2
0
mirror of https://github.com/HDFGroup/hdf5.git synced 2025-01-24 15:25:00 +08:00
hdf5/test/vfd.c
2023-09-26 13:11:22 -07:00

5923 lines
202 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Purpose: Tests the basic features of Virtual File Drivers
*/
#include "h5test.h"
#define KB 1024U
#define FAMILY_NUMBER 4
#define FAMILY_SIZE (1 * KB)
#define FAMILY_SIZE2 (5 * KB)
#define MULTI_SIZE 128
#define SPLITTER_SIZE 8 /* dimensions of a dataset */
#define CORE_INCREMENT (4 * KB)
#define CORE_PAGE_SIZE (1024 * KB)
#define CORE_DSET_NAME "core dset"
#define CORE_DSET_DIM1 1024
#define CORE_DSET_DIM2 32
#define DSET1_NAME "dset1"
#define DSET1_DIM1 1024
#define DSET1_DIM2 32
#define DSET3_NAME "dset3"
/* Macros for Direct VFD */
#ifdef H5_HAVE_DIRECT
#define MBOUNDARY 512
#define FBSIZE (4 * KB)
#define CBSIZE (8 * KB)
#define THRESHOLD 1
#define DSET2_NAME "dset2"
#define DSET2_DIM 4
#endif /* H5_HAVE_DIRECT */
static const char *FILENAME[] = {"sec2_file", /*0*/
"core_file", /*1*/
"family_file", /*2*/
"new_family_v16", /*3*/
"multi_file", /*4*/
"direct_file", /*5*/
"log_file", /*6*/
"stdio_file", /*7*/
"windows_file", /*8*/
"new_multi_file_v16", /*9*/
"ro_s3_file", /*10*/
"splitter_rw_file", /*11*/
"splitter_wo_file", /*12*/
"splitter.log", /*13*/
"ctl_file", /*14*/
"ctl_splitter_wo_file", /*15*/
NULL};
#define LOG_FILENAME "log_vfd_out.log"
#define COMPAT_BASENAME "family_v16"
#define MULTI_COMPAT_BASENAME "multi_file_v16"
#define SPLITTER_DATASET_NAME "dataset"
/* Macro: HEXPRINT()
* Helper macro to pretty-print hexadecimal output of a buffer of known size.
* Each line has the address of the first printed byte, and four columns of
* four-byte data.
*/
static int __k;
#define HEXPRINT(size, buf) \
do { \
for (__k = 0; __k < (size); __k++) { \
if (__k % 16 == 0) { \
printf("\n%04x", __k); \
} \
printf((__k % 4 == 0) ? " %02X" : " %02X", (unsigned char)(buf)[__k]); \
} \
} while (0) /* end #define HEXPRINT() */
/* Macro SET_SIZE()
*
* Helper macro to track the sizes of entries in a vector
* I/O call when stepping through the vector incrementally.
* Assuming that bool_size_fixed is initialized to false
* before the scan, this macro will detect the sizes array
* optimization for the case in which all remaining entries
* are of the same size, and set size_value accordingly.
*
* JRM -- 3/11/21
*/
#define SET_SIZE(bool_size_fixed, sizes_array, size_value, idx) \
do { \
if (!(bool_size_fixed)) { \
\
if ((sizes_array)[idx] == 0) { \
\
assert((idx) > 0); \
(bool_size_fixed) = true; \
} \
else { \
\
(size_value) = (sizes_array)[idx]; \
} \
} \
} while (false)
/* Macro SET_TYPE()
*
* Helper macro to track the types of entries in a vector
* I/O call when stepping through the vector incrementally.
* Assuming that bool_type_fixed is initialized to false
* before the scan, this macro will detect the types array
* optimization for the case in which all remaining entries
* are of the same type, and set type_value accordingly.
*
* JRM -- 3/11/21
*/
#define SET_TYPE(bool_type_fixed, types_array, type_value, idx) \
do { \
if (!(bool_type_fixed)) { \
\
if ((types_array)[idx] == H5FD_MEM_NOLIST) { \
\
assert((idx) > 0); \
(bool_type_fixed) = true; \
} \
else { \
\
(type_value) = (types_array)[idx]; \
} \
} \
} while (false)
/* Helper structure to pass around dataset information.
*/
struct splitter_dataset_def {
void *buf; /* contents of dataset */
const char *dset_name; /* dataset name, always added to root group */
hid_t mem_type_id; /* datatype */
const hsize_t *dims; /* dimensions */
int n_dims; /* rank */
};
/* Op code type enum for ctl callback test */
typedef enum {
CTL_OPC_KNOWN_PASSTHROUGH, /* op code known to passthrough VFD */
CTL_OPC_KNOWN_TERMINAL, /* op code known to terminal VFD */
CTL_OPC_UNKNOWN /* unknown op code */
} ctl_test_opc_type;
static int splitter_prepare_file_paths(H5FD_splitter_vfd_config_t *vfd_config, char *filename_rw_out);
static int splitter_create_single_file_at(const char *filename, hid_t fapl_id,
const struct splitter_dataset_def *data);
static int splitter_compare_expected_data(hid_t file_id, const struct splitter_dataset_def *data);
static int run_splitter_test(const struct splitter_dataset_def *data, bool ignore_wo_errors,
bool provide_logfile_path, const hid_t sub_fapl_ids[2]);
static int splitter_RO_test(const struct splitter_dataset_def *data, hid_t child_fapl_id);
static int splitter_tentative_open_test(hid_t child_fapl_id);
static int file_exists(const char *filename, hid_t fapl_id);
static herr_t run_ctl_test(uint64_t op_code, uint64_t flags, ctl_test_opc_type opc_type, hid_t fapl_id);
static H5FD_t *H5FD__ctl_test_vfd_open(const char *name, unsigned flags, hid_t fapl_id, haddr_t maxaddr);
static herr_t H5FD__ctl_test_vfd_close(H5FD_t *_file);
static haddr_t H5FD__ctl_test_vfd_get_eoa(const H5FD_t *_file, H5FD_mem_t type);
static herr_t H5FD__ctl_test_vfd_set_eoa(H5FD_t *_file, H5FD_mem_t type, haddr_t addr);
static haddr_t H5FD__ctl_test_vfd_get_eof(const H5FD_t *_file, H5FD_mem_t type);
static herr_t H5FD__ctl_test_vfd_read(H5FD_t *_file, H5FD_mem_t type, hid_t dxpl_id, haddr_t addr,
size_t size, void *buf);
static herr_t H5FD__ctl_test_vfd_write(H5FD_t *_file, H5FD_mem_t type, hid_t dxpl_id, haddr_t addr,
size_t size, const void *buf);
static herr_t H5FD__ctl_test_vfd_ctl(H5FD_t *_file, uint64_t op_code, uint64_t flags, const void *input,
void **output);
/*-------------------------------------------------------------------------
* Function: test_sec2
*
* Purpose: Tests the file handle interface for SEC2 driver
*
* Return: Success: 0
* Failure: -1
*
*-------------------------------------------------------------------------
*/
static herr_t
test_sec2(void)
{
hid_t fid = H5I_INVALID_HID; /* file ID */
hid_t fapl_id = H5I_INVALID_HID; /* file access property list ID */
hid_t fapl_id_out = H5I_INVALID_HID; /* from H5Fget_access_plist */
hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */
unsigned long driver_flags = 0; /* VFD feature flags */
char filename[1024]; /* filename */
void *os_file_handle = NULL; /* OS file handle */
hsize_t file_size; /* file size */
TESTING("SEC2 file driver");
/* Set property list and file name for SEC2 driver. */
if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
if (H5Pset_fapl_sec2(fapl_id) < 0)
TEST_ERROR;
h5_fixname(FILENAME[0], fapl_id, filename, sizeof(filename));
/* Check that the VFD feature flags are correct */
if ((driver_id = H5Pget_driver(fapl_id)) < 0)
TEST_ERROR;
if (H5FDdriver_query(driver_id, &driver_flags) < 0)
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_AGGREGATE_METADATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_ACCUMULATE_METADATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_DATA_SIEVE))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_AGGREGATE_SMALLDATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_POSIX_COMPAT_HANDLE))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_SUPPORTS_SWMR_IO))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_DEFAULT_VFD_COMPATIBLE))
TEST_ERROR;
/* Check for extra flags not accounted for above */
if (driver_flags != (H5FD_FEAT_AGGREGATE_METADATA | H5FD_FEAT_ACCUMULATE_METADATA | H5FD_FEAT_DATA_SIEVE |
H5FD_FEAT_AGGREGATE_SMALLDATA | H5FD_FEAT_POSIX_COMPAT_HANDLE |
H5FD_FEAT_SUPPORTS_SWMR_IO | H5FD_FEAT_DEFAULT_VFD_COMPATIBLE))
TEST_ERROR;
if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) < 0)
TEST_ERROR;
/* Retrieve the access property list... */
if ((fapl_id_out = H5Fget_access_plist(fid)) < 0)
TEST_ERROR;
/* Check that the driver is correct */
if (H5FD_SEC2 != H5Pget_driver(fapl_id_out))
TEST_ERROR;
/* ...and close the property list */
if (H5Pclose(fapl_id_out) < 0)
TEST_ERROR;
/* Check that we can get an operating-system-specific handle from
* the library.
*/
if (H5Fget_vfd_handle(fid, H5P_DEFAULT, &os_file_handle) < 0)
TEST_ERROR;
if (os_file_handle == NULL)
FAIL_PUTS_ERROR("NULL os-specific vfd/file handle was returned from H5Fget_vfd_handle");
/* There is no guarantee the size of metadata in file is constant.
* Just try to check if it's reasonable.
*
* Currently it should be around 2 KB.
*/
if (H5Fget_filesize(fid, &file_size) < 0)
TEST_ERROR;
if (file_size < 1 * KB || file_size > 4 * KB)
FAIL_PUTS_ERROR("suspicious file size obtained from H5Fget_filesize");
/* Close and delete the file */
if (H5Fclose(fid) < 0)
TEST_ERROR;
h5_delete_test_file(FILENAME[0], fapl_id);
/* Close the fapl */
if (H5Pclose(fapl_id) < 0)
TEST_ERROR;
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Pclose(fapl_id);
H5Pclose(fapl_id_out);
H5Fclose(fid);
}
H5E_END_TRY
return -1;
} /* end test_sec2() */
/*-------------------------------------------------------------------------
* Function: test_core
*
* Purpose: Tests the file handle interface for CORE driver
*
* Return: Success: 0
* Failure: -1
*
*-------------------------------------------------------------------------
*/
static herr_t
test_core(void)
{
hid_t fid = H5I_INVALID_HID; /* file ID */
hid_t fapl_id = H5I_INVALID_HID; /* file access property list ID */
hid_t fapl_id_out = H5I_INVALID_HID; /* from H5Fget_access_plist */
hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */
unsigned long driver_flags = 0; /* VFD feature flags */
hid_t did = H5I_INVALID_HID; /* dataset ID */
hid_t sid = H5I_INVALID_HID; /* dataspace ID */
char filename[1024]; /* filename */
void *os_file_handle = NULL; /* OS file handle */
hsize_t file_size; /* file size */
size_t increment; /* core VFD increment */
bool backing_store; /* use backing store? */
bool use_write_tracking; /* write tracking flag */
size_t write_tracking_page_size; /* write tracking page size */
int *data_w = NULL; /* data written to the dataset */
int *data_r = NULL; /* data read from the dataset */
int val; /* data value */
int *pw = NULL, *pr = NULL; /* pointers for iterating over
data arrays (write & read) */
hsize_t dims[2]; /* dataspace dimensions */
int i, j; /* iterators */
htri_t status; /* return value from H5Lexists */
TESTING("CORE file driver");
/* Get a file access property list and fix up the file name */
if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
h5_fixname(FILENAME[1], fapl_id, filename, sizeof(filename));
/************************************************************************
* Check that the backing store flag works by creating a file, close
* it, and ensure that the file does not exist.
************************************************************************/
/* Make sure it's not present at the start of the test */
if (HDaccess(filename, F_OK) != -1)
if (HDremove(filename) < 0)
FAIL_PUTS_ERROR("unable to remove backing store file");
/* Create and close file w/ backing store off */
if (H5Pset_fapl_core(fapl_id, (size_t)CORE_INCREMENT, false) < 0)
TEST_ERROR;
/* Check that the VFD feature flags are correct.
* Note that the H5FDdriver_query() API call does not require a file
* so backing-store related flags will not be returned here.
*/
if ((driver_id = H5Pget_driver(fapl_id)) < 0)
TEST_ERROR;
if (H5FDdriver_query(driver_id, &driver_flags) < 0)
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_AGGREGATE_METADATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_ACCUMULATE_METADATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_DATA_SIEVE))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_AGGREGATE_SMALLDATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_ALLOW_FILE_IMAGE))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_CAN_USE_FILE_IMAGE_CALLBACKS))
TEST_ERROR;
/* Check for extra flags not accounted for above */
if (driver_flags !=
(H5FD_FEAT_AGGREGATE_METADATA | H5FD_FEAT_ACCUMULATE_METADATA | H5FD_FEAT_DATA_SIEVE |
H5FD_FEAT_AGGREGATE_SMALLDATA | H5FD_FEAT_ALLOW_FILE_IMAGE | H5FD_FEAT_CAN_USE_FILE_IMAGE_CALLBACKS))
TEST_ERROR;
if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) < 0)
TEST_ERROR;
if (H5Fclose(fid) < 0)
TEST_ERROR;
/* Check for the backing store file */
if (HDaccess(filename, F_OK) != -1)
FAIL_PUTS_ERROR("file created when backing store set to false");
/************************************************************************
* Check basic core VFD operation and properties. This is done with the
* backing store on so a file will be created for later use.
************************************************************************/
/* Turn the backing store on */
if (H5Pset_fapl_core(fapl_id, (size_t)CORE_INCREMENT, true) < 0)
TEST_ERROR;
/* Check that write tracking is off by default and that the default
* page size is non-zero.
*/
if (H5Pget_core_write_tracking(fapl_id, &use_write_tracking, &write_tracking_page_size) < 0)
TEST_ERROR;
if (false != use_write_tracking)
FAIL_PUTS_ERROR("write tracking should be off by default");
if (0 == write_tracking_page_size)
FAIL_PUTS_ERROR("write tracking page size should never be zero");
/* Set core VFD properties */
if (H5Pset_core_write_tracking(fapl_id, true, CORE_PAGE_SIZE) < 0)
TEST_ERROR;
/* Create the file */
if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) < 0)
TEST_ERROR;
/* Retrieve the access property list */
if ((fapl_id_out = H5Fget_access_plist(fid)) < 0)
TEST_ERROR;
/* Check that the driver is correct */
if (H5FD_CORE != H5Pget_driver(fapl_id_out))
TEST_ERROR;
/* Get the basic VFD properties from the fapl and ensure that
* they are correct.
*/
if (H5Pget_fapl_core(fapl_id_out, &increment, &backing_store) < 0)
TEST_ERROR;
if (increment != (size_t)CORE_INCREMENT)
FAIL_PUTS_ERROR("incorrect increment from file fapl");
if (backing_store != true)
FAIL_PUTS_ERROR("incorrect backing store flag from file fapl");
/* Check that the backing store write tracking info was saved */
/* TODO: There is a bug where H5Fget_access_plist() does not return
* the write tracking properties. Until this bug is fixed, just
* test the main fapl_id.
*/
if (H5Pget_core_write_tracking(fapl_id, &use_write_tracking, &write_tracking_page_size) < 0)
TEST_ERROR;
if (true != use_write_tracking)
FAIL_PUTS_ERROR("write tracking flag incorrect in fapl obtained from H5Fget_access_plist");
if (CORE_PAGE_SIZE != write_tracking_page_size)
FAIL_PUTS_ERROR("write tracking page size incorrect in fapl obtained from H5Fget_access_plist");
/* Close the property list */
if (H5Pclose(fapl_id_out) < 0)
TEST_ERROR;
/* Check that we can get an operating-system-specific handle from
* the library.
*/
if (H5Fget_vfd_handle(fid, H5P_DEFAULT, &os_file_handle) < 0)
TEST_ERROR;
if (os_file_handle == NULL)
FAIL_PUTS_ERROR("NULL os-specific vfd/file handle was returned from H5Fget_vfd_handle");
/* There is no guarantee the size of metadata in file is constant.
* Just try to check if it's reasonable.
*
* TODO: Needs justification of why is this is a reasonable size.
*/
if (H5Fget_filesize(fid, &file_size) < 0)
TEST_ERROR;
if (file_size < 2 * KB || file_size > 6 * KB)
FAIL_PUTS_ERROR("suspicious file size obtained from H5Fget_filesize");
/* Close the file */
if (H5Fclose(fid) < 0)
TEST_ERROR;
/************************************************************************
* Make changes to the file with the backing store flag OFF to ensure
* that they ARE NOT propagated.
************************************************************************/
/* Open the file with backing store off for read and write.
* Changes won't be saved in file.
*/
if (H5Pset_fapl_core(fapl_id, (size_t)CORE_INCREMENT, false) < 0)
TEST_ERROR;
if ((fid = H5Fopen(filename, H5F_ACC_RDWR, fapl_id)) < 0)
TEST_ERROR;
/* Allocate memory for data set. */
if (NULL == (data_w = (int *)malloc(DSET1_DIM1 * DSET1_DIM2 * sizeof(int))))
FAIL_PUTS_ERROR("unable to allocate memory for input array");
if (NULL == (data_r = (int *)malloc(DSET1_DIM1 * DSET1_DIM2 * sizeof(int))))
FAIL_PUTS_ERROR("unable to allocate memory for output array");
/* Initialize the buffers */
val = 0;
pw = data_w;
for (i = 0; i < CORE_DSET_DIM1; i++)
for (j = 0; j < CORE_DSET_DIM2; j++)
*pw++ = val++;
memset(data_r, 0, DSET1_DIM1 * DSET1_DIM2 * sizeof(int));
/* Create the dataspace */
dims[0] = CORE_DSET_DIM1;
dims[1] = CORE_DSET_DIM2;
if ((sid = H5Screate_simple(2, dims, NULL)) < 0)
TEST_ERROR;
/* Create the dataset */
if ((did = H5Dcreate2(fid, CORE_DSET_NAME, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) <
0)
TEST_ERROR;
/* Write the data to the dataset */
if (H5Dwrite(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_w) < 0)
TEST_ERROR;
/* Close and reopen the dataset */
if (H5Dclose(did) < 0)
TEST_ERROR;
if ((did = H5Dopen2(fid, CORE_DSET_NAME, H5P_DEFAULT)) < 0)
TEST_ERROR;
/* Read the data back from dset1 */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_r) < 0)
TEST_ERROR;
/* Check that the values read are the same as the values written */
pw = data_w;
pr = data_r;
for (i = 0; i < CORE_DSET_DIM1; i++)
for (j = 0; j < CORE_DSET_DIM2; j++)
if (*pr++ != *pw++) {
H5_FAILED();
printf(" Read different values than written in data set.\n");
printf(" At index %d,%d\n", i, j);
TEST_ERROR;
} /* end if */
/* Close everything except the dataspace ID (needed below)*/
if (H5Dclose(did) < 0)
TEST_ERROR;
if (H5Fclose(fid) < 0)
TEST_ERROR;
/* Reopen the file and ensure that the dataset does not exist */
if ((fid = H5Fopen(filename, H5F_ACC_RDWR, fapl_id)) < 0)
TEST_ERROR;
status = H5Lexists(fid, CORE_DSET_NAME, H5P_DEFAULT);
if (status < 0)
TEST_ERROR;
if (status > 0)
FAIL_PUTS_ERROR("core VFD dataset created in file when backing store disabled");
/* Close the file */
if (H5Fclose(fid) < 0)
TEST_ERROR;
/************************************************************************
* Make changes to the file with the backing store flag ON to ensure
* that they ARE propagated.
************************************************************************/
/* Open the file with backing store on for read and write.
* Changes will be saved in file.
*/
if (H5Pset_fapl_core(fapl_id, (size_t)CORE_INCREMENT, true) < 0)
TEST_ERROR;
if ((fid = H5Fopen(filename, H5F_ACC_RDWR, fapl_id)) < 0)
TEST_ERROR;
/* Create the dataset */
if ((did = H5Dcreate2(fid, CORE_DSET_NAME, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) <
0)
TEST_ERROR;
/* Write the data to the dataset */
if (H5Dwrite(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_w) < 0)
TEST_ERROR;
/* Close everything and reopen */
if (H5Dclose(did) < 0)
TEST_ERROR;
if (H5Fclose(fid) < 0)
TEST_ERROR;
if ((fid = H5Fopen(filename, H5F_ACC_RDWR, fapl_id)) < 0)
TEST_ERROR;
if ((did = H5Dopen2(fid, CORE_DSET_NAME, H5P_DEFAULT)) < 0)
TEST_ERROR;
/* Read the data back from the dataset */
memset(data_r, 0, DSET1_DIM1 * DSET1_DIM2 * sizeof(int));
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_r) < 0)
TEST_ERROR;
/* Check that the values read are the same as the values written */
pw = data_w;
pr = data_r;
for (i = 0; i < CORE_DSET_DIM1; i++)
for (j = 0; j < CORE_DSET_DIM2; j++)
if (*pw++ != *pr++) {
H5_FAILED();
printf(" Read different values than written in data set.\n");
printf(" At index %d,%d\n", i, j);
TEST_ERROR;
} /* end if */
/* Check file size API.
* There is no guarantee the size of metadata in file is constant.
* Just try to check if it's reasonable.
*
* TODO: Needs justification of why is this is a reasonable size.
*/
if (H5Fget_filesize(fid, &file_size) < 0)
TEST_ERROR;
if (file_size < 64 * KB || file_size > 256 * KB)
FAIL_PUTS_ERROR("suspicious file size obtained from H5Fget_filesize");
/* Close everything */
if (H5Sclose(sid) < 0)
TEST_ERROR;
if (H5Dclose(did) < 0)
TEST_ERROR;
free(data_w);
free(data_r);
/* Close and delete the file */
if (H5Fclose(fid) < 0)
TEST_ERROR;
h5_delete_test_file(FILENAME[1], fapl_id);
/************************************************************************
* Check that delete behavior works correctly
************************************************************************/
/* Create and close a file */
if (H5Pset_fapl_core(fapl_id, (size_t)CORE_INCREMENT, true) < 0)
TEST_ERROR;
if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) < 0)
TEST_ERROR;
if (H5Fclose(fid) < 0)
TEST_ERROR;
/* Try to delete the file with the backing store off (shouldn't delete anything) */
if (H5Pset_fapl_core(fapl_id, (size_t)CORE_INCREMENT, false) < 0)
TEST_ERROR;
if (H5Fdelete(filename, fapl_id) < 0)
TEST_ERROR;
if (-1 == HDaccess(filename, F_OK))
FAIL_PUTS_ERROR("file deleted when backing store set to false");
/* Try to delete the file with the backing store on (should work) */
if (H5Pset_fapl_core(fapl_id, (size_t)CORE_INCREMENT, true) < 0)
TEST_ERROR;
if (H5Fdelete(filename, fapl_id) < 0)
TEST_ERROR;
if (0 == HDaccess(filename, F_OK))
FAIL_PUTS_ERROR("file not deleted when backing store set to true");
/************************************************************************
* Clean up
************************************************************************/
/* Close the fapl */
if (H5Pclose(fapl_id) < 0)
TEST_ERROR;
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Sclose(sid);
H5Dclose(did);
H5Pclose(fapl_id_out);
H5Pclose(fapl_id);
H5Fclose(fid);
}
H5E_END_TRY
if (data_w)
free(data_w);
if (data_r)
free(data_r);
return -1;
} /* end test_core() */
/*-------------------------------------------------------------------------
* Function: test_direct
*
* Purpose: Tests the file handle interface for DIRECT I/O driver
*
* Return: Success: 0
* Failure: -1
*
*-------------------------------------------------------------------------
*/
static herr_t
test_direct(void)
{
#ifdef H5_HAVE_DIRECT
hid_t file = H5I_INVALID_HID, fapl = H5I_INVALID_HID, access_fapl = H5I_INVALID_HID;
hid_t dset1 = H5I_INVALID_HID, dset2 = H5I_INVALID_HID, space1 = H5I_INVALID_HID,
space2 = H5I_INVALID_HID;
char filename[1024];
int *fhandle = NULL;
hsize_t file_size;
hsize_t dims1[2], dims2[1];
size_t mbound;
size_t fbsize;
size_t cbsize;
void *proto_points = NULL, *proto_check = NULL;
int *points = NULL, *check = NULL, *p1 = NULL, *p2 = NULL;
int wdata2[DSET2_DIM] = {11, 12, 13, 14};
int rdata2[DSET2_DIM];
int i, j, n;
#endif /*H5_HAVE_DIRECT*/
TESTING("DIRECT I/O file driver");
#ifndef H5_HAVE_DIRECT
SKIPPED();
return 0;
#else /*H5_HAVE_DIRECT*/
/* Set property list and file name for Direct driver. Set memory alignment boundary
* and file block size to 512 which is the minimum for Linux 2.6. */
if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
if (H5Pset_fapl_direct(fapl, MBOUNDARY, FBSIZE, CBSIZE) < 0)
TEST_ERROR;
h5_fixname(FILENAME[5], fapl, filename, sizeof filename);
/* Verify the file access properties */
if (H5Pget_fapl_direct(fapl, &mbound, &fbsize, &cbsize) < 0)
TEST_ERROR;
if (mbound != MBOUNDARY || fbsize != FBSIZE || cbsize != CBSIZE)
TEST_ERROR;
if (H5Pset_alignment(fapl, (hsize_t)THRESHOLD, (hsize_t)FBSIZE) < 0)
TEST_ERROR;
H5E_BEGIN_TRY
{
file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
}
H5E_END_TRY
if (file < 0) {
H5Pclose(fapl);
SKIPPED();
printf(" Probably the file system doesn't support Direct I/O\n");
return 0;
}
/* Retrieve the access property list... */
if ((access_fapl = H5Fget_access_plist(file)) < 0)
TEST_ERROR;
/* Check that the driver is correct */
if (H5FD_DIRECT != H5Pget_driver(access_fapl))
TEST_ERROR;
/* ...and close the property list */
if (H5Pclose(access_fapl) < 0)
TEST_ERROR;
/* Check file handle API */
if (H5Fget_vfd_handle(file, H5P_DEFAULT, (void **)&fhandle) < 0)
TEST_ERROR;
if (*fhandle < 0)
TEST_ERROR;
/* Check file size API */
if (H5Fget_filesize(file, &file_size) < 0)
TEST_ERROR;
/* There is no guarantee of the number of metadata allocations, but it's
* 4 currently and the size of the file should be between 3 & 4 file buffer
* sizes..
