hdf5/test/cache_common.c

6477 lines
192 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the files COPYING and Copyright.html. COPYING can be found at the root *
* of the source code distribution tree; Copyright.html can be found at the *
* root level of an installed copy of the electronic HDF5 document set and *
* is linked from the top-level documents page. It can also be found at *
* http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have *
* access to either file, you may request a copy from help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* Programmer: John Mainzer
* 10/27/05
*
* This file contains common code for tests of the cache
* implemented in H5C.c
*/
#include "H5MFprivate.h"
#include "H5MMprivate.h"
#include "cache_common.h"
/* global variable declarations: */
const char *FILENAME[] = {
"cache_test",
"cache_api_test",
NULL
};
hid_t saved_fapl_id = H5P_DEFAULT; /* store the fapl id here between
* cache setup and takedown. Note
* that if saved_fapl_id == H5P_DEFAULT,
* we assume that there is no fapl to
* close.
*/
hid_t saved_fid = -1; /* store the file id here between cache setup
* and takedown.
*/
H5C_t * saved_cache = NULL; /* store the pointer to the instance of
* of H5C_t created by H5Fcreate()
* here between test cache setup and
* shutdown.
*/
haddr_t saved_actual_base_addr = HADDR_UNDEF; /* Store the address of the
space allocated for cache items in the file between
cache setup & takedown */
hbool_t write_permitted = TRUE;
hbool_t pass = TRUE; /* set to false on error */
hbool_t try_core_file_driver = FALSE;
hbool_t core_file_driver_failed = FALSE;
const char *failure_mssg = NULL;
static test_entry_t *pico_entries = NULL, *orig_pico_entries = NULL;
static test_entry_t *nano_entries = NULL, *orig_nano_entries = NULL;
static test_entry_t *micro_entries = NULL, *orig_micro_entries = NULL;
static test_entry_t *tiny_entries = NULL, *orig_tiny_entries = NULL;
static test_entry_t *small_entries = NULL, *orig_small_entries = NULL;
static test_entry_t *medium_entries = NULL, *orig_medium_entries = NULL;
static test_entry_t *large_entries = NULL, *orig_large_entries = NULL;
static test_entry_t *huge_entries = NULL, *orig_huge_entries = NULL;
static test_entry_t *monster_entries = NULL, *orig_monster_entries = NULL;
static test_entry_t *variable_entries = NULL, *orig_variable_entries = NULL;
static test_entry_t *notify_entries = NULL, *orig_notify_entries = NULL;
hbool_t orig_entry_arrays_init = FALSE;
static herr_t pico_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t nano_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t micro_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t tiny_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t small_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t medium_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t large_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t huge_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t monster_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t variable_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t notify_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t variable_get_final_load_size(const void *image, size_t image_len,
void *udata, size_t *actual_len);
static htri_t variable_verify_chksum(const void *image_ptr, size_t len, void *udata_ptr);
static void *pico_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
hbool_t *dirty_ptr);
static void *nano_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
hbool_t *dirty_ptr);
static void *micro_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
hbool_t *dirty_ptr);
static void *tiny_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
hbool_t *dirty_ptr);
static void *small_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
hbool_t *dirty_ptr);
static void *medium_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
hbool_t *dirty_ptr);
static void *large_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
hbool_t *dirty_ptr);
static void *huge_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
hbool_t *dirty_ptr);
static void *monster_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
hbool_t *dirty_ptr);
static void *variable_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
hbool_t *dirty_ptr);
