hdf5/test/cmpd_dset.c
Dana Robinson a99d620172
Clean up random number generator code (#4338)
* Clean up random number generator code

Depending on the platform, we use a mix of random, rand, and rand_r
to generate pseudo-random numbers, along with a messy set of ifdefs
in H5private.h. We are not a cryptographic library, only use random
numbers in our test code, and have no need for anything more than the
C standard's (s)rand(). There's no point dithering about using rand()
vs random() when we're also doing bad things like using mod to
restrict the range, which introduces bias.

Also removes CMake/configure checks for rand_r and random

* Remove random/rand_r checks from build system

* Fix missed HDrandom after GitHub merge
2024-04-07 15:15:25 -07:00

3385 lines
111 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* See H5private.h for how to include headers */
#undef NDEBUG
#define H5T_FRIEND /*suppress error about including H5Tpkg */
#include "H5Tpkg.h" /*to turn off hardware conversions*/
#include "H5Iprivate.h"
#include "h5test.h"
static const char *FILENAME[] = {"cmpd_dset", "src_subset", "dst_subset", "select_cmpd_dset", NULL};
const char *DSET_NAME[] = {"contig_src_subset", "chunk_src_subset", "contig_dst_subset", "chunk_dst_subset",
NULL};
/* The first dataset */
typedef struct s1_t {
unsigned int a;
unsigned int b;
unsigned int c[4];
unsigned int d;
unsigned int e;
} s1_t;
/* The second dataset (same as first) */
typedef s1_t s2_t;
/* The third dataset (reversed fields of s1) */
typedef struct s3_t {
unsigned int e;
unsigned int d;
unsigned int c[4];
unsigned int b;
unsigned int a;
} s3_t;
/* The fourth dataset (a subset of s1) */
typedef struct s4_t {
unsigned int b;
unsigned int d;
} s4_t;
/* The fifth dataset (a superset of s1) */
typedef struct s5_t {
unsigned int pre;
unsigned int a;
unsigned int b;
unsigned int mid1;
unsigned int c[4];
unsigned int mid2;
unsigned int d;
unsigned int e;
unsigned int post;
} s5_t;
/* The sixth dataset (a superset of s1). This is for
* testing the optimization for the Chicago company. */
typedef struct s6_t {
unsigned int a;
unsigned int b;
unsigned int c[4];
unsigned int d;
unsigned int e;
unsigned int pre;
unsigned int mid1;
unsigned int mid2;
unsigned int post;
} s6_t;
typedef struct s7_t {
int32_t a;
int32_t d;
} s7_t;
typedef struct s8_t {
int64_t a;
int64_t b;
int64_t c;
} s8_t;
/* Structures for testing the optimization for the Chicago company. */
typedef struct {
int a, b, c[8], d, e;
float f, g, h[16], i, j;
double k, l, m, n;
} stype1;
typedef struct {
int a, b, c[8], d, e;
float f, g, h[16], i, j;
double k, l, m, n;
long o, p, q;
} stype2;
typedef struct {
int a, b, c[8], d, e;
} stype3;
typedef struct {
int a, b, c[8], d, e;
float f, g, h[16], i, j;
double k, l, m, n;
long o, p, q;
long long r, s, t;
} stype4;
#define NX 100U
#define NY 2000U
#define PACK_NMEMBS 100
static void initialize_stype1(unsigned char *buf, size_t num);
static void initialize_stype2(unsigned char *buf, size_t num);
static void initialize_stype3(unsigned char *buf, size_t num);
static void initialize_stype4(unsigned char *buf, size_t num);
static hid_t create_stype1(void);
static hid_t create_stype2(void);
static hid_t create_stype3(void);
static hid_t create_stype4(void);
static int compare_data(void *src_data, void *dst_data, hbool_t src_subset);
static int compare_stype4_data(void *expect_buf, void *rbuf);
static int compare_s1_data(void *expect_buf, void *rbuf);
static int compare_s1_s3_data(void *expect_buf, void *rbuf);
static int compare_s7_data(void *expect_buf, void *rbuf);
static int compare_a_d_data(void *exp1_buf, void *exp2_buf, void *rbuf);
static int compare_a_b_c_data(void *exp1_buf, void *exp2_buf, void *rbuf);
/*-------------------------------------------------------------------------
* Function: compare_stype4_data
*
* Purpose: Compare data (the common fields in stype4/stype2) read in rbuf with expected data
* in expect_buf.
*
* Return: Success: 0
*
* Failure: negative
*
*-------------------------------------------------------------------------
*/
static int
compare_stype4_data(void *expect_buf, void *rbuf)
{
int i;
for (i = 0; i < (int)(NX * NY); i++) {
stype4 *s1_ptr;
stype4 *s2_ptr;
s1_ptr = ((stype4 *)expect_buf) + i;
s2_ptr = ((stype4 *)rbuf) + i;
if (s1_ptr->a != s2_ptr->a || s1_ptr->b != s2_ptr->b || s1_ptr->c[0] != s2_ptr->c[0] ||
s1_ptr->c[1] != s2_ptr->c[1] || s1_ptr->c[2] != s2_ptr->c[2] || s1_ptr->c[3] != s2_ptr->c[3] ||
s1_ptr->c[4] != s2_ptr->c[4] || s1_ptr->c[5] != s2_ptr->c[5] || s1_ptr->c[6] != s2_ptr->c[6] ||
s1_ptr->c[7] != s2_ptr->c[7] || s1_ptr->d != s2_ptr->d || s1_ptr->e != s2_ptr->e ||
!H5_FLT_ABS_EQUAL(s1_ptr->f, s2_ptr->f) || !H5_FLT_ABS_EQUAL(s1_ptr->g, s2_ptr->g) ||
!H5_FLT_ABS_EQUAL(s1_ptr->h[0], s2_ptr->h[0]) || !H5_FLT_ABS_EQUAL(s1_ptr->h[1], s2_ptr->h[1]) ||
!H5_FLT_ABS_EQUAL(s1_ptr->h[2], s2_ptr->h[2]) || !H5_FLT_ABS_EQUAL(s1_ptr->h[3], s2_ptr->h[3]) ||
!H5_FLT_ABS_EQUAL(s1_ptr->h[4], s2_ptr->h[4]) || !H5_FLT_ABS_EQUAL(s1_ptr->h[5], s2_ptr->h[5]) ||
!H5_FLT_ABS_EQUAL(s1_ptr->h[6], s2_ptr->h[6]) || !H5_FLT_ABS_EQUAL(s1_ptr->h[7], s2_ptr->h[7]) ||
!H5_FLT_ABS_EQUAL(s1_ptr->h[8], s2_ptr->h[8]) || !H5_FLT_ABS_EQUAL(s1_ptr->h[9], s2_ptr->h[9]) ||
!H5_FLT_ABS_EQUAL(s1_ptr->h[10], s2_ptr->h[10]) ||
!H5_FLT_ABS_EQUAL(s1_ptr->h[11], s2_ptr->h[11]) ||
!H5_FLT_ABS_EQUAL(s1_ptr->h[12], s2_ptr->h[12]) ||
!H5_FLT_ABS_EQUAL(s1_ptr->h[13], s2_ptr->h[13]) ||
!H5_FLT_ABS_EQUAL(s1_ptr->h[14], s2_ptr->h[14]) ||
!H5_FLT_ABS_EQUAL(s1_ptr->h[15], s2_ptr->h[15]) || !H5_FLT_ABS_EQUAL(s1_ptr->i, s2_ptr->i) ||
!H5_FLT_ABS_EQUAL(s1_ptr->j, s2_ptr->j) || !H5_DBL_ABS_EQUAL(s1_ptr->k, s2_ptr->k) ||
!H5_DBL_ABS_EQUAL(s1_ptr->l, s2_ptr->l) || !H5_DBL_ABS_EQUAL(s1_ptr->m, s2_ptr->m) ||
!H5_DBL_ABS_EQUAL(s1_ptr->n, s2_ptr->n) || s1_ptr->o != s2_ptr->o || s1_ptr->p != s2_ptr->p ||
s1_ptr->q != s2_ptr->q) {
H5_FAILED();
printf(" i=%d\n", i);
printf(" exp_buf={a=%d, b=%d, c=[%d,%d,%d,%d,%d,%d,%d,%d], d=%d, e=%d, f=%f, g=%f, "
"h=[%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f], i=%f, j=%f, k=%f, l=%f, m=%f, n=%f, "
"o=%ld, p=%ld, q=%ld}\n",
s1_ptr->a, s1_ptr->b, s1_ptr->c[0], s1_ptr->c[1], s1_ptr->c[2], s1_ptr->c[3], s1_ptr->c[4],
s1_ptr->c[5], s1_ptr->c[6], s1_ptr->c[7], s1_ptr->d, s1_ptr->e, (double)s1_ptr->f,
(double)s1_ptr->g, (double)s1_ptr->h[0], (double)s1_ptr->h[1], (double)s1_ptr->h[2],
(double)s1_ptr->h[3], (double)s1_ptr->h[4], (double)s1_ptr->h[5], (double)s1_ptr->h[6],
(double)s1_ptr->h[7], (double)s1_ptr->h[8], (double)s1_ptr->h[9], (double)s1_ptr->h[10],
(double)s1_ptr->h[11], (double)s1_ptr->h[12], (double)s1_ptr->h[13], (double)s1_ptr->h[14],
(double)s1_ptr->h[15], (double)s1_ptr->i, (double)s1_ptr->j, s1_ptr->k, s1_ptr->l,
s1_ptr->m, s1_ptr->n, s1_ptr->o, s1_ptr->p, s1_ptr->q);
printf(" rbuf={a=%d, b=%d, c=[%d,%d,%d,%d,%d,%d,%d,%d], d=%d, e=%d, f=%f, g=%f, "
"h=[%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f], i=%f, j=%f, k=%f, l=%f, m=%f, n=%f, "
"o=%ld, p=%ld, q=%ld}\n",
s2_ptr->a, s2_ptr->b, s2_ptr->c[0], s2_ptr->c[1], s2_ptr->c[2], s2_ptr->c[3], s2_ptr->c[4],
s2_ptr->c[5], s2_ptr->c[6], s2_ptr->c[7], s2_ptr->d, s2_ptr->e, (double)s2_ptr->f,
(double)s2_ptr->g, (double)s2_ptr->h[0], (double)s2_ptr->h[1], (double)s2_ptr->h[2],
(double)s2_ptr->h[3], (double)s2_ptr->h[4], (double)s2_ptr->h[5], (double)s2_ptr->h[6],
(double)s2_ptr->h[7], (double)s2_ptr->h[8], (double)s2_ptr->h[9], (double)s2_ptr->h[10],
(double)s2_ptr->h[11], (double)s2_ptr->h[12], (double)s2_ptr->h[13], (double)s2_ptr->h[14],
(double)s2_ptr->h[15], (double)s2_ptr->i, (double)s2_ptr->j, s2_ptr->k, s2_ptr->l,
s2_ptr->m, s2_ptr->n, s1_ptr->o, s1_ptr->p, s1_ptr->q);
goto error;
}
} /* end for */
return SUCCEED;
error:
return FAIL;
} /* compare_stype4_data() */
/*-------------------------------------------------------------------------
* Function: compare_s1_data
*
* Purpose: Compare data (s1_t) read in rbuf with expected data in expect_buf.
*
* Return: Success: 0
*
* Failure: negative
*
*-------------------------------------------------------------------------
*/
static int
compare_s1_data(void *expect_buf, void *rbuf)
{
int i;
s1_t *s1_ptr;
s1_t *s2_ptr;
/* Compare save_s1 with rbuf1. They should be the same */
for (i = 0; i < (int)(NX * NY); i++) {
s1_ptr = ((s1_t *)expect_buf) + i;
s2_ptr = ((s1_t *)rbuf) + i;
if (s1_ptr->a != s2_ptr->a || s1_ptr->b != s2_ptr->b || s1_ptr->c[0] != s2_ptr->c[0] ||
s1_ptr->c[1] != s2_ptr->c[1] || s1_ptr->c[2] != s2_ptr->c[2] || s1_ptr->c[3] != s2_ptr->c[3] ||
s1_ptr->d != s2_ptr->d || s1_ptr->e != s2_ptr->e) {
H5_FAILED();
printf(" i=%d\n", i);
puts(" Incorrect values read from the file");
goto error;
}
}
return SUCCEED;
error:
return FAIL;
} /* compare_s1_data() */
/*-------------------------------------------------------------------------
* Function: compare_s1_s3_data
*
* Purpose: Compare data (s1_t/s3_t) read in rbuf with expected data in expect_buf.
*
* Return: Success: 0
*
* Failure: negative
*
*-------------------------------------------------------------------------
*/
static int
compare_s1_s3_data(void *expect_buf, void *rbuf)
{
int i;
s1_t *s1_ptr;
s3_t *s2_ptr;
for (i = 0; i < (int)(NX * NY); i++) {
s1_ptr = ((s1_t *)expect_buf) + i;
s2_ptr = ((s3_t *)rbuf) + i;
if (s1_ptr->a != s2_ptr->a || s1_ptr->b != s2_ptr->b || s1_ptr->c[0] != s2_ptr->c[0] ||
s1_ptr->c[1] != s2_ptr->c[1] || s1_ptr->c[2] != s2_ptr->c[2] || s1_ptr->c[3] != s2_ptr->c[3] ||
s1_ptr->d != s2_ptr->d || s1_ptr->e != s2_ptr->e) {
H5_FAILED();
printf(" i=%d\n", i);
puts(" Incorrect values read from the file");
goto error;
}
}
return SUCCEED;
error:
return FAIL;
} /* compare_s1_s3_data() */
/*-------------------------------------------------------------------------
* Function: compare_s7_data
*
* Purpose: Compare data (s7_t) read in rbuf with expected data in expect_buf.
*
* Return: Success: 0
*
* Failure: negative
*
*-------------------------------------------------------------------------
*/
static int
compare_s7_data(void *expect_buf, void *rbuf)
{
int i;
s7_t *s1_ptr;
s7_t *s2_ptr;
for (i = 0; i < (int)(NX * NY); i++) {
s1_ptr = ((s7_t *)expect_buf) + i;
s2_ptr = ((s7_t *)rbuf) + i;
/* Compare only the data */
if (s1_ptr->a != s2_ptr->a || s1_ptr->d != s2_ptr->d) {
H5_FAILED();
printf(" i=%d\n", i);
printf(" expect_buf:a=%d, d=%d\n", s1_ptr->a, s1_ptr->d);
printf(" rbuf:a=%d, d=%d", s2_ptr->a, s2_ptr->d);
goto error;
}
} /* end for */
return SUCCEED;
error:
return FAIL;
} /* compare_s7_data() */
/*-------------------------------------------------------------------------
* Function: compare_s7_s8_data
*
* Purpose: Compare data read in rbuf with expected data
* in expect_buf: save_s7, save_s8.