*/
if (file_size < (FBSIZE * 3) || file_size >= (FBSIZE * 4))
TEST_ERROR;
/* Allocate aligned memory for data set 1. For data set 1, everything is aligned including
* memory address, size of data, and file address. */
if (0 != posix_memalign(&proto_points, (size_t)FBSIZE, (size_t)(DSET1_DIM1 * DSET1_DIM2 * sizeof(int))))
TEST_ERROR;
points = proto_points;
if (0 != posix_memalign(&proto_check, (size_t)FBSIZE, (size_t)(DSET1_DIM1 * DSET1_DIM2 * sizeof(int))))
TEST_ERROR;
check = proto_check;
/* Initialize the dset1 */
p1 = points;
for (i = n = 0; i < DSET1_DIM1; i++)
for (j = 0; j < DSET1_DIM2; j++)
*p1++ = n++;
/* Create the data space1 */
dims1[0] = DSET1_DIM1;
dims1[1] = DSET1_DIM2;
if ((space1 = H5Screate_simple(2, dims1, NULL)) < 0)
TEST_ERROR;
/* Create the dset1 */
if ((dset1 =
H5Dcreate2(file, DSET1_NAME, H5T_NATIVE_INT, space1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0)
TEST_ERROR;
/* Write the data to the dset1 */
if (H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, points) < 0)
TEST_ERROR;
if (H5Dclose(dset1) < 0)
TEST_ERROR;
if ((dset1 = H5Dopen2(file, DSET1_NAME, H5P_DEFAULT)) < 0)
TEST_ERROR;
/* Read the data back from dset1 */
if (H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, check) < 0)
TEST_ERROR;
/* Check that the values read are the same as the values written */
p1 = points;
p2 = check;
for (i = 0; i < DSET1_DIM1; i++)
for (j = 0; j < DSET1_DIM2; j++)
if (*p1++ != *p2++) {
H5_FAILED();
printf(" Read different values than written in data set 1.\n");
printf(" At index %d,%d\n", i, j);
TEST_ERROR;
} /* end if */
/* Create the data space2. For data set 2, memory address and data size are not aligned. */
dims2[0] = DSET2_DIM;
if ((space2 = H5Screate_simple(1, dims2, NULL)) < 0)
TEST_ERROR;
/* Create the dset2 */
if ((dset2 =
H5Dcreate2(file, DSET2_NAME, H5T_NATIVE_INT, space2, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0)
TEST_ERROR;
/* Write the data to the dset1 */
if (H5Dwrite(dset2, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wdata2) < 0)
TEST_ERROR;
if (H5Dclose(dset2) < 0)
TEST_ERROR;
if ((dset2 = H5Dopen2(file, DSET2_NAME, H5P_DEFAULT)) < 0)
TEST_ERROR;
/* Read the data back from dset1 */
if (H5Dread(dset2, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata2) < 0)
TEST_ERROR;
/* Check that the values read are the same as the values written */
for (i = 0; i < DSET2_DIM; i++)
if (wdata2[i] != rdata2[i]) {
H5_FAILED();
printf(" Read different values than written in data set 2.\n");
printf(" At index %d\n", i);
TEST_ERROR;
} /* end if */
if (H5Sclose(space1) < 0)
TEST_ERROR;
if (H5Dclose(dset1) < 0)
TEST_ERROR;
if (H5Sclose(space2) < 0)
TEST_ERROR;
if (H5Dclose(dset2) < 0)
TEST_ERROR;
free(points);
free(check);
/* Close and delete the file */
if (H5Fclose(file) < 0)
TEST_ERROR;
h5_delete_test_file(FILENAME[5], fapl);
/* Close the fapl */
if (H5Pclose(fapl) < 0)
TEST_ERROR;
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Pclose(fapl);
H5Sclose(space1);
H5Dclose(dset1);
H5Sclose(space2);
H5Dclose(dset2);
H5Fclose(file);
}
H5E_END_TRY
if (proto_points)
free(proto_points);
if (proto_check)
free(proto_check);
return -1;
#endif /*H5_HAVE_DIRECT*/
}
/*-------------------------------------------------------------------------
* Function: test_family_opens
*
* Purpose: Private function for test_family() to tests wrong ways of
* reopening family file.
*
* Return: Success: 0
* Failure: -1
*
*-------------------------------------------------------------------------
*/
/* Disable warning for "format not a string literal" here -QAK */
/*
* This pragma only needs to surround the snprintf() calls with
* 'first_name' in the code below, but early (4.4.7, at least) gcc only
* allows diagnostic pragmas to be toggled outside of functions.
*/
H5_GCC_CLANG_DIAG_OFF("format-nonliteral")
static herr_t
test_family_opens(char *fname, hid_t fa_pl)
{
hid_t file = H5I_INVALID_HID;
char first_name[1024];
char wrong_name[1024];
int i;
/* Case 1: reopen file with 1st member file name and default property list */
snprintf(first_name, sizeof(first_name), fname, 0);
H5E_BEGIN_TRY
{
file = H5Fopen(first_name, H5F_ACC_RDWR, H5P_DEFAULT);
}
H5E_END_TRY
if (file >= 0)
TEST_ERROR;
/* Case 2: reopen file with correct name template but default property list */
H5E_BEGIN_TRY
{
file = H5Fopen(fname, H5F_ACC_RDWR, H5P_DEFAULT);
}
H5E_END_TRY
if (file >= 0)
TEST_ERROR;
/* Case 3: reopen file with wrong member size */
if (H5Pset_fapl_family(fa_pl, (hsize_t)128, H5P_DEFAULT) < 0)
TEST_ERROR;
H5E_BEGIN_TRY
{
file = H5Fopen(fname, H5F_ACC_RDWR, fa_pl);
}
H5E_END_TRY
if (file >= 0)
TEST_ERROR;
/* Case 4: reopen file with wrong name template */
strcpy(wrong_name, fname);
for (i = 0; i < 1024; i++)
if (wrong_name[i] == '5') {
wrong_name[i] = '4';
break;
}
if (H5Pset_fapl_family(fa_pl, (hsize_t)FAMILY_SIZE, H5P_DEFAULT) < 0)
TEST_ERROR;
H5E_BEGIN_TRY
{
file = H5Fopen(wrong_name, H5F_ACC_RDWR, fa_pl);
}
H5E_END_TRY
if (file >= 0)
TEST_ERROR;
return 0;
error:
return -1;
} /* end test_family_opens() */
H5_GCC_CLANG_DIAG_ON("format-nonliteral")
/*-------------------------------------------------------------------------
* Function: test_family
*
* Purpose: Tests the file handle interface for FAMILY driver
*
* Return: SUCCEED/FAIL
*
*-------------------------------------------------------------------------
*/
static herr_t
test_family(void)
{
hid_t file = H5I_INVALID_HID, fapl = H5I_INVALID_HID, fapl2 = H5I_INVALID_HID, space = H5I_INVALID_HID,
dset = H5I_INVALID_HID;
hid_t access_fapl = H5I_INVALID_HID;
hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */
unsigned long driver_flags = 0; /* VFD feature flags */
char filename[1024];
char dname[] = "dataset";
unsigned int i, j;
int *fhandle = NULL, *fhandle2 = NULL;
int **buf = NULL;
int *buf_data = NULL;
hsize_t dims[2] = {FAMILY_NUMBER, FAMILY_SIZE};
hsize_t file_size;
TESTING("FAMILY file driver");
/* Set up data array */
if (NULL == (buf_data = (int *)calloc(FAMILY_NUMBER * FAMILY_SIZE, sizeof(int))))
TEST_ERROR;
if (NULL == (buf = (int **)calloc(FAMILY_NUMBER, sizeof(buf_data))))
TEST_ERROR;
for (i = 0; i < FAMILY_NUMBER; i++)
buf[i] = buf_data + (i * FAMILY_SIZE);
/* Set property list and file name for FAMILY driver */
if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
if (H5Pset_fapl_family(fapl, (hsize_t)FAMILY_SIZE, H5P_DEFAULT) < 0)
TEST_ERROR;
h5_fixname(FILENAME[2], fapl, filename, sizeof(filename));
/* Check that the VFD feature flags are correct */
if ((driver_id = H5Pget_driver(fapl)) < 0)
TEST_ERROR;
if (H5FDdriver_query(driver_id, &driver_flags) < 0)
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_AGGREGATE_METADATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_ACCUMULATE_METADATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_DATA_SIEVE))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_AGGREGATE_SMALLDATA))
TEST_ERROR;
/* Check for extra flags not accounted for above */
if (driver_flags != (H5FD_FEAT_AGGREGATE_METADATA | H5FD_FEAT_ACCUMULATE_METADATA | H5FD_FEAT_DATA_SIEVE |
H5FD_FEAT_AGGREGATE_SMALLDATA))
TEST_ERROR;
if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0)
TEST_ERROR;
if (H5Fclose(file) < 0)
TEST_ERROR;
/* Test different wrong ways to reopen family files where there's only
* one member file existing. */
if (test_family_opens(filename, fapl) < 0)
TEST_ERROR;
/* Reopen the file with default member file size */
if (H5Pset_fapl_family(fapl, (hsize_t)H5F_FAMILY_DEFAULT, H5P_DEFAULT) < 0)
TEST_ERROR;
if ((file = H5Fopen(filename, H5F_ACC_RDWR, fapl)) < 0)
TEST_ERROR;
/* Check file size API */
if (H5Fget_filesize(file, &file_size) < 0)
TEST_ERROR;
/* The file size is supposed to be about 800 bytes right now. */
if (file_size < (KB / 2) || file_size > KB)
TEST_ERROR;
/* Create and write dataset */
if ((space = H5Screate_simple(2, dims, NULL)) < 0)
TEST_ERROR;
/* Retrieve the access property list... */
if ((access_fapl = H5Fget_access_plist(file)) < 0)
TEST_ERROR;
/* Check that the driver is correct */
if (H5FD_FAMILY != H5Pget_driver(access_fapl))
TEST_ERROR;
/* ...and close the property list */
if (H5Pclose(access_fapl) < 0)
TEST_ERROR;
if ((dset = H5Dcreate2(file, dname, H5T_NATIVE_INT, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0)
TEST_ERROR;
for (i = 0; i < FAMILY_NUMBER; i++)
for (j = 0; j < FAMILY_SIZE; j++)
buf[i][j] = (int)((i * 10000) + j);
if (H5Dwrite(dset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_data) < 0)
TEST_ERROR;
/* check file handle API */
if ((fapl2 = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
if (H5Pset_family_offset(fapl2, (hsize_t)0) < 0)
TEST_ERROR;
if (H5Fget_vfd_handle(file, fapl2, (void **)&fhandle) < 0)
TEST_ERROR;
if (*fhandle < 0)
TEST_ERROR;
if (H5Pset_family_offset(fapl2, (hsize_t)(FAMILY_SIZE * 2)) < 0)
TEST_ERROR;
if (H5Fget_vfd_handle(file, fapl2, (void **)&fhandle2) < 0)
TEST_ERROR;
if (*fhandle2 < 0)
TEST_ERROR;
/* Check file size API */
if (H5Fget_filesize(file, &file_size) < 0)
TEST_ERROR;
/* Some data has been written. The file size should be bigger (18KB+976)
* bytes if int size is 4 bytes) now. */
#if H5_SIZEOF_INT <= 4
if (file_size < (18 * KB) || file_size > (20 * KB))
TEST_ERROR;
#elif H5_SIZEOF_INT >= 8
if (file_size < (32 * KB) || file_size > (40 * KB))
TEST_ERROR;
#endif
if (H5Sclose(space) < 0)
TEST_ERROR;
if (H5Dclose(dset) < 0)
TEST_ERROR;
if (H5Pclose(fapl2) < 0)
TEST_ERROR;
if (H5Fclose(file) < 0)
TEST_ERROR;
/* Test different wrong ways to reopen family files when there're multiple
* member files existing. */
if (test_family_opens(filename, fapl) < 0)
TEST_ERROR;
/* Reopen the file with correct member file size. */
if (H5Pset_fapl_family(fapl, (hsize_t)FAMILY_SIZE, H5P_DEFAULT) < 0)
TEST_ERROR;
if ((file = H5Fopen(filename, H5F_ACC_RDWR, fapl)) < 0)
TEST_ERROR;
/* Close and delete the file */
if (H5Fclose(file) < 0)
TEST_ERROR;
h5_delete_test_file(FILENAME[2], fapl);
/* Close the fapl */
if (H5Pclose(fapl) < 0)
TEST_ERROR;
free(buf);
free(buf_data);
PASSED();
return SUCCEED;
error:
H5E_BEGIN_TRY
{
H5Sclose(space);
H5Dclose(dset);
H5Pclose(fapl);
H5Pclose(fapl2);
H5Fclose(file);
}
H5E_END_TRY
free(buf);
free(buf_data);
return FAIL;
} /* end test_family() */
/*-------------------------------------------------------------------------
* Function: test_family_compat
*
* Purpose: Tests the backward compatibility for FAMILY driver.
* See if we can open files created with v1.6 library.
* The source file was created by the test/file_handle.c
* of the v1.6 library. Then tools/misc/h5repart.c was
* used to concatenated. The command was "h5repart -m 5k
* family_file%05d.h5 family_v16_%05d.h5".
*
* Return: Success: 0
* Failure: -1
*
*-------------------------------------------------------------------------
*/
/* Disable warning for "format not a string literal" here -QAK */
/*
* This pragma only needs to surround the snprintf() calls with
* 'newname_individual', etc. in the code below, but early (4.4.7, at least) gcc only
* allows diagnostic pragmas to be toggled outside of functions.
*/
H5_GCC_CLANG_DIAG_OFF("format-nonliteral")
static herr_t
test_family_compat(void)
{
hid_t file = H5I_INVALID_HID, fapl = H5I_INVALID_HID;
hid_t dset = H5I_INVALID_HID;
char dname[] = "dataset";
char filename[1024];
char pathname[1024], pathname_individual[1024];
char newname[1024], newname_individual[1024];
int counter = 0;
TESTING("FAMILY file driver backward compatibility");
/* Set property list and file name for FAMILY driver */
if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
if (H5Pset_fapl_family(fapl, (hsize_t)FAMILY_SIZE2, H5P_DEFAULT) < 0)
TEST_ERROR;
h5_fixname(COMPAT_BASENAME, fapl, filename, sizeof(filename));
h5_fixname(FILENAME[3], fapl, newname, sizeof(newname));
pathname[0] = '\0';
strcat(pathname, filename);
/* The following code makes the copies of the family files in the source directory.
* Since we're going to open the files with write mode, this protects the original
* files.
*/
snprintf(newname_individual, sizeof(newname_individual), newname, counter);
snprintf(pathname_individual, sizeof(pathname_individual), pathname, counter);
while (h5_make_local_copy(pathname_individual, newname_individual) >= 0) {
counter++;
snprintf(newname_individual, sizeof(newname_individual), newname, counter);
snprintf(pathname_individual, sizeof(pathname_individual), pathname, counter);
} /* end while */
/* Make sure we can open the file. Use the read and write mode to flush the
* superblock. */
if ((file = H5Fopen(newname, H5F_ACC_RDWR, fapl)) < 0)
TEST_ERROR;
if ((dset = H5Dopen2(file, dname, H5P_DEFAULT)) < 0)
TEST_ERROR;
if (H5Dclose(dset) < 0)
TEST_ERROR;
if (H5Fclose(file) < 0)
TEST_ERROR;
/* Open the file again to make sure it isn't corrupted. */
if ((file = H5Fopen(newname, H5F_ACC_RDWR, fapl)) < 0)
TEST_ERROR;
if ((dset = H5Dopen2(file, dname, H5P_DEFAULT)) < 0)
TEST_ERROR;
if (H5Dclose(dset) < 0)
TEST_ERROR;
/* Close and delete the file */
if (H5Fclose(file) < 0)
TEST_ERROR;
h5_delete_test_file(FILENAME[3], fapl);
/* Close the fapl */
if (H5Pclose(fapl) < 0)
TEST_ERROR;
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Fclose(file);
H5Pclose(fapl);
}
H5E_END_TRY
return -1;
} /* end test_family_compat() */
H5_GCC_CLANG_DIAG_ON("format-nonliteral")
/*-------------------------------------------------------------------------
* Function: test_family_member_fapl
*
* Purpose: Actually use the member fapl input to the member vfd.
*
* Return: SUCCEED/FAIL
*
*-------------------------------------------------------------------------
*/
static herr_t
test_family_member_fapl(void)
{
hid_t file = H5I_INVALID_HID;
hid_t fapl_id = H5I_INVALID_HID;
hid_t memb_fapl_id = H5I_INVALID_HID;
hid_t space = H5I_INVALID_HID;
hid_t dset = H5I_INVALID_HID;
char filename[1024];
char dname[] = "dataset";
unsigned i = 0;
unsigned j = 0;
int **buf = NULL;
int *buf_data = NULL;
hsize_t dims[2] = {FAMILY_NUMBER, FAMILY_SIZE};
TESTING("Family member FAPL");
/* Set up data array */
if (NULL == (buf_data = (int *)calloc(FAMILY_NUMBER * FAMILY_SIZE, sizeof(int))))
TEST_ERROR;
if (NULL == (buf = (int **)calloc(FAMILY_NUMBER, sizeof(buf_data))))
TEST_ERROR;
for (i = 0; i < FAMILY_NUMBER; i++)
buf[i] = buf_data + (i * FAMILY_SIZE);
if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) == H5I_INVALID_HID)
TEST_ERROR;
if ((memb_fapl_id = H5Pcreate(H5P_FILE_ACCESS)) == H5I_INVALID_HID)
TEST_ERROR;
if (H5Pset_fapl_sec2(memb_fapl_id) == FAIL)
TEST_ERROR;
if (H5Pset_fapl_family(fapl_id, (hsize_t)FAMILY_SIZE, memb_fapl_id) == FAIL)
TEST_ERROR;
h5_fixname(FILENAME[2], fapl_id, filename, sizeof(filename));
if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) == H5I_INVALID_HID)
TEST_ERROR;
if ((space = H5Screate_simple(2, dims, NULL)) == H5I_INVALID_HID)
TEST_ERROR;
/* Create and write to dataset, then close file.
*/
if ((dset = H5Dcreate2(file, dname, H5T_NATIVE_INT, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) ==
H5I_INVALID_HID)
TEST_ERROR;
for (i = 0; i < FAMILY_NUMBER; i++) {
for (j = 0; j < FAMILY_SIZE; j++) {
buf[i][j] = (int)((i * 10000) + j);
}
}
if (H5Dwrite(dset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_data) == FAIL)
TEST_ERROR;
if (H5Dclose(dset) == FAIL)
TEST_ERROR;
if (H5Sclose(space) == FAIL)
TEST_ERROR;
if (H5Fclose(file) == FAIL)
TEST_ERROR;
/* "Close" member FAPL at top level and re-open file.
* Should succeed, with library managing reference count properly
*/
if (H5Pclose(memb_fapl_id) == FAIL)
TEST_ERROR;
if ((file = H5Fopen(filename, H5F_ACC_RDWR, fapl_id)) == H5I_INVALID_HID)
TEST_ERROR;
if (H5Fclose(file) == FAIL)
TEST_ERROR;
h5_delete_test_file(FILENAME[2], fapl_id);
if (H5Pclose(fapl_id) == FAIL)
TEST_ERROR;
free(buf);
free(buf_data);
PASSED();
return SUCCEED;
error:
H5E_BEGIN_TRY
{
H5Sclose(space);
H5Dclose(dset);
H5Pclose(memb_fapl_id);
H5Pclose(fapl_id);
H5Fclose(file);
}
H5E_END_TRY
free(buf);
free(buf_data);
return FAIL;
} /* end test_family_member_fapl() */
/*-------------------------------------------------------------------------
* Function: test_multi_opens
*
* Purpose: Private function for test_multi() to tests wrong ways of
* reopening multi file.
*
* Return: SUCCEED/FAIL
*
*-------------------------------------------------------------------------
*/
/* Disable warning for "format not a string literal" here -QAK */
/*
* This pragma only needs to surround the snprintf() calls with
* 'sf_name' in the code below, but early (4.4.7, at least) gcc only
* allows diagnostic pragmas to be toggled outside of functions.
