */
hssize_t offset[SPACE7_RANK]={1,1}; /* Offset for testing selection offsets */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Selections\n"));
/* Create a dataset transfer property list */
plist_id=H5Pcreate(H5P_DATASET_XFER);
CHECK(plist_id, FAIL, "H5Pcreate");
/* test I/O with a very small buffer for reads */
ret=H5Pset_buffer(plist_id,(size_t)59,NULL,NULL);
CHECK(ret, FAIL, "H5Pset_buffer");
/* These next tests use the same file */
test_select_hyper(H5P_DEFAULT); /* Test basic H5S hyperslab selection code */
test_select_hyper(plist_id); /* Test basic H5S hyperslab selection code */
test_select_point(H5P_DEFAULT); /* Test basic H5S element selection code, also tests appending to existing element selections */
test_select_point(plist_id); /* Test basic H5S element selection code, also tests appending to existing element selections */
test_select_all(H5P_DEFAULT); /* Test basic all & none selection code */
test_select_all(plist_id); /* Test basic all & none selection code */
test_select_all_hyper(H5P_DEFAULT); /* Test basic all & none selection code */
test_select_all_hyper(plist_id); /* Test basic all & none selection code */
/* These next tests use the same file */
test_select_combo(); /* Test combined hyperslab & element selection code */
test_select_hyper_stride(H5P_DEFAULT); /* Test strided hyperslab selection code */
test_select_hyper_stride(plist_id); /* Test strided hyperslab selection code */
test_select_hyper_contig(H5T_STD_U16LE,H5P_DEFAULT); /* Test contiguous hyperslab selection code */
test_select_hyper_contig(H5T_STD_U16LE,plist_id); /* Test contiguous hyperslab selection code */
test_select_hyper_contig(H5T_STD_U16BE,H5P_DEFAULT); /* Test contiguous hyperslab selection code */
test_select_hyper_contig(H5T_STD_U16BE,plist_id); /* Test contiguous hyperslab selection code */
test_select_hyper_contig2(H5T_STD_U16LE,H5P_DEFAULT); /* Test more contiguous hyperslab selection cases */
test_select_hyper_contig2(H5T_STD_U16LE,plist_id); /* Test more contiguous hyperslab selection cases */
test_select_hyper_contig2(H5T_STD_U16BE,H5P_DEFAULT); /* Test more contiguous hyperslab selection cases */
test_select_hyper_contig2(H5T_STD_U16BE,plist_id); /* Test more contiguous hyperslab selection cases */
test_select_hyper_contig3(H5T_STD_U16LE,H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */
test_select_hyper_contig3(H5T_STD_U16LE,plist_id); /* Test yet more contiguous hyperslab selection cases */
test_select_hyper_contig3(H5T_STD_U16BE,H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */
test_select_hyper_contig3(H5T_STD_U16BE,plist_id); /* Test yet more contiguous hyperslab selection cases */
test_select_hyper_copy(); /* Test hyperslab selection copying code */
test_select_point_copy(); /* Test point selection copying code */
test_select_hyper_offset(); /* Test selection offset code with hyperslabs */
test_select_hyper_offset2();/* Test more selection offset code with hyperslabs */
test_select_point_offset(); /* Test selection offset code with elements */
test_select_hyper_union(); /* Test hyperslab union code */
#ifdef NEW_HYPERSLAB_API
test_select_hyper_union_stagger(); /* Test hyperslab union code for staggered slabs */
test_select_hyper_union_3d(); /* Test hyperslab union code for 3-D dataset */
#endif /* NEW_HYPERSLAB_API */
test_select_hyper_and_2d(); /* Test hyperslab intersection (AND) code for 2-D dataset */
test_select_hyper_xor_2d(); /* Test hyperslab XOR code for 2-D dataset */
test_select_hyper_notb_2d(); /* Test hyperslab NOTB code for 2-D dataset */
test_select_hyper_nota_2d(); /* Test hyperslab NOTA code for 2-D dataset */
/* test the random hyperslab I/O with the default property list for reading */
test_select_hyper_union_random_5d(H5P_DEFAULT); /* Test hyperslab union code for random 5-D hyperslabs */
/* test random hyperslab I/O with a small buffer for reads */
test_select_hyper_union_random_5d(plist_id); /* Test hyperslab union code for random 5-D hyperslabs */
/* Create a dataset transfer property list */
fapl=H5Pcreate(H5P_FILE_ACCESS);
CHECK(fapl, FAIL, "H5Pcreate");
/* Get the default file access properties for caching */
ret=H5Pget_cache(fapl,&mdc_nelmts,&rdcc_nelmts,&rdcc_nbytes,&rdcc_w0);
CHECK(ret, FAIL, "H5Pget_cache");
/* Increase the size of the raw data cache */
rdcc_nbytes=10*1024*1024;
/* Set the file access properties for caching */
ret=H5Pset_cache(fapl,mdc_nelmts,rdcc_nelmts,rdcc_nbytes,rdcc_w0);
CHECK(ret, FAIL, "H5Pset_cache");
/* Test reading in a large hyperslab with a chunked dataset */
test_select_hyper_chunk(fapl,H5P_DEFAULT);
/* Test reading in a large hyperslab with a chunked dataset a small amount at a time */
test_select_hyper_chunk(fapl,plist_id);
/* Close file access property list */
ret=H5Pclose(fapl);
CHECK(ret, FAIL, "H5Pclose");
/* Close dataset transfer property list */
ret=H5Pclose(plist_id);
CHECK(ret, FAIL, "H5Pclose");
/* More tests for checking validity of selections */
test_select_valid();
/* Tests for combining "all" and "none" selections with hyperslabs */
test_select_combine();
/* Test filling selections */
/* (Also tests iterating through each selection */
test_select_fill_all();
test_select_fill_point(NULL);
test_select_fill_point(offset);
test_select_fill_hyper_simple(NULL);
test_select_fill_hyper_simple(offset);
test_select_fill_hyper_regular(NULL);
test_select_fill_hyper_regular(offset);
test_select_fill_hyper_irregular(NULL);
test_select_fill_hyper_irregular(offset);
/* Test 0-sized selections */
test_select_none();
/* Test selections on scalar dataspaces */
test_scalar_select();
test_scalar_select2();
/* Test "same shape" routine */
test_shape_same();
/* Test point selections in chunked datasets */
test_select_point_chunk();
/* Test scalar dataspaces in chunked datasets */
test_select_scalar_chunk();
/* Test using selection offset on hyperslab in chunked dataset */
test_select_hyper_chunk_offset();
test_select_hyper_chunk_offset2();
/* Test selection bounds with & without offsets */
test_select_bounds();
} /* test_select() */
/*-------------------------------------------------------------------------
* Function: cleanup_select
*
* Purpose: Cleanup temporary test files
*
* Return: none
*
* Programmer: Albert Cheng
* July 2, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
cleanup_select(void)
{
remove(FILENAME);
}