*
* Return: Success: 0
*
* Failure: negative
*
*-------------------------------------------------------------------------
*/
static int
compare_a_d_data(void *exp1_buf, void *exp2_buf, void *rbuf)
{
int i;
s7_t *s1_ptr;
s8_t *s2_ptr;
s7_t *rbuf_ptr;
for (i = 0; i < (int)(NX * NY); i++) {
s1_ptr = ((s7_t *)exp1_buf) + i;
s2_ptr = ((s8_t *)exp2_buf) + i;
rbuf_ptr = ((s7_t *)rbuf) + i;
if (s2_ptr->a != rbuf_ptr->a || s1_ptr->d != rbuf_ptr->d) {
H5_FAILED();
printf(" i=%d\n", i);
printf(" expect_buf:a=%d, d=%d\n", (int32_t)s2_ptr->a, s1_ptr->d);
printf(" rbuf: a=%d, d=%d", rbuf_ptr->a, rbuf_ptr->d);
goto error;
}
} /* end for */
return SUCCEED;
error:
return FAIL;
} /* compare_a_d_data() */
/*-------------------------------------------------------------------------
* Function: compare_a_b_c_data
*
* Purpose: Compare data read in rbuf with expected data
* in expect_buf: save_s8, save_rbuf8.
*
* Return: Success: 0
*
* Failure: negative
*
*-------------------------------------------------------------------------
*/
static int
compare_a_b_c_data(void *exp1_buf, void *exp2_buf, void *rbuf)
{
int i;
s8_t *s1_ptr;
s8_t *s2_ptr;
s8_t *rbuf_ptr;
for (i = 0; i < (int)(NX * NY); i++) {
s1_ptr = ((s8_t *)exp1_buf) + i;
s2_ptr = ((s8_t *)exp2_buf) + i;
rbuf_ptr = ((s8_t *)rbuf) + i;
if (s1_ptr->a != rbuf_ptr->a || s2_ptr->b != rbuf_ptr->b || s2_ptr->c != rbuf_ptr->c) {
H5_FAILED();
printf(" i=%d\n", i);
printf(" expect_buf:a=%" PRId64 ", b=%" PRId64 ", c=%" PRId64 "\n", s1_ptr->a, s2_ptr->b,
s2_ptr->c);
printf(" rbuf: a=%" PRId64 ", b=%" PRId64 ", c=%" PRId64 "\n", rbuf_ptr->a, rbuf_ptr->b,
rbuf_ptr->c);
goto error;
}
} /* end for */
return SUCCEED;
error:
return FAIL;
} /* compare_a_b_c_data() */
/*-------------------------------------------------------------------------
* Function: test_select_src_subset
*
* Purpose: This is derived from test_hdf5_src_subset() for selection
* I/O testing:
*
* Test the optimization of compound data writing, rewriting,
* and reading when the source type is a subset of the destination
* type. For example:
* struct source { struct destination {
* TYPE1 A; --> TYPE1 A;
* TYPE2 B; --> TYPE2 B;
* TYPE3 C; --> TYPE3 C;
* }; TYPE4 D;
* TYPE5 E;
* };
*
* Return: Success: 0
* Failure: 1
*
*-------------------------------------------------------------------------
*/
static unsigned
test_select_src_subset(char *fname, hid_t fapl, hid_t in_dxpl, unsigned set_fillvalue, unsigned set_buf)
{
hid_t fid = H5I_INVALID_HID;
hid_t rew_tid = H5I_INVALID_HID, src_tid = H5I_INVALID_HID;
hid_t did = H5I_INVALID_HID;
hid_t sid = H5I_INVALID_HID;
hid_t dcpl = H5I_INVALID_HID;
hid_t dxpl = H5I_INVALID_HID;
hsize_t dims[2] = {NX, NY};
hsize_t chunk_dims[2] = {NX / 10, NY / 10};
unsigned char *rew_buf = NULL, *save_rew_buf = NULL, *rbuf = NULL;
stype1 fillvalue;
size_t ss, ss1, ss2;
/* Initialize the fill value */
memset(&fillvalue, 0, sizeof(stype1));
/* Create the file for this test */
if ((fid = H5Fcreate(fname, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0)
goto error;
/* Build hdf5 datatypes */
if ((src_tid = create_stype1()) < 0)
goto error;
if ((rew_tid = create_stype3()) < 0)
goto error;
/* Create the data space */
if ((sid = H5Screate_simple(2, dims, NULL)) < 0)
goto error;
/* Allocate space and initialize data */
rbuf = (unsigned char *)calloc(NX * NY, sizeof(stype3));
rew_buf = (unsigned char *)calloc(NX * NY, sizeof(stype3));
initialize_stype3(rew_buf, (size_t)NX * NY);
/* Save a copy as the buffer may be clobbered due to H5Pset_modify_write_buf() */
save_rew_buf = (unsigned char *)calloc(NX * NY, sizeof(stype3));
initialize_stype3(save_rew_buf, (size_t)NX * NY);
/* Create dataset creation property list */
if ((dcpl = H5Pcreate(H5P_DATASET_CREATE)) < 0)
goto error;
/*
* Create contiguous and chunked datasets.
* Write to the datasets in a different compound subset order
*/
printf(" test_select_src_subset(): writing data to contiguous and chunked datasets");
if (set_fillvalue) {
if (H5Pset_fill_value(dcpl, src_tid, &fillvalue) < 0)
goto error;
}
dxpl = H5Pcopy(in_dxpl);
if (set_buf) {
ss1 = H5Tget_size(rew_tid);
ss2 = H5Tget_size(src_tid);
ss = MAX(ss1, ss2) * NX * NY;
if (H5Pset_buffer(dxpl, ss, NULL, NULL) < 0)
goto error;
}
/* Create contiguous data set */
if ((did = H5Dcreate2(fid, DSET_NAME[0], src_tid, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT)) < 0)
goto error;
/* Write to the dataset with rew_tid */
if (H5Dwrite(did, rew_tid, H5S_ALL, H5S_ALL, dxpl, rew_buf) < 0)
goto error;
if (H5Dread(did, rew_tid, H5S_ALL, H5S_ALL, dxpl, rbuf) < 0)
goto error;
if (memcmp(save_rew_buf, rbuf, sizeof(stype3) * NX * NY) != 0)
goto error;
if (H5Dclose(did) < 0)
goto error;
/* Set chunking */
if (H5Pset_chunk(dcpl, 2, chunk_dims) < 0)
goto error;
/* Create chunked data set */
if ((did = H5Dcreate2(fid, DSET_NAME[1], src_tid, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT)) < 0)
goto error;
/* Write to the dataset with rew_tid */
if (H5Dwrite(did, rew_tid, H5S_ALL, H5S_ALL, dxpl, rew_buf) < 0)
FAIL_STACK_ERROR;
if (H5Dread(did, rew_tid, H5S_ALL, H5S_ALL, dxpl, rbuf) < 0)
goto error;
if (memcmp(save_rew_buf, rbuf, sizeof(stype3) * NX * NY) != 0)
goto error;
if (H5Dclose(did) < 0)
goto error;
/* Finishing test and release resources */
if (H5Sclose(sid) < 0)
FAIL_STACK_ERROR;
if (H5Pclose(dcpl) < 0)
FAIL_STACK_ERROR;
if (H5Pclose(dxpl) < 0)
FAIL_STACK_ERROR;
if (H5Tclose(src_tid) < 0)
FAIL_STACK_ERROR;
if (H5Tclose(rew_tid) < 0)
FAIL_STACK_ERROR;
if (H5Fclose(fid) < 0)
FAIL_STACK_ERROR;
free(rbuf);
free(rew_buf);
free(save_rew_buf);
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Sclose(sid);
H5Pclose(dcpl);
H5Pclose(dxpl);
H5Dclose(did);
H5Fclose(fid);
H5Tclose(src_tid);
H5Tclose(rew_tid);
}
H5E_END_TRY
if (rbuf)
free(rbuf);
if (rew_buf)
free(rew_buf);
if (save_rew_buf)
free(save_rew_buf);
printf("\n*** SELECT SRC SUBSET TEST FAILED ***\n");
return 1;
} /* test_select_src_subset() */
/*-------------------------------------------------------------------------
* Function: test_select_dst_subset
*
* Purpose: This is derived from test_hdf5_dst_subset() for selection
* I/O testing:
* Test the optimization of compound data writing, rewriting,
* and reading when the destination type is a subset of the
* source type. For example:
* struct source { struct destination {
* TYPE1 A; --> TYPE1 A;
* TYPE2 B; --> TYPE2 B;
* TYPE3 C; --> TYPE3 C;
* TYPE4 D; }
* TYPE5 E;
* };
*
* Return: Success: 0
* Failure: 1
*
*-------------------------------------------------------------------------
*/
static unsigned
test_select_dst_subset(char *fname, hid_t fapl, hid_t in_dxpl, unsigned set_fillvalue, unsigned set_buf)
{
hid_t fid = H5I_INVALID_HID;
hid_t rew_tid = H5I_INVALID_HID, src_tid = H5I_INVALID_HID;
hid_t did = H5I_INVALID_HID;
hid_t sid = H5I_INVALID_HID;
hid_t dcpl = H5I_INVALID_HID;
hid_t dxpl = H5I_INVALID_HID;
hsize_t dims[2] = {NX, NY};
hsize_t chunk_dims[2] = {NX / 10, NY / 10};
unsigned char *rew_buf = NULL, *save_rew_buf = NULL, *rbuf = NULL;
stype2 fillvalue;
size_t ss, ss1, ss2;
/* Initialize the fill value */
memset(&fillvalue, 0, sizeof(stype2));
/* Create the file for this test */
if ((fid = H5Fcreate(fname, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0)
goto error;
/* Build hdf5 datatypes */
if ((src_tid = create_stype2()) < 0)
goto error;
if ((rew_tid = create_stype4()) < 0)
goto error;
/* Create the data space */
if ((sid = H5Screate_simple(2, dims, NULL)) < 0)
goto error;
rbuf = (unsigned char *)calloc(NX * NY, sizeof(stype4));
rew_buf = (unsigned char *)calloc(NX * NY, sizeof(stype4));
initialize_stype4(rew_buf, (size_t)NX * NY);
/* Save a copy as the buffer may be clobbered due to H5Pset_modify_write_buf() */
save_rew_buf = (unsigned char *)calloc(NX * NY, sizeof(stype4));
initialize_stype4(save_rew_buf, (size_t)NX * NY);
/* Create dataset creation property list */
if ((dcpl = H5Pcreate(H5P_DATASET_CREATE)) < 0)
goto error;
/*
* Write data to contiguous and chunked datasets.
*/
printf(" test_select_dst_subset(): writing data to contiguous and chunked datasets");
if (set_fillvalue) {
if (H5Pset_fill_value(dcpl, src_tid, &fillvalue) < 0)
goto error;
}
dxpl = H5Pcopy(in_dxpl);
if (set_buf) {
ss1 = H5Tget_size(rew_tid);
ss2 = H5Tget_size(src_tid);
ss = MAX(ss1, ss2) * NX * NY;
if (H5Pset_buffer(dxpl, ss, NULL, NULL) < 0)
goto error;
}
/* Create contiguous data set */
if ((did = H5Dcreate2(fid, DSET_NAME[2], src_tid, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT)) < 0)
goto error;
/* Write to the dataset with rew_tid */
if (H5Dwrite(did, rew_tid, H5S_ALL, H5S_ALL, dxpl, rew_buf) < 0)
goto error;
/* Read from the dataset with rew_tid */
if (H5Dread(did, rew_tid, H5S_ALL, H5S_ALL, dxpl, rbuf) < 0)
goto error;
if (compare_stype4_data(save_rew_buf, rbuf) < 0)
goto error;
if (H5Dclose(did) < 0)
goto error;
/* Set chunking */
if (H5Pset_chunk(dcpl, 2, chunk_dims) < 0)
goto error;
/* Create chunked data set */
if ((did = H5Dcreate2(fid, DSET_NAME[3], src_tid, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT)) < 0)
goto error;
initialize_stype4(rew_buf, (size_t)NX * NY);
/* Write data to the dataset with rew_tid */
if (H5Dwrite(did, rew_tid, H5S_ALL, H5S_ALL, dxpl, rew_buf) < 0)
goto error;
/* Read frm the dataset with rew_tid */
if (H5Dread(did, rew_tid, H5S_ALL, H5S_ALL, dxpl, rbuf) < 0)
goto error;
if (compare_stype4_data(save_rew_buf, rbuf) < 0)
goto error;
if (H5Dclose(did) < 0)
goto error;
/* Finishing test and release resources */
if (H5Sclose(sid) < 0)
goto error;
if (H5Pclose(dcpl) < 0)
goto error;
if (H5Pclose(dxpl) < 0)
FAIL_STACK_ERROR;
if (H5Tclose(src_tid) < 0)
goto error;
if (H5Tclose(rew_tid) < 0)
goto error;
if (H5Fclose(fid) < 0)
goto error;
free(rbuf);
free(rew_buf);
free(save_rew_buf);
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Sclose(sid);
H5Pclose(dcpl);
H5Pclose(dxpl);
H5Dclose(did);
H5Fclose(fid);
H5Tclose(src_tid);
H5Tclose(rew_tid);
}
H5E_END_TRY
if (rbuf)
free(rbuf);
if (rew_buf)
free(rew_buf);
if (save_rew_buf)
free(save_rew_buf);
printf("\n*** SELECT DST SUBSET TEST FAILED ***\n");
return 1;
} /* test_select_dst_subset */
/*-------------------------------------------------------------------------
* Function: test_select_compound
*
* Purpose: This is derived from test_comppound() for selection I/O
* testing:
*
* --Creates a simple dataset of a compound type and then
* writes it in original and reverse order.
* --Creates another dataset to verify the CI window
* is fixed.