*/
H5_GCC_CLANG_DIAG_OFF("format-nonliteral")
static herr_t
test_multi_opens(char *fname)
{
hid_t fid = H5I_INVALID_HID;
char super_name[1024]; /*name string "%%s-s.h5"*/
char sf_name[1024]; /*name string "multi_file-s.h5"*/
/* Case: reopen with the name of super file and default property list */
snprintf(super_name, sizeof(super_name), "%%s-%c.h5", 's');
snprintf(sf_name, sizeof(sf_name), super_name, fname);
H5E_BEGIN_TRY
{
fid = H5Fopen(sf_name, H5F_ACC_RDWR, H5P_DEFAULT);
}
H5E_END_TRY
return (fid >= 0 ? FAIL : SUCCEED);
} /* end test_multi_opens() */
H5_GCC_CLANG_DIAG_ON("format-nonliteral")
/*-------------------------------------------------------------------------
* Function: test_multi
*
* Purpose: Tests the file handle interface for MULTI driver
*
* Return: SUCCEED/FAIL
*
*-------------------------------------------------------------------------
*/
static herr_t
test_multi(void)
{
hid_t file = H5I_INVALID_HID, fapl = H5I_INVALID_HID, fapl2 = H5I_INVALID_HID, dset = H5I_INVALID_HID,
space = H5I_INVALID_HID;
hid_t root = H5I_INVALID_HID, attr = H5I_INVALID_HID, aspace = H5I_INVALID_HID, atype = H5I_INVALID_HID;
hid_t access_fapl = H5I_INVALID_HID;
hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */
unsigned long driver_flags = 0; /* VFD feature flags */
char filename[1024];
int *fhandle2 = NULL, *fhandle = NULL;
hsize_t file_size;
H5FD_mem_t mt, memb_map[H5FD_MEM_NTYPES];
hid_t memb_fapl[H5FD_MEM_NTYPES];
haddr_t memb_addr[H5FD_MEM_NTYPES];
const char *memb_name[H5FD_MEM_NTYPES];
char sv[H5FD_MEM_NTYPES][32];
hsize_t dims[2] = {MULTI_SIZE, MULTI_SIZE};
hsize_t adims[1] = {1};
char dname[] = "dataset";
char meta[] = "this is some metadata on this file";
int i, j;
int **buf = NULL;
int *buf_data = NULL;
TESTING("MULTI file driver");
/* Set up data array */
if (NULL == (buf_data = (int *)calloc(MULTI_SIZE * MULTI_SIZE, sizeof(int))))
TEST_ERROR;
if (NULL == (buf = (int **)calloc(MULTI_SIZE, sizeof(buf_data))))
TEST_ERROR;
for (i = 0; i < MULTI_SIZE; i++)
buf[i] = buf_data + (i * MULTI_SIZE);
/* Set file access property list for MULTI driver */
if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
memset(memb_map, 0, sizeof(memb_map));
memset(memb_fapl, 0, sizeof(memb_fapl));
memset(memb_name, 0, sizeof(memb_name));
memset(memb_addr, 0, sizeof(memb_addr));
memset(sv, 0, sizeof(sv));
for (mt = H5FD_MEM_DEFAULT; mt < H5FD_MEM_NTYPES; mt++) {
memb_fapl[mt] = H5P_DEFAULT;
memb_map[mt] = H5FD_MEM_SUPER;
}
memb_map[H5FD_MEM_DRAW] = H5FD_MEM_DRAW;
memb_map[H5FD_MEM_BTREE] = H5FD_MEM_BTREE;
memb_map[H5FD_MEM_GHEAP] = H5FD_MEM_GHEAP;
snprintf(sv[H5FD_MEM_SUPER], 32, "%%s-%c.h5", 's');
memb_name[H5FD_MEM_SUPER] = sv[H5FD_MEM_SUPER];
memb_addr[H5FD_MEM_SUPER] = 0;
snprintf(sv[H5FD_MEM_BTREE], 32, "%%s-%c.h5", 'b');
memb_name[H5FD_MEM_BTREE] = sv[H5FD_MEM_BTREE];
memb_addr[H5FD_MEM_BTREE] = HADDR_MAX / 4;
snprintf(sv[H5FD_MEM_DRAW], 32, "%%s-%c.h5", 'r');
memb_name[H5FD_MEM_DRAW] = sv[H5FD_MEM_DRAW];
memb_addr[H5FD_MEM_DRAW] = HADDR_MAX / 2;
snprintf(sv[H5FD_MEM_GHEAP], 32, "%%s-%c.h5", 'g');
memb_name[H5FD_MEM_GHEAP] = sv[H5FD_MEM_GHEAP];
memb_addr[H5FD_MEM_GHEAP] = (HADDR_MAX / 4) * 3;
if (H5Pset_fapl_multi(fapl, memb_map, memb_fapl, memb_name, memb_addr, true) < 0)
TEST_ERROR;
h5_fixname(FILENAME[4], fapl, filename, sizeof filename);
/* Check that the VFD feature flags are correct */
if ((driver_id = H5Pget_driver(fapl)) < 0)
TEST_ERROR;
if (H5FDdriver_query(driver_id, &driver_flags) < 0)
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_DATA_SIEVE))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_AGGREGATE_SMALLDATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_USE_ALLOC_SIZE))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_PAGED_AGGR))
TEST_ERROR;
/* Check for extra flags not accounted for above */
if (driver_flags != (H5FD_FEAT_DATA_SIEVE | H5FD_FEAT_AGGREGATE_SMALLDATA | H5FD_FEAT_USE_ALLOC_SIZE |
H5FD_FEAT_PAGED_AGGR))
TEST_ERROR;
if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0)
TEST_ERROR;
if (H5Fclose(file) < 0)
TEST_ERROR;
/* Test wrong ways to reopen multi files */
if (test_multi_opens(filename) < 0)
TEST_ERROR;
/* Reopen the file */
if ((file = H5Fopen(filename, H5F_ACC_RDWR, fapl)) < 0)
TEST_ERROR;
/* Create and write data set */
if ((space = H5Screate_simple(2, dims, NULL)) < 0)
TEST_ERROR;
/* Retrieve the access property list... */
if ((access_fapl = H5Fget_access_plist(file)) < 0)
TEST_ERROR;
/* Check that the driver is correct */
if (H5FD_MULTI != H5Pget_driver(access_fapl))
TEST_ERROR;
/* ...and close the property list */
if (H5Pclose(access_fapl) < 0)
TEST_ERROR;
/* Check file size API */
if (H5Fget_filesize(file, &file_size) < 0)
TEST_ERROR;
/* Before any data is written, the raw data file is empty. So
* the file size is only the size of b-tree + HADDR_MAX/4.
*/
if (file_size < HADDR_MAX / 4 || file_size > HADDR_MAX / 2)
TEST_ERROR;
if ((dset = H5Dcreate2(file, dname, H5T_NATIVE_INT, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0)
TEST_ERROR;
for (i = 0; i < MULTI_SIZE; i++)
for (j = 0; j < MULTI_SIZE; j++)
buf[i][j] = i * 10000 + j;
if (H5Dwrite(dset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_data) < 0)
TEST_ERROR;
if ((fapl2 = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
if (H5Pset_multi_type(fapl2, H5FD_MEM_SUPER) < 0)
TEST_ERROR;
if (H5Fget_vfd_handle(file, fapl2, (void **)&fhandle) < 0)
TEST_ERROR;
if (*fhandle < 0)
TEST_ERROR;
if (H5Pset_multi_type(fapl2, H5FD_MEM_DRAW) < 0)
TEST_ERROR;
if (H5Fget_vfd_handle(file, fapl2, (void **)&fhandle2) < 0)
TEST_ERROR;
if (*fhandle2 < 0)
TEST_ERROR;
/* Check file size API */
if (H5Fget_filesize(file, &file_size) < 0)
TEST_ERROR;
/* After the data is written, the file size is huge because the
* beginning of raw data file is set at HADDR_MAX/2. It's supposed
* to be (HADDR_MAX/2 + 128*128*4)
*/
if (file_size < HADDR_MAX / 2 || file_size > HADDR_MAX)
TEST_ERROR;
if (H5Sclose(space) < 0)
TEST_ERROR;
if (H5Dclose(dset) < 0)
TEST_ERROR;
if (H5Pclose(fapl2) < 0)
TEST_ERROR;
/* Create and write attribute for the root group. */
if ((root = H5Gopen2(file, "/", H5P_DEFAULT)) < 0)
TEST_ERROR;
/* Attribute string. */
if ((atype = H5Tcopy(H5T_C_S1)) < 0)
TEST_ERROR;
if (H5Tset_size(atype, strlen(meta) + 1) < 0)
TEST_ERROR;
if (H5Tset_strpad(atype, H5T_STR_NULLTERM) < 0)
TEST_ERROR;
/* Create and write attribute */
if ((aspace = H5Screate_simple(1, adims, NULL)) < 0)
TEST_ERROR;
if ((attr = H5Acreate2(root, "Metadata", atype, aspace, H5P_DEFAULT, H5P_DEFAULT)) < 0)
TEST_ERROR;
if (H5Awrite(attr, atype, meta) < 0)
TEST_ERROR;
/* Close IDs */
if (H5Tclose(atype) < 0)
TEST_ERROR;
if (H5Sclose(aspace) < 0)
TEST_ERROR;
if (H5Aclose(attr) < 0)
TEST_ERROR;
/* Close and delete the file */
if (H5Fclose(file) < 0)
TEST_ERROR;
h5_delete_test_file(FILENAME[4], fapl);
/* Close the fapl */
if (H5Pclose(fapl) < 0)
TEST_ERROR;
free(buf);
free(buf_data);
PASSED();
return SUCCEED;
error:
H5E_BEGIN_TRY
{
H5Sclose(space);
H5Dclose(dset);
H5Pclose(fapl);
H5Pclose(fapl2);
H5Fclose(file);
H5Aclose(attr);
}
H5E_END_TRY
free(buf);
free(buf_data);
return FAIL;
} /* end test_multi() */
/*-------------------------------------------------------------------------
* Function: test_multi_compat
*
* Purpose: Tests the backward compatibility for MULTI driver.
* See if we can open files created with v1.6 library.
* The source file was created by the test/file_handle.c
* of the v1.6 library. This test verifies the fix for
* Issue 2598. In v1.6 library, there was EOA for the whole
* MULTI file saved in the super block. We took it out in
* v1.8 library because it's meaningless for the MULTI file.
* v1.8 library saves the EOA for the metadata file, instead.
*
* Return: Success: 0
* Failure: -1
*
*-------------------------------------------------------------------------
*/
static herr_t
test_multi_compat(void)
{
hid_t file = H5I_INVALID_HID, fapl = H5I_INVALID_HID, dset = H5I_INVALID_HID, space = H5I_INVALID_HID;
char newname[1024];
char filename_s[1024], newname_s[1024];
char filename_r[1024], newname_r[1024];
H5FD_mem_t mt, memb_map[H5FD_MEM_NTYPES];
hid_t memb_fapl[H5FD_MEM_NTYPES];
haddr_t memb_addr[H5FD_MEM_NTYPES];
const char *memb_name[H5FD_MEM_NTYPES];
char sv[H5FD_MEM_NTYPES][32];
hsize_t dims[2] = {MULTI_SIZE, MULTI_SIZE};
int i, j;
int **buf = NULL;
int *buf_data = NULL;
TESTING("MULTI file driver backward compatibility");
/* Set up data array */
if (NULL == (buf_data = (int *)calloc(MULTI_SIZE * MULTI_SIZE, sizeof(int))))
TEST_ERROR;
if (NULL == (buf = (int **)calloc(MULTI_SIZE, sizeof(buf_data))))
TEST_ERROR;
for (i = 0; i < MULTI_SIZE; i++)
buf[i] = buf_data + (i * MULTI_SIZE);
/* Set file access property list for MULTI driver */
if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
memset(memb_map, 0, sizeof memb_map);
memset(memb_fapl, 0, sizeof memb_fapl);
memset(memb_name, 0, sizeof memb_name);
memset(memb_addr, 0, sizeof memb_addr);
memset(sv, 0, sizeof sv);
for (mt = H5FD_MEM_DEFAULT; mt < H5FD_MEM_NTYPES; mt++)
memb_map[mt] = H5FD_MEM_SUPER;
memb_map[H5FD_MEM_DRAW] = H5FD_MEM_DRAW;
memb_fapl[H5FD_MEM_SUPER] = H5P_DEFAULT;
snprintf(sv[H5FD_MEM_SUPER], 32, "%%s-%c.h5", 's');
memb_name[H5FD_MEM_SUPER] = sv[H5FD_MEM_SUPER];
memb_addr[H5FD_MEM_SUPER] = 0;
memb_fapl[H5FD_MEM_DRAW] = H5P_DEFAULT;
snprintf(sv[H5FD_MEM_DRAW], 32, "%%s-%c.h5", 'r');
memb_name[H5FD_MEM_DRAW] = sv[H5FD_MEM_DRAW];
memb_addr[H5FD_MEM_DRAW] = HADDR_MAX / 2;
if (H5Pset_fapl_multi(fapl, memb_map, memb_fapl, memb_name, memb_addr, true) < 0)
TEST_ERROR;
h5_fixname(FILENAME[9], fapl, newname, sizeof newname);
/* Make copy for the data file in the build directory, to protect the
* original file in the source directory
*/
snprintf(filename_s, sizeof(filename_s), "%s-%c.h5", MULTI_COMPAT_BASENAME, 's');
snprintf(newname_s, sizeof(newname_s), "%s-%c.h5", FILENAME[9], 's');
h5_make_local_copy(filename_s, newname_s);
snprintf(filename_r, sizeof(filename_r), "%s-%c.h5", MULTI_COMPAT_BASENAME, 'r');
snprintf(newname_r, sizeof(newname_r), "%s-%c.h5", FILENAME[9], 'r');
h5_make_local_copy(filename_r, newname_r);
/* Reopen the file for read only. Verify 1.8 library can open file
* created with 1.6 library.
*/
if ((file = H5Fopen(newname, H5F_ACC_RDONLY, fapl)) < 0)
TEST_ERROR;
if ((dset = H5Dopen2(file, DSET1_NAME, H5P_DEFAULT)) < 0)
TEST_ERROR;
if (H5Dclose(dset) < 0)
TEST_ERROR;
if (H5Fclose(file) < 0)
TEST_ERROR;
/* Make sure we can reopen the file for read and write */
if ((file = H5Fopen(newname, H5F_ACC_RDWR, fapl)) < 0)
TEST_ERROR;
if ((dset = H5Dopen2(file, DSET1_NAME, H5P_DEFAULT)) < 0)
TEST_ERROR;
if (H5Dclose(dset) < 0)
TEST_ERROR;
if (H5Fclose(file) < 0)
TEST_ERROR;
/* Reopen the file for adding another dataset. The new EOA for metadata file
* should be written to the file */
if ((file = H5Fopen(newname, H5F_ACC_RDWR, fapl)) < 0)
TEST_ERROR;
/* Create and write data set */
if ((space = H5Screate_simple(2, dims, NULL)) < 0)
TEST_ERROR;
if ((dset = H5Dcreate2(file, DSET3_NAME, H5T_NATIVE_INT, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) <
0)
TEST_ERROR;
for (i = 0; i < MULTI_SIZE; i++)
for (j = 0; j < MULTI_SIZE; j++)
buf[i][j] = i * 10000 + j;
if (H5Dwrite(dset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_data) < 0)
TEST_ERROR;
if (H5Dclose(dset) < 0)
TEST_ERROR;
if (H5Sclose(space) < 0)
TEST_ERROR;
if (H5Fclose(file) < 0)
TEST_ERROR;
/* Reopen the file for read only again. Verify the library can handle
* the EOA correctly */
if ((file = H5Fopen(newname, H5F_ACC_RDONLY, fapl)) < 0)
TEST_ERROR;
if ((dset = H5Dopen2(file, DSET1_NAME, H5P_DEFAULT)) < 0)
TEST_ERROR;
if (H5Dclose(dset) < 0)
TEST_ERROR;
if ((dset = H5Dopen2(file, DSET3_NAME, H5P_DEFAULT)) < 0)
TEST_ERROR;
if (H5Dclose(dset) < 0)
TEST_ERROR;
/* Close and delete the file */
if (H5Fclose(file) < 0)
TEST_ERROR;
h5_delete_test_file(FILENAME[9], fapl);
/* Close the fapl */
if (H5Pclose(fapl) < 0)
TEST_ERROR;
free(buf);
free(buf_data);
PASSED();
return SUCCEED;
error:
H5E_BEGIN_TRY
{
H5Sclose(space);
H5Dclose(dset);
H5Pclose(fapl);
H5Fclose(file);
}
H5E_END_TRY
free(buf);
free(buf_data);
return FAIL;
} /* end test_multi_compat() */
/*-------------------------------------------------------------------------
* Function: test_log
*
* Purpose: Tests the file handle interface for log driver
*
* Return: Success: 0
* Failure: -1
*
*-------------------------------------------------------------------------
*/
static herr_t
test_log(void)
{
hid_t file = H5I_INVALID_HID;
hid_t fapl = H5I_INVALID_HID;
hid_t access_fapl = H5I_INVALID_HID;
hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */
unsigned long driver_flags = 0; /* VFD feature flags */
char filename[1024];
int *fhandle = NULL;
hsize_t file_size = 0;
unsigned int flags = H5FD_LOG_ALL;
size_t buf_size = 4 * KB;
herr_t ret = SUCCEED;
TESTING("LOG file driver");
if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
/* Make sure calling with an invalid fapl doesn't crash */
H5E_BEGIN_TRY
{
ret = H5Pset_fapl_log(H5I_INVALID_HID, LOG_FILENAME, 0, 0);
}
H5E_END_TRY
if (SUCCEED == ret)
TEST_ERROR;
/* Set property list and file name for log driver. */
if (H5Pset_fapl_log(fapl, LOG_FILENAME, flags, buf_size) < 0)
TEST_ERROR;
h5_fixname(FILENAME[6], fapl, filename, sizeof filename);
/* Check that the VFD feature flags are correct */
if ((driver_id = H5Pget_driver(fapl)) < 0)
TEST_ERROR;
if (H5FDdriver_query(driver_id, &driver_flags) < 0)
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_AGGREGATE_METADATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_ACCUMULATE_METADATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_DATA_SIEVE))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_AGGREGATE_SMALLDATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_POSIX_COMPAT_HANDLE))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_SUPPORTS_SWMR_IO))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_DEFAULT_VFD_COMPATIBLE))
TEST_ERROR;
/* Check for extra flags not accounted for above */
if (driver_flags != (H5FD_FEAT_AGGREGATE_METADATA | H5FD_FEAT_ACCUMULATE_METADATA | H5FD_FEAT_DATA_SIEVE |
H5FD_FEAT_AGGREGATE_SMALLDATA | H5FD_FEAT_POSIX_COMPAT_HANDLE |
H5FD_FEAT_SUPPORTS_SWMR_IO | H5FD_FEAT_DEFAULT_VFD_COMPATIBLE))
TEST_ERROR;
/* Create the test file */
if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0)
TEST_ERROR;
/* Retrieve the access property list... */
if ((access_fapl = H5Fget_access_plist(file)) < 0)
TEST_ERROR;
/* Check that the driver is correct */
if (H5FD_LOG != H5Pget_driver(access_fapl))
TEST_ERROR;
/* ...and close the property list */
if (H5Pclose(access_fapl) < 0)
TEST_ERROR;
/* Check file handle API */
if (H5Fget_vfd_handle(file, H5P_DEFAULT, (void **)&fhandle) < 0)
TEST_ERROR;
if (*fhandle < 0)
TEST_ERROR;
/* Check file size API */
if (H5Fget_filesize(file, &file_size) < 0)
TEST_ERROR;
/* There is no guarantee the size of metadata in file is constant.
* Just try to check if it's reasonable. It's 2KB right now.
*/
if (file_size < 1 * KB || file_size > 4 * KB)
TEST_ERROR;
/* Close and delete the file */
if (H5Fclose(file) < 0)
TEST_ERROR;
h5_delete_test_file(FILENAME[6], fapl);
/* Close the fapl */
if (H5Pclose(fapl) < 0)
TEST_ERROR;
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Pclose(fapl);
H5Fclose(file);
}
H5E_END_TRY
return -1;
}
/*-------------------------------------------------------------------------
* Function: test_stdio
*
* Purpose: Tests the file handle interface for STDIO driver
*
* Return: Success: 0
* Failure: -1
*
*-------------------------------------------------------------------------
*/
static herr_t
test_stdio(void)
{
hid_t file = H5I_INVALID_HID;
hid_t fapl = H5I_INVALID_HID;
hid_t access_fapl = H5I_INVALID_HID;
hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */
unsigned long driver_flags = 0; /* VFD feature flags */
char filename[1024];
FILE *fhandle = NULL;
hsize_t file_size = 0;
TESTING("STDIO file driver");
/* Set property list and file name for STDIO driver. */
if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
if (H5Pset_fapl_stdio(fapl) < 0)
TEST_ERROR;
h5_fixname(FILENAME[7], fapl, filename, sizeof filename);
/* Check that the VFD feature flags are correct */
if ((driver_id = H5Pget_driver(fapl)) < 0)
TEST_ERROR;
if (H5FDdriver_query(driver_id, &driver_flags) < 0)
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_AGGREGATE_METADATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_ACCUMULATE_METADATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_DATA_SIEVE))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_AGGREGATE_SMALLDATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_DEFAULT_VFD_COMPATIBLE))
TEST_ERROR;
/* Check for extra flags not accounted for above */
if (driver_flags != (H5FD_FEAT_AGGREGATE_METADATA | H5FD_FEAT_ACCUMULATE_METADATA | H5FD_FEAT_DATA_SIEVE |
H5FD_FEAT_AGGREGATE_SMALLDATA | H5FD_FEAT_DEFAULT_VFD_COMPATIBLE))
TEST_ERROR;
if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0)
TEST_ERROR;
/* Retrieve the access property list... */
if ((access_fapl = H5Fget_access_plist(file)) < 0)
TEST_ERROR;
/* Check that the driver is correct */
if (H5FD_STDIO != H5Pget_driver(access_fapl))
TEST_ERROR;
/* ...and close the property list */
if (H5Pclose(access_fapl) < 0)
TEST_ERROR;
/* Check file handle API */
if (H5Fget_vfd_handle(file, H5P_DEFAULT, (void **)&fhandle) < 0)
TEST_ERROR;
if (NULL == fhandle)
TEST_ERROR;
/* Check file size API */
if (H5Fget_filesize(file, &file_size) < 0)
TEST_ERROR;
/* There is no guarantee the size of metadata in file is constant.
* Just try to check if it's reasonable. It's 2KB right now.
*/
if (file_size < 1 * KB || file_size > 4 * KB)
TEST_ERROR;
/* Close and delete the file */
if (H5Fclose(file) < 0)
TEST_ERROR;
h5_delete_test_file(FILENAME[7], fapl);
/* Close the fapl */
if (H5Pclose(fapl) < 0)
TEST_ERROR;
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Pclose(fapl);
H5Fclose(file);
}
H5E_END_TRY
return -1;
}
/*-------------------------------------------------------------------------
* Function: test_windows
*
* Purpose: Tests the file handle interface for WINDOWS driver
*
* Return: Success: 0
* Failure: -1
*
*-------------------------------------------------------------------------
*/
static herr_t
test_windows(void)
{
#ifdef H5_HAVE_WINDOWS
hid_t file = H5I_INVALID_HID;
hid_t fapl = H5I_INVALID_HID;
hid_t access_fapl = H5I_INVALID_HID;
hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */
unsigned long driver_flags = 0; /* VFD feature flags */
char filename[1024];
int *fhandle = NULL;
hsize_t file_size = 0;
#endif /*H5_HAVE_WINDOWS*/
TESTING("WINDOWS file driver");
#ifndef H5_HAVE_WINDOWS
SKIPPED();
return 0;
#else /* H5_HAVE_WINDOWS */
/* Set property list and file name for WINDOWS driver. */
if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
if (H5Pset_fapl_windows(fapl) < 0)
TEST_ERROR;
h5_fixname(FILENAME[8], fapl, filename, sizeof filename);
/* Check that the VFD feature flags are correct */
if ((driver_id = H5Pget_driver(fapl)) < 0)
TEST_ERROR;
if (H5FDdriver_query(driver_id, &driver_flags) < 0)
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_AGGREGATE_METADATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_ACCUMULATE_METADATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_DATA_SIEVE))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_AGGREGATE_SMALLDATA))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_POSIX_COMPAT_HANDLE))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_SUPPORTS_SWMR_IO))
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_DEFAULT_VFD_COMPATIBLE))
TEST_ERROR;
/* Check for extra flags not accounted for above */
if (driver_flags != (H5FD_FEAT_AGGREGATE_METADATA | H5FD_FEAT_ACCUMULATE_METADATA | H5FD_FEAT_DATA_SIEVE |
H5FD_FEAT_AGGREGATE_SMALLDATA | H5FD_FEAT_POSIX_COMPAT_HANDLE |
H5FD_FEAT_SUPPORTS_SWMR_IO | H5FD_FEAT_DEFAULT_VFD_COMPATIBLE))
TEST_ERROR;
if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0)
TEST_ERROR;
/* Retrieve the access property list... */
if ((access_fapl = H5Fget_access_plist(file)) < 0)
TEST_ERROR;
/* Check that the driver is correct */
if (H5FD_WINDOWS != H5Pget_driver(access_fapl))
TEST_ERROR;
/* ...and close the property list */
if (H5Pclose(access_fapl) < 0)
TEST_ERROR;
/* Check file handle API */
if (H5Fget_vfd_handle(file, H5P_DEFAULT, (void **)&fhandle) < 0)
TEST_ERROR;
if (*fhandle < 0)
TEST_ERROR;
/* Check file size API */
if (H5Fget_filesize(file, &file_size) < 0)
TEST_ERROR;
/* There is no guarantee the size of metadata in file is constant.
* Just try to check if it's reasonable. It's 2KB right now.
*/
if (file_size < 1 * KB || file_size > 4 * KB)
TEST_ERROR;
/* Close and delete the file */
if (H5Fclose(file) < 0)
TEST_ERROR;
h5_delete_test_file(FILENAME[8], fapl);
/* Close the fapl */
if (H5Pclose(fapl) < 0)
TEST_ERROR;
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Pclose(fapl);
H5Fclose(file);
}
H5E_END_TRY
return -1;
#endif /* H5_HAVE_WINDOWS */
} /* end test_windows() */
/*-------------------------------------------------------------------------
* Function: test_ros3
*
* Purpose: Tests the file handle interface for the ROS3 driver
*
* As the ROS3 driver is 1) read only, 2) requires access
* to an S3 server (minio for now), this test is quite
* different from the other tests.
*
* For now, test only fapl & flags. Extend as the
* work on the VFD continues.