static void *notify_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
hbool_t *dirty_ptr);
static herr_t pico_image_len(const void *thing, size_t *image_len_ptr);
static herr_t nano_image_len(const void *thing, size_t *image_len_ptr);
static herr_t micro_image_len(const void *thing, size_t *image_len_ptr);
static herr_t tiny_image_len(const void *thing, size_t *image_len_ptr);
static herr_t small_image_len(const void *thing, size_t *image_len_ptr);
static herr_t medium_image_len(const void *thing, size_t *image_len_ptr);
static herr_t large_image_len(const void *thing, size_t *image_len_ptr);
static herr_t huge_image_len(const void *thing, size_t *image_len_ptr);
static herr_t monster_image_len(const void *thing, size_t *image_len_ptr);
static herr_t variable_image_len(const void *thing, size_t *image_len_ptr);
static herr_t notify_image_len(const void *thing, size_t *image_len_ptr);
static herr_t pico_pre_serialize(H5F_t *f, hid_t dxpl_id, void *thing,
haddr_t addr, size_t len, haddr_t *new_addr_ptr,
size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t nano_pre_serialize(H5F_t *f, hid_t dxpl_id, void *thing,
haddr_t addr, size_t len, haddr_t *new_addr_ptr,
size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t micro_pre_serialize(H5F_t *f, hid_t dxpl_id, void *thing,
haddr_t addr, size_t len, haddr_t *new_addr_ptr,
size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t tiny_pre_serialize(H5F_t *f, hid_t dxpl_id, void *thing,
haddr_t addr, size_t len, haddr_t *new_addr_ptr,
size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t small_pre_serialize(H5F_t *f, hid_t dxpl_id, void *thing,
haddr_t addr, size_t len, haddr_t *new_addr_ptr,
size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t medium_pre_serialize(H5F_t *f, hid_t dxpl_id, void *thing,
haddr_t addr, size_t len, haddr_t *new_addr_ptr,
size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t large_pre_serialize(H5F_t *f, hid_t dxpl_id, void *thing,
haddr_t addr, size_t len, haddr_t *new_addr_ptr,
size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t huge_pre_serialize(H5F_t *f, hid_t dxpl_id, void *thing,
haddr_t addr, size_t len, haddr_t *new_addr_ptr,
size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t monster_pre_serialize(H5F_t *f, hid_t dxpl_id, void *thing,
haddr_t addr, size_t len, haddr_t *new_addr_ptr,
size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t variable_pre_serialize(H5F_t *f, hid_t dxpl_id, void *thing,
haddr_t addr, size_t len, haddr_t *new_addr_ptr,
size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t notify_pre_serialize(H5F_t *f, hid_t dxpl_id, void *thing,
haddr_t addr, size_t len, haddr_t *new_addr_ptr,
size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t pico_serialize(const H5F_t *f, void *image_ptr,
size_t len, void *thing);
static herr_t nano_serialize(const H5F_t *f, void *image_ptr,
size_t len, void *thing);
static herr_t micro_serialize(const H5F_t *f, void *image_ptr,
size_t len, void *thing);
static herr_t tiny_serialize(const H5F_t *f, void *image_ptr,
size_t len, void *thing);
static herr_t small_serialize(const H5F_t *f, void *image_ptr,
size_t len, void *thing);
static herr_t medium_serialize(const H5F_t *f, void *image_ptr,
size_t len, void *thing);
static herr_t large_serialize(const H5F_t *f, void *image_ptr,
size_t len, void *thing);
static herr_t huge_serialize(const H5F_t *f, void *image_ptr,
size_t len, void *thing);
static herr_t monster_serialize(const H5F_t *f, void *image_ptr,
size_t len, void *thing);
static herr_t variable_serialize(const H5F_t *f, void *image_ptr,
size_t len, void *thing);
static herr_t notify_serialize(const H5F_t *f, void *image_ptr,
size_t len, void *thing);
static herr_t pico_free_icr(void *thing);
static herr_t nano_free_icr(void *thing);
static herr_t micro_free_icr(void *thing);
static herr_t tiny_free_icr(void *thing);
static herr_t small_free_icr(void *thing);
static herr_t medium_free_icr(void *thing);
static herr_t large_free_icr(void *thing);
static herr_t huge_free_icr(void *thing);
static herr_t monster_free_icr(void *thing);
static herr_t variable_free_icr(void *thing);
static herr_t notify_free_icr(void *thing);
static herr_t notify_notify(H5C_notify_action_t action, void *thing);
static void mark_flush_dep_dirty(test_entry_t * entry_ptr);