*
* Return: Success: 0
* Failure: 1
*
*-------------------------------------------------------------------------
*/
static unsigned
test_select_compound(char *fname, hid_t fapl, hid_t in_dxpl, unsigned set_fillvalue, unsigned set_buf)
{
hid_t s1_tid = H5I_INVALID_HID;
hid_t s3_tid = H5I_INVALID_HID;
hid_t s7_tid = H5I_INVALID_HID;
hid_t s8_tid = H5I_INVALID_HID;
/* Buffers */
s1_t *s1 = NULL;
s1_t *save_s1 = NULL;
s3_t *s3 = NULL;
s3_t *save_s3 = NULL;
s1_t *rbuf1 = NULL;
s3_t *rbuf3 = NULL;
s7_t *s7 = NULL;
s7_t *save_s7 = NULL;
s7_t *rbuf7 = NULL;
s8_t *s8 = NULL;
s8_t *save_s8 = NULL;
s8_t *rbuf8 = NULL;
s8_t *save_rbuf8 = NULL;
/* Other variables */
unsigned int i;
hid_t fid = H5I_INVALID_HID;
hid_t did = H5I_INVALID_HID;
hid_t sid = H5I_INVALID_HID;
hid_t dcpl = H5I_INVALID_HID;
hid_t dxpl = H5I_INVALID_HID;
hid_t array_dt = H5I_INVALID_HID;
static hsize_t dim[] = {NX, NY};
s1_t fillvalue1;
s7_t fillvalue7;
size_t ss = 0, ss1 = 0, ss2 = 0;
hsize_t memb_size[1] = {4};
/* Initialize the fill values */
memset(&fillvalue1, 0, sizeof(s1_t));
memset(&fillvalue7, 0, sizeof(s7_t));
/* Allocate buffers */
if (NULL == (s1 = (s1_t *)calloc(NX * NY, sizeof(s1_t))))
goto error;
if (NULL == (save_s1 = (s1_t *)calloc(NX * NY, sizeof(s1_t))))
goto error;
if (NULL == (rbuf1 = (s1_t *)calloc(NX * NY, sizeof(s1_t))))
goto error;
if (NULL == (s3 = (s3_t *)calloc(NX * NY, sizeof(s3_t))))
goto error;
if (NULL == (save_s3 = (s3_t *)calloc(NX * NY, sizeof(s3_t))))
goto error;
if (NULL == (rbuf3 = (s3_t *)calloc(NX * NY, sizeof(s3_t))))
goto error;
if (NULL == (s7 = (s7_t *)calloc(NX * NY, sizeof(s7_t))))
goto error;
if (NULL == (save_s7 = (s7_t *)calloc(NX * NY, sizeof(s7_t))))
goto error;
if (NULL == (rbuf7 = (s7_t *)calloc(NX * NY, sizeof(s7_t))))
goto error;
if (NULL == (s8 = (s8_t *)calloc(NX * NY, sizeof(s8_t))))
goto error;
if (NULL == (save_s8 = (s8_t *)calloc(NX * NY, sizeof(s8_t))))
goto error;
if (NULL == (rbuf8 = (s8_t *)calloc(NX * NY, sizeof(s8_t))))
goto error;
if (NULL == (save_rbuf8 = (s8_t *)calloc(NX * NY, sizeof(s8_t))))
goto error;
/* Create the file */
if ((fid = H5Fcreate(fname, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0) {
goto error;
}
/* Create the data space */
if ((sid = H5Screate_simple(2, dim, NULL)) < 0)
goto error;
/* Create dataset creation property list */
if ((dcpl = H5Pcreate(H5P_DATASET_CREATE)) < 0)
goto error;
/* Create a copy of the incoming dataset transfer property list */
if ((dxpl = H5Pcopy(in_dxpl)) < 0)
goto error;
/*
* Create and write to the dataset in original compound struct members order
*/
printf(" test_select_compound(): basic compound write");
/* Initialize buffer with s1_t */
for (i = 0; i < NX * NY; i++) {
s1[i].a = 8 * i + 0;
s1[i].b = 2000 + 2 * i;
s1[i].c[0] = 8 * i + 2;
s1[i].c[1] = 8 * i + 3;
s1[i].c[2] = 8 * i + 4;
s1[i].c[3] = 8 * i + 5;
s1[i].d = 2001 + 2 * i;
s1[i].e = 8 * i + 7;
}
memcpy(save_s1, s1, sizeof(s1_t) * NX * NY);
/* Create file type s1_t */
if ((s1_tid = H5Tcreate(H5T_COMPOUND, sizeof(s1_t))) < 0)
goto error;
array_dt = H5Tarray_create2(H5T_NATIVE_INT, 1, memb_size);
if (H5Tinsert(s1_tid, "a", HOFFSET(s1_t, a), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s1_tid, "b", HOFFSET(s1_t, b), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s1_tid, "c", HOFFSET(s1_t, c), array_dt) < 0 ||
H5Tinsert(s1_tid, "d", HOFFSET(s1_t, d), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s1_tid, "e", HOFFSET(s1_t, e), H5T_NATIVE_INT) < 0)
goto error;
H5Tclose(array_dt);
/* Set fill value accordingly */
if (set_fillvalue) {
if (H5Pset_fill_value(dcpl, s1_tid, &fillvalue1) < 0)
goto error;
}
/* Create the dataset with file type s1_tid */
if ((did = H5Dcreate2(fid, "s1", s1_tid, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT)) < 0)
goto error;
/* Set buffer size accordingly */
if (set_buf) {
ss1 = H5Tget_size(s1_tid);
if (H5Pset_buffer(dxpl, ss1, NULL, NULL) < 0)
goto error;
}
/* Write to the dataset with file type s1_tid */
if (H5Dwrite(did, s1_tid, H5S_ALL, H5S_ALL, dxpl, s1) < 0)
goto error;
/* Read from the dataset with file type s1_tid */
if (H5Dread(did, s1_tid, H5S_ALL, H5S_ALL, dxpl, rbuf1) < 0)
goto error;
/* Verify data is correct */
if (compare_s1_data(save_s1, rbuf1) < 0)
goto error;
PASSED();
/*
* Write to the dataset with s3 memory buffer. This buffer
* has the same data space but the data type is different: the
* data type is a struct whose members are in the opposite order.
*/
printf(" test_select_compound(): reversal of struct members");
/* Create mem type s3_tid */
if ((s3_tid = H5Tcreate(H5T_COMPOUND, sizeof(s3_t))) < 0)
goto error;
array_dt = H5Tarray_create2(H5T_NATIVE_INT, 1, memb_size);
if (H5Tinsert(s3_tid, "a", HOFFSET(s3_t, a), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s3_tid, "b", HOFFSET(s3_t, b), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s3_tid, "c", HOFFSET(s3_t, c), array_dt) < 0 ||
H5Tinsert(s3_tid, "d", HOFFSET(s3_t, d), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s3_tid, "e", HOFFSET(s3_t, e), H5T_NATIVE_INT) < 0)
goto error;
H5Tclose(array_dt);
/* Initialize buffer with s3_t */
for (i = 0; i < NX * NY; i++) {
s3[i].a = 8 * i + 0;
s3[i].b = 2000 + 2 * i;
s3[i].c[0] = 8 * i + 2;
s3[i].c[1] = 8 * i + 3;
s3[i].c[2] = 8 * i + 4;
s3[i].c[3] = 8 * i + 5;
s3[i].d = 2001 + 2 * i;
s3[i].e = 8 * i + 7;
}
memcpy(save_s3, s3, sizeof(s3_t) * NX * NY);
/* Set buffer size accordingly */
if (set_buf) {
/* ss1 is set already previously */
ss2 = H5Tget_size(s3_tid);
ss = MAX(ss1, ss2) * NX * NY;
if (H5Pset_buffer(dxpl, ss, NULL, NULL) < 0)
goto error;
}
/* Read from the dataset with mem type s3_tid */
if (H5Dread(did, s3_tid, H5S_ALL, H5S_ALL, dxpl, rbuf3) < 0)
goto error;
if (compare_s1_s3_data(save_s1, rbuf3) < 0)
goto error;
if (H5Dclose(did) < 0)
goto error;
PASSED();
printf(" test_select_compound(): verify fix for non-optimized compound conversions with memory type "
"larger than file ");
/* Create file type s7_tid */
if ((s7_tid = H5Tcreate(H5T_COMPOUND, sizeof(s7_t))) < 0)
goto error;
if (H5Tinsert(s7_tid, "a", HOFFSET(s7_t, a), H5T_NATIVE_INT32) < 0 ||
H5Tinsert(s7_tid, "d", HOFFSET(s7_t, d), H5T_NATIVE_INT32) < 0)
goto error;
/* Initialize buffer with s7_t */
for (i = 0; i < NX * NY; i++) {
s7[i].a = (int32_t)(2 * i);
s7[i].d = (int32_t)(2 * i + 1);
}
memcpy(save_s7, s7, sizeof(s7_t) * NX * NY);
/* Create mem type s8_tid */
if ((s8_tid = H5Tcreate(H5T_COMPOUND, sizeof(s8_t))) < 0)
goto error;
if (H5Tinsert(s8_tid, "a", HOFFSET(s8_t, a), H5T_NATIVE_INT64) < 0 ||
H5Tinsert(s8_tid, "b", HOFFSET(s8_t, b), H5T_NATIVE_INT64) < 0 ||
H5Tinsert(s8_tid, "c", HOFFSET(s8_t, c), H5T_NATIVE_INT64) < 0)
goto error;
/* Initialize buffer with s8_t */
for (i = 0; i < NX * NY; i++) {
s8[i].a = (int64_t)(2 * NX * NY + 3 * i);
s8[i].b = (int64_t)(2 * NX * NY + 3 * i + 1);
s8[i].c = (int64_t)(2 * NX * NY + 3 * i + 2);
}
memcpy(save_s8, s8, sizeof(s8_t) * NX * NY);
/* Set fill value accordingly */
if (set_fillvalue) {
if (H5Pset_fill_value(dcpl, s7_tid, &fillvalue7) < 0)
goto error;
}
/* Set buffer size accordingly */
if (set_buf) {
ss1 = H5Tget_size(s7_tid);
ss2 = H5Tget_size(s8_tid);
ss = MAX(ss1, ss2) * NX * NY;
if (H5Pset_buffer(dxpl, ss, NULL, NULL) < 0)
goto error;
}
/* Create dataset with file type s7_tid */
if ((did = H5Dcreate2(fid, "ss", s7_tid, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT)) < 0)
goto error;
/* Write to the dataset with mem type s7_tid */
if (H5Dwrite(did, s7_tid, H5S_ALL, H5S_ALL, dxpl, s7) < 0)
goto error;
/* Read from the dataset with mem type s7_tid */
if (H5Dread(did, s7_tid, H5S_ALL, H5S_ALL, dxpl, rbuf7) < 0)
goto error;
/* Verify data read is correct */
if (compare_s7_data(save_s7, rbuf7) < 0)
goto error;
/* Write to the dataset with mem type s8_tid */
if (H5Dwrite(did, s8_tid, H5S_ALL, H5S_ALL, dxpl, s8) < 0)
goto error;
/* Read from the dataset with mem type s7_tid */
memset(rbuf7, 0, NX * NY * sizeof(s7_t));
if (H5Dread(did, s7_tid, H5S_ALL, H5S_ALL, dxpl, rbuf7) < 0)
goto error;
/* Verify a: save_s8, d: save_s7 */
if (compare_a_d_data(save_s7, save_s8, rbuf7) < 0)
goto error;
/* Initialize read buffer of s8_t with unique values */
for (i = 0; i < NX * NY; i++) {
rbuf8[i].a = (int64_t)(5 * NX * NY + 3 * i);
rbuf8[i].b = (int64_t)(5 * NX * NY + 3 * i + 1);
rbuf8[i].c = (int64_t)(5 * NX * NY + 3 * i + 2);
}
memcpy(save_rbuf8, rbuf8, sizeof(s8_t) * NX * NY);
/* Read from the dataset with mem type s8_tid */
if (H5Dread(did, s8_tid, H5S_ALL, H5S_ALL, dxpl, rbuf8) < 0)
goto error;
/* Verify a: save_s8; b, c: save_rbuf8 */
if (compare_a_b_c_data(save_s8, save_rbuf8, rbuf8) < 0)
goto error;
if (H5Dclose(did) < 0)
goto error;
PASSED();
/*
* Release resources.
*/
if (H5Sclose(sid) < 0)
goto error;
if (H5Pclose(dcpl) < 0)
goto error;
if (H5Pclose(dxpl) < 0)
goto error;
if (H5Tclose(s1_tid) < 0)
goto error;
if (H5Tclose(s3_tid) < 0)
goto error;
if (H5Tclose(s7_tid) < 0)
goto error;
if (H5Tclose(s8_tid) < 0)
goto error;
if (H5Fclose(fid) < 0)
goto error;
/* Release buffers */
free(s1);
free(save_s1);
free(s3);
free(save_s3);
free(rbuf1);
free(rbuf3);
free(s7);
free(save_s7);
free(s8);
free(save_s8);
free(rbuf7);
free(rbuf8);
free(save_rbuf8);
return 0;
error:
H5E_BEGIN_TRY
{
H5Sclose(sid);
H5Pclose(dcpl);
H5Pclose(dxpl);
H5Dclose(did);
H5Fclose(fid);
H5Tclose(s1_tid);
H5Tclose(s3_tid);
H5Tclose(s7_tid);
H5Tclose(s8_tid);
}
H5E_END_TRY
/* Release resources */
free(s1);
free(save_s1);
free(s3);
free(save_s3);
free(rbuf1);
free(rbuf3);
free(s7);
free(save_s7);
free(s8);
free(save_s8);
free(rbuf7);
free(rbuf8);
free(save_rbuf8);
printf("\n*** SELECT COMPOUND DATASET TESTS FAILED ***\n");
return 1;
} /* test_select_compound() */
/*
* Purpose: Tests for selection I/O with compound types:
* --set_cache: set chunk cache to 0 or not
* via H5Pset_cache(fapl...)
* --set_fillvalue: set fill value or not
* via H5Pset_fill_value(dcpl...)
* --select_io: enable selection I/O or not
* via H5Pset_selection_io(dxpl...)
* --mwbuf: with or without modifying write buffers
* via H5Pset_modify_write_buf(dxpl...)
* --set_buf: with or without setting the maximum size
* for the type conversion buffer and background buffer
* via H5Pset_buffer(dxpl...)
*
* These tests will test the selection I/O pipeline in particular
* triggering H5D__scatgath_read()/write(),
* H5D__scatgath_write_select_read()/write(),
* and with/without the optimized compound read/write.
*/
static unsigned
test_compounds_selection_io(void)
{
unsigned nerrs = 0;
unsigned set_cache; /* Set cache to 0 or not */
unsigned set_fillvalue; /* Set fill value or not */
unsigned select_io; /* Enable selection I/O or not */
unsigned mwbuf; /* With or without modifying write buffers */
unsigned set_buf; /* With or without H5Pset_buffer */
hid_t fapl = -1;
hid_t dxpl = -1;
char fname[256];
fapl = h5_fileaccess();
h5_fixname(FILENAME[3], fapl, fname, sizeof(fname));
for (set_cache = FALSE; set_cache <= TRUE; set_cache++) {
for (set_fillvalue = FALSE; set_fillvalue <= TRUE; set_fillvalue++) {
for (select_io = FALSE; select_io <= TRUE; select_io++) {
for (mwbuf = FALSE; mwbuf <= TRUE; mwbuf++) {
for (set_buf = FALSE; set_buf <= TRUE; set_buf++) {
if ((dxpl = H5Pcreate(H5P_DATASET_XFER)) < 0)
goto error;
if (set_cache) {
printf(" With chunk cache set 0, ");
if (H5Pset_cache(fapl, 0, (size_t)0, (size_t)0, 0.0) < 0)
goto error;
}
else
printf(" With default chunk cache, ");
if (set_fillvalue)
printf("set fill value, ");
else
printf("not set fill value, ");
if (select_io) {
printf("selection I/O ON, ");
if (H5Pset_selection_io(dxpl, H5D_SELECTION_IO_MODE_ON) < 0)
goto error;
}
else
printf("selection I/O OFF, ");
if (mwbuf) {
printf("with modify write buf, ");
if (H5Pset_modify_write_buf(dxpl, TRUE) < 0)
goto error;
}
else
printf("without modify write buf, ");
if (set_buf)
printf("with H5Pset_buffer:\n");
else
printf("without H5Pset_buffer:\n");
nerrs += test_select_compound(fname, fapl, dxpl, set_fillvalue, set_buf);
nerrs += test_select_src_subset(fname, fapl, dxpl, set_fillvalue, set_buf);
nerrs += test_select_dst_subset(fname, fapl, dxpl, set_fillvalue, set_buf);
if (H5Pclose(dxpl) < 0)
goto error;
} /* set_buf */
} /* mwbuf */
} /* select_io */
} /* set_fillvalue */
} /* set_cache */
if (H5Pclose(fapl) < 0)
goto error;
if (nerrs)
goto error;
return 0;
error:
printf("*** COMPOUNDS TESTS FOR SELECTION I/O FAILED ***");
return 1;
} /* test_compounds_selection_io() */
/*-------------------------------------------------------------------------
* Function: test_compound
*
* Purpose: Creates a simple dataset of a compound type and then reads
* it back. The dataset is read back in various ways to
* exercise the I/O pipeline and compound type conversion.