*
* Return: Success: 0
* Failure: -1
*
*-------------------------------------------------------------------------
*/
static herr_t
test_ros3(void)
{
#ifdef H5_HAVE_ROS3_VFD
hid_t fid = H5I_INVALID_HID; /* file ID */
hid_t fapl_id = H5I_INVALID_HID; /* file access property list ID */
hid_t fapl_id_out = H5I_INVALID_HID; /* from H5Fget_access_plist */
hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */
unsigned long driver_flags = 0; /* VFD feature flags */
char filename[1024]; /* filename */
H5FD_ros3_fapl_t test_ros3_fa;
H5FD_ros3_fapl_t ros3_fa_0 = {
/* version = */ H5FD_CURR_ROS3_FAPL_T_VERSION,
/* authenticate = */ false,
/* aws_region = */ "",
/* secret_id = */ "",
/* secret_key = */ "plugh",
};
#endif /*H5_HAVE_ROS3_VFD */
TESTING("Read-only S3 file driver");
#ifndef H5_HAVE_ROS3_VFD
SKIPPED();
return 0;
#else /* H5_HAVE_ROS3_VFD */
/* Set property list and file name for ROS3 driver. */
if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
if (H5Pset_fapl_ros3(fapl_id, &ros3_fa_0) < 0)
TEST_ERROR;
/* verify that the ROS3 FAPL entry is set as expected */
if (H5Pget_fapl_ros3(fapl_id, &test_ros3_fa) < 0)
TEST_ERROR;
/* need a macro to compare instances of H5FD_ros3_fapl_t */
if ((test_ros3_fa.version != ros3_fa_0.version) ||
(test_ros3_fa.authenticate != ros3_fa_0.authenticate) ||
(strcmp(test_ros3_fa.aws_region, ros3_fa_0.aws_region) != 0) ||
(strcmp(test_ros3_fa.secret_id, ros3_fa_0.secret_id) != 0) ||
(strcmp(test_ros3_fa.secret_key, ros3_fa_0.secret_key) != 0))
TEST_ERROR;
h5_fixname(FILENAME[10], fapl_id, filename, sizeof(filename));
/* Check that the VFD feature flags are correct */
if ((driver_id = H5Pget_driver(fapl_id)) < 0)
TEST_ERROR;
if (H5FDdriver_query(driver_id, &driver_flags) < 0)
TEST_ERROR;
if (!(driver_flags & H5FD_FEAT_DATA_SIEVE))
TEST_ERROR;
/* Check for extra flags not accounted for above */
if (driver_flags != (H5FD_FEAT_DATA_SIEVE))
TEST_ERROR;
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Pclose(fapl_id);
H5Pclose(fapl_id_out);
H5Fclose(fid);
}
H5E_END_TRY
return -1;
#endif /* H5_HAVE_ROS3_VFD */
} /* end test_ros3() */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* Macro: SPLITTER_TEST_FAULT()
*
* utility macro, helps create stack-like backtrace on error.
* requires defined in the calling function:
* * variable `int ret_value` (return -1 on error)`
* * label `done` for exit on fault
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*/
#define SPLITTER_TEST_FAULT(mesg) \
do { \
H5_FAILED(); \
AT(); \
fprintf(stderr, mesg); \
H5Eprint2(H5E_DEFAULT, stderr); \
fflush(stderr); \
ret_value = -1; \
goto done; \
} while (0)
/*-------------------------------------------------------------------------
* Function: compare_splitter_config_info
*
* Purpose: Helper function to compare configuration info found in a
* FAPL against a canonical structure.
*
* Return: Success: 0, if config info in FAPL matches info structure.
* Failure: -1, if difference detected.
*
*-------------------------------------------------------------------------
*/
static int
compare_splitter_config_info(hid_t fapl_id, H5FD_splitter_vfd_config_t *info)
{
int ret_value = 0;
H5FD_splitter_vfd_config_t *fetched_info = NULL;
if (NULL == (fetched_info = calloc(1, sizeof(H5FD_splitter_vfd_config_t))))
SPLITTER_TEST_FAULT("memory allocation for fetched_info struct failed");
fetched_info->magic = H5FD_SPLITTER_MAGIC;
fetched_info->version = H5FD_CURR_SPLITTER_VFD_CONFIG_VERSION;
fetched_info->rw_fapl_id = H5I_INVALID_HID;
fetched_info->wo_fapl_id = H5I_INVALID_HID;
if (H5Pget_fapl_splitter(fapl_id, fetched_info) < 0) {
SPLITTER_TEST_FAULT("can't get splitter info");
}
if (info->rw_fapl_id == H5P_DEFAULT) {
if (H5Pget_driver(fetched_info->rw_fapl_id) != H5Pget_driver(H5P_FILE_ACCESS_DEFAULT)) {
SPLITTER_TEST_FAULT("Read-Write driver mismatch (default)\n");
}
}
else {
if (H5Pget_driver(fetched_info->rw_fapl_id) != H5Pget_driver(info->rw_fapl_id)) {
SPLITTER_TEST_FAULT("Read-Write driver mismatch\n");
}
}
if (info->wo_fapl_id == H5P_DEFAULT) {
if (H5Pget_driver(fetched_info->wo_fapl_id) != H5Pget_driver(H5P_FILE_ACCESS_DEFAULT)) {
SPLITTER_TEST_FAULT("Write-Only driver mismatch (default)\n");
}
}
else {
if (H5Pget_driver(fetched_info->wo_fapl_id) != H5Pget_driver(info->wo_fapl_id)) {
SPLITTER_TEST_FAULT("Write-Only driver mismatch\n");
}
}
if ((strlen(info->wo_path) != strlen(fetched_info->wo_path)) ||
strncmp(info->wo_path, fetched_info->wo_path, H5FD_SPLITTER_PATH_MAX) != 0) {
fprintf(stderr, "MISMATCH: '%s' :: '%s'\n", info->wo_path, fetched_info->wo_path);
HEXPRINT(H5FD_SPLITTER_PATH_MAX, info->wo_path);
HEXPRINT(H5FD_SPLITTER_PATH_MAX, fetched_info->wo_path);
SPLITTER_TEST_FAULT("Write-Only file path mismatch\n");
}
done:
free(fetched_info);
return ret_value;
} /* end compare_splitter_config_info() */
/*-------------------------------------------------------------------------
* Function: run_splitter_test
*
* Purpose: Auxiliary function for test_splitter().
*
* Return: Success: 0
* Failure: -1
*
* Description:
* Perform basic open-write-close with the Splitter VFD.
* Prior to operations, removes files from a previous run,
* if they exist.
* After writing, compares read-write and write-only files.
* Includes FAPL sanity testing.
*
*-------------------------------------------------------------------------
*/
static int
run_splitter_test(const struct splitter_dataset_def *data, bool ignore_wo_errors, bool provide_logfile_path,
const hid_t sub_fapl_ids[2])
{
hid_t file_id = H5I_INVALID_HID;
hid_t fapl_id = H5I_INVALID_HID;
hid_t dset_id = H5I_INVALID_HID;
hid_t space_id = H5I_INVALID_HID;
hid_t fapl_id_out = H5I_INVALID_HID;
hid_t fapl_id_cpy = H5I_INVALID_HID;
H5FD_splitter_vfd_config_t *vfd_config = NULL;
char *filename_rw = NULL;
FILE *logfile = NULL;
int ret_value = 0;
if (NULL == (vfd_config = calloc(1, sizeof(H5FD_splitter_vfd_config_t))))
SPLITTER_TEST_FAULT("memory allocation for vfd_config struct failed");
if (NULL == (filename_rw = calloc(H5FD_SPLITTER_PATH_MAX + 1, sizeof(char))))
SPLITTER_TEST_FAULT("memory allocation for filename_rw string failed");
vfd_config->magic = H5FD_SPLITTER_MAGIC;
vfd_config->version = H5FD_CURR_SPLITTER_VFD_CONFIG_VERSION;
vfd_config->ignore_wo_errs = ignore_wo_errors;
vfd_config->rw_fapl_id = sub_fapl_ids[0];
vfd_config->wo_fapl_id = sub_fapl_ids[1];
if (splitter_prepare_file_paths(vfd_config, filename_rw) < 0) {
SPLITTER_TEST_FAULT("can't prepare file paths\n");
}
if (provide_logfile_path == false) {
vfd_config->log_file_path[0] = '\0'; /* reset as empty string */
}
/* Create a new fapl to use the SPLITTER file driver */
if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) == H5I_INVALID_HID) {
SPLITTER_TEST_FAULT("can't create FAPL ID\n");
}
if (H5Pset_fapl_splitter(fapl_id, vfd_config) < 0) {
SPLITTER_TEST_FAULT("can't set splitter FAPL\n");
}
if (H5Pget_driver(fapl_id) != H5FD_SPLITTER) {
SPLITTER_TEST_FAULT("set FAPL not SPLITTER\n");
}
if (compare_splitter_config_info(fapl_id, vfd_config) < 0) {
SPLITTER_TEST_FAULT("information mismatch\n");
}
/*
* Copy property list, light compare, and close the copy.
* Helps test driver-implemented FAPL-copying and library ID management.
*/
fapl_id_cpy = H5Pcopy(fapl_id);
if (H5I_INVALID_HID == fapl_id_cpy) {
SPLITTER_TEST_FAULT("can't copy FAPL\n");
}
if (compare_splitter_config_info(fapl_id_cpy, vfd_config) < 0) {
SPLITTER_TEST_FAULT("information mismatch\n");
}
if (H5Pclose(fapl_id_cpy) < 0) {
SPLITTER_TEST_FAULT("can't close fapl copy\n");
}
/*
* Proceed with test. Create file.
*/
file_id = H5Fcreate(filename_rw, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
if (file_id < 0) {
SPLITTER_TEST_FAULT("can't create file\n");
}
/*
* Check driver from file
*/
fapl_id_out = H5Fget_access_plist(file_id);
if (H5I_INVALID_HID == fapl_id_out) {
SPLITTER_TEST_FAULT("can't get file's FAPL\n");
}
if (H5Pget_driver(fapl_id_out) != H5FD_SPLITTER) {
SPLITTER_TEST_FAULT("wrong file FAPL driver\n");
}
if (compare_splitter_config_info(fapl_id_out, vfd_config) < 0) {
SPLITTER_TEST_FAULT("information mismatch\n");
}
if (H5Pclose(fapl_id_out) < 0) {
SPLITTER_TEST_FAULT("can't close file's FAPL\n");
}
/*
* Create and write the dataset
*/
space_id = H5Screate_simple(data->n_dims, data->dims, NULL);
if (space_id < 0) {
SPLITTER_TEST_FAULT("can't create dataspace\n");
}
dset_id = H5Dcreate2(file_id, data->dset_name, data->mem_type_id, space_id, H5P_DEFAULT, H5P_DEFAULT,
H5P_DEFAULT);
if (dset_id < 0) {
SPLITTER_TEST_FAULT("can't create dataset\n");
}
if (H5Dwrite(dset_id, data->mem_type_id, H5S_ALL, H5S_ALL, H5P_DEFAULT, data->buf) < 0) {
SPLITTER_TEST_FAULT("can't write data to dataset\n");
}
/* Close everything */
if (H5Dclose(dset_id) < 0) {
SPLITTER_TEST_FAULT("can't close dset\n");
}
if (H5Sclose(space_id) < 0) {
SPLITTER_TEST_FAULT("can't close space\n");
}
if (H5Pclose(fapl_id) < 0) {
SPLITTER_TEST_FAULT("can't close fapl\n");
}
if (H5Fclose(file_id) < 0) {
SPLITTER_TEST_FAULT("can't close file\n");
}
/* Verify that the R/W and W/O files are identical */
if (h5_compare_file_bytes(filename_rw, vfd_config->wo_path) < 0) {
SPLITTER_TEST_FAULT("files are not byte-for-byte equivalent\n");
}
/* Verify existence of logfile if appropriate */
logfile = fopen(vfd_config->log_file_path, "r");
if ((true == provide_logfile_path && NULL == logfile) ||
(false == provide_logfile_path && NULL != logfile)) {
SPLITTER_TEST_FAULT("no logfile when one was expected\n");
}
done:
if (ret_value < 0) {
H5E_BEGIN_TRY
{
H5Dclose(dset_id);
H5Sclose(space_id);
H5Pclose(fapl_id_out);
H5Pclose(fapl_id_cpy);
H5Pclose(fapl_id);
H5Fclose(file_id);
}
H5E_END_TRY
}
if (logfile != NULL)
fclose(logfile);
free(vfd_config);
free(filename_rw);
return ret_value;
} /* end run_splitter_test() */
/*-------------------------------------------------------------------------
* Function: driver_is_splitter_compatible
*
* Purpose: Determine whether the driver set in the FAPL ID is compatible
* with the Splitter VFD -- specifically, Write-Only channel.
*
* Return: Success: 0
* Failure: -1
*
* Description: Attempts to put the given FAPL ID as the W/O channel.
* Uses driver's own mechanisms to generate error, and catches
* error.
*
*-------------------------------------------------------------------------
*/
static int
driver_is_splitter_compatible(hid_t fapl_id)
{
H5FD_splitter_vfd_config_t *vfd_config = NULL;
hid_t split_fapl_id = H5I_INVALID_HID;
herr_t ret = SUCCEED;
int ret_value = 0;
if (NULL == (vfd_config = calloc(1, sizeof(H5FD_splitter_vfd_config_t)))) {
FAIL_PUTS_ERROR("memory allocation for vfd_config struct failed");
}
if (H5I_INVALID_HID == (split_fapl_id = H5Pcreate(H5P_FILE_ACCESS))) {
FAIL_PUTS_ERROR("Can't create contained FAPL");
}
vfd_config->magic = H5FD_SPLITTER_MAGIC;
vfd_config->version = H5FD_CURR_SPLITTER_VFD_CONFIG_VERSION;
vfd_config->ignore_wo_errs = false;
vfd_config->rw_fapl_id = H5P_DEFAULT;
vfd_config->wo_fapl_id = fapl_id;
strncpy(vfd_config->wo_path, "nonesuch", H5FD_SPLITTER_PATH_MAX);
vfd_config->log_file_path[0] = '\0';
H5E_BEGIN_TRY
{
ret = H5Pset_fapl_splitter(split_fapl_id, vfd_config);
}
H5E_END_TRY
if (SUCCEED == ret) {
ret_value = -1;
}
if (H5Pclose(split_fapl_id) < 0) {
FAIL_PUTS_ERROR("Can't close contained FAPL");
}
split_fapl_id = H5I_INVALID_HID;
free(vfd_config);
return ret_value;
error:
H5E_BEGIN_TRY
{
H5Pclose(split_fapl_id);
}
H5E_END_TRY
free(vfd_config);
return -1;
} /* end driver_is_splitter_compatible() */
/*-------------------------------------------------------------------------
* Function: splitter_RO_test
*
* Purpose: Verify Splitter VFD with the Read-Only access flag.
*
* Return: Success: 0
* Failure: -1
*
* Description: Attempt read-only opening of files with different
* permutations of files already existing on-disk.
*
*-------------------------------------------------------------------------
*/
static int
splitter_RO_test(const struct splitter_dataset_def *data, hid_t child_fapl_id)
{
char *filename_rw = NULL;
H5FD_splitter_vfd_config_t *vfd_config = NULL;
hid_t fapl_id = H5I_INVALID_HID;
hid_t file_id = H5I_INVALID_HID;
int ret_value = 0;
if (NULL == (vfd_config = calloc(1, sizeof(H5FD_splitter_vfd_config_t))))
SPLITTER_TEST_FAULT("memory allocation for vfd_config struct failed");
if (NULL == (filename_rw = calloc(H5FD_SPLITTER_PATH_MAX + 1, sizeof(char))))
SPLITTER_TEST_FAULT("memory allocation for filename_rw string failed");
vfd_config->magic = H5FD_SPLITTER_MAGIC;
vfd_config->version = H5FD_CURR_SPLITTER_VFD_CONFIG_VERSION;
vfd_config->ignore_wo_errs = false;
vfd_config->rw_fapl_id = child_fapl_id;
vfd_config->wo_fapl_id = child_fapl_id;
if (splitter_prepare_file_paths(vfd_config, filename_rw) < 0) {
SPLITTER_TEST_FAULT("can't prepare splitter file paths\n");
}
/* Create a new fapl to use the SPLITTER file driver */
fapl_id = H5Pcreate(H5P_FILE_ACCESS);
if (H5I_INVALID_HID == fapl_id) {
SPLITTER_TEST_FAULT("can't create FAPL ID\n");
}
if (H5Pset_fapl_splitter(fapl_id, vfd_config) < 0) {
SPLITTER_TEST_FAULT("can't set splitter FAPL\n");
}
if (H5Pget_driver(fapl_id) != H5FD_SPLITTER) {
SPLITTER_TEST_FAULT("set FAPL not SPLITTER\n");
}
/* Attempt R/O open when both files are nonexistent
* Should fail.
*/
H5E_BEGIN_TRY
{
file_id = H5Fopen(filename_rw, H5F_ACC_RDONLY, fapl_id);
}
H5E_END_TRY
if (file_id >= 0) {
SPLITTER_TEST_FAULT("R/O open on nonexistent files unexpectedly successful\n");
}
/* Attempt R/O open when only W/O file exists
* Should fail.
*/
if (splitter_create_single_file_at(vfd_config->wo_path, vfd_config->wo_fapl_id, data) < 0) {
SPLITTER_TEST_FAULT("can't write W/O file\n");
}
H5E_BEGIN_TRY
{
file_id = H5Fopen(filename_rw, H5F_ACC_RDONLY, fapl_id);
}
H5E_END_TRY
if (file_id >= 0) {
SPLITTER_TEST_FAULT("R/O open with extant W/O file unexpectedly successful\n");
}
HDremove(vfd_config->wo_path);
/* Attempt R/O open when only R/W file exists
* Should fail.
*/
if (splitter_create_single_file_at(filename_rw, vfd_config->rw_fapl_id, data) < 0) {
SPLITTER_TEST_FAULT("can't create R/W file\n");
}
H5E_BEGIN_TRY
{
file_id = H5Fopen(filename_rw, H5F_ACC_RDONLY, fapl_id);
}
H5E_END_TRY
if (file_id >= 0) {
SPLITTER_TEST_FAULT("R/O open with extant R/W file unexpectedly successful\n");
}
/* Attempt R/O open when both R/W and W/O files exist
*/
if (splitter_create_single_file_at(vfd_config->wo_path, vfd_config->wo_fapl_id, data) < 0) {
SPLITTER_TEST_FAULT("can't create W/O file\n");
}
file_id = H5Fopen(filename_rw, H5F_ACC_RDONLY, fapl_id);
if (file_id < 0) {
SPLITTER_TEST_FAULT("R/O open on two extant files failed\n");
}
if (splitter_compare_expected_data(file_id, data) < 0) {
SPLITTER_TEST_FAULT("data mismatch in R/W file\n");
}
if (H5Fclose(file_id) < 0) {
SPLITTER_TEST_FAULT("can't close file(s)\n");
}
file_id = H5I_INVALID_HID;
/* Cleanup
*/
if (H5Pclose(fapl_id) < 0) {
SPLITTER_TEST_FAULT("can't close FAPL ID\n");
}
fapl_id = H5I_INVALID_HID;
done:
if (ret_value < 0) {
H5E_BEGIN_TRY
{
H5Pclose(fapl_id);
H5Fclose(file_id);
}
H5E_END_TRY
}
free(vfd_config);
free(filename_rw);
return ret_value;
} /* end splitter_RO_test() */
/*-------------------------------------------------------------------------
* Function: splitter_prepare_file_paths
*
* Purpose: Get file paths ready for use by the Splitter VFD tests.
*
* Return: Success: 0
* Failure: -1
*
* Description:
* Use h5_fixname to adjust the splitter-relevant file paths
* from those given in FILENAMES.
*
* REMOVES EXISTING FILES AT THE PATH LOCATIONS PRIOR TO RETURN.
*
* The relevant file paths will be set in filename_rw_out and
* inside the config structure (wo_path, log_file_path).
*
* `filename_rw_out` must be at least H5FD_SPLITTER_PATH_MAX+1
* characters long.
*
* `vfd_config` must have its child FAPL IDs preset.
*
*-------------------------------------------------------------------------
*/
static int
splitter_prepare_file_paths(H5FD_splitter_vfd_config_t *vfd_config, char *filename_rw_out)
{
int ret_value = 0;
if (vfd_config == NULL || vfd_config->magic != H5FD_SPLITTER_MAGIC) {
SPLITTER_TEST_FAULT("invalid splitter config pointer\n");
}
if (filename_rw_out == NULL) {
SPLITTER_TEST_FAULT("NULL filename_rw pointer\n");
}
/* TODO: sanity-check fapl IDs? */
/* Build the r/w file, w/o file, and the log file paths.
* Output is stored in the associated string pointers.
*/
h5_fixname(FILENAME[11], vfd_config->rw_fapl_id, filename_rw_out, H5FD_SPLITTER_PATH_MAX);
h5_fixname(FILENAME[12], vfd_config->wo_fapl_id, vfd_config->wo_path, H5FD_SPLITTER_PATH_MAX);
h5_fixname_no_suffix(FILENAME[13], vfd_config->wo_fapl_id, vfd_config->log_file_path,
H5FD_SPLITTER_PATH_MAX);
/* Delete any existing files on disk.
*/
HDremove(filename_rw_out);
HDremove(vfd_config->wo_path);
HDremove(vfd_config->log_file_path);
done:
return ret_value;
} /* end splitter_prepare_file_paths() */
/*-------------------------------------------------------------------------
* Function: splitter_crate_single_file_at
*
* Purpose: Create a file, optionally w/ dataset.
*
* Return: Success: 0
* Failure: -1
*
* Description:
* Create a file at the given location with the given FAPL,
* and write data as defined in `data` in a pre-determined location in the file.
*
* If the dataset definition pointer is NULL, no data is written
* to the file.
*
* Will always overwrite an existing file with the given name/path.
*
*-------------------------------------------------------------------------
*/
static int
splitter_create_single_file_at(const char *filename, hid_t fapl_id, const struct splitter_dataset_def *data)
{
hid_t file_id = H5I_INVALID_HID;
hid_t space_id = H5I_INVALID_HID;
hid_t dset_id = H5I_INVALID_HID;
int ret_value = 0;
if (filename == NULL || *filename == '\0') {
SPLITTER_TEST_FAULT("filename is invalid\n");
}
/* TODO: sanity-check fapl id? */
file_id = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
if (file_id < 0) {
SPLITTER_TEST_FAULT("can't create file\n");
}
if (data) {
/* TODO: sanity-check data, if it exists? */
space_id = H5Screate_simple(data->n_dims, data->dims, NULL);
if (space_id < 0) {
SPLITTER_TEST_FAULT("can't create dataspace\n");
}
dset_id = H5Dcreate2(file_id, data->dset_name, data->mem_type_id, space_id, H5P_DEFAULT, H5P_DEFAULT,
H5P_DEFAULT);
if (dset_id < 0) {
SPLITTER_TEST_FAULT("can't create dataset\n");
}
if (H5Dwrite(dset_id, data->mem_type_id, H5S_ALL, H5S_ALL, H5P_DEFAULT, data->buf) < 0) {
SPLITTER_TEST_FAULT("can't write data to dataset\n");
}
if (H5Dclose(dset_id) < 0) {
SPLITTER_TEST_FAULT("can't close dset\n");
}
if (H5Sclose(space_id) < 0) {
SPLITTER_TEST_FAULT("can't close space\n");
}
} /* end if data definition is provided */
if (H5Fclose(file_id) < 0) {
SPLITTER_TEST_FAULT("can't close file\n");
}
done:
if (ret_value < 0) {
H5E_BEGIN_TRY
{
H5Dclose(dset_id);
H5Sclose(space_id);
H5Fclose(file_id);
}
H5E_END_TRY
} /* end if error */
return ret_value;
} /* end splitter_create_single_file_at() */
/*-------------------------------------------------------------------------
* Function: splitter_compare_expected_data
*
* Purpose: Compare data within a predermined dataset.
*
* Return: Success: 0
* Failure: -1
*
* Description: Read data from the file at a predetermined location, and
* compare its contents byte-for-byte with that expected in
* the `data` definition structure.
*
*-------------------------------------------------------------------------
*/
static int
splitter_compare_expected_data(hid_t file_id, const struct splitter_dataset_def *data)
{
hid_t dset_id = H5I_INVALID_HID;
int buf[SPLITTER_SIZE][SPLITTER_SIZE];
int expected[SPLITTER_SIZE][SPLITTER_SIZE];
size_t i = 0;
size_t j = 0;
int ret_value = 0;
if (sizeof((void *)buf) != sizeof(data->buf)) {
SPLITTER_TEST_FAULT("invariant size of expected data does not match that received!\n");
}
memcpy(expected, data->buf, sizeof(expected));
dset_id = H5Dopen2(file_id, data->dset_name, H5P_DEFAULT);
if (dset_id < 0) {
SPLITTER_TEST_FAULT("can't open dataset\n");
}
if (H5Dread(dset_id, data->mem_type_id, H5S_ALL, H5S_ALL, H5P_DEFAULT, (void *)buf) < 0) {
SPLITTER_TEST_FAULT("can't read dataset\n");
}
for (i = 0; i < SPLITTER_SIZE; i++) {
for (j = 0; j < SPLITTER_SIZE; j++) {
if (buf[i][j] != expected[i][j]) {
SPLITTER_TEST_FAULT("mismatch in expected data\n");
}
}
}
if (H5Dclose(dset_id) < 0) {
SPLITTER_TEST_FAULT("can't close dataset\n");
}
done:
if (ret_value < 0) {
H5E_BEGIN_TRY
{
H5Dclose(dset_id);
}
H5E_END_TRY
}
return ret_value;
} /* end splitter_compare_expected_data() */
/*-------------------------------------------------------------------------
* Function: splitter_tentative_open_test()
*
* Purpose: Verifies Splitter behavior with "tentative" H5F_open.
*
* Return: Success: 0
* Failure: -1
*
* Description:
* H5F_open() has a two-stage opening process when given a
* Read/Write access flag -- first it performs a "tentative
* open", where it checks to see whether files already exist
* on the system, done in such a way as to not "alter its state"
* (i.e., truncate).
* This can cause problems with the Splitter VFD, as the
* file on the R/W channel might exist already, but that on the
* W/O channel will not, and vice-versa.
*
* This test exists to verify that in any event, files will be
* created as required.
*
*-------------------------------------------------------------------------
*/
static int
splitter_tentative_open_test(hid_t child_fapl_id)
{
const char *filename_tmp = "splitter_tmp.h5";
char *filename_rw = NULL;
H5FD_splitter_vfd_config_t *vfd_config = NULL;
hid_t fapl_id = H5I_INVALID_HID;
hid_t file_id = H5I_INVALID_HID;
int buf[SPLITTER_SIZE][SPLITTER_SIZE]; /* for comparison */
hsize_t dims[2] = {SPLITTER_SIZE, SPLITTER_SIZE}; /* for comparison */
int i = 0; /* for comparison */
int j = 0; /* for comparison */
struct splitter_dataset_def data; /* for comparison */
int ret_value = 0;
if (NULL == (vfd_config = calloc(1, sizeof(H5FD_splitter_vfd_config_t))))
SPLITTER_TEST_FAULT("memory allocation for vfd_config struct failed");
if (NULL == (filename_rw = calloc(H5FD_SPLITTER_PATH_MAX + 1, sizeof(char))))
SPLITTER_TEST_FAULT("memory allocation for filename_rw string failed");
/* pre-fill data buffer to write */
for (i = 0; i < SPLITTER_SIZE; i++) {
for (j = 0; j < SPLITTER_SIZE; j++) {
buf[i][j] = i * 100 + j;
}
}
/* Dataset info */
data.buf = (void *)buf;
data.mem_type_id = H5T_NATIVE_INT;
data.dims = dims;
data.n_dims = 2;
data.dset_name = SPLITTER_DATASET_NAME;
vfd_config->magic = H5FD_SPLITTER_MAGIC;
vfd_config->version = H5FD_CURR_SPLITTER_VFD_CONFIG_VERSION;
vfd_config->ignore_wo_errs = false;
vfd_config->rw_fapl_id = child_fapl_id;
vfd_config->wo_fapl_id = child_fapl_id;
if (splitter_prepare_file_paths(vfd_config, filename_rw) < 0) {
SPLITTER_TEST_FAULT("can't prepare splitter file paths\n");
}
/* Create a new fapl to use the SPLITTER file driver */
if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) == H5I_INVALID_HID) {
SPLITTER_TEST_FAULT("can't create FAPL ID\n");
}
if (H5Pset_fapl_splitter(fapl_id, vfd_config) < 0) {
SPLITTER_TEST_FAULT("can't set splitter FAPL\n");
}
if (H5Pget_driver(fapl_id) != H5FD_SPLITTER) {
SPLITTER_TEST_FAULT("set FAPL not SPLITTER\n");
}
/* Create instance of file on disk.
* Will be copied verbatim as needed, to avoid issues where differences in
* the creation time would befoul comparisons.
*/
if (splitter_create_single_file_at(filename_tmp, child_fapl_id, &data) < 0) {
SPLITTER_TEST_FAULT("can't write W/O file\n");
}
/*
* H5Fopen() with RDWR access.
* Neither file exist already
* Should fail.
*/
H5E_BEGIN_TRY
{
file_id = H5Fopen(filename_rw, H5F_ACC_RDWR, fapl_id);
}
H5E_END_TRY
if (file_id != H5I_INVALID_HID) {
SPLITTER_TEST_FAULT("open with both nonexistent files unexpectedly succeeded\n");
}
if (file_exists(filename_rw, child_fapl_id)) {
SPLITTER_TEST_FAULT("R/W file unexpectedly created\n");
}
if (file_exists(vfd_config->wo_path, child_fapl_id)) {
SPLITTER_TEST_FAULT("W/O file unexpectedly created\n");
}
/*
* H5Fopen() with RDWR access.
* Only W/O file present.
* Should fail.
*/
if (h5_duplicate_file_by_bytes(filename_tmp, vfd_config->wo_path) < 0) {
SPLITTER_TEST_FAULT("Can't create W/O file copy.\n");
}
H5E_BEGIN_TRY
{
file_id = H5Fopen(filename_rw, H5F_ACC_RDWR, fapl_id);
}
H5E_END_TRY
if (file_id != H5I_INVALID_HID) {
SPLITTER_TEST_FAULT("open with nonexistent R/W file unexpectedly succeeded\n");
}
if (file_exists(filename_rw, child_fapl_id)) {
SPLITTER_TEST_FAULT("R/W file unexpectedly created\n");
}
if (!file_exists(vfd_config->wo_path, child_fapl_id)) {
SPLITTER_TEST_FAULT("W/O file mysteriously disappeared\n");
}
HDremove(vfd_config->wo_path);
if (file_exists(vfd_config->wo_path, child_fapl_id)) {
SPLITTER_TEST_FAULT("failed to remove W/O file\n");
}
/*
* H5Fopen() with RDWR access.
* Only R/W file present.
* Should fail.
*/
if (h5_duplicate_file_by_bytes(filename_tmp, filename_rw) < 0) {
SPLITTER_TEST_FAULT("Can't create R/W file copy.\n");
}
H5E_BEGIN_TRY
{
file_id = H5Fopen(filename_rw, H5F_ACC_RDWR, fapl_id);
}
H5E_END_TRY
if (file_id != H5I_INVALID_HID) {
SPLITTER_TEST_FAULT("open with nonexistent W/O unexpectedly succeeded\n");
}
if (!file_exists(filename_rw, child_fapl_id)) {
SPLITTER_TEST_FAULT("R/W file mysteriously disappeared\n");
}
if (file_exists(vfd_config->wo_path, child_fapl_id)) {
SPLITTER_TEST_FAULT("W/O file unexpectedly created\n");
}
/*
* H5Fopen() with RDWR access.
* Both files present.
*/
if (h5_duplicate_file_by_bytes(filename_tmp, vfd_config->wo_path) < 0) {
SPLITTER_TEST_FAULT("Can't create W/O file copy.\n");
}
file_id = H5Fopen(filename_rw, H5F_ACC_RDWR, fapl_id);
if (file_id == H5I_INVALID_HID) {
SPLITTER_TEST_FAULT("file-open failed with both present\n");
}
/* Open successful; close file then inspect presence again */
if (H5Fclose(file_id) < 0) {
SPLITTER_TEST_FAULT("can't close file ID\n");
}
if (!file_exists(filename_rw, child_fapl_id)) {
SPLITTER_TEST_FAULT("R/W file mysteriously disappeared\n");
}
if (!file_exists(vfd_config->wo_path, child_fapl_id)) {
SPLITTER_TEST_FAULT("W/O file mysteriously disappeared\n");
}
/*
* H5Fcreate() with TRUNC access.
* Both files present.
*/
file_id = H5Fcreate(filename_rw, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
if (file_id == H5I_INVALID_HID) {
SPLITTER_TEST_FAULT("file-open failed with both present\n");
}
/* Open successful; close file then inspect presence again */
if (H5Fclose(file_id) < 0) {
SPLITTER_TEST_FAULT("can't close file ID\n");
}
if (!file_exists(filename_rw, child_fapl_id)) {
SPLITTER_TEST_FAULT("R/W file mysteriously disappeared\n");
}
if (!file_exists(vfd_config->wo_path, child_fapl_id)) {
SPLITTER_TEST_FAULT("W/O file mysteriously disappeared\n");
}
if (h5_compare_file_bytes(filename_rw, vfd_config->wo_path) < 0) {
SPLITTER_TEST_FAULT("files are not byte-for-byte equivalent\n");
}
HDremove(filename_rw);
HDremove(vfd_config->wo_path);
/*
* H5Fcreate() with TRUNC access.
* R/W already exists.
*/
if (h5_duplicate_file_by_bytes(filename_tmp, filename_rw) < 0) {
SPLITTER_TEST_FAULT("Can't create R/W file copy.\n");
}
if (file_exists(vfd_config->wo_path, child_fapl_id)) {
SPLITTER_TEST_FAULT("failed to remove W/O file\n");
}
file_id = H5Fcreate(filename_rw, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
if (file_id == H5I_INVALID_HID) {
SPLITTER_TEST_FAULT("file-open failed with both present\n");
}
/* Open successful; close file then inspect presence again */
if (H5Fclose(file_id) < 0) {
SPLITTER_TEST_FAULT("can't close file ID\n");
}
if (!file_exists(filename_rw, child_fapl_id)) {
SPLITTER_TEST_FAULT("R/W file mysteriously disappeared\n");
}
if (!file_exists(vfd_config->wo_path, child_fapl_id)) {
SPLITTER_TEST_FAULT("W/O file mysteriously disappeared\n");
}
if (h5_compare_file_bytes(filename_rw, vfd_config->wo_path) < 0) {
SPLITTER_TEST_FAULT("files are not byte-for-byte equivalent\n");
}
HDremove(filename_rw);
HDremove(vfd_config->wo_path);
/*
* H5Fcreate() with TRUNC access.
* Only W/O present.
*/
if (h5_duplicate_file_by_bytes(filename_tmp, vfd_config->wo_path) < 0) {
SPLITTER_TEST_FAULT("Can't create W/O file copy.\n");
}
if (file_exists(filename_rw, child_fapl_id)) {
SPLITTER_TEST_FAULT("failed to remove R/W file\n");
}
file_id = H5Fcreate(filename_rw, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
if (file_id == H5I_INVALID_HID) {
SPLITTER_TEST_FAULT("file-open failed with both present\n");
}
/* Open successful; close file then inspect presence again */
if (H5Fclose(file_id) < 0) {
SPLITTER_TEST_FAULT("can't close file ID\n");
}
if (!file_exists(filename_rw, child_fapl_id)) {
SPLITTER_TEST_FAULT("R/W file mysteriously disappeared\n");
}
if (!file_exists(vfd_config->wo_path, child_fapl_id)) {
SPLITTER_TEST_FAULT("W/O file mysteriously disappeared\n");
}
if (h5_compare_file_bytes(filename_rw, vfd_config->wo_path) < 0) {
SPLITTER_TEST_FAULT("files are not byte-for-byte equivalent\n");
}
HDremove(filename_rw);
HDremove(vfd_config->wo_path);
/* H5Fcreate with both files absent is tested elsewhere */
/*
* Cleanup
*/
if (H5Pclose(fapl_id) < 0) {
SPLITTER_TEST_FAULT("can't close splitter FAPL ID\n");
}
done:
if (ret_value < 0) {
H5E_BEGIN_TRY
{
H5Pclose(fapl_id);
H5Fclose(file_id);
}
H5E_END_TRY
}
free(vfd_config);
free(filename_rw);
return ret_value;
} /* end splitter_tentative_open_test() */
/*-------------------------------------------------------------------------
* Function: file_exists()
*
* Purpose: Determine whether a file exists on-system
*
* Return: Non-zero (1) if it exists (H5Fopen successful),
* zero (0) if absent (cannot be opened).
*
* Description: Attempt H5Fopen with the given FAPL ID and RDONLY access flag.
*
*-------------------------------------------------------------------------
*/
static int
file_exists(const char *filename, hid_t fapl_id)
{
hid_t file_id = H5I_INVALID_HID;
int ret_value = 0;
H5E_BEGIN_TRY
{
file_id = H5Fopen(filename, H5F_ACC_RDONLY, fapl_id);
}
H5E_END_TRY
if (file_id != H5I_INVALID_HID) {
ret_value = 1;
if (H5Fclose(file_id) < 0) {
FAIL_PUTS_ERROR("can't close file ID\n");
}
}
return ret_value;
error:
H5E_BEGIN_TRY
{
H5Fclose(file_id);
}
H5E_END_TRY
return ret_value;
} /* end file_exists() */
/*-------------------------------------------------------------------------
* Function: test_splitter
*
* Purpose: Tests the Splitter VFD
*
* Return: Success: 0
* Failure: -1
*
* Description:
* This test function uses the Splitter VFD to produce a r/w
* file and a w/o file. It will verify that the two files
* are identical.
*
*-------------------------------------------------------------------------
*/
static herr_t
test_splitter(void)
{
int buf[SPLITTER_SIZE][SPLITTER_SIZE];
hsize_t dims[2] = {SPLITTER_SIZE, SPLITTER_SIZE};
hid_t child_fapl_id = H5I_INVALID_HID;
int i = 0;
int j = 0;
struct splitter_dataset_def data;
TESTING("SPLITTER file driver");
/* pre-fill data buffer to write */
for (i = 0; i < SPLITTER_SIZE; i++) {
for (j = 0; j < SPLITTER_SIZE; j++) {
buf[i][j] = i * 100 + j;
}
}
/* Dataset info */
data.buf = (void *)buf;
data.mem_type_id = H5T_NATIVE_INT;
data.dims = dims;
data.n_dims = 2;
data.dset_name = SPLITTER_DATASET_NAME;
/* Stand-in for manual FAPL creation
* Enables verification with arbitrary VFDs via `make check-vfd`
*/
child_fapl_id = h5_fileaccess();
if (child_fapl_id < 0) {
TEST_ERROR;
}
if (!driver_is_splitter_compatible(child_fapl_id)) {
SKIPPED();
printf(" given driver is not Splitter W/O compatible.\n");
return 0;
}
/* Test Read-Only access, including when a file on the W/O channel
* does not exist.
*/
if (splitter_RO_test(&data, child_fapl_id) < 0) {
TEST_ERROR;
}
/* Test opening of files when the W/O channel does not exist.
*/
if (splitter_tentative_open_test(child_fapl_id) < 0) {
TEST_ERROR;
}
/* Test file creation, utilizing different child FAPLs (default vs.
* specified), logfile, and Write Channel error ignoring behavior.
*/
for (i = 0; i < 4; i++) {
bool ignore_wo_errors = (i & 1) ? true : false;
bool provide_logfile_path = (i & 2) ? true : false;
hid_t child_fapl_ids[2] = {H5P_DEFAULT, H5P_DEFAULT};
/* Test child driver definition/default combination */
for (j = 0; j < 4; j++) {
child_fapl_ids[0] = (j & 1) ? child_fapl_id : H5P_DEFAULT;
child_fapl_ids[1] = (j & 2) ? child_fapl_id : H5P_DEFAULT;
if (run_splitter_test(&data, ignore_wo_errors, provide_logfile_path, child_fapl_ids) < 0) {
TEST_ERROR;
}
} /* end for child fapl definition/pairing */
} /* end for behavior-flag loops */
/* TODO: SWMR open? */
/* Concurrent opens with both drivers using the Splitter */
if (H5Pclose(child_fapl_id) == FAIL) {
TEST_ERROR;
}
PASSED();
return 0;
error:
if (child_fapl_id != H5I_INVALID_HID)
H5Pclose(child_fapl_id);
return -1;
} /* end test_splitter() */
#undef SPLITTER_TEST_FAULT
/*****************************************************************************
*
* Function setup_rand()
*
* Purpose: Use gettimeofday() to obtain a seed for rand(), print the
* seed to stdout, and then pass it to srand().
*
* This is a version of the same routine in
* testpar/t_cache.c modified for use in serial tests.
*
* Return: void.
*
*****************************************************************************/
static void
setup_rand(void)
{
bool use_predefined_seed = false;
unsigned predefined_seed = 18669;
unsigned seed;
struct timeval tv;
if (use_predefined_seed) {
seed = predefined_seed;
fprintf(stdout, "\n%s: predefined_seed = %d.\n\n", __func__, seed);
fflush(stdout);
HDsrand(seed);
}
else {
if (HDgettimeofday(&tv, NULL) != 0) {
fprintf(stdout, "\n%s: gettimeofday() failed -- srand() not called.\n\n", __func__);
fflush(stdout);
}
else {
seed = (unsigned)tv.tv_usec;
fprintf(stdout, "\n%s: seed = %d.\n\n", __func__, seed);
fflush(stdout);
HDsrand(seed);
}
}
return;
} /* setup_rand() */
/*
* Callback implementations for ctl feature testing VFD
*/
static H5FD_t *
H5FD__ctl_test_vfd_open(const char H5_ATTR_UNUSED *name, unsigned H5_ATTR_UNUSED flags,
hid_t H5_ATTR_UNUSED fapl_id, haddr_t H5_ATTR_UNUSED maxaddr)
{
return calloc(1, sizeof(H5FD_t));
}
static herr_t
H5FD__ctl_test_vfd_close(H5FD_t H5_ATTR_UNUSED *_file)
{
free(_file);
return SUCCEED;
}
static haddr_t
H5FD__ctl_test_vfd_get_eoa(const H5FD_t H5_ATTR_UNUSED *file, H5FD_mem_t H5_ATTR_UNUSED type)
{
return HADDR_UNDEF;
}
static herr_t
H5FD__ctl_test_vfd_set_eoa(H5FD_t H5_ATTR_UNUSED *_file, H5FD_mem_t H5_ATTR_UNUSED type,
haddr_t H5_ATTR_UNUSED addr)
{
return FAIL;
}
static haddr_t
H5FD__ctl_test_vfd_get_eof(const H5FD_t H5_ATTR_UNUSED *file, H5FD_mem_t H5_ATTR_UNUSED type)
{
return HADDR_UNDEF;
}
static herr_t
H5FD__ctl_test_vfd_read(H5FD_t H5_ATTR_UNUSED *_file, H5FD_mem_t H5_ATTR_UNUSED type,
hid_t H5_ATTR_UNUSED fapl_id, haddr_t H5_ATTR_UNUSED addr, size_t H5_ATTR_UNUSED size,
void H5_ATTR_UNUSED *buf)
{
return FAIL;
}
static herr_t
H5FD__ctl_test_vfd_write(H5FD_t H5_ATTR_UNUSED *_file, H5FD_mem_t H5_ATTR_UNUSED type,
hid_t H5_ATTR_UNUSED fapl_id, haddr_t H5_ATTR_UNUSED addr,
size_t H5_ATTR_UNUSED size, const void H5_ATTR_UNUSED *buf)
{
return FAIL;
}
static herr_t
H5FD__ctl_test_vfd_ctl(H5FD_t H5_ATTR_UNUSED *_file, uint64_t op_code, uint64_t flags,
const void H5_ATTR_UNUSED *input, void H5_ATTR_UNUSED **output)
{
herr_t ret_value = SUCCEED;
switch (op_code) {
/* Op code for testing purposes */
case H5FD_CTL_TEST_OPCODE:
break;
/* Unknown op code */
default:
if (flags & H5FD_CTL_FAIL_IF_UNKNOWN_FLAG)
ret_value = FAIL;
break;
}
return ret_value;
}
/* Minimal VFD for ctl feature tests */
static const H5FD_class_t H5FD_ctl_test_vfd_g = {
H5FD_CLASS_VERSION, /* struct version */
(H5FD_class_value_t)201, /* value */
"ctl_test_vfd", /* name */
HADDR_MAX, /* maxaddr */
H5F_CLOSE_SEMI, /* fc_degree */
NULL, /* terminate */
NULL, /* sb_size */
NULL, /* sb_encode */
NULL, /* sb_decode */
0, /* fapl_size */
NULL, /* fapl_get */
NULL, /* fapl_copy */
NULL, /* fapl_free */
0, /* dxpl_size */
NULL, /* dxpl_copy */
NULL, /* dxpl_free */
H5FD__ctl_test_vfd_open, /* open */
H5FD__ctl_test_vfd_close, /* close */
NULL, /* cmp */
NULL, /* query */
NULL, /* get_type_map */
NULL, /* alloc */
NULL, /* free */
H5FD__ctl_test_vfd_get_eoa, /* get_eoa */
H5FD__ctl_test_vfd_set_eoa, /* set_eoa */
H5FD__ctl_test_vfd_get_eof, /* get_eof */
NULL, /* get_handle */
H5FD__ctl_test_vfd_read, /* read */
H5FD__ctl_test_vfd_write, /* write */
NULL, /* read_vector */
NULL, /* write_vector */
NULL, /* read_selection */
NULL, /* write_selection */
NULL, /* flush */
NULL, /* truncate */
NULL, /* lock */
NULL, /* unlock */
NULL, /* del */
H5FD__ctl_test_vfd_ctl, /* ctl */
H5FD_FLMAP_DICHOTOMY /* fl_map */
};
/*-------------------------------------------------------------------------
* Function: run_ctl_test
*
* Purpose: Helper method for VFD "ctl" callback test
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
run_ctl_test(uint64_t op_code, uint64_t flags, ctl_test_opc_type opc_type, hid_t fapl_id)
{
bool fail_if_unknown = false;
bool routing_flag_set = false;
bool is_passthrough_vfd = false;
bool expect_fail = false;
H5FD_t *file_drv_ptr = NULL;
herr_t ctl_result = SUCCEED;
hid_t driver_id = H5I_INVALID_HID;
char filename[1024];
/* Check for a few ctl function flags */
fail_if_unknown = (flags & H5FD_CTL_FAIL_IF_UNKNOWN_FLAG);
routing_flag_set = (flags & H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG);
/* Determine if the top-level VFD is a passthrough VFD */
if ((driver_id = H5Pget_driver(fapl_id)) < 0)
PUTS_ERROR("couldn't get VFD ID from FAPL");
is_passthrough_vfd = ((driver_id == H5FD_SPLITTER) || (driver_id == H5FD_MULTI));
/*
* "Open" testing file. Note that our VFD for testing the ctl
* feature doesn't actually create or open files, so we don't
* need to create the testing file; we just need the VFD to
* give us a pointer to a H5FD_t structure.
*/
h5_fixname(FILENAME[14], fapl_id, filename, sizeof(filename));
if (NULL == (file_drv_ptr = H5FDopen(filename, H5F_ACC_RDWR, fapl_id, HADDR_UNDEF)))
PUTS_ERROR("couldn't get pointer to H5FD_t structure");
/* Determine whether the H5FDctl call is expected to fail */
expect_fail = fail_if_unknown && (CTL_OPC_UNKNOWN == opc_type);
if (is_passthrough_vfd) {
/* Should fail if op code is unknown to passthrough VFD
* (but known to terminal VFD), no routing flag is specified
* and the "fail if unknown" flag is specified.