*
* Return: Success: 0
*
* Failure: 1
*
*-------------------------------------------------------------------------
*/
static unsigned
test_compound(char *filename, hid_t fapl)
{
/* First dataset */
s1_t *s1 = NULL;
hid_t s1_tid;
/* Second dataset */
s2_t *s2 = NULL;
hid_t s2_tid;
/* Third dataset */
s3_t *s3 = NULL;
hid_t s3_tid;
/* Fourth dataset */
s4_t *s4 = NULL;
hid_t s4_tid;
/* Fifth dataset */
s5_t *s5 = NULL;
hid_t s5_tid;
/* Sixth dataset */
s6_t *s6 = NULL;
hid_t s6_tid;
/* Seventh dataset */
hid_t s7_sid;
/* Eighth dataset */
s1_t *s8 = NULL;
hid_t s8_f_sid; /*file data space */
hid_t s8_m_sid; /*memory data space */
/* Ninth dataset */
/* Tenth dataset */
/* Eleventh dataset */
s4_t *s11 = NULL;
/* Other variables */
unsigned int i, j;
hid_t file, dataset, space, PRESERVE;
hid_t array_dt;
static hsize_t dim[] = {NX, NY};
hsize_t f_offset[2]; /*offset of hyperslab in file */
hsize_t h_size[2]; /*size of hyperslab */
hsize_t memb_size[1] = {4};
int ret_code;
/* Allocate buffers for datasets */
if (NULL == (s1 = (s1_t *)malloc(sizeof(s1_t) * NX * NY)))
goto error;
if (NULL == (s2 = (s2_t *)malloc(sizeof(s2_t) * NX * NY)))
goto error;
if (NULL == (s3 = (s3_t *)malloc(sizeof(s3_t) * NX * NY)))
goto error;
if (NULL == (s4 = (s4_t *)malloc(sizeof(s4_t) * NX * NY)))
goto error;
if (NULL == (s5 = (s5_t *)malloc(sizeof(s5_t) * NX * NY)))
goto error;
if (NULL == (s6 = (s6_t *)malloc(sizeof(s6_t) * NX * NY)))
goto error;
/* Create the file */
if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0) {
goto error;
}
/* Create the data space */
if ((space = H5Screate_simple(2, dim, NULL)) < 0)
goto error;
/* Create xfer properties to preserve initialized data */
/* Also verify H5Pset_preserve is initially 0 and then is set to 1. */
if ((PRESERVE = H5Pcreate(H5P_DATASET_XFER)) < 0)
goto error;
if ((ret_code = H5Pget_preserve(PRESERVE)) != 0) {
printf("Preserve status of dataset transfer property list should be"
" 0 (false), got %d\n",
ret_code);
goto error;
}
if (H5Pset_preserve(PRESERVE, 1) < 0)
goto error;
if ((ret_code = H5Pget_preserve(PRESERVE)) != 1) {
printf("Preserve status of dataset transfer property list should be"
" 1 (true), got %d\n",
ret_code);
goto error;
}
/*
*######################################################################
* STEP 1: Save the original dataset natively.
*/
TESTING("basic compound write");
/* Initialize the dataset */
for (i = 0; i < NX * NY; i++) {
s1[i].a = 8 * i + 0;
s1[i].b = 2000 + 2 * i;
s1[i].c[0] = 8 * i + 2;
s1[i].c[1] = 8 * i + 3;
s1[i].c[2] = 8 * i + 4;
s1[i].c[3] = 8 * i + 5;
s1[i].d = 2001 + 2 * i;
s1[i].e = 8 * i + 7;
}
/* Create the memory data type */
if ((s1_tid = H5Tcreate(H5T_COMPOUND, sizeof(s1_t))) < 0)
goto error;
array_dt = H5Tarray_create2(H5T_NATIVE_INT, 1, memb_size);
if (H5Tinsert(s1_tid, "a", HOFFSET(s1_t, a), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s1_tid, "b", HOFFSET(s1_t, b), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s1_tid, "c", HOFFSET(s1_t, c), array_dt) < 0 ||
H5Tinsert(s1_tid, "d", HOFFSET(s1_t, d), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s1_tid, "e", HOFFSET(s1_t, e), H5T_NATIVE_INT) < 0)
goto error;
H5Tclose(array_dt);
/* Create the dataset */
if ((dataset = H5Dcreate2(file, "s1", s1_tid, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0)
goto error;
/* Write the data */
if (H5Dwrite(dataset, s1_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s1) < 0)
goto error;
PASSED();
/*
*######################################################################
* STEP 2: We create a new type ID for the second dataset even though
* it's the same as the first just to test things better, but
* in fact, we could have used s1_tid.
*/
TESTING("basic compound read");
/* Create a data type for s2 */
if ((s2_tid = H5Tcreate(H5T_COMPOUND, sizeof(s2_t))) < 0)
goto error;
array_dt = H5Tarray_create2(H5T_NATIVE_INT, 1, memb_size);
if (H5Tinsert(s2_tid, "a", HOFFSET(s2_t, a), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s2_tid, "b", HOFFSET(s2_t, b), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s2_tid, "c", HOFFSET(s2_t, c), array_dt) < 0 ||
H5Tinsert(s2_tid, "d", HOFFSET(s2_t, d), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s2_tid, "e", HOFFSET(s2_t, e), H5T_NATIVE_INT) < 0)
goto error;
H5Tclose(array_dt);
/* Read the data */
if (H5Dread(dataset, s2_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s2) < 0) {
goto error;
}
/* Compare s2 with s1. They should be the same */
for (i = 0; i < NX * NY; i++) {
if (s1[i].a != s2[i].a || s1[i].b != s2[i].b || s1[i].c[0] != s2[i].c[0] ||
s1[i].c[1] != s2[i].c[1] || s1[i].c[2] != s2[i].c[2] || s1[i].c[3] != s2[i].c[3] ||
s1[i].d != s2[i].d || s1[i].e != s2[i].e) {
H5_FAILED();
puts(" Incorrect values read from the file");
goto error;
}
}
PASSED();
/*
*######################################################################
* STEP 3: Read the dataset back into a third memory buffer. This buffer
* has the same data space but the data type is different: the
* data type is a struct whose members are in the opposite order.
*/
TESTING("reversal of struct members");
/* Create a data type for s3 */
if ((s3_tid = H5Tcreate(H5T_COMPOUND, sizeof(s3_t))) < 0)
goto error;
array_dt = H5Tarray_create2(H5T_NATIVE_INT, 1, memb_size);
if (H5Tinsert(s3_tid, "a", HOFFSET(s3_t, a), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s3_tid, "b", HOFFSET(s3_t, b), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s3_tid, "c", HOFFSET(s3_t, c), array_dt) < 0 ||
H5Tinsert(s3_tid, "d", HOFFSET(s3_t, d), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s3_tid, "e", HOFFSET(s3_t, e), H5T_NATIVE_INT) < 0)
goto error;
H5Tclose(array_dt);
/* Read the data */
if (H5Dread(dataset, s3_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s3) < 0) {
goto error;
}
/* Compare s3 with s1. They should be the same */
for (i = 0; i < NX * NY; i++) {
if (s1[i].a != s3[i].a || s1[i].b != s3[i].b || s1[i].c[0] != s3[i].c[0] ||
s1[i].c[1] != s3[i].c[1] || s1[i].c[2] != s3[i].c[2] || s1[i].c[3] != s3[i].c[3] ||
s1[i].d != s3[i].d || s1[i].e != s3[i].e) {
H5_FAILED();
puts(" Incorrect values read from the file");
goto error;
}
}
PASSED();
/*
*######################################################################
* STEP 4: Read a subset of the members. Of the <a,b,c,d,e> members
* stored on disk we'll read <b,d>.
*/
TESTING("subset struct read");
/* Create a datatype for s4 */
if ((s4_tid = H5Tcreate(H5T_COMPOUND, sizeof(s4_t))) < 0)
goto error;
if (H5Tinsert(s4_tid, "b", HOFFSET(s4_t, b), H5T_NATIVE_INT) < 0)
goto error;
if (H5Tinsert(s4_tid, "d", HOFFSET(s4_t, d), H5T_NATIVE_INT) < 0)
goto error;
/* Read the data */
if (H5Dread(dataset, s4_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s4) < 0) {
goto error;
}
/* Compare s4 with s1 */
for (i = 0; i < NX * NY; i++) {
if (s1[i].b != s4[i].b || s1[i].d != s4[i].d) {
H5_FAILED();
puts(" Incorrect values read from the file");
goto error;
}
}
PASSED();
/*
*######################################################################
* STEP 5: Read all the members into a struct which has other members
* which have already been initialized.
*/
TESTING("partially initialized superset read");
/* Initialize some members */
for (i = 0; i < NX * NY; i++) {
s5[i].pre = 1000 + 4 * i;
s5[i].mid1 = 1001 + 4 * i;
s5[i].mid2 = 1002 + 4 * i;
s5[i].post = 1003 + 4 * i;
}
/* Create a data type for s5 */
if ((s5_tid = H5Tcreate(H5T_COMPOUND, sizeof(s5_t))) < 0)
goto error;
array_dt = H5Tarray_create2(H5T_NATIVE_INT, 1, memb_size);
if (H5Tinsert(s5_tid, "a", HOFFSET(s5_t, a), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s5_tid, "b", HOFFSET(s5_t, b), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s5_tid, "c", HOFFSET(s5_t, c), array_dt) < 0 ||
H5Tinsert(s5_tid, "d", HOFFSET(s5_t, d), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s5_tid, "e", HOFFSET(s5_t, e), H5T_NATIVE_INT))
goto error;
H5Tclose(array_dt);
/* Read the data */
if (H5Dread(dataset, s5_tid, H5S_ALL, H5S_ALL, PRESERVE, s5) < 0) {
goto error;
}
/* Check that the data was read properly */
for (i = 0; i < NX * NY; i++) {
if (s1[i].a != s5[i].a || s1[i].b != s5[i].b || s1[i].c[0] != s5[i].c[0] ||
s1[i].c[1] != s5[i].c[1] || s1[i].c[2] != s5[i].c[2] || s1[i].c[3] != s5[i].c[3] ||
s1[i].d != s5[i].d || s1[i].e != s5[i].e) {
H5_FAILED();
puts(" Incorrect values read from the file");
goto error;
}
}
/* Check that no previous values were clobbered */
for (i = 0; i < NX * NY; i++) {
if (s5[i].pre != 1000 + 4 * i || s5[i].mid1 != 1001 + 4 * i || s5[i].mid2 != 1002 + 4 * i ||
s5[i].post != 1003 + 4 * i) {
H5_FAILED();
puts(" Memory values were clobbered");
goto error;
}
}
PASSED();
/*
*######################################################################
* STEP 6: Read all the members into a struct which has other members
* which have already been initialized. This is to test the
* optimization for the Chicago company. The optimization is
* for the special case when the source members are a subset of
* destination, and the order is the same, and no conversion
* is needed. For example:
* struct source { struct destination {
* TYPE1 A; --> TYPE1 A;
* TYPE2 B; --> TYPE2 B;
* TYPE3 C; --> TYPE3 C;
* }; TYPE4 D;
* TYPE5 E;
* };
*/
TESTING("partially initialized superset optimized read");
/* Initialize some members */
for (i = 0; i < NX * NY; i++) {
s6[i].pre = 1000 + 4 * i;
s6[i].mid1 = 1001 + 4 * i;
s6[i].mid2 = 1002 + 4 * i;
s6[i].post = 1003 + 4 * i;
}
/* Create a data type for s6 */
if ((s6_tid = H5Tcreate(H5T_COMPOUND, sizeof(s6_t))) < 0)
goto error;
array_dt = H5Tarray_create2(H5T_NATIVE_INT, 1, memb_size);
if (H5Tinsert(s6_tid, "a", HOFFSET(s6_t, a), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s6_tid, "b", HOFFSET(s6_t, b), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s6_tid, "c", HOFFSET(s6_t, c), array_dt) < 0 ||
H5Tinsert(s6_tid, "d", HOFFSET(s6_t, d), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s6_tid, "e", HOFFSET(s6_t, e), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s6_tid, "pre", HOFFSET(s6_t, pre), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s6_tid, "mid1", HOFFSET(s6_t, mid1), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s6_tid, "mid2", HOFFSET(s6_t, mid2), H5T_NATIVE_INT) < 0 ||
H5Tinsert(s6_tid, "post", HOFFSET(s6_t, post), H5T_NATIVE_INT) < 0)
goto error;
H5Tclose(array_dt);
/* Read the data */
if (H5Dread(dataset, s6_tid, H5S_ALL, H5S_ALL, PRESERVE, s6) < 0) {
goto error;
}
/* Check that the data was read properly */
for (i = 0; i < NX * NY; i++) {
if (s1[i].a != s6[i].a || s1[i].b != s6[i].b || s1[i].c[0] != s6[i].c[0] ||
s1[i].c[1] != s6[i].c[1] || s1[i].c[2] != s6[i].c[2] || s1[i].c[3] != s6[i].c[3] ||
s1[i].d != s6[i].d || s1[i].e != s6[i].e) {
H5_FAILED();
puts(" Incorrect values read from the file");
goto error;
}
}
/* Check that no previous values were clobbered */
for (i = 0; i < NX * NY; i++) {
if (s6[i].pre != 1000 + 4 * i || s6[i].mid1 != 1001 + 4 * i || s6[i].mid2 != 1002 + 4 * i ||
s6[i].post != 1003 + 4 * i) {
H5_FAILED();
puts(" Memory values were clobbered");
goto error;
}
}
PASSED();
/*
*######################################################################
* STEP 7: Update fields `b' and `d' on the file leaving the other
* fields unchanged. This tests member alignment and background
* buffers.
*/
TESTING("partially initialized superset write");
/* Initialize `s4' with new values */
for (i = 0; i < NX * NY; i++) {
s4[i].b = 8 * i + 1;
s4[i].d = 8 * i + 6;
}
/* Write the data to file */
if (H5Dwrite(dataset, s4_tid, H5S_ALL, H5S_ALL, PRESERVE, s4) < 0) {
goto error;
}
/* Read the data back */
if (H5Dread(dataset, s1_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s1) < 0) {
goto error;
}
/* Compare */
for (i = 0; i < NX * NY; i++) {
if (s1[i].a != 8 * i + 0 || s1[i].b != 8 * i + 1 || s1[i].c[0] != 8 * i + 2 ||
s1[i].c[1] != 8 * i + 3 || s1[i].c[2] != 8 * i + 4 || s1[i].c[3] != 8 * i + 5 ||
s1[i].d != 8 * i + 6 || s1[i].e != 8 * i + 7) {
H5_FAILED();
printf(" i==%u, row=%u, col=%u\n", i, i / NY, i % NY);
printf(" got: {%7d,%7d,[%7d,%7d,%7d,%7d],%7d,%7d}\n", s1[i].a, s1[i].b, s1[i].c[0], s1[i].c[1],
s1[i].c[2], s1[i].c[3], s1[i].d, s1[i].e);
printf(" ans: {%7d,%7d,[%7d,%7d,%7d,%7d],%7d,%7d}\n", 8 * i + 0, 8 * i + 1, 8 * i + 2,
8 * i + 3, 8 * i + 4, 8 * i + 5, 8 * i + 6, 8 * i + 7);
goto error;
}
}
PASSED();
/*
*######################################################################
* STEP 8. Read the original dataset with an explicit data space. Even
* though these data spaces are equal it tests a different part of the
* library.
*/
TESTING("explicit data space");
/* Create the data space */
if ((s7_sid = H5Screate_simple(2, dim, NULL)) < 0)
goto error;
/* Read the dataset */
if (H5Dread(dataset, s2_tid, s7_sid, H5S_ALL, H5P_DEFAULT, s2) < 0) {
goto error;
}
/* Compare */
for (i = 0; i < NX * NY; i++) {
if (s2[i].a != s1[i].a || s2[i].b != s1[i].b || s2[i].c[0] != s1[i].c[0] ||
s2[i].c[1] != s1[i].c[1] || s2[i].c[2] != s1[i].c[2] || s2[i].c[3] != s1[i].c[3] ||
s2[i].d != s1[i].d || s2[i].e != s1[i].e) {
H5_FAILED();
puts(" Incorrect values read from file");
goto error;
}
}
PASSED();
/*
*######################################################################
* STEP 9. Read a hyperslab of the file into a complete array in memory.
* The hyperslab is the middle third of the array.
*/
TESTING("hyperslab partial read to array");
/* Create the file data space */
if ((s8_f_sid = H5Dget_space(dataset)) < 0)
goto error;
f_offset[0] = NX / 3;
f_offset[1] = NY / 3;
h_size[0] = 2 * NX / 3 - f_offset[0];
h_size[1] = 2 * NY / 3 - f_offset[1];
if (H5Sselect_hyperslab(s8_f_sid, H5S_SELECT_SET, f_offset, NULL, h_size, NULL) < 0)
goto error;
/* Create memory data space */
if ((s8_m_sid = H5Screate_simple(2, h_size, NULL)) < 0)
goto error;
/* Read the dataset */
s8 = (s1_t *)calloc((size_t)(h_size[0] * h_size[1]), sizeof(s1_t));
assert(s8);
if (H5Dread(dataset, s1_tid, s8_m_sid, s8_f_sid, H5P_DEFAULT, s8) < 0) {
goto error;
}
/* Compare */
for (i = 0; i < h_size[0]; i++) {
for (j = 0; j < h_size[1]; j++) {
s1_t *ps1 = s1 + (f_offset[0] + i) * NY + f_offset[1] + j;
s1_t *ps8 = s8 + i * h_size[1] + j;
if (ps8->a != ps1->a || ps8->b != ps1->b || ps8->c[0] != ps1->c[0] || ps8->c[1] != ps1->c[1] ||
ps8->c[2] != ps1->c[2] || ps8->c[3] != ps1->c[3] || ps8->d != ps1->d || ps8->e != ps1->e) {
H5_FAILED();
puts(" Incorrect values read from file");
goto error;
}
}
}
free(s8);
s8 = NULL;
PASSED();
/*
*######################################################################
* STEP 10. Read a hyperslab of the file into a hyperslab of memory. The
* part of memory not read is already initialized and must not change.
*/
TESTING("hyperslab partial read to another hyperslab");
/* Initialize */
for (i = 0; i < NX * NY; i++) {
s2[i].a = s2[i].b = s2[i].d = s2[i].e = (unsigned)(-1);
s2[i].c[0] = s2[i].c[1] = s2[i].c[2] = s2[i].c[3] = (unsigned)(-1);
}
/* Read the hyperslab */
if (H5Dread(dataset, s2_tid, s8_f_sid, s8_f_sid, H5P_DEFAULT, s2) < 0) {
goto error;
}
/* Compare */
for (i = 0; i < NX; i++) {
for (j = 0; j < NY; j++) {
s1_t *ps1 = s1 + i * NY + j;
s2_t *ps2 = s2 + i * NY + j;
if (i >= f_offset[0] && i < f_offset[0] + h_size[0] && j >= f_offset[1] &&
j < f_offset[1] + h_size[1]) {
if (ps2->a != ps1->a || ps2->b != ps1->b || ps2->c[0] != ps1->c[0] ||
ps2->c[1] != ps1->c[1] || ps2->c[2] != ps1->c[2] || ps2->c[3] != ps1->c[3] ||
ps2->d != ps1->d || ps2->e != ps1->e) {
H5_FAILED();
puts(" Memory values clobbered");
goto error;
}
}
else {
if (ps2->a != (unsigned)(-1) || ps2->b != (unsigned)(-1) || ps2->c[0] != (unsigned)(-1) ||
ps2->c[1] != (unsigned)(-1) || ps2->c[2] != (unsigned)(-1) ||
ps2->c[3] != (unsigned)(-1) || ps2->d != (unsigned)(-1) || ps2->e != (unsigned)(-1)) {
H5_FAILED();
puts(" Incorrect values read from file");
goto error;
}
}
}
}
PASSED();
/*
*######################################################################
* STEP 11. Same as step 9 except the memory array contains some members
* which are already initialized, like step 5.
*/
TESTING("hyperslab to hyperslab part initialized read");
/* Initialize */
for (i = 0; i < NX * NY; i++) {
s5[i].a = s5[i].b = s5[i].d = s5[i].e = (unsigned)(-1);
s5[i].c[0] = s5[i].c[1] = s5[i].c[2] = s5[i].c[3] = (unsigned)(-1);
s5[i].pre = s5[i].mid1 = s5[i].mid2 = s5[i].post = (unsigned)(-1);
}
/* Read the hyperslab */
if (H5Dread(dataset, s5_tid, s8_f_sid, s8_f_sid, PRESERVE, s5) < 0) {
goto error;
}
/* Compare */
for (i = 0; i < NX; i++) {
for (j = 0; j < NY; j++) {
s1_t *ps1 = s1 + i * NY + j;
s5_t *ps5 = s5 + i * NY + j;
if (i >= f_offset[0] && i < f_offset[0] + h_size[0] && j >= f_offset[1] &&
j < f_offset[1] + h_size[1]) {
if (ps5->pre != (unsigned)(-1) || ps5->a != ps1->a || ps5->b != ps1->b ||
ps5->mid1 != (unsigned)(-1) || ps5->c[0] != ps1->c[0] || ps5->c[1] != ps1->c[1] ||
ps5->c[2] != ps1->c[2] || ps5->c[3] != ps1->c[3] || ps5->mid2 != (unsigned)(-1) ||
ps5->d != ps1->d || ps5->e != ps1->e || ps5->post != (unsigned)(-1)) {
H5_FAILED();
puts(" Memory values clobbered");
goto error;
}
}
else {
if (ps5->pre != (unsigned)(-1) || ps5->a != (unsigned)(-1) || ps5->b != (unsigned)(-1) ||
ps5->mid1 != (unsigned)(-1) || ps5->c[0] != (unsigned)(-1) ||
ps5->c[1] != (unsigned)(-1) || ps5->c[2] != (unsigned)(-1) ||
ps5->c[3] != (unsigned)(-1) || ps5->mid2 != (unsigned)(-1) || ps5->d != (unsigned)(-1) ||
ps5->e != (unsigned)(-1) || ps5->post != (unsigned)(-1)) {
H5_FAILED();
puts(" Incorrect values read from file");
goto error;
}
}
}
}
PASSED();
/*
*######################################################################
* Step 12: Write an array into the middle third of the dataset
* initializing only members `b' and `d' to -1.
*/
TESTING("hyperslab part initialized write");
/* Create the memory array and initialize all fields to zero */
f_offset[0] = NX / 3;
f_offset[1] = NY / 3;
h_size[0] = 2 * NX / 3 - f_offset[0];
h_size[1] = 2 * NY / 3 - f_offset[1];
s11 = (s4_t *)malloc((size_t)h_size[0] * (size_t)h_size[1] * sizeof(s4_t));
assert(s11);
/* Initialize */
for (i = 0; i < h_size[0] * h_size[1]; i++) {
s11[i].b = s11[i].d = (unsigned)(-1);
}
/* Write to disk */
if (H5Dwrite(dataset, s4_tid, s8_m_sid, s8_f_sid, PRESERVE, s11) < 0) {
goto error;
}
free(s11);
s11 = NULL;
/* Read the whole thing */
if (H5Dread(dataset, s1_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s1) < 0) {
goto error;
}
/* Compare */
for (i = 0; i < NX; i++) {
for (j = 0; j < NY; j++) {
s1_t *ps1 = s1 + i * NY + j;
if (ps1->a != 8 * (i * NY + j) + 0 || ps1->c[0] != 8 * (i * NY + j) + 2 ||
ps1->c[1] != 8 * (i * NY + j) + 3 || ps1->c[2] != 8 * (i * NY + j) + 4 ||
ps1->c[3] != 8 * (i * NY + j) + 5 || ps1->e != 8 * (i * NY + j) + 7) {
H5_FAILED();
puts(" Write clobbered values");
goto error;
}
if (i >= f_offset[0] && i < f_offset[0] + h_size[0] && j >= f_offset[1] &&
j < f_offset[1] + h_size[1]) {
if (ps1->b != (unsigned)(-1) || ps1->d != (unsigned)(-1)) {
H5_FAILED();
puts(" Wrong values written or read");
goto error;
}
}
else {
if (ps1->b != 8 * (i * NY + j) + 1 || ps1->d != 8 * (i * NY + j) + 6) {
H5_FAILED();
puts(" Write clobbered values");
goto error;
}
}
}
}
/*
* Release resources.
*/
H5Pclose(PRESERVE);
H5Dclose(dataset);
H5Fclose(file);
/* Release buffers */
free(s1);
free(s2);
free(s3);
free(s4);
free(s5);
free(s6);
PASSED();
return 0;
error:
puts("*** DATASET TESTS FAILED ***");
/* Release resources */
if (s1)
free(s1);
if (s2)
free(s2);
if (s3)
free(s3);
if (s4)
free(s4);
if (s5)
free(s5);
if (s6)
free(s6);
return 1;
}
/*-------------------------------------------------------------------------
* Function: initialize_stype1
*
* Purpose: Initialize data buffer.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static void
initialize_stype1(unsigned char *buf, size_t num)
{
int i, j;
stype1 *s_ptr;
for (i = 0; i < (int)num; i++) {
s_ptr = (stype1 *)((void *)buf) + i;
s_ptr->a = i * 8 + 0;
s_ptr->b = i * 8 + 1;
for (j = 0; j < 8; j++)
s_ptr->c[j] = i * 8 + j;
s_ptr->d = i * 8 + 6;
s_ptr->e = i * 8 + 7;
s_ptr->f = (float)(i * 2 / 3);
s_ptr->g = (float)(i * 2 / 3 + 1);
for (j = 0; j < 16; j++)
s_ptr->h[j] = (float)(i * j / 5 + j);
s_ptr->i = (float)(i * 2 / 3 + 2);
s_ptr->j = (float)(i * 2 / 3 + 3);
s_ptr->k = i / 7 + 1;
s_ptr->l = i / 7 + 2;
s_ptr->m = i / 7 + 3;
s_ptr->n = i / 7 + 4;
}
}
/*-------------------------------------------------------------------------
* Function: initialize_stype2
*
* Purpose: Initialize data buffer.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static void
initialize_stype2(unsigned char *buf, size_t num)
{
size_t i, j;
stype2 *s_ptr;
for (i = 0; i < num; i++) {
s_ptr = (stype2 *)((void *)buf) + i;
s_ptr->a = (int)(i * 8 + 0);
s_ptr->b = (int)(i * 8 + 1);
for (j = 0; j < 8; j++)
s_ptr->c[j] = (int)(i * 8 + j);
s_ptr->d = (int)(i * 8 + 6);
s_ptr->e = (int)(i * 8 + 7);
s_ptr->f = (float)(i * 2 / 3);
s_ptr->g = (float)(i * 2 / 3 + 1);
for (j = 0; j < 16; j++)
s_ptr->h[j] = (float)(i * j / 5 + j);
s_ptr->i = (float)(i * 2 / 3 + 2);
s_ptr->j = (float)(i * 2 / 3 + 3);
s_ptr->k = (double)(i / 7 + 1);
s_ptr->l = (double)(i / 7 + 2);
s_ptr->m = (double)(i / 7 + 3);
s_ptr->n = (double)(i / 7 + 4);
s_ptr->o = (long)(i * 3 + 0);
s_ptr->p = (long)(i * 3 + 1);
s_ptr->q = (long)(i * 3 + 2);
}
}
/*-------------------------------------------------------------------------
* Function: initialize_stype3
*
* Purpose: Initialize data buffer.
*
* Return: Success:
*
*-------------------------------------------------------------------------
*/
static void
initialize_stype3(unsigned char *buf, size_t num)
{
int i, j;
stype3 *s_ptr;
for (i = 0; i < (int)num; i++) {
s_ptr = (stype3 *)((void *)buf) + i;
s_ptr->a = i * 8 + 0;
s_ptr->b = i * 8 + 1;
for (j = 0; j < 8; j++)
s_ptr->c[j] = i * 8 + j;
s_ptr->d = i * 8 + 6;
s_ptr->e = i * 8 + 7;
}
}
/*-------------------------------------------------------------------------
* Function: initialize_stype4
*
* Purpose: Initialize data buffer.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static void
initialize_stype4(unsigned char *buf, size_t num)
{
size_t i, j;
stype4 *s_ptr;
for (i = 0; i < num; i++) {
s_ptr = (stype4 *)((void *)buf) + i;
s_ptr->a = (int)(i * 8 + 0);
s_ptr->b = (int)(i * 8 + 1);
for (j = 0; j < 8; j++)
s_ptr->c[j] = (int)(i * 8 + j);
s_ptr->d = (int)(i * 8 + 6);
s_ptr->e = (int)(i * 8 + 7);
s_ptr->f = (float)(i * 2 / 3);
s_ptr->g = (float)(i * 2 / 3 + 1);
for (j = 0; j < 16; j++)
s_ptr->h[j] = (float)(i * j / 5 + j);
s_ptr->i = (float)(i * 2 / 3 + 2);
s_ptr->j = (float)(i * 2 / 3 + 3);
s_ptr->k = (double)(i / 7 + 1);
s_ptr->l = (double)(i / 7 + 2);
s_ptr->m = (double)(i / 7 + 3);
s_ptr->n = (double)(i / 7 + 4);
s_ptr->o = (long)(i * 3 + 0);
s_ptr->p = (long)(i * 3 + 1);
s_ptr->q = (long)(i * 3 + 2);
s_ptr->r = (long long)(i * 5 + 1);
s_ptr->s = (long long)(i * 5 + 2);
s_ptr->t = (long long)(i * 5 + 3);
}
}
/*-------------------------------------------------------------------------
* Function: create_stype1
*
* Purpose: Create HDF5 compound datatype for stype1.