*/
expect_fail =
expect_fail || ((CTL_OPC_KNOWN_TERMINAL == opc_type) && !routing_flag_set && fail_if_unknown);
}
/* Issue opcode to VFD */
if (expect_fail) {
H5E_BEGIN_TRY
{
ctl_result = H5FDctl(file_drv_ptr, op_code, flags, NULL, NULL);
}
H5E_END_TRY
}
else
ctl_result = H5FDctl(file_drv_ptr, op_code, flags, NULL, NULL);
/* Verify result of H5FDctl call */
if (expect_fail) {
if (ctl_result == SUCCEED)
PUTS_ERROR("H5FDctl call succeeded when it should have failed");
}
else {
if (ctl_result != SUCCEED)
PUTS_ERROR("H5FDctl call failed when it should have succeeded");
}
/* Close H5FD_t structure pointer */
if (H5FDclose(file_drv_ptr) < 0)
PUTS_ERROR("couldn't close H5FD_t structure pointer");
file_drv_ptr = NULL;
return 0;
error:
H5E_BEGIN_TRY
{
H5FDclose(file_drv_ptr);
}
H5E_END_TRY
return -1;
}
/*-------------------------------------------------------------------------
* Function: test_ctl
*
* Purpose: Tests the VFD "ctl" callback
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
test_ctl(void)
{
H5FD_splitter_vfd_config_t *splitter_config = NULL;
uint64_t op_code;
uint64_t flags;
hid_t driver_id = H5I_INVALID_HID;
hid_t fapl_id = H5I_INVALID_HID;
hid_t sub_fapl_id = H5I_INVALID_HID;
TESTING("VFD ctl callback");
puts("");
/* Register VFD for test */
if ((driver_id = H5FDregister(&H5FD_ctl_test_vfd_g)) < 0)
PUTS_ERROR("couldn't register VFD for testing");
if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0)
PUTS_ERROR("couldn't create FAPL");
if (H5Pset_driver(fapl_id, driver_id, NULL) < 0)
PUTS_ERROR("couldn't set testing VFD on FAPL");
TESTING_2("known op code to terminal VFD (without fail on unknown flag)");
op_code = H5FD_CTL_TEST_OPCODE;
flags = 0;
/* H5FDctl call should succeed normally */
if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2("known op code to terminal VFD (with fail on unknown flag)");
op_code = H5FD_CTL_TEST_OPCODE;
flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG;
/* H5FDctl call should succeed normally */
if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2("known op code to terminal VFD (without fail on unknown flag/route to terminal VFD)");
op_code = H5FD_CTL_TEST_OPCODE;
flags = H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG;
/* H5FDctl call should succeed normally */
if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2("known op code to terminal VFD (with fail on unknown flag/route to terminal VFD)");
op_code = H5FD_CTL_TEST_OPCODE;
flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG | H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG;
/* H5FDctl call should succeed normally */
if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2("unknown op code to terminal VFD (without fail on unknown flag)");
op_code = H5FD_CTL_OPC_RESERVED;
flags = 0;
/* H5FDctl call should silently ignore unknown op code and succeed */
if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2("unknown op code to terminal VFD (with fail on unknown flag)");
op_code = H5FD_CTL_OPC_RESERVED;
flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG;
/* H5FDctl call should fail due to 'fail if unknown' flag being specified */
if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2("unknown op code to terminal VFD (without fail on unknown flag/route to terminal VFD)");
op_code = H5FD_CTL_OPC_RESERVED;
flags = H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG;
/* H5FDctl call should silently ignore unknown op code and succeed */
if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2("unknown op code to terminal VFD (with fail on unknown flag/route to terminal VFD)");
op_code = H5FD_CTL_OPC_RESERVED;
flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG | H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG;
/* H5FDctl call should fail due to 'fail if unknown' flag being specified */
if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0)
TEST_ERROR;
PASSED();
/* Set up splitter VFD config */
if (NULL == (splitter_config = calloc(1, sizeof(H5FD_splitter_vfd_config_t))))
TEST_ERROR;
splitter_config->magic = H5FD_SPLITTER_MAGIC;
splitter_config->version = H5FD_CURR_SPLITTER_VFD_CONFIG_VERSION;
splitter_config->ignore_wo_errs = true;
splitter_config->rw_fapl_id = H5P_DEFAULT;
splitter_config->wo_fapl_id = H5P_DEFAULT;
h5_fixname(FILENAME[15], splitter_config->wo_fapl_id, splitter_config->wo_path, H5FD_SPLITTER_PATH_MAX);
if ((sub_fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0)
PUTS_ERROR("couldn't create FAPL");
if (H5Pset_driver(sub_fapl_id, driver_id, NULL) < 0)
PUTS_ERROR("couldn't set testing VFD on FAPL");
splitter_config->rw_fapl_id = sub_fapl_id;
if (H5Pset_fapl_splitter(fapl_id, splitter_config) < 0)
PUTS_ERROR("couldn't set splitter VFD on FAPL");
TESTING_2("known op code through passthrough VFD to terminal VFD (without fail on unknown flag/no "
"routing flag)");
op_code = H5FD_CTL_TEST_OPCODE;
flags = 0;
/*
* H5FDctl call should silently ignore unknown op code in
* passthrough VFD since no routing flag is specified and
* 'fail if unknown' flag is not specified.
*/
if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2(
"known op code through passthrough VFD to terminal VFD (with fail on unknown flag/no routing flag)");
op_code = H5FD_CTL_TEST_OPCODE;
flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG;
/*
* H5FDctl call should fail since op code is unknown to
* passthrough VFD (though known to terminal VFD), no
* routing flag is specified and the 'fail if unknown'
* flag is specified.
*/
if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2("known op code through passthrough VFD to terminal VFD (without fail on unknown flag/route to "
"terminal VFD)");
op_code = H5FD_CTL_TEST_OPCODE;
flags = H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG;
/*
* H5Dctl call should succeed since the passthrough VFD
* doesn't recognize the op code, but has been instructed
* to route it down to the terminal VFD.
*/
if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2("known op code through passthrough VFD to terminal VFD (with fail on unknown flag/route to "
"terminal VFD)");
op_code = H5FD_CTL_TEST_OPCODE;
flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG | H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG;
/*
* H5Dctl call should succeed since the passthrough VFD
* doesn't recognize the op code, but has been instructed
* to route it down to the terminal VFD.
*/
if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2("unknown op code to passthrough VFD (without fail on unknown flag)");
op_code = H5FD_CTL_OPC_RESERVED;
flags = 0;
/*
* H5FDctl call should silently ignore unknown op code in
* passthrough VFD since no routing flag is specified and
* 'fail if unknown' flag is not specified.
*/
if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2("unknown op code to passthrough VFD (with fail on unknown flag)");
op_code = H5FD_CTL_OPC_RESERVED;
flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG;
/*
* H5FDctl call should fail since op code is unknown to
* passthrough VFD, no routing flag is specified and the
* 'fail if unknown' flag is specified.
*/
if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2("unknown op code to passthrough VFD (without fail on unknown flag/route to terminal VFD)");
op_code = H5FD_CTL_OPC_RESERVED;
flags = H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG;
/*
* H5Dctl call should succeed since the passthrough VFD
* doesn't recognize the op code, but has been instructed
* to route it down to the terminal VFD and the 'fail if
* unknown' flag has not been specified. Therefore, the
* terminal VFD should silently ignore the unknown op
* code.
*/
if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2("unknown op code to passthrough VFD (with fail on unknown flag/route to terminal VFD)");
op_code = H5FD_CTL_OPC_RESERVED;
flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG | H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG;
/*
* H5Dctl call should fail since the passthrough VFD
* doesn't recognize the op code, but has been instructed
* to route it down to the terminal VFD and the 'fail if
* unknown' flag has been specified. Therefore, the
* terminal VFD will throw an error for the unknown op
* code.
*/
if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0)
TEST_ERROR;
PASSED();
TESTING_2("test cleanup");
free(splitter_config);
if (H5FDunregister(driver_id) < 0)
TEST_ERROR;
if (H5Pclose(sub_fapl_id) < 0)
TEST_ERROR;
if (H5Pclose(fapl_id) < 0)
TEST_ERROR;
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
if (splitter_config)
free(splitter_config);
H5FDunregister(driver_id);
H5Pclose(sub_fapl_id);
H5Pclose(fapl_id);
}
H5E_END_TRY
return -1;
}
/*-------------------------------------------------------------------------
* Function: test_vector_io__setup_v
*
* Purpose: Construct and initialize a vector of I/O requests used
* to test vector I/O. Note that while the vectors are
* allocated and initialized, they are not assigned
* base addresses.
*
* All arrays parameters are presumed to be of length
* count.
*
* Return: Return true if successful, and false if any errors
* are encountered.
*
*-------------------------------------------------------------------------
*/
static bool
test_vector_io__setup_v(uint32_t count, H5FD_mem_t types[], haddr_t addrs[], size_t sizes[],
const void *write_bufs[], void *read_bufs[], char base_fill_char)
{
bool result = true; /* will set to false on failure */
char fill_char = base_fill_char;
void *temp_buf = NULL;
uint32_t i;
uint32_t j;
H5FD_mem_t mem_types[6] = {H5FD_MEM_SUPER, H5FD_MEM_BTREE, H5FD_MEM_DRAW,
H5FD_MEM_GHEAP, H5FD_MEM_LHEAP, H5FD_MEM_OHDR};
/* set the arrays of pointers to the write and read buffers to NULL,
* so that we can release memory on failure.
*/
for (i = 0; i < count; i++) {
write_bufs[i] = NULL;
read_bufs[i] = NULL;
}
for (i = 0; i < count; i++) {
types[i] = mem_types[i % 6];
addrs[i] = HADDR_UNDEF;
sizes[i] = (size_t)((rand() & 1023) + 1);
temp_buf = malloc(sizes[i] + 1);
read_bufs[i] = malloc(sizes[i] + 1);
if ((NULL == temp_buf) || (NULL == read_bufs[i])) {
fprintf(stderr, "%s: can't malloc read / write bufs.\n", __func__);
result = false;
break;
}
for (j = 0; j < sizes[i]; j++) {
((char *)temp_buf)[j] = fill_char;
((char *)(read_bufs[i]))[j] = '\0';
}
((char *)temp_buf)[sizes[i]] = '\0';
((char *)(read_bufs[i]))[sizes[i]] = '\0';
write_bufs[i] = (const void *)temp_buf;
temp_buf = NULL;
fill_char++;
}
if (!result) { /* free buffers */
free(temp_buf);
for (i = 0; i < count; i++) {
if (write_bufs[i]) {
h5_free_const(write_bufs[i]);
write_bufs[i] = NULL;
}
if (read_bufs[i]) {
free(read_bufs[i]);
read_bufs[i] = NULL;
}
}
}
return (result);
} /* end test_vector_io__setup_v() */
/*-------------------------------------------------------------------------
* Function: test_vector_io__setup_fixed_size_v
*
* Purpose: To test the optimization allowing short sizes and types
* arrays, construct and initialize a vector of I/O requests
* with each request of the same size and type, and use the
* optimizatin to allow reduced length sizes and types
* vectors. Since the function is supplied with types and
* sizes vectors of length count, simulate shorter vectors
* by initializing the sizes and types vectors to values
* that will cause failure if used.
*
* All arrays parameters are presumed to be of length
* count. Count is presumed to be a power of 2, and at
* least 2.
*
* Return: Return true if successful, and false if any errors
* are encountered.
*
*-------------------------------------------------------------------------
*/
static bool
test_vector_io__setup_fixed_size_v(uint32_t count, H5FD_mem_t types[], haddr_t addrs[], size_t sizes[],
const void *write_bufs[], void *read_bufs[], char base_fill_char)
{
bool result = true; /* will set to false on failure */
char fill_char = base_fill_char;
void *temp_buf = NULL;
uint32_t fix_point;
uint32_t i;
uint32_t j;
uint32_t k;
H5FD_mem_t mem_types[6] = {H5FD_MEM_SUPER, H5FD_MEM_BTREE, H5FD_MEM_DRAW,
H5FD_MEM_GHEAP, H5FD_MEM_LHEAP, H5FD_MEM_OHDR};
/* set the arrays of pointers to the write and read buffers to NULL,
* so that we can release memory on failure.
*
* Set the types[] and sizes[] arrays to invalid / improbable values
* so that use of these values will trigger failures.
*/
for (i = 0; i < count; i++) {
write_bufs[i] = NULL;
read_bufs[i] = NULL;
types[i] = H5FD_MEM_NTYPES;
sizes[i] = SIZE_MAX;
}
/* randomly select the point in the vector after which all entries are
* fixed at the same size and type. Observe that 0 <= fix_point <
* count / 2.
*/
fix_point = ((uint32_t)rand() & (count - 1)) / 2;
assert(fix_point < count / 2);
for (i = 0; i < count; i++) {
if (i <= fix_point) {
types[i] = mem_types[i % 6];
addrs[i] = HADDR_UNDEF;
sizes[i] = (size_t)((rand() & 1023) + 1);
temp_buf = malloc(sizes[i] + 1);
read_bufs[i] = malloc(sizes[i] + 1);
}
else {
if (i == fix_point + 1) {
/* set the sentinels that indicate that all remaining
* types and sizes are the same as the previous value.
*/
types[i] = H5FD_MEM_NOLIST;
sizes[i] = 0;
}
addrs[i] = HADDR_UNDEF;
temp_buf = malloc(sizes[fix_point] + 1);
read_bufs[i] = malloc(sizes[fix_point] + 1);
}
if ((NULL == temp_buf) || (NULL == read_bufs[i])) {
fprintf(stderr, "%s: can't malloc read / write bufs.\n", __func__);
result = false;
break;
}
/* need to avoid examining sizes beyond the fix_point */
k = MIN(i, fix_point);
for (j = 0; j < sizes[k]; j++) {
((char *)temp_buf)[j] = fill_char;
((char *)(read_bufs[i]))[j] = '\0';
}
((char *)temp_buf)[sizes[k]] = '\0';
((char *)(read_bufs[i]))[sizes[k]] = '\0';
write_bufs[i] = (const void *)temp_buf;
temp_buf = NULL;
fill_char++;
}
if (!result) { /* free buffers */
free(temp_buf);
for (i = 0; i < count; i++) {
if (write_bufs[i]) {
h5_free_const(write_bufs[i]);
write_bufs[i] = NULL;
}
if (read_bufs[i]) {
free(read_bufs[i]);
read_bufs[i] = NULL;
}
}
}
return (result);
} /* end test_vector_io__setup_fixed_size_v() */
/*-------------------------------------------------------------------------
* Function: test_vector_io__read_v_indiv
*
* Purpose: Read the supplied vector as a sequence of individual
* reads.
*
* All arrays parameters are presumed to be of length
* count.
*
* Return: Return true if successful, and false if any errors
* are encountered.
*
*-------------------------------------------------------------------------
*/
static bool
test_vector_io__read_v_indiv(H5FD_t *lf, uint32_t count, H5FD_mem_t types[], haddr_t addrs[], size_t sizes[],
void *read_bufs[])
{
bool size_fixed = false;
bool type_fixed = false;
bool result = true; /* will set to false on failure */
bool verbose = false;
uint32_t i;
size_t size = SIZE_MAX;
H5FD_mem_t type = H5FD_MEM_NTYPES;
for (i = 0; i < count; i++) {
SET_SIZE(size_fixed, sizes, size, i);
SET_TYPE(type_fixed, types, type, i);
if (H5FDread(lf, type, H5P_DEFAULT, addrs[i], size, read_bufs[i]) < 0) {
if (verbose) {
fprintf(stdout, "%s: H5FDread() failed on entry %d.\n", __func__, i);
}
result = false;
break;
}
}
return (result);
} /* end test_vector_io__read_v_indiv() */
/*-------------------------------------------------------------------------
* Function: test_vector_io__write_v_indiv
*
* Purpose: Write the supplied vector as a sequence of individual
* writes.
*
* All arrays parameters are presumed to be of length
* count.
*
* Return: Return true if successful, and false if any errors
* are encountered.
*
*-------------------------------------------------------------------------
*/
static bool
test_vector_io__write_v_indiv(H5FD_t *lf, uint32_t count, H5FD_mem_t types[], haddr_t addrs[], size_t sizes[],
const void *write_bufs[])
{
bool size_fixed = false;
bool type_fixed = false;
bool result = true; /* will set to false on failure */
bool verbose = false;
uint32_t i;
size_t size = SIZE_MAX;
H5FD_mem_t type = H5FD_MEM_NTYPES;
for (i = 0; i < count; i++) {
SET_SIZE(size_fixed, sizes, size, i);
SET_TYPE(type_fixed, types, type, i);
if (H5FDwrite(lf, type, H5P_DEFAULT, addrs[i], size, write_bufs[i]) < 0) {
if (verbose) {
fprintf(stdout, "%s: HDwrite() failed on entry %d.\n", __func__, i);
}
result = false;
break;
}
}
return (result);
} /* end test_vector_io__write_v_indiv() */
/*-------------------------------------------------------------------------
*
* Function: test_vector_io__verify_v
*
* Purpose: Verify that the read and write buffers of the supplied
* vectors are identical.
*
* Return: true if the read and write vectors are identical, and
* false otherwise.
*
*-------------------------------------------------------------------------
*/
static bool
test_vector_io__verify_v(uint32_t count, H5FD_mem_t types[], size_t sizes[], const void *write_bufs[],
void *read_bufs[], const char *name)
{
bool size_fixed = false;
bool type_fixed = false;
bool identical = true;
bool verbose = true;
uint32_t i;
size_t j;
const char *w_buf;
char *r_buf;
const char *mem_type_names[7] = {"H5FD_MEM_DEFAULT", "H5FD_MEM_SUPER", "H5FD_MEM_BTREE", "H5FD_MEM_DRAW",
"H5FD_MEM_GHEAP", "H5FD_MEM_LHEAP", "H5FD_MEM_OHDR"};
size_t size = SIZE_MAX;
H5FD_mem_t type = H5FD_MEM_NTYPES;
i = 0;
while ((i < count) && (identical)) {
SET_SIZE(size_fixed, sizes, size, i);
SET_TYPE(type_fixed, types, type, i);
w_buf = (const char *)(write_bufs[i]);
r_buf = (char *)(read_bufs[i]);
j = 0;
while ((j < size) && (identical)) {
if (w_buf[j] != r_buf[j]) {
identical = false;
if (verbose) {
fprintf(stdout, "\n\nread/write buf mismatch in vector/entry");
fprintf(stdout, "\"%s\"/%u at offset %llu/%llu w/r = %c/%c type = %s\n\n", name,
(unsigned)i, (long long unsigned)j, (long long unsigned)size, w_buf[j], r_buf[j],
mem_type_names[type]);
}
}
j++;
}
i++;
}
return (identical);
} /* end test_vector_io__verify_v() */
/*-------------------------------------------------------------------------
*
* Function: test_vector_io__dump_test_vectors
*
* Purpose: Print a set of test vectors to stdout.
* Vectors are assumed to be of length count, and
* buffers must be either NULL, or null terminate strings
* of char.
*
* Return: void.
*
*-------------------------------------------------------------------------
*/
static void
test_vector_io__dump_test_vectors(uint32_t count, H5FD_mem_t types[], haddr_t addrs[], size_t sizes[],
const void *write_bufs[], void *read_bufs[], const char *name)
{
bool size_fixed = false;
bool type_fixed = false;
uint32_t i;
const char *mem_type_names[7] = {"H5FD_MEM_DEFAULT", "H5FD_MEM_SUPER", "H5FD_MEM_BTREE", "H5FD_MEM_DRAW",
"H5FD_MEM_GHEAP", "H5FD_MEM_LHEAP", "H5FD_MEM_OHDR"};
size_t size = SIZE_MAX;
H5FD_mem_t type = H5FD_MEM_NTYPES;
const char *w_buf;
char *r_buf;
fprintf(stdout, "\n\nDumping test vector \"%s\" of length %d\n\n", name, count);
for (i = 0; i < count; i++) {
SET_SIZE(size_fixed, sizes, size, i);
SET_TYPE(type_fixed, types, type, i);
assert((H5FD_MEM_DEFAULT <= type) && (type <= H5FD_MEM_OHDR));
w_buf = (const char *)(write_bufs[i]);
if (read_bufs) {
r_buf = (char *)(read_bufs[i]);
}
else {
r_buf = NULL;
}
fprintf(stdout, "%u: addr/len = %llu/%llu, type = %s, w_buf = \"%s\"\n", (unsigned)i,
(long long unsigned)(addrs[i]), (long long unsigned)(size), mem_type_names[type], w_buf);
if (r_buf) {
fprintf(stdout, " r_buf = \"%s\"\n", r_buf);
}
}
return;
} /* end test_vector_io__dump_test_vectors() */
/*-------------------------------------------------------------------------
* Function: test_vector_io
*
* Purpose: Test I/O using the vector I/O VFD public VFD calls.
*
* Test proceeds as follows:
*
* 1) read / write vectors and verify results
*
* 2) write individual / read vector and verify results
*
* 3) write vector / read individual and verify results
*
* 4) Close and then re-open the file, verify data written
* above.
*
* Return: Success: 0
* Failure: -1
*
*-------------------------------------------------------------------------
*/
#define VECTOR_LEN 16
static herr_t
test_vector_io(const char *vfd_name)
{
char test_title[80];
bool size_fixed_0 = false; /* whether remaining entry */
bool size_fixed_1 = false; /* sizes in vector are fixed. */
bool size_fixed_2 = false; /* */
bool type_fixed_0 = false; /* whether remaining entry */
bool type_fixed_1 = false; /* types in vector are fixed. */
bool type_fixed_2 = false; /* */
bool verbose = false;
hid_t fapl_id = H5I_INVALID_HID; /* file access property list ID */
haddr_t eoa; /* file eoa */
char filename[1024]; /* filename */
char *buf; /* tmp ptr to buf */
unsigned flags = 0; /* file open flags */
H5FD_t *lf = NULL; /* VFD struct ptr */
uint32_t i; /* index */
uint32_t j; /* index */
uint32_t count = VECTOR_LEN; /* length of vectors */
H5FD_mem_t types_0[VECTOR_LEN]; /* types vector */
H5FD_mem_t types_1[VECTOR_LEN]; /* types vector */
H5FD_mem_t types_2[VECTOR_LEN]; /* types vector */
H5FD_mem_t f_types_0[VECTOR_LEN]; /* fixed types vector */
H5FD_mem_t f_types_1[VECTOR_LEN]; /* fixed types vector */
H5FD_mem_t f_types_2[VECTOR_LEN]; /* fixed types vector */
H5FD_mem_t f_type_0 = H5FD_MEM_NTYPES; /* current type for f vector 0 */
H5FD_mem_t f_type_1 = H5FD_MEM_NTYPES; /* current type for f vector 1 */
H5FD_mem_t f_type_2 = H5FD_MEM_NTYPES; /* current type for f vector 2 */
haddr_t addrs_0[VECTOR_LEN]; /* addresses vector */
haddr_t addrs_1[VECTOR_LEN]; /* addresses vector */
haddr_t addrs_2[VECTOR_LEN]; /* addresses vector */
haddr_t f_addrs_0[VECTOR_LEN]; /* fixed addresses vector */
haddr_t f_addrs_1[VECTOR_LEN]; /* fixed addresses vector */
haddr_t f_addrs_2[VECTOR_LEN]; /* fixed addresses vector */
size_t sizes_0[VECTOR_LEN]; /* sizes vector */
size_t sizes_1[VECTOR_LEN]; /* sizes vector */
size_t sizes_2[VECTOR_LEN]; /* sizes vector */
size_t f_sizes_0[VECTOR_LEN]; /* fixed sizes vector */
size_t f_sizes_1[VECTOR_LEN]; /* fixed sizes vector */
size_t f_sizes_2[VECTOR_LEN]; /* fixed sizes vector */
size_t f_size_0 = 0; /* current size for f vector 0 */
size_t f_size_1 = 0; /* current size for f vector 1 */
size_t f_size_2 = 0; /* current size for f vector 2 */
const void *write_bufs_0[VECTOR_LEN]; /* write bufs vector */
const void *write_bufs_1[VECTOR_LEN]; /* write bufs vector */
const void *write_bufs_2[VECTOR_LEN]; /* write bufs vector */
const void *f_write_bufs_0[VECTOR_LEN]; /* fixed write bufs vector */
const void *f_write_bufs_1[VECTOR_LEN]; /* fixed write bufs vector */
const void *f_write_bufs_2[VECTOR_LEN]; /* fixed write bufs vector */
void *read_bufs_0[VECTOR_LEN]; /* read bufs vector */
void *read_bufs_1[VECTOR_LEN]; /* read bufs vector */
void *read_bufs_2[VECTOR_LEN]; /* read bufs vector */
void *f_read_bufs_0[VECTOR_LEN]; /* fixed read bufs vector */
void *f_read_bufs_1[VECTOR_LEN]; /* fixed read bufs vector */
void *f_read_bufs_2[VECTOR_LEN]; /* fixed read bufs vector */
snprintf(test_title, sizeof(test_title), "vector I/O with %s VFD", vfd_name);
TESTING(test_title);
/* Set property list and file name for target driver */
if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
if (strcmp(vfd_name, "sec2") == 0) {
if (H5Pset_fapl_sec2(fapl_id) < 0)
TEST_ERROR;
h5_fixname(FILENAME[0], fapl_id, filename, sizeof(filename));
}
else if (strcmp(vfd_name, "stdio") == 0) {
if (H5Pset_fapl_stdio(fapl_id) < 0)
TEST_ERROR;
h5_fixname(FILENAME[7], fapl_id, filename, sizeof filename);
}
else {
fprintf(stdout, "un-supported VFD\n");
TEST_ERROR;
}
/* setup the test vectors -- note that addresses are not set until
* we allocate space via the file driver.