*
* Return: Success: datatype ID
*
* Failure: negative
*
*-------------------------------------------------------------------------
*/
static hid_t
create_stype1(void)
{
hid_t array_dt1, array_dt2, tid;
const hsize_t eight = 8, sixteen = 16;
/* Build hdf5 datatypes */
if ((array_dt1 = H5Tarray_create2(H5T_NATIVE_INT, 1, &eight)) < 0)
goto error;
if ((array_dt2 = H5Tarray_create2(H5T_NATIVE_FLOAT, 1, &sixteen)) < 0)
goto error;
if ((tid = H5Tcreate(H5T_COMPOUND, sizeof(stype1))) < 0 ||
H5Tinsert(tid, "a", HOFFSET(stype1, a), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "b", HOFFSET(stype1, b), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "c", HOFFSET(stype1, c), array_dt1) < 0 ||
H5Tinsert(tid, "d", HOFFSET(stype1, d), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "e", HOFFSET(stype1, e), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "f", HOFFSET(stype1, f), H5T_NATIVE_FLOAT) < 0 ||
H5Tinsert(tid, "g", HOFFSET(stype1, g), H5T_NATIVE_FLOAT) < 0 ||
H5Tinsert(tid, "h", HOFFSET(stype1, h), array_dt2) < 0 ||
H5Tinsert(tid, "i", HOFFSET(stype1, i), H5T_NATIVE_FLOAT) < 0 ||
H5Tinsert(tid, "j", HOFFSET(stype1, j), H5T_NATIVE_FLOAT) < 0 ||
H5Tinsert(tid, "k", HOFFSET(stype1, k), H5T_NATIVE_DOUBLE) < 0 ||
H5Tinsert(tid, "l", HOFFSET(stype1, l), H5T_NATIVE_DOUBLE) < 0 ||
H5Tinsert(tid, "m", HOFFSET(stype1, m), H5T_NATIVE_DOUBLE) < 0 ||
H5Tinsert(tid, "n", HOFFSET(stype1, n), H5T_NATIVE_DOUBLE) < 0)
goto error;
if (H5Tclose(array_dt1) < 0)
goto error;
if (H5Tclose(array_dt2) < 0)
goto error;
return tid;
error:
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: create_stype2
*
* Purpose: Create HDF5 compound datatype for stype2.
*
* Return: Success: datatype ID
*
* Failure: negative
*
*-------------------------------------------------------------------------
*/
static hid_t
create_stype2(void)
{
hid_t array_dt1, array_dt2, tid;
const hsize_t eight = 8, sixteen = 16;
/* Build hdf5 datatypes */
if ((array_dt1 = H5Tarray_create2(H5T_NATIVE_INT, 1, &eight)) < 0)
goto error;
if ((array_dt2 = H5Tarray_create2(H5T_NATIVE_FLOAT, 1, &sixteen)) < 0)
goto error;
if ((tid = H5Tcreate(H5T_COMPOUND, sizeof(stype2))) < 0 ||
H5Tinsert(tid, "a", HOFFSET(stype2, a), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "b", HOFFSET(stype2, b), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "c", HOFFSET(stype2, c), array_dt1) < 0 ||
H5Tinsert(tid, "d", HOFFSET(stype2, d), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "e", HOFFSET(stype2, e), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "f", HOFFSET(stype2, f), H5T_NATIVE_FLOAT) < 0 ||
H5Tinsert(tid, "g", HOFFSET(stype2, g), H5T_NATIVE_FLOAT) < 0 ||
H5Tinsert(tid, "h", HOFFSET(stype2, h), array_dt2) < 0 ||
H5Tinsert(tid, "i", HOFFSET(stype2, i), H5T_NATIVE_FLOAT) < 0 ||
H5Tinsert(tid, "j", HOFFSET(stype2, j), H5T_NATIVE_FLOAT) < 0 ||
H5Tinsert(tid, "k", HOFFSET(stype2, k), H5T_NATIVE_DOUBLE) < 0 ||
H5Tinsert(tid, "l", HOFFSET(stype2, l), H5T_NATIVE_DOUBLE) < 0 ||
H5Tinsert(tid, "m", HOFFSET(stype2, m), H5T_NATIVE_DOUBLE) < 0 ||
H5Tinsert(tid, "n", HOFFSET(stype2, n), H5T_NATIVE_DOUBLE) < 0 ||
H5Tinsert(tid, "o", HOFFSET(stype2, o), H5T_NATIVE_LONG) < 0 ||
H5Tinsert(tid, "p", HOFFSET(stype2, p), H5T_NATIVE_LONG) < 0 ||
H5Tinsert(tid, "q", HOFFSET(stype2, q), H5T_NATIVE_LONG) < 0)
goto error;
if (H5Tclose(array_dt1) < 0)
goto error;
if (H5Tclose(array_dt2) < 0)
goto error;
return tid;
error:
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: create_stype3
*
* Purpose: Create HDF5 compound datatype for stype3.
*
* Return: Success: datatype ID
*
* Failure: negative
*
*-------------------------------------------------------------------------
*/
static hid_t
create_stype3(void)
{
hid_t array_dt1, tid;
const hsize_t eight = 8;
/* Build hdf5 datatypes */
if ((array_dt1 = H5Tarray_create2(H5T_NATIVE_INT, 1, &eight)) < 0)
goto error;
if ((tid = H5Tcreate(H5T_COMPOUND, sizeof(stype3))) < 0 ||
H5Tinsert(tid, "a", HOFFSET(stype3, a), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "b", HOFFSET(stype3, b), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "c", HOFFSET(stype3, c), array_dt1) < 0 ||
H5Tinsert(tid, "d", HOFFSET(stype3, d), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "e", HOFFSET(stype3, e), H5T_NATIVE_INT) < 0)
goto error;
if (H5Tclose(array_dt1) < 0)
goto error;
return tid;
error:
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: create_stype4
*
* Purpose: Create HDF5 compound datatype for stype4.
*
* Return: Success: datatype ID
*
* Failure: negative
*
*-------------------------------------------------------------------------
*/
static hid_t
create_stype4(void)
{
hid_t array_dt1, array_dt2, tid;
const hsize_t eight = 8, sixteen = 16;
/* Build hdf5 datatypes */
if ((array_dt1 = H5Tarray_create2(H5T_NATIVE_INT, 1, &eight)) < 0)
goto error;
if ((array_dt2 = H5Tarray_create2(H5T_NATIVE_FLOAT, 1, &sixteen)) < 0)
goto error;
if ((tid = H5Tcreate(H5T_COMPOUND, sizeof(stype4))) < 0 ||
H5Tinsert(tid, "a", HOFFSET(stype4, a), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "b", HOFFSET(stype4, b), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "c", HOFFSET(stype4, c), array_dt1) < 0 ||
H5Tinsert(tid, "d", HOFFSET(stype4, d), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "e", HOFFSET(stype4, e), H5T_NATIVE_INT) < 0 ||
H5Tinsert(tid, "f", HOFFSET(stype4, f), H5T_NATIVE_FLOAT) < 0 ||
H5Tinsert(tid, "g", HOFFSET(stype4, g), H5T_NATIVE_FLOAT) < 0 ||
H5Tinsert(tid, "h", HOFFSET(stype4, h), array_dt2) < 0 ||
H5Tinsert(tid, "i", HOFFSET(stype4, i), H5T_NATIVE_FLOAT) < 0 ||
H5Tinsert(tid, "j", HOFFSET(stype4, j), H5T_NATIVE_FLOAT) < 0 ||
H5Tinsert(tid, "k", HOFFSET(stype4, k), H5T_NATIVE_DOUBLE) < 0 ||
H5Tinsert(tid, "l", HOFFSET(stype4, l), H5T_NATIVE_DOUBLE) < 0 ||
H5Tinsert(tid, "m", HOFFSET(stype4, m), H5T_NATIVE_DOUBLE) < 0 ||
H5Tinsert(tid, "n", HOFFSET(stype4, n), H5T_NATIVE_DOUBLE) < 0 ||
H5Tinsert(tid, "o", HOFFSET(stype4, o), H5T_NATIVE_LONG) < 0 ||
H5Tinsert(tid, "p", HOFFSET(stype4, p), H5T_NATIVE_LONG) < 0 ||
H5Tinsert(tid, "q", HOFFSET(stype4, q), H5T_NATIVE_LONG) < 0 ||
H5Tinsert(tid, "r", HOFFSET(stype4, r), H5T_NATIVE_LLONG) < 0 ||
H5Tinsert(tid, "s", HOFFSET(stype4, s), H5T_NATIVE_LLONG) < 0 ||
H5Tinsert(tid, "t", HOFFSET(stype4, t), H5T_NATIVE_LLONG) < 0)
goto error;
if (H5Tclose(array_dt1) < 0)
goto error;
if (H5Tclose(array_dt2) < 0)
goto error;
return tid;
error:
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: compare_data
*
* Purpose: Compare data of stype1 and stype2.
*
* Return: Success: 0
*
* Failure: negative
*
*-------------------------------------------------------------------------
*/
static int
compare_data(void *src_data, void *dst_data, bool src_subset)
{
stype1 *s_ptr;
stype2 *d_ptr;
int i;
for (i = 0; i < (int)(NX * NY); i++) {
if (src_subset) {
s_ptr = ((stype1 *)src_data) + i;
d_ptr = ((stype2 *)dst_data) + i;
}
else {
s_ptr = (stype1 *)(((stype2 *)src_data) + i);
d_ptr = (stype2 *)(((stype1 *)dst_data) + i);
}
if (s_ptr->a != d_ptr->a || s_ptr->b != d_ptr->b || s_ptr->c[0] != d_ptr->c[0] ||
s_ptr->c[1] != d_ptr->c[1] || s_ptr->c[2] != d_ptr->c[2] || s_ptr->c[3] != d_ptr->c[3] ||
s_ptr->d != d_ptr->d || s_ptr->e != d_ptr->e || !H5_FLT_ABS_EQUAL(s_ptr->f, d_ptr->f) ||
!H5_FLT_ABS_EQUAL(s_ptr->g, d_ptr->g) || !H5_FLT_ABS_EQUAL(s_ptr->h[0], d_ptr->h[0]) ||
!H5_FLT_ABS_EQUAL(s_ptr->h[1], d_ptr->h[1]) || !H5_FLT_ABS_EQUAL(s_ptr->i, d_ptr->i) ||
!H5_FLT_ABS_EQUAL(s_ptr->j, d_ptr->j) || !H5_DBL_ABS_EQUAL(s_ptr->k, d_ptr->k) ||
!H5_DBL_ABS_EQUAL(s_ptr->l, d_ptr->l) || !H5_DBL_ABS_EQUAL(s_ptr->m, d_ptr->m) ||
!H5_DBL_ABS_EQUAL(s_ptr->n, d_ptr->n)) {
H5_FAILED();
printf(" i=%d\n", i);
printf(
" src={a=%d, b=%d, c=[%d,%d,%d,%d,%d,%d,%d,%d], d=%d, e=%d, f=%f, g=%f, "
"h=[%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f], i=%f, j=%f, k=%f, l=%f, m=%f, n=%f}\n",
s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2], s_ptr->c[3], s_ptr->c[4],
s_ptr->c[5], s_ptr->c[6], s_ptr->c[7], s_ptr->d, s_ptr->e, (double)s_ptr->f, (double)s_ptr->g,
(double)s_ptr->h[0], (double)s_ptr->h[1], (double)s_ptr->h[2], (double)s_ptr->h[3],
(double)s_ptr->h[4], (double)s_ptr->h[5], (double)s_ptr->h[6], (double)s_ptr->h[7],
(double)s_ptr->h[8], (double)s_ptr->h[9], (double)s_ptr->h[10], (double)s_ptr->h[11],
(double)s_ptr->h[12], (double)s_ptr->h[13], (double)s_ptr->h[14], (double)s_ptr->h[15],
(double)s_ptr->i, (double)s_ptr->j, s_ptr->k, s_ptr->l, s_ptr->m, s_ptr->n);
printf(
" dst={a=%d, b=%d, c=[%d,%d,%d,%d,%d,%d,%d,%d], d=%d, e=%d, f=%f, g=%f, "
"h=[%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f], i=%f, j=%f, k=%f, l=%f, m=%f, n=%f}\n",
d_ptr->a, d_ptr->b, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2], d_ptr->c[3], d_ptr->c[4],
d_ptr->c[5], d_ptr->c[6], d_ptr->c[7], d_ptr->d, d_ptr->e, (double)d_ptr->f, (double)d_ptr->g,
(double)d_ptr->h[0], (double)d_ptr->h[1], (double)d_ptr->h[2], (double)d_ptr->h[3],
(double)d_ptr->h[4], (double)d_ptr->h[5], (double)d_ptr->h[6], (double)d_ptr->h[7],
(double)d_ptr->h[8], (double)d_ptr->h[9], (double)d_ptr->h[10], (double)d_ptr->h[11],
(double)d_ptr->h[12], (double)d_ptr->h[13], (double)d_ptr->h[14], (double)d_ptr->h[15],
(double)d_ptr->i, (double)d_ptr->j, d_ptr->k, d_ptr->l, d_ptr->m, d_ptr->n);
goto error;
}
}
return SUCCEED;
error:
return FAIL;
}
/*-------------------------------------------------------------------------
* Function: test_hdf5_src_subset
*
* Purpose: Test the optimization of compound data writing, rewriting,
* and reading when the source type is a subset of the destination
* type. For example:
* struct source { struct destination {
* TYPE1 A; --> TYPE1 A;
* TYPE2 B; --> TYPE2 B;
* TYPE3 C; --> TYPE3 C;
* }; TYPE4 D;
* TYPE5 E;
* };
* This optimization is for the Chicago company.
*
* Return: Success: 0
*
* Failure: 1
*
*-------------------------------------------------------------------------
*/
static unsigned
test_hdf5_src_subset(char *filename, hid_t fapl)
{
hid_t file;
hid_t rew_tid, src_tid, dst_tid;
hid_t dataset;
hid_t space;
hid_t dcpl, dxpl;
hsize_t dims[2] = {NX, NY};
hsize_t chunk_dims[2] = {NX / 10, NY / 10};
unsigned char *orig = NULL, *rew_buf = NULL, *rbuf = NULL;
/* Create the file for this test */
if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0)
goto error;
/* Build hdf5 datatypes */
if ((src_tid = create_stype1()) < 0)
goto error;
if ((dst_tid = create_stype2()) < 0)
goto error;
if ((rew_tid = create_stype3()) < 0)
goto error;
/* Create the data space */
if ((space = H5Screate_simple(2, dims, NULL)) < 0)
goto error;
/* Allocate space and initialize data */
orig = (unsigned char *)malloc(NX * NY * sizeof(stype1));
initialize_stype1(orig, (size_t)NX * NY);
rbuf = (unsigned char *)malloc(NX * NY * sizeof(stype2));
rew_buf = (unsigned char *)malloc(NX * NY * sizeof(stype3));
initialize_stype3(rew_buf, (size_t)NX * NY);
/* Create dataset creation property list */
if ((dcpl = H5Pcreate(H5P_DATASET_CREATE)) < 0)
goto error;
/*
*######################################################################
* STEP 1. Write data to contiguous and chunked datasets.
*/
TESTING("writing data to contiguous and chunked datasets");
/* Create contiguous data set */
if ((dataset = H5Dcreate2(file, DSET_NAME[0], src_tid, space, H5P_DEFAULT, dcpl, H5P_DEFAULT)) < 0)
goto error;
/* Write the data to the dataset */
if (H5Dwrite(dataset, src_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, orig) < 0)
goto error;
if (H5Dclose(dataset) < 0)
goto error;
/* Set chunking */
if (H5Pset_chunk(dcpl, 2, chunk_dims) < 0)
goto error;
/* Create chunked data set */
if ((dataset = H5Dcreate2(file, DSET_NAME[1], src_tid, space, H5P_DEFAULT, dcpl, H5P_DEFAULT)) < 0)
goto error;
/* Write the data to the dataset */
if (H5Dwrite(dataset, src_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, orig) < 0)
goto error;
if (H5Dclose(dataset) < 0)
goto error;
PASSED();
/*
*######################################################################
* STEP 2. Rewrite the data with a subset of original data type.
*/
TESTING("rewriting data with a subset of original data type");
/* Create xfer properties to preserve initialized data */
if ((dxpl = H5Pcreate(H5P_DATASET_XFER)) < 0)
FAIL_STACK_ERROR;
if (H5Pset_preserve(dxpl, true) < 0)
FAIL_STACK_ERROR;
/* Rewrite contiguous data set */
if ((dataset = H5Dopen2(file, DSET_NAME[0], H5P_DEFAULT)) < 0)
FAIL_STACK_ERROR;
/* Write the data to the dataset */
if (H5Dwrite(dataset, rew_tid, H5S_ALL, H5S_ALL, dxpl, rew_buf) < 0)
FAIL_STACK_ERROR;
if (H5Dclose(dataset) < 0)
FAIL_STACK_ERROR;
/* Rewrite chunked data set */
if ((dataset = H5Dopen2(file, DSET_NAME[1], H5P_DEFAULT)) < 0)
FAIL_STACK_ERROR;
/* Write the data to the dataset */
if (H5Dwrite(dataset, rew_tid, H5S_ALL, H5S_ALL, dxpl, rew_buf) < 0)
FAIL_STACK_ERROR;
if (H5Dclose(dataset) < 0)
FAIL_STACK_ERROR;
PASSED();
/*
*######################################################################
* STEP 3. Read the data into a subset of the original compound type.
*/
TESTING("reading data with a subset of original data type");
/* Check contiguous data set */
if ((dataset = H5Dopen2(file, DSET_NAME[0], H5P_DEFAULT)) < 0)
FAIL_STACK_ERROR;
if (H5Dread(dataset, dst_tid, H5S_ALL, H5S_ALL, dxpl, rbuf) < 0)
FAIL_STACK_ERROR;
if (compare_data(orig, rbuf, true) < 0)
TEST_ERROR;
if (H5Dclose(dataset) < 0)
FAIL_STACK_ERROR;
/* Check chunked data set */
if ((dataset = H5Dopen2(file, DSET_NAME[1], H5P_DEFAULT)) < 0)
FAIL_STACK_ERROR;
if (H5Dread(dataset, dst_tid, H5S_ALL, H5S_ALL, dxpl, rbuf) < 0)
FAIL_STACK_ERROR;
if (compare_data(orig, rbuf, true) < 0)
TEST_ERROR;
if (H5Dclose(dataset) < 0)
FAIL_STACK_ERROR;
/* Finishing test and release resources */
if (H5Sclose(space) < 0)
FAIL_STACK_ERROR;
if (H5Pclose(dcpl) < 0)
FAIL_STACK_ERROR;
if (H5Pclose(dxpl) < 0)
FAIL_STACK_ERROR;
if (H5Tclose(src_tid) < 0)
FAIL_STACK_ERROR;
if (H5Tclose(dst_tid) < 0)
FAIL_STACK_ERROR;
if (H5Tclose(rew_tid) < 0)
FAIL_STACK_ERROR;
if (H5Fclose(file) < 0)
FAIL_STACK_ERROR;
free(orig);
free(rbuf);
free(rew_buf);
PASSED();
return 0;
error:
free(orig);
free(rbuf);
free(rew_buf);
puts("*** DATASET TESTS FAILED ***");
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_hdf5_dst_subset
*
* Purpose: Test the optimization of compound data writing, rewriting,
* and reading when the destination type is a subset of the
* source type. For example:
* struct source { struct destination {
* TYPE1 A; --> TYPE1 A;
* TYPE2 B; --> TYPE2 B;
* TYPE3 C; --> TYPE3 C;
* TYPE4 D; }
* TYPE5 E;
* };
* This optimization is for the Chicago company. This test
* is the opposite of test_hdf5_src_subset.
*
* Return: Success: 0
*
* Failure: 1
*
*-------------------------------------------------------------------------
*/
static unsigned
test_hdf5_dst_subset(char *filename, hid_t fapl)
{
hid_t file;
hid_t rew_tid, src_tid, dst_tid;
hid_t dataset;
hid_t space;
hid_t dcpl, dxpl;
hsize_t dims[2] = {NX, NY};
hsize_t chunk_dims[2] = {NX / 10, NY / 10};
unsigned char *orig = NULL, *rew_buf = NULL, *rbuf = NULL;
/* Create the file for this test */
if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0)
goto error;
/* Build hdf5 datatypes */
if ((src_tid = create_stype2()) < 0)
goto error;
if ((dst_tid = create_stype1()) < 0)
goto error;
if ((rew_tid = create_stype4()) < 0)
goto error;
/* Create the data space */
if ((space = H5Screate_simple(2, dims, NULL)) < 0)
goto error;
/* Allocate space and initialize data */
orig = (unsigned char *)malloc(NX * NY * sizeof(stype2));
initialize_stype2(orig, (size_t)NX * NY);
rbuf = (unsigned char *)malloc(NX * NY * sizeof(stype1));
rew_buf = (unsigned char *)malloc(NX * NY * sizeof(stype4));
initialize_stype4(rew_buf, (size_t)NX * NY);
/* Create dataset creation property list */
if ((dcpl = H5Pcreate(H5P_DATASET_CREATE)) < 0)
goto error;
/*
*######################################################################
* STEP 1. Write data to contiguous and chunked datasets.
*/
TESTING("writing data to contiguous and chunked datasets");
/* Create contiguous data set */
if ((dataset = H5Dcreate2(file, DSET_NAME[2], src_tid, space, H5P_DEFAULT, dcpl, H5P_DEFAULT)) < 0)
goto error;
/* Write the data to the dataset */
if (H5Dwrite(dataset, src_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, orig) < 0)
goto error;
if (H5Dclose(dataset) < 0)
goto error;
/* Set chunking */
if (H5Pset_chunk(dcpl, 2, chunk_dims) < 0)
goto error;
/* Create chunked data set */
if ((dataset = H5Dcreate2(file, DSET_NAME[3], src_tid, space, H5P_DEFAULT, dcpl, H5P_DEFAULT)) < 0)
goto error;
/* Write the data to the dataset */
if (H5Dwrite(dataset, src_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, orig) < 0)
goto error;
if (H5Dclose(dataset) < 0)
goto error;
PASSED();
/*
*######################################################################
* STEP 2. Rewrite the data with a subset of original data type.
*/
TESTING("rewriting data with a subset of original data type");
/* Create xfer properties to preserve initialized data */
if ((dxpl = H5Pcreate(H5P_DATASET_XFER)) < 0)
goto error;
if (H5Pset_preserve(dxpl, true) < 0)
goto error;
/* Rewrite contiguous data set */
if ((dataset = H5Dopen2(file, DSET_NAME[2], H5P_DEFAULT)) < 0)
goto error;
/* Write the data to the dataset */
if (H5Dwrite(dataset, rew_tid, H5S_ALL, H5S_ALL, dxpl, rew_buf) < 0)
goto error;
if (H5Dclose(dataset) < 0)
goto error;
/* Rewrite chunked data set */
if ((dataset = H5Dopen2(file, DSET_NAME[3], H5P_DEFAULT)) < 0)
goto error;
/* Write the data to the dataset */
if (H5Dwrite(dataset, rew_tid, H5S_ALL, H5S_ALL, dxpl, rew_buf) < 0)
goto error;
if (H5Dclose(dataset) < 0)
goto error;
PASSED();
/*
*######################################################################
* STEP 3. Read the data into a subset of the original compound type.
*/
TESTING("reading data with a subset of original data type");
/* Check contiguous data set */
if ((dataset = H5Dopen2(file, DSET_NAME[2], H5P_DEFAULT)) < 0)
goto error;
if (H5Dread(dataset, dst_tid, H5S_ALL, H5S_ALL, dxpl, rbuf) < 0)
goto error;
if (compare_data(orig, rbuf, false) < 0)
goto error;
if (H5Dclose(dataset) < 0)
goto error;
/* Check chunked data set */
if ((dataset = H5Dopen2(file, DSET_NAME[3], H5P_DEFAULT)) < 0)
goto error;
if (H5Dread(dataset, dst_tid, H5S_ALL, H5S_ALL, dxpl, rbuf) < 0)
goto error;
if (compare_data(orig, rbuf, false) < 0)
goto error;
if (H5Dclose(dataset) < 0)
goto error;
/* Finishing test and release resources */
if (H5Sclose(space) < 0)
goto error;
if (H5Pclose(dcpl) < 0)
goto error;
if (H5Pclose(dxpl) < 0)
goto error;
if (H5Tclose(src_tid) < 0)
goto error;
if (H5Tclose(dst_tid) < 0)
goto error;
if (H5Tclose(rew_tid) < 0)
goto error;
if (H5Fclose(file) < 0)
goto error;
free(orig);
free(rbuf);
free(rew_buf);
PASSED();
return 0;
error:
puts("*** DATASET TESTS FAILED ***");
return 1;
}
/* Error macro that outputs the state of the randomly generated variables so the
* failure can be reproduced */
#define PACK_OOO_ERROR \
{ \
int _i; \
H5_FAILED(); \
AT(); \
printf(" Insertion order ="); \
for (_i = 0; _i < PACK_NMEMBS; _i++) \
printf(" %d", order[_i]); \
printf("\n Inner compound order = %d, location = %d\n", sub_cmpd_order, order[sub_cmpd_order]); \
fflush(stdout); \
goto error; \
}
/*-------------------------------------------------------------------------
* Function: test_pack_ooo
*
* Purpose: Test inserting fields into a compound out of offset order.
* Verifies that the compound is correctly marked as packed
* or non-packed.