*/
if (!(test_vector_io__setup_v(count, types_0, addrs_0, sizes_0, write_bufs_0, read_bufs_0, 'a') &&
test_vector_io__setup_v(count, types_1, addrs_1, sizes_1, write_bufs_1, read_bufs_1, 'e') &&
test_vector_io__setup_v(count, types_2, addrs_2, sizes_2, write_bufs_2, read_bufs_2, 'A')))
TEST_ERROR;
if (!(test_vector_io__setup_fixed_size_v(count, f_types_0, f_addrs_0, f_sizes_0, f_write_bufs_0,
f_read_bufs_0, 'b') &&
test_vector_io__setup_fixed_size_v(count, f_types_1, f_addrs_1, f_sizes_1, f_write_bufs_1,
f_read_bufs_1, 'f') &&
test_vector_io__setup_fixed_size_v(count, f_types_2, f_addrs_2, f_sizes_2, f_write_bufs_2,
f_read_bufs_2, 'B')))
TEST_ERROR;
flags = H5F_ACC_RDWR | H5F_ACC_CREAT | H5F_ACC_TRUNC;
if (NULL == (lf = H5FDopen(filename, flags, fapl_id, HADDR_UNDEF)))
TEST_ERROR;
/* allocate space for the data in the test vectors */
for (i = 0; i < count; i++) {
addrs_0[i] = H5FDalloc(lf, types_0[i], H5P_DEFAULT, (hsize_t)(sizes_0[i]));
addrs_1[i] = H5FDalloc(lf, types_1[i], H5P_DEFAULT, (hsize_t)(sizes_1[i]));
addrs_2[i] = H5FDalloc(lf, types_2[i], H5P_DEFAULT, (hsize_t)(sizes_2[i]));
if ((addrs_0[i] == HADDR_UNDEF) || (addrs_1[i] == HADDR_UNDEF) || (addrs_2[i] == HADDR_UNDEF))
TEST_ERROR;
SET_SIZE(size_fixed_0, f_sizes_0, f_size_0, i);
SET_SIZE(size_fixed_1, f_sizes_1, f_size_1, i);
SET_SIZE(size_fixed_2, f_sizes_2, f_size_2, i);
SET_TYPE(type_fixed_0, f_types_0, f_type_0, i);
SET_TYPE(type_fixed_1, f_types_1, f_type_1, i);
SET_TYPE(type_fixed_2, f_types_2, f_type_2, i);
f_addrs_0[i] = H5FDalloc(lf, f_type_0, H5P_DEFAULT, (hsize_t)(f_size_0));
f_addrs_1[i] = H5FDalloc(lf, f_type_1, H5P_DEFAULT, (hsize_t)(f_size_1));
f_addrs_2[i] = H5FDalloc(lf, f_type_2, H5P_DEFAULT, (hsize_t)(f_size_2));
if ((f_addrs_0[i] == HADDR_UNDEF) || (f_addrs_1[i] == HADDR_UNDEF) || (f_addrs_2[i] == HADDR_UNDEF))
TEST_ERROR;
}
if (verbose) {
test_vector_io__dump_test_vectors(count, types_0, addrs_0, sizes_0, write_bufs_0, NULL, "zero");
test_vector_io__dump_test_vectors(count, types_1, addrs_1, sizes_1, write_bufs_1, NULL, "one");
test_vector_io__dump_test_vectors(count, types_2, addrs_2, sizes_2, write_bufs_2, NULL, "two");
test_vector_io__dump_test_vectors(count, f_types_0, f_addrs_0, f_sizes_0, f_write_bufs_0, NULL,
"fixed zero");
test_vector_io__dump_test_vectors(count, f_types_1, f_addrs_1, f_sizes_1, f_write_bufs_1, NULL,
"fixed one");
test_vector_io__dump_test_vectors(count, f_types_2, f_addrs_2, f_sizes_2, f_write_bufs_2, NULL,
"fixed two");
}
/* write and then read using vector I/O. First, read/write vector
* of length 1, then of length 2, then remainder of vector
*/
if (H5FDwrite_vector(lf, H5P_DEFAULT, 1, &(types_0[0]), &(addrs_0[0]), &(sizes_0[0]),
&(write_bufs_0[0])) < 0)
TEST_ERROR;
if (H5FDread_vector(lf, H5P_DEFAULT, 1, &(types_0[0]), &(addrs_0[0]), &(sizes_0[0]), &(read_bufs_0[0])) <
0)
TEST_ERROR;
if (H5FDwrite_vector(lf, H5P_DEFAULT, 2, &(types_0[1]), &(addrs_0[1]), &(sizes_0[1]),
&(write_bufs_0[1])) < 0)
TEST_ERROR;
if (H5FDread_vector(lf, H5P_DEFAULT, 2, &(types_0[1]), &(addrs_0[1]), &(sizes_0[1]), &(read_bufs_0[1])) <
0)
TEST_ERROR;
if (H5FDwrite_vector(lf, H5P_DEFAULT, count - 3, &(types_0[3]), &(addrs_0[3]), &(sizes_0[3]),
&(write_bufs_0[3])) < 0)
TEST_ERROR;
if (H5FDread_vector(lf, H5P_DEFAULT, count - 3, &(types_0[3]), &(addrs_0[3]), &(sizes_0[3]),
&(read_bufs_0[3])) < 0)
TEST_ERROR;
/* for fixed size / type vector, just write and read as single operations */
if (H5FDwrite_vector(lf, H5P_DEFAULT, count, f_types_0, f_addrs_0, f_sizes_0, f_write_bufs_0) < 0)
TEST_ERROR;
if (H5FDread_vector(lf, H5P_DEFAULT, count, f_types_0, f_addrs_0, f_sizes_0, f_read_bufs_0) < 0)
TEST_ERROR;
/* verify that the expected data is read */
if (!test_vector_io__verify_v(count, types_0, sizes_0, write_bufs_0, read_bufs_0, "zero"))
TEST_ERROR;
if (!test_vector_io__verify_v(count, f_types_0, f_sizes_0, f_write_bufs_0, f_read_bufs_0, "fixed zero"))
TEST_ERROR;
/* write the contents of a vector individually, and then read it back
* in several vector reads.
*/
if (!test_vector_io__write_v_indiv(lf, count, types_1, addrs_1, sizes_1, write_bufs_1))
TEST_ERROR;
if (H5FDread_vector(lf, H5P_DEFAULT, 1, &(types_1[0]), &(addrs_1[0]), &(sizes_1[0]), &(read_bufs_1[0])) <
0)
TEST_ERROR;
if (H5FDread_vector(lf, H5P_DEFAULT, 2, &(types_1[1]), &(addrs_1[1]), &(sizes_1[1]), &(read_bufs_1[1])) <
0)
TEST_ERROR;
if (H5FDread_vector(lf, H5P_DEFAULT, count - 3, &(types_1[3]), &(addrs_1[3]), &(sizes_1[3]),
&(read_bufs_1[3])) < 0)
TEST_ERROR;
/* for fixed size, write individually, and the read back in a single call */
if (!test_vector_io__write_v_indiv(lf, count, f_types_1, f_addrs_1, f_sizes_1, f_write_bufs_1))
TEST_ERROR;
if (H5FDread_vector(lf, H5P_DEFAULT, count, f_types_1, f_addrs_1, f_sizes_1, f_read_bufs_1) < 0)
TEST_ERROR;
/* verify that the expected data is read */
if (!test_vector_io__verify_v(count, types_1, sizes_1, write_bufs_1, read_bufs_1, "one"))
TEST_ERROR;
if (!test_vector_io__verify_v(count, f_types_1, f_sizes_1, f_write_bufs_1, f_read_bufs_1, "fixed one"))
TEST_ERROR;
/* Write the contents of a vector as several vector writes, then
* read it back in individual reads.
*/
if (H5FDwrite_vector(lf, H5P_DEFAULT, 1, &(types_2[0]), &(addrs_2[0]), &(sizes_2[0]),
&(write_bufs_2[0])) < 0)
TEST_ERROR;
if (H5FDwrite_vector(lf, H5P_DEFAULT, 2, &(types_2[1]), &(addrs_2[1]), &(sizes_2[1]),
&(write_bufs_2[1])) < 0)
TEST_ERROR;
if (H5FDwrite_vector(lf, H5P_DEFAULT, count - 3, &(types_2[3]), &(addrs_2[3]), &(sizes_2[3]),
&(write_bufs_2[3])) < 0)
TEST_ERROR;
if (!test_vector_io__read_v_indiv(lf, count, types_2, addrs_2, sizes_2, read_bufs_2))
TEST_ERROR;
/* for fixed size, write as a single vector, read back individually */
if (H5FDwrite_vector(lf, H5P_DEFAULT, count, f_types_2, f_addrs_2, f_sizes_2, f_write_bufs_2) < 0)
TEST_ERROR;
if (!test_vector_io__read_v_indiv(lf, count, f_types_2, f_addrs_2, f_sizes_2, f_read_bufs_2))
TEST_ERROR;
/* verify that the expected data is read */
if (!test_vector_io__verify_v(count, types_2, sizes_2, write_bufs_2, read_bufs_2, "two"))
TEST_ERROR;
if (!test_vector_io__verify_v(count, f_types_2, f_sizes_2, f_write_bufs_2, f_read_bufs_2, "fixed two"))
TEST_ERROR;
/* make note of eoa -- needed after we re-open the file */
if (HADDR_UNDEF == (eoa = H5FDget_eoa(lf, H5FD_MEM_DEFAULT)))
TEST_ERROR;
/* close the file and then re-open it */
if (H5FDclose(lf) < 0)
TEST_ERROR;
flags = H5F_ACC_RDWR;
if (NULL == (lf = H5FDopen(filename, flags, fapl_id, HADDR_UNDEF)))
TEST_ERROR;
/* The EOA is set to 0 on open. To avoid errors, we must set it
* to its correct value before we do any reads.
*
* Note: In the context of using the VFD layer without the HDF5
* library on top, this doesn't make much sense. Consider
* adding an open flag that sets the EOA to the current file
* size.
*/
if (H5FDset_eoa(lf, H5FD_MEM_DEFAULT, eoa) < 0)
TEST_ERROR;
/* Null the read vectors */
size_fixed_0 = false;
size_fixed_1 = false;
size_fixed_2 = false;
for (i = 0; i < count; i++) {
buf = read_bufs_0[i];
for (j = 0; j < sizes_0[i]; j++) {
buf[j] = '\0';
}
buf = read_bufs_1[i];
for (j = 0; j < sizes_1[i]; j++) {
buf[j] = '\0';
}
buf = read_bufs_2[i];
for (j = 0; j < sizes_2[i]; j++) {
buf[j] = '\0';
}
SET_SIZE(size_fixed_0, f_sizes_0, f_size_0, i);
SET_SIZE(size_fixed_1, f_sizes_1, f_size_1, i);
SET_SIZE(size_fixed_2, f_sizes_2, f_size_2, i);
buf = f_read_bufs_0[i];
for (j = 0; j < f_size_0; j++) {
buf[j] = '\0';
}
buf = f_read_bufs_1[i];
for (j = 0; j < f_size_1; j++) {
buf[j] = '\0';
}
buf = f_read_bufs_2[i];
for (j = 0; j < f_size_2; j++) {
buf[j] = '\0';
}
}
/* read the contents of the file */
if (H5FDread_vector(lf, H5P_DEFAULT, count, types_0, addrs_0, sizes_0, read_bufs_0) < 0)
TEST_ERROR;
if (H5FDread_vector(lf, H5P_DEFAULT, count, types_1, addrs_1, sizes_1, read_bufs_1) < 0)
TEST_ERROR;
if (H5FDread_vector(lf, H5P_DEFAULT, count, types_2, addrs_2, sizes_2, read_bufs_2) < 0)
TEST_ERROR;
if (H5FDread_vector(lf, H5P_DEFAULT, count, f_types_0, f_addrs_0, f_sizes_0, f_read_bufs_0) < 0)
TEST_ERROR;
if (H5FDread_vector(lf, H5P_DEFAULT, count, f_types_1, f_addrs_1, f_sizes_1, f_read_bufs_1) < 0)
TEST_ERROR;
if (H5FDread_vector(lf, H5P_DEFAULT, count, f_types_2, f_addrs_2, f_sizes_2, f_read_bufs_2) < 0)
TEST_ERROR;
/* verify the contents. */
if (!test_vector_io__verify_v(count, types_0, sizes_0, write_bufs_0, read_bufs_0, "zero-"))
TEST_ERROR;
if (!test_vector_io__verify_v(count, types_1, sizes_1, write_bufs_1, read_bufs_1, "one-"))
TEST_ERROR;
if (!test_vector_io__verify_v(count, types_2, sizes_2, write_bufs_2, read_bufs_2, "two-"))
TEST_ERROR;
if (!test_vector_io__verify_v(count, f_types_0, f_sizes_0, f_write_bufs_0, f_read_bufs_0, "fixed zero-"))
TEST_ERROR;
if (!test_vector_io__verify_v(count, f_types_1, f_sizes_1, f_write_bufs_1, f_read_bufs_1, "fixed one-"))
TEST_ERROR;
if (!test_vector_io__verify_v(count, f_types_2, f_sizes_2, f_write_bufs_2, f_read_bufs_2, "fixed two-"))
TEST_ERROR;
if (H5FDclose(lf) < 0)
TEST_ERROR;
h5_delete_test_file(FILENAME[0], fapl_id);
/* Close the fapl */
if (H5Pclose(fapl_id) < 0)
TEST_ERROR;
/* discard the read and write buffers */
for (i = 0; i < count; i++) {
h5_free_const(write_bufs_0[i]);
write_bufs_0[i] = NULL;
h5_free_const(write_bufs_1[i]);
write_bufs_1[i] = NULL;
h5_free_const(write_bufs_2[i]);
write_bufs_2[i] = NULL;
free(read_bufs_0[i]);
read_bufs_0[i] = NULL;
free(read_bufs_1[i]);
read_bufs_1[i] = NULL;
free(read_bufs_2[i]);
read_bufs_2[i] = NULL;
h5_free_const(f_write_bufs_0[i]);
f_write_bufs_0[i] = NULL;
h5_free_const(f_write_bufs_1[i]);
f_write_bufs_1[i] = NULL;
h5_free_const(f_write_bufs_2[i]);
f_write_bufs_2[i] = NULL;
free(f_read_bufs_0[i]);
f_read_bufs_0[i] = NULL;
free(f_read_bufs_1[i]);
f_read_bufs_1[i] = NULL;
free(f_read_bufs_2[i]);
f_read_bufs_2[i] = NULL;
}
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Pclose(fapl_id);
H5FDclose(lf);
}
H5E_END_TRY
return -1;
} /* end test_vector_io() */
/*-------------------------------------------------------------------------
* Function: test_selection_io_write
*
* Purpose: Updates write buffers to ensure a unique value is written
* to each element and issues a selection write call.
*
* Return: Success: true
* Failure: false
*-------------------------------------------------------------------------
*/
/* Array dimensions, used for all selection I/O tests. Currently both must be
* even. 1-Dimensional arrays have a size of SEL_IO_DIM0 * SEL_IO_DIM1. */
#define SEL_IO_DIM0 8
#define SEL_IO_DIM1 10
static herr_t
test_selection_io_write(H5FD_t *lf, H5FD_mem_t type, uint32_t count, hid_t mem_spaces[], hid_t file_spaces[],
haddr_t offsets[], size_t element_sizes[], int *wbufs[])
{
const void **bufs; /* Avoids cast/const warnings */
int i;
int j;
if (NULL == (bufs = calloc(count, sizeof(void *))))
TEST_ERROR;
/* Update write buffer */
for (i = 0; i < (int)count; i++) {
if (wbufs[i] && (i == 0 || wbufs[i] != wbufs[i - 1]))
for (j = 0; j < SEL_IO_DIM0 * SEL_IO_DIM1; j++)
wbufs[i][j] += 2 * SEL_IO_DIM0 * SEL_IO_DIM1;
bufs[i] = wbufs[i];
}
/* Issue write call */
if (H5FDwrite_selection(lf, type, H5P_DEFAULT, count, mem_spaces, file_spaces, offsets, element_sizes,
bufs) < 0)
TEST_ERROR;
free(bufs);
return 0;
error:
free(bufs);
return -1;
} /* end test_selection_io_write() */
/*-------------------------------------------------------------------------
* Function: test_selection_io_read_verify
*
* Purpose: Issues a selection read call and compares the result to
* the arrays provided in erbufs. If rbufcount is less than
* count the last element in erbufs will be repeated to make
* up the difference.
*
* Return: Success: true
* Failure: false
*
*-------------------------------------------------------------------------
*/
static herr_t
test_selection_io_read_verify(H5FD_t *lf, H5FD_mem_t type, uint32_t count, hid_t mem_spaces[],
hid_t file_spaces[], haddr_t offsets[], size_t element_sizes[],
uint32_t rbufcount, int *erbufs[], bool shorten_rbufs)
{
int rbuf1[SEL_IO_DIM0 * SEL_IO_DIM1];
int rbuf2[SEL_IO_DIM0 * SEL_IO_DIM1];
int *rbufs[2] = {rbuf1, rbuf2};
int i;
int j;
/* Initialize read buffer */
for (i = 0; i < (int)rbufcount; i++)
for (j = 0; j < SEL_IO_DIM0 * SEL_IO_DIM1; j++)
rbufs[i][j] = -1;
/* Handle elements in count that are not part of rbufcount */
for (i = (int)rbufcount; i < (int)count; i++)
if (shorten_rbufs)
rbufs[i] = NULL;
else
rbufs[i] = rbufs[rbufcount - 1];
/* Issue read call */
if (H5FDread_selection(lf, type, H5P_DEFAULT, count, mem_spaces, file_spaces, offsets, element_sizes,
(void **)rbufs) < 0)
TEST_ERROR;
/* Verify result */
for (i = 0; i < (int)rbufcount; i++)
for (j = 0; j < SEL_IO_DIM0 * SEL_IO_DIM1; j++)
if (rbufs[i][j] != erbufs[i][j]) {
H5_FAILED();
AT();
printf("data read from file does not match expected values at mapping array location %d\n",
i);
printf("expected data: \n");
for (j = 0; j < SEL_IO_DIM0 * SEL_IO_DIM1; j++) {
printf("%6d", erbufs[i][j]);
if (!((j + 1) % SEL_IO_DIM1))
printf("\n");
}
printf("read data: \n");
for (j = 0; j < SEL_IO_DIM0 * SEL_IO_DIM1; j++) {
printf("%6d", rbufs[i][j]);
if (!((j + 1) % SEL_IO_DIM1))
printf("\n");
}
goto error;
}
return 0;
error:
return -1;
} /* end test_selection_io_read_verify() */
/*-------------------------------------------------------------------------
* Function: test_selection_io
*
* Purpose: Test I/O using the selection I/O VFD public VFD calls.
*
* Tests various combinations of 1D, 2D, contiguous, and
* strided selections with different file data types and
* with and without shortened arrays.
*
* Return: Success: 0
* Failure: -1
*
*-------------------------------------------------------------------------
*/
static herr_t
test_selection_io(const char *vfd_name)
{
char test_title[80];
hid_t fapl_id = H5I_INVALID_HID; /* file access property list ID */
char filename[1024]; /* filename */
unsigned flags = 0; /* file open flags */
H5FD_t *lf = NULL; /* VFD struct ptr */
int i; /* index */
int j; /* index */
int i2; /* index */
int j2; /* index */
hid_t mem_spaces[2] = {H5I_INVALID_HID, H5I_INVALID_HID}; /* memory dataspaces vector */
hid_t file_spaces[2] = {H5I_INVALID_HID, H5I_INVALID_HID}; /* file dataspaces vector */
hsize_t dims1[1] = {SEL_IO_DIM0 * SEL_IO_DIM1}; /* 1D dataspace dimensions */
hsize_t dims2[2] = {SEL_IO_DIM0, SEL_IO_DIM1}; /* 1D dataspace dimensions */
hsize_t start[2]; /* start for hyperslab */
hsize_t stride[2]; /* stride for hyperslab */
hsize_t count[2]; /* count for hyperslab */
hsize_t block[2]; /* block for hyperslab */
H5FD_mem_t type; /* file data type */
haddr_t addrs[2]; /* addresses vector */
size_t element_sizes[2] = {sizeof(int), sizeof(int)}; /* element sizes vector */
int wbuf1[SEL_IO_DIM0 * SEL_IO_DIM1]; /* 1D write buffer */
int wbuf2[SEL_IO_DIM0][SEL_IO_DIM1]; /* 2D write buffer */
int *wbufs[2] = {wbuf1, wbuf2[0]}; /* Array of write buffers */
int fbuf1[SEL_IO_DIM0 * SEL_IO_DIM1]; /* 1D file buffer */
int fbuf2[SEL_IO_DIM0][SEL_IO_DIM1]; /* 2D file buffer */
int *fbufs[2] = {fbuf1, fbuf2[0]}; /* Array of file buffers */
int erbuf1[SEL_IO_DIM0 * SEL_IO_DIM1]; /* 1D expected read buffer */
int erbuf2[SEL_IO_DIM0][SEL_IO_DIM1]; /* 2D expected read buffer */
int *erbufs[2] = {erbuf1, erbuf2[0]}; /* Array of expected read buffers */
int shorten_element_sizes; /* Whether to shorten the element sizes array */
snprintf(test_title, sizeof(test_title), "selection I/O with %s VFD", vfd_name);
TESTING(test_title);
/* Set property list and file name for target driver */
if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0)
TEST_ERROR;
if (strcmp(vfd_name, "sec2") == 0) {
if (H5Pset_fapl_sec2(fapl_id) < 0)
TEST_ERROR;
h5_fixname(FILENAME[0], fapl_id, filename, sizeof(filename));
}
else if (strcmp(vfd_name, "stdio") == 0) {
if (H5Pset_fapl_stdio(fapl_id) < 0)
TEST_ERROR;
h5_fixname(FILENAME[7], fapl_id, filename, sizeof filename);
}
else {
fprintf(stdout, "un-supported VFD\n");
TEST_ERROR;
}
/* Initialize write buffers */
for (i = 0; i < SEL_IO_DIM0; i++)
for (j = 0; j < SEL_IO_DIM1; j++) {
wbuf1[(i * SEL_IO_DIM1) + j] = (i * SEL_IO_DIM1) + j;
wbuf2[i][j] = (i * SEL_IO_DIM1) + j + (SEL_IO_DIM0 * SEL_IO_DIM1);
}
/* Create dataspaces - location 0 will be 1D and location 1 will be 2D */
if ((mem_spaces[0] = H5Screate_simple(1, dims1, NULL)) < 0)
TEST_ERROR;
if ((mem_spaces[1] = H5Screate_simple(2, dims2, NULL)) < 0)
TEST_ERROR;
if ((file_spaces[0] = H5Screate_simple(1, dims1, NULL)) < 0)
TEST_ERROR;
if ((file_spaces[1] = H5Screate_simple(2, dims2, NULL)) < 0)
TEST_ERROR;
/* Create file */
flags = H5F_ACC_RDWR | H5F_ACC_CREAT | H5F_ACC_TRUNC;
if (NULL == (lf = H5FDopen(filename, flags, fapl_id, HADDR_UNDEF)))
TEST_ERROR;
/* Loop over memory types */
for (type = 1; type < H5FD_MEM_NTYPES; type++) {
/* Allocate space for I/O */
addrs[0] = H5FDalloc(lf, type, H5P_DEFAULT, (hsize_t)(sizeof(int) * SEL_IO_DIM0 * SEL_IO_DIM1));
addrs[1] = H5FDalloc(lf, type, H5P_DEFAULT, (hsize_t)(sizeof(int) * SEL_IO_DIM0 * SEL_IO_DIM1));
/*
* Test 1: Simple 1D contiguous I/O
*/
/* Issue write call */
if (test_selection_io_write(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes,
(int **)&wbufs[0]) < 0)
TEST_ERROR;
/* Update file buf */
for (i = 0; i < SEL_IO_DIM0 * SEL_IO_DIM1; i++)
fbuf1[i] = wbuf1[i];
/* Read and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0],
element_sizes, 1, (int **)&fbufs[0], false) < 0)
TEST_ERROR;
/*
* Test 2: Simple 2D contiguous I/O
*/
/* Issue write call */
if (test_selection_io_write(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes,
(int **)&wbufs[1]) < 0)
TEST_ERROR;
/* Update file buf */
for (i = 0; i < SEL_IO_DIM0; i++)
for (j = 0; j < SEL_IO_DIM1; j++)
fbuf2[i][j] = wbuf2[i][j];
/* Read and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1],
element_sizes, 1, (int **)&fbufs[1], false) < 0)
TEST_ERROR;
/*
* Test 3: Strided <> Contiguous 1D I/O
*/
/* SEL_IO_DIM1 must be even */
assert(SEL_IO_DIM1 / 2 == (SEL_IO_DIM1 + 1) / 2);
/* Strided selection in memory */
start[0] = 1;
stride[0] = 2;
count[0] = (SEL_IO_DIM0 * SEL_IO_DIM1) / 2;
block[0] = 1;
if (H5Sselect_hyperslab(mem_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Contiguous selection in file */
if (H5Sselect_hyperslab(file_spaces[0], H5S_SELECT_SET, start, NULL, count, NULL) < 0)
TEST_ERROR;
/* Issue write call */
if (test_selection_io_write(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes,
(int **)&wbufs[0]) < 0)
TEST_ERROR;
/* Update file buf */
for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++)
fbuf1[i + 1] = wbuf1[(2 * i) + 1];
/* Update expected read buf */
for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1); i++)
erbuf1[i] = -1;
for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++)
erbuf1[(2 * i) + 1] = wbuf1[(2 * i) + 1];
/* Read and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0],
element_sizes, 1, (int **)&erbufs[0], false) < 0)
TEST_ERROR;
/* Reset selections */
if (H5Sselect_all(mem_spaces[0]) < 0)
TEST_ERROR;
if (H5Sselect_all(file_spaces[0]) < 0)
TEST_ERROR;
/* Read entire file buffer and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0],
element_sizes, 1, (int **)&fbufs[0], false) < 0)
TEST_ERROR;
/*
* Test 4: Contiguous <> Strided 1D I/O
*/
/* SEL_IO_DIM1 must be even */
assert(SEL_IO_DIM1 / 2 == (SEL_IO_DIM1 + 1) / 2);
/* Contiguous selection in memory */
start[0] = 1;
stride[0] = 2;
if (H5Sselect_hyperslab(mem_spaces[0], H5S_SELECT_SET, start, NULL, count, NULL) < 0)
TEST_ERROR;
/* Strided selection in file */
count[0] = (SEL_IO_DIM0 * SEL_IO_DIM1) / 2;
block[0] = 1;
if (H5Sselect_hyperslab(file_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Issue write call */
if (test_selection_io_write(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes,
(int **)&wbufs[0]) < 0)
TEST_ERROR;
/* Update file buf */
for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++)
fbuf1[(2 * i) + 1] = wbuf1[i + 1];
/* Update expected read buf */
for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1); i++)
erbuf1[i] = -1;
for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++)
erbuf1[i + 1] = wbuf1[i + 1];
/* Read and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0],
element_sizes, 1, (int **)&erbufs[0], false) < 0)
TEST_ERROR;
/* Reset selections */
if (H5Sselect_all(mem_spaces[0]) < 0)
TEST_ERROR;
if (H5Sselect_all(file_spaces[0]) < 0)
TEST_ERROR;
/* Read entire file buffer and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0],
element_sizes, 1, (int **)&fbufs[0], false) < 0)
TEST_ERROR;
/*
* Test 5: Strided <> Strided 1D I/O
*/
/* SEL_IO_DIM1 must be even */
assert(SEL_IO_DIM1 / 2 == (SEL_IO_DIM1 + 1) / 2);
/* Strided selection in memory */
start[0] = 1;
stride[0] = 2;
count[0] = (SEL_IO_DIM0 * SEL_IO_DIM1) / 2;
block[0] = 1;
if (H5Sselect_hyperslab(mem_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Strided selection in file */
start[0] = 0;
if (H5Sselect_hyperslab(file_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Issue write call */
if (test_selection_io_write(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes,
(int **)&wbufs[0]) < 0)
TEST_ERROR;
/* Update file buf */
for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++)
fbuf1[2 * i] = wbuf1[(2 * i) + 1];
/* Update expected read buf */
for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1); i++)
erbuf1[i] = -1;
for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++)
erbuf1[(2 * i) + 1] = wbuf1[(2 * i) + 1];
/* Read and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0],
element_sizes, 1, (int **)&erbufs[0], false) < 0)
TEST_ERROR;
/* Reset selections */
if (H5Sselect_all(mem_spaces[0]) < 0)
TEST_ERROR;
if (H5Sselect_all(file_spaces[0]) < 0)
TEST_ERROR;
/* Read entire file buffer and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0],
element_sizes, 1, (int **)&fbufs[0], false) < 0)
TEST_ERROR;
/*
* Test 6: Strided <> Contiguous 2D I/O
*/
/* Strided selection in memory */
start[0] = 1;
start[1] = 0;
stride[0] = 2;
stride[1] = 1;
count[0] = SEL_IO_DIM0 / 2;
count[1] = SEL_IO_DIM1;
block[0] = 1;
block[1] = 1;
if (H5Sselect_hyperslab(mem_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Contiguous selection in file */
if (H5Sselect_hyperslab(file_spaces[1], H5S_SELECT_SET, start, NULL, count, NULL) < 0)
TEST_ERROR;
/* Issue write call */
if (test_selection_io_write(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes,
(int **)&wbufs[1]) < 0)
TEST_ERROR;
/* Update file buf */
for (i = 0; i < SEL_IO_DIM0 / 2; i++)
for (j = 0; j < SEL_IO_DIM1; j++)
fbuf2[i + 1][j] = wbuf2[(2 * i) + 1][j];
/* Update expected read buf */
for (i = 0; i < SEL_IO_DIM0; i++)
for (j = 0; j < SEL_IO_DIM1; j++)
erbuf2[i][j] = -1;
for (i = 0; i < SEL_IO_DIM0 / 2; i++)
for (j = 0; j < SEL_IO_DIM1; j++)
erbuf2[(2 * i) + 1][j] = wbuf2[(2 * i) + 1][j];
/* Read and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1],
element_sizes, 1, (int **)&erbufs[1], false) < 0)
TEST_ERROR;
/* Reset selections */
if (H5Sselect_all(mem_spaces[1]) < 0)
TEST_ERROR;
if (H5Sselect_all(file_spaces[1]) < 0)
TEST_ERROR;
/* Read entire file buffer and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1],
element_sizes, 1, (int **)&fbufs[1], false) < 0)
TEST_ERROR;
/*
* Test 7: Contiguous <> Strided 2D I/O
*/
/* Contiguous selection in memory */
start[0] = 0;
start[1] = 1;
count[0] = SEL_IO_DIM0;
count[1] = SEL_IO_DIM1 / 2;
if (H5Sselect_hyperslab(mem_spaces[1], H5S_SELECT_SET, start, NULL, count, NULL) < 0)
TEST_ERROR;
/* Strided selection in file */
stride[0] = 1;
stride[1] = 2;
block[0] = 1;
block[1] = 1;
if (H5Sselect_hyperslab(file_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Issue write call */
if (test_selection_io_write(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes,
(int **)&wbufs[1]) < 0)
TEST_ERROR;
/* Update file buf */
for (i = 0; i < SEL_IO_DIM0; i++)
for (j = 0; j < SEL_IO_DIM1 / 2; j++)
fbuf2[i][(2 * j) + 1] = wbuf2[i][j + 1];
/* Update expected read buf */
for (i = 0; i < SEL_IO_DIM0; i++)
for (j = 0; j < SEL_IO_DIM1; j++)
erbuf2[i][j] = -1;
for (i = 0; i < SEL_IO_DIM0; i++)
for (j = 0; j < SEL_IO_DIM1 / 2; j++)
erbuf2[i][j + 1] = wbuf2[i][j + 1];
/* Read and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1],
element_sizes, 1, (int **)&erbufs[1], false) < 0)
TEST_ERROR;
/* Reset selections */
if (H5Sselect_all(mem_spaces[1]) < 0)
TEST_ERROR;
if (H5Sselect_all(file_spaces[1]) < 0)
TEST_ERROR;
/* Read entire file buffer and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1],
element_sizes, 1, (int **)&fbufs[1], false) < 0)
TEST_ERROR;
/*
* Test 8: Strided <> Strided 2D I/O
*/
/* SEL_IO_DIM0 and SEL_IO_DIM1 must be even */
assert(SEL_IO_DIM0 / 2 == (SEL_IO_DIM0 + 1) / 2);
assert(SEL_IO_DIM1 / 2 == (SEL_IO_DIM1 + 1) / 2);
/* Strided selection (across dim 1) in memory */
start[0] = 0;
start[1] = 1;
stride[0] = 1;
stride[1] = 2;
count[0] = SEL_IO_DIM0;
count[1] = SEL_IO_DIM1 / 2;
block[0] = 1;
block[1] = 1;
if (H5Sselect_hyperslab(mem_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Strided selection (across dim 0) in file */
start[0] = 1;
start[1] = 0;
stride[0] = 2;
stride[1] = 1;
count[0] = SEL_IO_DIM0 / 2;
count[1] = SEL_IO_DIM1;
block[0] = 1;
block[1] = 1;
if (H5Sselect_hyperslab(file_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Issue write call */
if (test_selection_io_write(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes,
(int **)&wbufs[1]) < 0)
TEST_ERROR;
/* Update file buf */
for (i = 0, i2 = 1, j2 = 0; i < SEL_IO_DIM0; i++)
for (j = 1; j < SEL_IO_DIM1; j += 2) {
assert(i2 < SEL_IO_DIM0);
fbuf2[i2][j2] = wbuf2[i][j];
if (++j2 == SEL_IO_DIM1) {
i2 += 2;
j2 = 0;
}
}
/* Update expected read buf */
for (i = 0; i < SEL_IO_DIM0; i++)
for (j = 0; j < SEL_IO_DIM1; j++)
erbuf2[i][j] = -1;
for (i = 0; i < SEL_IO_DIM0; i++)
for (j = 1; j < SEL_IO_DIM1; j += 2)
erbuf2[i][j] = wbuf2[i][j];
/* Read and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1],
element_sizes, 1, (int **)&erbufs[1], false) < 0)
TEST_ERROR;
/* Reset selections */
if (H5Sselect_all(mem_spaces[1]) < 0)
TEST_ERROR;
if (H5Sselect_all(file_spaces[1]) < 0)
TEST_ERROR;
/* Read entire file buffer and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1],
element_sizes, 1, (int **)&fbufs[1], false) < 0)
TEST_ERROR;
/*
* Test 9: Strided 1D <> Strided 2D I/O
*/
/* Strided selection in memory */
start[0] = 1;
stride[0] = 2;
count[0] = (SEL_IO_DIM0 * SEL_IO_DIM1) / 2;
block[0] = 1;
if (H5Sselect_hyperslab(mem_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Strided selection (across dim 1) in file */
start[0] = 0;
start[1] = 1;
stride[0] = 1;
stride[1] = 2;
count[0] = SEL_IO_DIM0;
count[1] = SEL_IO_DIM1 / 2;
block[0] = 1;
block[1] = 1;
if (H5Sselect_hyperslab(file_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Issue write call */
if (test_selection_io_write(lf, type, 1, &mem_spaces[0], &file_spaces[1], &addrs[1], element_sizes,
(int **)&wbufs[0]) < 0)
TEST_ERROR;
/* Update file buf */
for (i = 1, i2 = 0, j2 = 1; i < (SEL_IO_DIM0 * SEL_IO_DIM1); i += 2) {
assert(i2 < SEL_IO_DIM0);
fbuf2[i2][j2] = wbuf1[i];
j2 += 2;
if (j2 >= SEL_IO_DIM1) {
i2++;
j2 = 1;
}
}
/* Update expected read buf */
for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1); i++)
erbuf1[i] = -1;
for (i = 1; i < (SEL_IO_DIM0 * SEL_IO_DIM1); i += 2)
erbuf1[i] = wbuf1[i];
/* Read and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[1], &addrs[1],
element_sizes, 1, (int **)&erbufs[0], false) < 0)
TEST_ERROR;
/* Reset selections */
if (H5Sselect_all(mem_spaces[0]) < 0)
TEST_ERROR;
if (H5Sselect_all(file_spaces[1]) < 0)
TEST_ERROR;
/* Read entire file buffer and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[1], &addrs[1],
element_sizes, 1, (int **)&fbufs[1], false) < 0)
TEST_ERROR;
/*
* Test 10: Strided 2D <> Strided 1D I/O
*/
/* Strided selection (across dim 0) in memory */
start[0] = 0;
start[1] = 0;
stride[0] = 2;
stride[1] = 1;
count[0] = SEL_IO_DIM0 / 2;
count[1] = SEL_IO_DIM1;
block[0] = 1;
block[1] = 1;
if (H5Sselect_hyperslab(mem_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Strided selection in file */
start[0] = 0;
stride[0] = 2;
count[0] = (SEL_IO_DIM0 * SEL_IO_DIM1) / 2;
block[0] = 1;
if (H5Sselect_hyperslab(file_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Issue write call */
if (test_selection_io_write(lf, type, 1, &mem_spaces[1], &file_spaces[0], &addrs[0], element_sizes,
(int **)&wbufs[1]) < 0)
TEST_ERROR;
/* Update file buf */
for (i = 0, i2 = 0; i < SEL_IO_DIM0; i += 2)
for (j = 0; j < SEL_IO_DIM1; j++) {
assert(i2 < (SEL_IO_DIM0 * SEL_IO_DIM1));
fbuf1[i2] = wbuf2[i][j];
i2 += 2;
}
/* Update expected read buf */
for (i = 0; i < SEL_IO_DIM0; i++)
for (j = 0; j < SEL_IO_DIM1; j++)
erbuf2[i][j] = -1;
for (i = 0; i < SEL_IO_DIM0; i += 2)
for (j = 0; j < SEL_IO_DIM1; j++)
erbuf2[i][j] = wbuf2[i][j];
/* Read and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[0], &addrs[0],
element_sizes, 1, (int **)&erbufs[1], false) < 0)
TEST_ERROR;
/* Reset selections */
if (H5Sselect_all(mem_spaces[1]) < 0)
TEST_ERROR;
if (H5Sselect_all(file_spaces[0]) < 0)
TEST_ERROR;
/* Read entire file buffer and verify */
if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[0], &addrs[0],
element_sizes, 1, (int **)&fbufs[0], false) < 0)
TEST_ERROR;
/* Run tests with full and partial element sizes array */
for (shorten_element_sizes = 0; shorten_element_sizes <= 1; shorten_element_sizes++) {
/*
* Test 11: Strided <> Strided 1D and 2D I/O
*/
/* SEL_IO_DIM1 must be even */
assert(SEL_IO_DIM1 / 2 == (SEL_IO_DIM1 + 1) / 2);
/* Strided selection in memory (1D) */
start[0] = 0;
stride[0] = 2;
count[0] = (SEL_IO_DIM0 * SEL_IO_DIM1) / 2;
block[0] = 1;
if (H5Sselect_hyperslab(mem_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Strided selection in file (1D) */
start[0] = 1;
if (H5Sselect_hyperslab(file_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Strided selection (across dim 0) in memory (2D) */
start[0] = 1;
start[1] = 0;
stride[0] = 2;
stride[1] = 1;
count[0] = SEL_IO_DIM0 / 2;
count[1] = SEL_IO_DIM1;
block[0] = 1;
block[1] = 1;
if (H5Sselect_hyperslab(mem_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Strided selection (across dim 1) in file (2D) */
start[0] = 0;
start[1] = 1;
stride[0] = 1;
stride[1] = 2;
count[0] = SEL_IO_DIM0;
count[1] = SEL_IO_DIM1 / 2;
block[0] = 1;
block[1] = 1;
if (H5Sselect_hyperslab(file_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Issue write call */
if (test_selection_io_write(lf, type, 2, mem_spaces, file_spaces, addrs, element_sizes,
(int **)wbufs) < 0)
TEST_ERROR;
/* Update file bufs */
for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++)
fbuf1[(2 * i) + 1] = wbuf1[2 * i];
for (i = 1, i2 = 0, j2 = 1; i < SEL_IO_DIM0; i += 2)
for (j = 0; j < SEL_IO_DIM1; j++) {
assert(i2 < SEL_IO_DIM0);
fbuf2[i2][j2] = wbuf2[i][j];
j2 += 2;
if (j2 >= SEL_IO_DIM1) {
i2++;
j2 = 1;
}
}
/* Update expected read bufs */
for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1); i++)
erbuf1[i] = -1;
for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++)
erbuf1[2 * i] = wbuf1[2 * i];
for (i = 0; i < SEL_IO_DIM0; i++)
for (j = 0; j < SEL_IO_DIM1; j++)
erbuf2[i][j] = -1;
for (i = 1; i < SEL_IO_DIM0; i += 2)
for (j = 0; j < SEL_IO_DIM1; j++)
erbuf2[i][j] = wbuf2[i][j];
/* Read and verify */
if (test_selection_io_read_verify(lf, type, 2, mem_spaces, file_spaces, addrs, element_sizes, 2,
(int **)erbufs, false) < 0)
TEST_ERROR;
/* Reset selections */
if (H5Sselect_all(mem_spaces[0]) < 0)
TEST_ERROR;
if (H5Sselect_all(file_spaces[0]) < 0)
TEST_ERROR;
if (H5Sselect_all(mem_spaces[1]) < 0)
TEST_ERROR;
if (H5Sselect_all(file_spaces[1]) < 0)
TEST_ERROR;
/* Read entire file buffer and verify */
if (test_selection_io_read_verify(lf, type, 2, mem_spaces, file_spaces, addrs, element_sizes, 2,
(int **)fbufs, false) < 0)
TEST_ERROR;
/*
* Test 12: Strided <> Strided 2D I/O, 2 different selections in the same memory buffer
*/
/* Switch mem and file spaces to both be 2D */
if (H5Sset_extent_simple(mem_spaces[0], 2, dims2, NULL) < 0)
TEST_ERROR;
if (H5Sset_extent_simple(file_spaces[0], 2, dims2, NULL) < 0)
TEST_ERROR;
/* Strided selection in memory (1st) */
start[0] = 0;
start[1] = 0;
stride[0] = 2;
stride[1] = 1;
count[0] = SEL_IO_DIM0 / 2;
count[1] = SEL_IO_DIM1;
block[0] = 1;
block[1] = 1;
if (H5Sselect_hyperslab(mem_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Strided selection (across dim 0) in memory (2nd) */
start[0] = 1;
if (H5Sselect_hyperslab(mem_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Strided selection in file (1st) */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 2;
count[0] = SEL_IO_DIM0;
count[1] = SEL_IO_DIM1 / 2;
block[0] = 1;
block[1] = 1;
if (H5Sselect_hyperslab(file_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Strided selection (across dim 1) in file (2nd) */
start[0] = 0;
start[1] = 1;
stride[0] = 1;
stride[1] = 2;
count[0] = SEL_IO_DIM0;
count[1] = SEL_IO_DIM1 / 2;
block[0] = 1;
block[1] = 1;
if (H5Sselect_hyperslab(file_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0)
TEST_ERROR;
/* Use the same memory buffer for both selections */
wbufs[0] = wbuf2[0];
/* Shorten wbuf array */
if (shorten_element_sizes)
wbufs[1] = NULL;
else
wbufs[1] = wbufs[0];
/* Issue write call */
if (test_selection_io_write(lf, type, 2, mem_spaces, file_spaces, addrs, element_sizes,
(int **)wbufs) < 0)
TEST_ERROR;
/* Update file bufs - need to reuse 1D array so data stays consistent, so use math to
* find 1D index into 2D array */
for (i = 0, i2 = 0, j2 = 0; i < SEL_IO_DIM0; i += 2)
for (j = 0; j < SEL_IO_DIM1; j++) {
assert(i2 < SEL_IO_DIM0);
fbuf1[(i2 * SEL_IO_DIM1) + j2] = wbuf2[i][j];
j2 += 2;
if (j2 >= SEL_IO_DIM1) {
i2++;
j2 = 0;
}
}
for (i = 1, i2 = 0, j2 = 1; i < SEL_IO_DIM0; i += 2)
for (j = 0; j < SEL_IO_DIM1; j++) {
assert(i2 < SEL_IO_DIM0);
fbuf2[i2][j2] = wbuf2[i][j];
j2 += 2;
if (j2 >= SEL_IO_DIM1) {
i2++;
j2 = 1;
}
}
/* Update expected read buf */
for (i = 0; i < SEL_IO_DIM0; i++)
for (j = 0; j < SEL_IO_DIM1; j++)
erbuf2[i][j] = -1;
for (i = 0; i < SEL_IO_DIM0; i += 2)
for (j = 0; j < SEL_IO_DIM1; j++)
erbuf2[i][j] = wbuf2[i][j];
for (i = 1; i < SEL_IO_DIM0; i += 2)
for (j = 0; j < SEL_IO_DIM1; j++)
erbuf2[i][j] = wbuf2[i][j];
/* Read and verify */
if (test_selection_io_read_verify(lf, type, 2, mem_spaces, file_spaces, addrs, element_sizes, 1,
(int **)&erbufs[1], shorten_element_sizes ? true : false) < 0)
TEST_ERROR;
/* Reset selections */
if (H5Sselect_all(mem_spaces[0]) < 0)
TEST_ERROR;
if (H5Sselect_all(file_spaces[0]) < 0)
TEST_ERROR;
if (H5Sselect_all(mem_spaces[1]) < 0)
TEST_ERROR;
if (H5Sselect_all(file_spaces[1]) < 0)
TEST_ERROR;
/* Read entire file buffer and verify */
if (test_selection_io_read_verify(lf, type, 2, mem_spaces, file_spaces, addrs, element_sizes, 2,
(int **)fbufs, false) < 0)
TEST_ERROR;
/* Reset first spaces to 1D */
if (H5Sset_extent_simple(mem_spaces[0], 1, dims1, NULL) < 0)
TEST_ERROR;
if (H5Sset_extent_simple(file_spaces[0], 1, dims1, NULL) < 0)
TEST_ERROR;
/* Reset write buffer array */
wbufs[0] = wbuf1;
wbufs[1] = wbuf2[0];
/* Change to shortened element sizes array */
element_sizes[1] = 0;
}
/* Reset element sizes array */
element_sizes[1] = element_sizes[0];
}
/*
* Cleanup
*/
/* Close file */
if (H5FDclose(lf) < 0)
TEST_ERROR;
h5_delete_test_file(FILENAME[0], fapl_id);
/* Close the fapl */
if (H5Pclose(fapl_id) < 0)
TEST_ERROR;
/* Close dataspaces */
for (i = 0; i < 2; i++) {
if (H5Sclose(mem_spaces[i]) < 0)
TEST_ERROR;
if (H5Sclose(file_spaces[i]) < 0)
TEST_ERROR;
}
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Pclose(fapl_id);
H5FDclose(lf);
for (i = 0; i < 2; i++) {
H5Sclose(mem_spaces[i]);
H5Sclose(file_spaces[i]);
}
}
H5E_END_TRY
return -1;
} /* end test_selection_io() */
/*-------------------------------------------------------------------------
* Function: main
*
* Purpose: Tests the basic features of Virtual File Drivers
*
* Return: EXIT_SUCCESS/EXIT_FAILURE
*
*-------------------------------------------------------------------------
*/
int
main(void)
{
char *env_h5_drvr = NULL;
int nerrors = 0;
/* Don't run VFD tests when HDF5_DRIVER is set. These tests expect a
* specific VFD to be set and HDF5_DRIVER being set can interfere
* with that.
*/
env_h5_drvr = getenv(HDF5_DRIVER);
if (env_h5_drvr) {
printf(" -- SKIPPED VFD tests because %s is set -- \n", HDF5_DRIVER);
exit(EXIT_SUCCESS);
}
h5_reset();
printf("Testing basic Virtual File Driver functionality.\n");
setup_rand();
nerrors += test_sec2() < 0 ? 1 : 0;
nerrors += test_core() < 0 ? 1 : 0;
nerrors += test_direct() < 0 ? 1 : 0;
nerrors += test_family() < 0 ? 1 : 0;
nerrors += test_family_compat() < 0 ? 1 : 0;
nerrors += test_family_member_fapl() < 0 ? 1 : 0;
nerrors += test_multi() < 0 ? 1 : 0;
nerrors += test_multi_compat() < 0 ? 1 : 0;
nerrors += test_log() < 0 ? 1 : 0;
nerrors += test_stdio() < 0 ? 1 : 0;
nerrors += test_windows() < 0 ? 1 : 0;
nerrors += test_ros3() < 0 ? 1 : 0;
nerrors += test_splitter() < 0 ? 1 : 0;
nerrors += test_vector_io("sec2") < 0 ? 1 : 0;
nerrors += test_vector_io("stdio") < 0 ? 1 : 0;
nerrors += test_selection_io("sec2") < 0 ? 1 : 0;
nerrors += test_selection_io("stdio") < 0 ? 1 : 0;
nerrors += test_ctl() < 0 ? 1 : 0;
if (nerrors) {
printf("***** %d Virtual File Driver TEST%s FAILED! *****\n", nerrors, nerrors > 1 ? "S" : "");
return EXIT_FAILURE;
}
printf("All Virtual File Driver tests passed.\n");
return EXIT_SUCCESS;
} /* end main() */