*
* Return: Success: 0
*
* Failure: 1
*
*-------------------------------------------------------------------------
*/
static unsigned
test_pack_ooo(void)
{
hid_t cmpd, sub_cmpd; /* Datatype IDs */
H5T_t *dt; /* Datatype pointer */
unsigned order[PACK_NMEMBS]; /* Order of insertion */
unsigned free_order[PACK_NMEMBS]; /* Index of remaining free slots in order */
unsigned num_free; /* Number of free slots in order */
unsigned sub_cmpd_order; /* Order to insert the inner compound */
char name[16]; /* Member name */
unsigned extra_space; /* Whether to add extra space to the end of
* the compound */
unsigned i, j; /* Indices */
srand((unsigned)time(NULL));
/* Initialize "free_order" array to indicate that all slots in order are
* free */
for (i = 0; i < PACK_NMEMBS; i++)
free_order[i] = i;
/* Create "order" array */
for (i = 0; i < PACK_NMEMBS; i++) {
/* Generate index into free_order array */
num_free = PACK_NMEMBS - i;
j = (unsigned)rand() % num_free;
/* Update order array at the randomly generated (but guaranteed to be
* free) location */
order[free_order[j]] = i;
/* Reshape free_order to remove j (which is no longer free) */
if (j < (num_free - 1))
memmove(&free_order[j], &free_order[j + 1], (num_free - j - 1) * sizeof(free_order[0]));
} /* end for */
/* Generate order to insert inner compound type */
sub_cmpd_order = (unsigned)rand() % PACK_NMEMBS;
for (extra_space = 0; extra_space < 2; extra_space++) {
if (extra_space)
puts("With extra space at the end of compound...");
else
puts("Without extra space at the end of compound...");
TESTING("random member insertion with empty compound subtype");
/* Create inner compound type. It will be empty for the first run */
if ((sub_cmpd = H5Tcreate(H5T_COMPOUND, (size_t)4)) < 0)
PACK_OOO_ERROR
/* Create main compound type, with extra space at the end */
if ((cmpd = H5Tcreate(H5T_COMPOUND, (size_t)((4 * PACK_NMEMBS) + extra_space))) < 0)
PACK_OOO_ERROR
/* Insert the compound members in the random order previously generated */
for (i = 0; i < PACK_NMEMBS; i++) {
snprintf(name, sizeof(name), "%05d", i);
if (i == sub_cmpd_order) {
if (H5Tinsert(cmpd, name, (size_t)(4 * order[i]), sub_cmpd) < 0)
PACK_OOO_ERROR
}
else if (H5Tinsert(cmpd, name, (size_t)(4 * order[i]), H5T_STD_I32BE) < 0)
PACK_OOO_ERROR
} /* end for */
/* Verify that the compound is not packed */
if (NULL == (dt = (H5T_t *)H5I_object_verify(cmpd, H5I_DATATYPE)))
PACK_OOO_ERROR
if (dt->shared->u.compnd.packed)
PACK_OOO_ERROR
/* Close the main compound */
if (H5Tclose(cmpd) < 0)
PACK_OOO_ERROR
PASSED();
TESTING("random member insertion with full compound subtype");
/* Complete the inner compound type */
if (H5Tinsert(sub_cmpd, "int", (size_t)0, H5T_STD_I32LE) < 0)
PACK_OOO_ERROR
/* Recreate main compound type */
if ((cmpd = H5Tcreate(H5T_COMPOUND, (size_t)((4 * PACK_NMEMBS) + extra_space))) < 0)
PACK_OOO_ERROR
/* Insert the compound members in the random order previously generated */
for (i = 0; i < PACK_NMEMBS; i++) {
snprintf(name, sizeof(name), "%05d", i);
if (i == sub_cmpd_order) {
if (H5Tinsert(cmpd, name, (size_t)(4 * order[i]), sub_cmpd) < 0)
PACK_OOO_ERROR
}
else if (H5Tinsert(cmpd, name, (size_t)(4 * order[i]), H5T_STD_I32BE) < 0)
PACK_OOO_ERROR
} /* end for */
/* Verify that the compound is not packed */
if (NULL == (dt = (H5T_t *)H5I_object_verify(cmpd, H5I_DATATYPE)))
PACK_OOO_ERROR
if (dt->shared->u.compnd.packed != !extra_space)
PACK_OOO_ERROR
/* Close */
if (H5Tclose(cmpd) < 0)
PACK_OOO_ERROR
if (H5Tclose(sub_cmpd) < 0)
PACK_OOO_ERROR
PASSED();
TESTING("reverse member insertion with empty compound subtype");
/* Create inner compound type. It will be empty for the first run */
if ((sub_cmpd = H5Tcreate(H5T_COMPOUND, (size_t)4)) < 0)
PACK_OOO_ERROR
/* Create main compound type, with extra space at the end */
if ((cmpd = H5Tcreate(H5T_COMPOUND, (size_t)((4 * PACK_NMEMBS) + extra_space))) < 0)
PACK_OOO_ERROR
/* Insert the compound members in reverse order, with compound last */
for (i = 0; i < PACK_NMEMBS; i++) {
snprintf(name, sizeof(name), "%05d", i);
if (i == PACK_NMEMBS - 1) {
if (H5Tinsert(cmpd, name, (size_t)(4 * (PACK_NMEMBS - i - 1)), sub_cmpd) < 0)
PACK_OOO_ERROR
}
else if (H5Tinsert(cmpd, name, (size_t)(4 * (PACK_NMEMBS - i - 1)), H5T_STD_I32BE) < 0)
PACK_OOO_ERROR
} /* end for */
/* Verify that the compound is not packed */
if (NULL == (dt = (H5T_t *)H5I_object_verify(cmpd, H5I_DATATYPE)))
PACK_OOO_ERROR
if (dt->shared->u.compnd.packed)
PACK_OOO_ERROR
/* Close the main compound */
if (H5Tclose(cmpd) < 0)
PACK_OOO_ERROR
PASSED();
TESTING("reverse member insertion with full compound subtype");
/* Complete the inner compound type */
if (H5Tinsert(sub_cmpd, "int", (size_t)0, H5T_STD_I32LE) < 0)
PACK_OOO_ERROR
/* Recreate main compound type */
if ((cmpd = H5Tcreate(H5T_COMPOUND, (size_t)((4 * PACK_NMEMBS) + extra_space))) < 0)
PACK_OOO_ERROR
/* Insert the compound members in reverse order, with compound last */
for (i = 0; i < PACK_NMEMBS; i++) {
snprintf(name, sizeof(name), "%05d", i);
if (i == PACK_NMEMBS - 1) {
if (H5Tinsert(cmpd, name, (size_t)(4 * (PACK_NMEMBS - i - 1)), sub_cmpd) < 0)
PACK_OOO_ERROR
}
else if (H5Tinsert(cmpd, name, (size_t)(4 * (PACK_NMEMBS - i - 1)), H5T_STD_I32BE) < 0)
PACK_OOO_ERROR
} /* end for */
/* Verify that the compound is packed */
if (NULL == (dt = (H5T_t *)H5I_object_verify(cmpd, H5I_DATATYPE)))
PACK_OOO_ERROR
if (dt->shared->u.compnd.packed != !extra_space)
PACK_OOO_ERROR
/* Close */
if (H5Tclose(cmpd) < 0)
PACK_OOO_ERROR
if (H5Tclose(sub_cmpd) < 0)
PACK_OOO_ERROR
PASSED();
TESTING("forward member insertion with empty compound subtype");
/* Create inner compound type. It will be empty for the first run */
if ((sub_cmpd = H5Tcreate(H5T_COMPOUND, (size_t)4)) < 0)
PACK_OOO_ERROR
/* Create main compound type, with extra space at the end */
if ((cmpd = H5Tcreate(H5T_COMPOUND, (size_t)((4 * PACK_NMEMBS) + extra_space))) < 0)
PACK_OOO_ERROR
/* Insert the compound members in forward order, with compound first */
for (i = 0; i < PACK_NMEMBS; i++) {
snprintf(name, sizeof(name), "%05d", i);
if (i == 0) {
if (H5Tinsert(cmpd, name, (size_t)(4 * i), sub_cmpd) < 0)
PACK_OOO_ERROR
}
else if (H5Tinsert(cmpd, name, (size_t)(4 * i), H5T_STD_I32BE) < 0)
PACK_OOO_ERROR
} /* end for */
/* Verify that the compound is not packed */
if (NULL == (dt = (H5T_t *)H5I_object_verify(cmpd, H5I_DATATYPE)))
PACK_OOO_ERROR
if (dt->shared->u.compnd.packed)
PACK_OOO_ERROR
/* Close the main compound */
if (H5Tclose(cmpd) < 0)
PACK_OOO_ERROR
PASSED();
TESTING("forward member insertion with full compound subtype");
/* Complete the inner compound type */
if (H5Tinsert(sub_cmpd, "int", (size_t)0, H5T_STD_I32LE) < 0)
PACK_OOO_ERROR
/* Recreate main compound type */
if ((cmpd = H5Tcreate(H5T_COMPOUND, (size_t)((4 * PACK_NMEMBS) + extra_space))) < 0)
PACK_OOO_ERROR
/* Insert the compound members in forward order */
for (i = 0; i < PACK_NMEMBS; i++) {
snprintf(name, sizeof(name), "%05d", i);
if (i == 0) {
if (H5Tinsert(cmpd, name, (size_t)(4 * i), sub_cmpd) < 0)
PACK_OOO_ERROR
}
else if (H5Tinsert(cmpd, name, (size_t)(4 * i), H5T_STD_I32BE) < 0)
PACK_OOO_ERROR
} /* end for */
/* Verify that the compound is packed */
if (NULL == (dt = (H5T_t *)H5I_object_verify(cmpd, H5I_DATATYPE)))
PACK_OOO_ERROR
if (dt->shared->u.compnd.packed != !extra_space)
PACK_OOO_ERROR
/* Close */
if (H5Tclose(cmpd) < 0)
PACK_OOO_ERROR
if (H5Tclose(sub_cmpd) < 0)
PACK_OOO_ERROR
PASSED();
} /* end for */
return 0;
error:
puts("*** DATASET TESTS FAILED ***");
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_ooo_order
*
* Purpose: Test inserting fields into a compound out of offset order.
* Verifies that the order of compound members is the same as
* the order in which they were inserted. While this is
* explicitly not guaranteed by the documentation, the H5TB
* API currently makes this assumption.
*
* Return: Success: 0
*
* Failure: 1
*
*-------------------------------------------------------------------------
*/
static unsigned
test_ooo_order(char *filename, hid_t fapl_id)
{
hid_t file = H5I_INVALID_HID; /* File ID */
hid_t dtype = H5I_INVALID_HID; /* Datatype IDs */
hid_t dtype_tmp = H5I_INVALID_HID; /* Temp Datatype ID */
H5T_t *dt = NULL; /* Datatype pointer */
TESTING("that compound member insertion order is preserved");
/* Create the file */
if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) < 0)
TEST_ERROR;
/* Create the compound */
if ((dtype = H5Tcreate(H5T_COMPOUND, (size_t)20)) < 0)
TEST_ERROR;
if (H5Tinsert(dtype, "A", (size_t)8, H5T_STD_I32LE) < 0)
TEST_ERROR;
if (H5Tinsert(dtype, "B", (size_t)12, H5T_STD_I32LE) < 0)
TEST_ERROR;
if (H5Tinsert(dtype, "C", (size_t)0, H5T_STD_I32LE) < 0)
TEST_ERROR;
if (H5Tinsert(dtype, "D", (size_t)16, H5T_STD_I32LE) < 0)
TEST_ERROR;
/* Verify that the compound is not packed */
if (NULL == (dt = (H5T_t *)H5I_object_verify(dtype, H5I_DATATYPE)))
TEST_ERROR;
if (dt->shared->u.compnd.packed)
TEST_ERROR;
/* Verify that the order is the same as the insertion order */
if (H5Tget_member_offset(dtype, 0) != 8)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 1) != 12)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 2) != 0)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 3) != 16)
TEST_ERROR;
/* Commit the datatype */
if (H5Tcommit2(file, "dtype", dtype, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT) < 0)
TEST_ERROR;
/* Close and reopen the file */
if (H5Tclose(dtype))
TEST_ERROR;
if (H5Fclose(file))
TEST_ERROR;
if ((file = H5Fopen(filename, H5F_ACC_RDWR, fapl_id)) < 0)
TEST_ERROR;
/* Open the type */
if ((dtype_tmp = H5Topen2(file, "dtype", H5P_DEFAULT)) < 0)
TEST_ERROR;
/* Verify that the compound is not packed */
if (NULL == (dt = (H5T_t *)H5I_object_verify(dtype_tmp, H5I_DATATYPE)))
TEST_ERROR;
if (dt->shared->u.compnd.packed)
TEST_ERROR;
/* Verify that the order is the same as the insertion order */
if (H5Tget_member_offset(dtype_tmp, 0) != 8)
TEST_ERROR;
if (H5Tget_member_offset(dtype_tmp, 1) != 12)
TEST_ERROR;
if (H5Tget_member_offset(dtype_tmp, 2) != 0)
TEST_ERROR;
if (H5Tget_member_offset(dtype_tmp, 3) != 16)
TEST_ERROR;
/* Copy the datatype */
if ((dtype = H5Tcopy(dtype_tmp)) < 0)
TEST_ERROR;
/* Verify that the compound is not packed */
if (NULL == (dt = (H5T_t *)H5I_object_verify(dtype, H5I_DATATYPE)))
TEST_ERROR;
if (dt->shared->u.compnd.packed)
TEST_ERROR;
/* Verify that the order is the same as the insertion order */
if (H5Tget_member_offset(dtype, 0) != 8)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 1) != 12)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 2) != 0)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 3) != 16)
TEST_ERROR;
/* Insert the last member */
if (H5Tinsert(dtype, "E", (size_t)4, H5T_STD_I32LE) < 0)
TEST_ERROR;
/* Verify that the compound is packed */
if (NULL == (dt = (H5T_t *)H5I_object_verify(dtype, H5I_DATATYPE)))
TEST_ERROR;
if (!dt->shared->u.compnd.packed)
TEST_ERROR;
/* Verify that the order is the same as the insertion order */
if (H5Tget_member_offset(dtype, 0) != 8)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 1) != 12)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 2) != 0)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 3) != 16)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 4) != 4)
TEST_ERROR;
/* Commit the modified datatype */
if (H5Tcommit2(file, "dtype2", dtype, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT) < 0)
TEST_ERROR;
/* Close and reopen the file */
if (H5Tclose(dtype_tmp))
TEST_ERROR;
if (H5Tclose(dtype))
TEST_ERROR;
if (H5Fclose(file))
TEST_ERROR;
if ((file = H5Fopen(filename, H5F_ACC_RDONLY, fapl_id)) < 0)
TEST_ERROR;
/* Open the type, and verify status */
if ((dtype_tmp = H5Topen2(file, "dtype2", H5P_DEFAULT)) < 0)
TEST_ERROR;
if (NULL == (dt = (H5T_t *)H5I_object_verify(dtype_tmp, H5I_DATATYPE)))
TEST_ERROR;
if (!dt->shared->u.compnd.packed)
TEST_ERROR;
if (H5Tget_member_offset(dtype_tmp, 0) != 8)
TEST_ERROR;
if (H5Tget_member_offset(dtype_tmp, 1) != 12)
TEST_ERROR;
if (H5Tget_member_offset(dtype_tmp, 2) != 0)
TEST_ERROR;
if (H5Tget_member_offset(dtype_tmp, 3) != 16)
TEST_ERROR;
if (H5Tget_member_offset(dtype_tmp, 4) != 4)
TEST_ERROR;
/* Copy the datatype, and verify status */
if ((dtype = H5Tcopy(dtype_tmp)) < 0)
TEST_ERROR;
if (NULL == (dt = (H5T_t *)H5I_object_verify(dtype, H5I_DATATYPE)))
TEST_ERROR;
if (!dt->shared->u.compnd.packed)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 0) != 8)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 1) != 12)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 2) != 0)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 3) != 16)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 4) != 4)
TEST_ERROR;
/* Expand the type, and verify that it became unpacked */
if (H5Tset_size(dtype, (size_t)21) < 0)
TEST_ERROR;
if (NULL == (dt = (H5T_t *)H5I_object_verify(dtype, H5I_DATATYPE)))
TEST_ERROR;
if (dt->shared->u.compnd.packed)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 0) != 8)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 1) != 12)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 2) != 0)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 3) != 16)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 4) != 4)
TEST_ERROR;
/* Shrink the type, and verify that it became packed */
if (H5Tset_size(dtype, (size_t)20) < 0)
TEST_ERROR;
if (NULL == (dt = (H5T_t *)H5I_object_verify(dtype, H5I_DATATYPE)))
TEST_ERROR;
if (!dt->shared->u.compnd.packed)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 0) != 8)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 1) != 12)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 2) != 0)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 3) != 16)
TEST_ERROR;
if (H5Tget_member_offset(dtype, 4) != 4)
TEST_ERROR;
/* Close */
if (H5Tclose(dtype_tmp))
TEST_ERROR;
if (H5Tclose(dtype))
TEST_ERROR;
if (H5Fclose(file))
TEST_ERROR;
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Tclose(dtype_tmp);
H5Tclose(dtype);
H5Fclose(file);
}
H5E_END_TRY
puts("*** DATASET TESTS FAILED ***");
return 1;
} /* test_ooo_order */
/*-------------------------------------------------------------------------
* Function: main
*
* Purpose: Test different cases of I/O for compound data and the
* compound optimization for the Chicago company.
*
* Return: Success: 0
*
* Failure: 1
*
*-------------------------------------------------------------------------
*/
int
main(int argc, char *argv[])
{
hid_t fapl_id;
char fname[256];
unsigned nerrors = 0;
h5_reset();
/* Turn off optimized compound converter? */
if (argc > 1) {
if (argc > 2 || strcmp("--noopt", argv[1]) != 0) {
fprintf(stderr, "usage: %s [--noopt]\n", argv[0]);
exit(EXIT_FAILURE);
}
H5Tunregister(H5T_PERS_DONTCARE, NULL, (hid_t)-1, (hid_t)-1,
(H5T_conv_t)((void (*)(void))H5T__conv_struct_opt));
}
printf("Testing compound dataset for selection I/O cases----\n");
nerrors += test_compounds_selection_io();
/* Create the file */
fapl_id = h5_fileaccess();
h5_fixname(FILENAME[0], fapl_id, fname, sizeof(fname));
puts("Testing compound dataset:");
nerrors += test_compound(fname, fapl_id);
puts("Testing the optimization of when the source type is a subset of the dest:");
h5_fixname(FILENAME[1], fapl_id, fname, sizeof(fname));
nerrors += test_hdf5_src_subset(fname, fapl_id);
puts("Testing the optimization of when the dest type is a subset of the source:");
h5_fixname(FILENAME[2], fapl_id, fname, sizeof(fname));
nerrors += test_hdf5_dst_subset(fname, fapl_id);
puts("Testing that compound types can be packed out of order:");
nerrors += test_pack_ooo();
puts("Testing compound member ordering:");
nerrors += test_ooo_order(fname, fapl_id);
/* Verify symbol table messages are cached */
nerrors += (h5_verify_cached_stabs(FILENAME, fapl_id) < 0 ? 1 : 0);
if (nerrors) {
printf("***** %u FAILURE%s! *****\n", nerrors, 1 == nerrors ? "" : "S");
exit(EXIT_FAILURE);
}
h5_cleanup(FILENAME, fapl_id);
puts("All compound dataset tests passed.");
return 0;
}