static void mark_flush_dep_clean(test_entry_t * entry_ptr);
/* Generic callback routines */
static herr_t get_initial_load_size(void *udata_ptr, size_t *image_len_ptr,
int32_t entry_type);
static herr_t get_final_load_size(const void *image, size_t image_len,
void *udata, size_t *actual_len, int32_t entry_type);
static void *deserialize(const void *image_ptr, size_t len, void *udata_ptr,
hbool_t *dirty_ptr, int32_t entry_type);
static herr_t image_len(const void *thing, size_t *image_len_ptr, int32_t entry_type);
static herr_t pre_serialize(H5F_t *f, hid_t dxpl_id, void *thing,
haddr_t addr, size_t len, haddr_t *new_addr_ptr, size_t *new_len_ptr,
unsigned *flags_ptr);
static herr_t serialize(const H5F_t *f, void *image_ptr, size_t len,
void *thing);
static herr_t notify(H5C_notify_action_t action, void *thing, int32_t
entry_type);
static herr_t free_icr(test_entry_t *entry, int32_t entry_type);
/* Local routines */
static void execute_flush_op(H5F_t *file_ptr, struct test_entry_t *entry_ptr,
struct flush_op *op_ptr, unsigned *flags_ptr);
test_entry_t *entries[NUMBER_OF_ENTRY_TYPES];
test_entry_t *orig_entries[NUMBER_OF_ENTRY_TYPES];
const int32_t max_indices[NUMBER_OF_ENTRY_TYPES] =
{
NUM_PICO_ENTRIES - 1,
NUM_NANO_ENTRIES - 1,
NUM_MICRO_ENTRIES - 1,
NUM_TINY_ENTRIES - 1,
NUM_SMALL_ENTRIES - 1,
NUM_MEDIUM_ENTRIES - 1,
NUM_LARGE_ENTRIES - 1,
NUM_HUGE_ENTRIES - 1,
NUM_MONSTER_ENTRIES - 1,
NUM_VARIABLE_ENTRIES - 1,
NUM_NOTIFY_ENTRIES - 1
};
const size_t entry_sizes[NUMBER_OF_ENTRY_TYPES] =
{
PICO_ENTRY_SIZE,
NANO_ENTRY_SIZE,
MICRO_ENTRY_SIZE,
TINY_ENTRY_SIZE,
SMALL_ENTRY_SIZE,
MEDIUM_ENTRY_SIZE,
LARGE_ENTRY_SIZE,
HUGE_ENTRY_SIZE,
MONSTER_ENTRY_SIZE,
VARIABLE_ENTRY_SIZE,
NOTIFY_ENTRY_SIZE
};
const haddr_t base_addrs[NUMBER_OF_ENTRY_TYPES] =
{
PICO_BASE_ADDR,
NANO_BASE_ADDR,
MICRO_BASE_ADDR,
TINY_BASE_ADDR,
SMALL_BASE_ADDR,
MEDIUM_BASE_ADDR,
LARGE_BASE_ADDR,
HUGE_BASE_ADDR,
MONSTER_BASE_ADDR,
VARIABLE_BASE_ADDR,
NOTIFY_BASE_ADDR
};
const haddr_t alt_base_addrs[NUMBER_OF_ENTRY_TYPES] =
{
PICO_ALT_BASE_ADDR,
NANO_ALT_BASE_ADDR,
MICRO_ALT_BASE_ADDR,
TINY_ALT_BASE_ADDR,
SMALL_ALT_BASE_ADDR,
MEDIUM_ALT_BASE_ADDR,
LARGE_ALT_BASE_ADDR,
HUGE_ALT_BASE_ADDR,
MONSTER_ALT_BASE_ADDR,
VARIABLE_ALT_BASE_ADDR,
NOTIFY_ALT_BASE_ADDR
};
/* Callback classes */
static const H5C_class_t pico_class[1] = {{
PICO_ENTRY_TYPE,
"pico_entry",
H5FD_MEM_DEFAULT,
H5C__CLASS_NO_FLAGS_SET,
pico_get_initial_load_size,
NULL,
NULL,
pico_deserialize,
pico_image_len,
pico_pre_serialize,
pico_serialize,
NULL,
pico_free_icr,
NULL,
}};
static const H5C_class_t nano_class[1] = {{
NANO_ENTRY_TYPE,
"nano_entry",
H5FD_MEM_DEFAULT,
H5C__CLASS_NO_FLAGS_SET,
nano_get_initial_load_size,
NULL,
NULL,
nano_deserialize,
nano_image_len,
nano_pre_serialize,
nano_serialize,
NULL,
nano_free_icr,
NULL,
}};
static const H5C_class_t micro_class[1] = {{
MICRO_ENTRY_TYPE,
"micro_entry",
H5FD_MEM_DEFAULT,
H5C__CLASS_NO_FLAGS_SET,
micro_get_initial_load_size,
NULL,
NULL,
micro_deserialize,
micro_image_len,
micro_pre_serialize,
micro_serialize,
NULL,
micro_free_icr,
NULL,
}};
static const H5C_class_t tiny_class[1] = {{
TINY_ENTRY_TYPE,
"tiny_entry",
H5FD_MEM_DEFAULT,
H5C__CLASS_NO_FLAGS_SET,
tiny_get_initial_load_size,
NULL,
NULL,
tiny_deserialize,
tiny_image_len,
tiny_pre_serialize,
tiny_serialize,
NULL,
tiny_free_icr,
NULL,
}};
static const H5C_class_t small_class[1] = {{
SMALL_ENTRY_TYPE,
"small_entry",
H5FD_MEM_DEFAULT,
H5C__CLASS_NO_FLAGS_SET,
small_get_initial_load_size,
NULL,
NULL,
small_deserialize,
small_image_len,
small_pre_serialize,
small_serialize,
NULL,
small_free_icr,
NULL,
}};
static const H5C_class_t medium_class[1] = {{
MEDIUM_ENTRY_TYPE,
"medium_entry",
H5FD_MEM_DEFAULT,
H5C__CLASS_NO_FLAGS_SET,
medium_get_initial_load_size,
NULL,
NULL,
medium_deserialize,
medium_image_len,
medium_pre_serialize,
medium_serialize,
NULL,
medium_free_icr,
NULL,
}};
static const H5C_class_t large_class[1] = {{
LARGE_ENTRY_TYPE,
"large_entry",
H5FD_MEM_DEFAULT,
H5C__CLASS_NO_FLAGS_SET,
large_get_initial_load_size,
NULL,
NULL,
large_deserialize,
large_image_len,
large_pre_serialize,
large_serialize,
NULL,
large_free_icr,
NULL,
}};
static const H5C_class_t huge_class[1] = {{
HUGE_ENTRY_TYPE,
"huge_entry",
H5FD_MEM_DEFAULT,
H5C__CLASS_NO_FLAGS_SET,
huge_get_initial_load_size,
NULL,
NULL,
huge_deserialize,
huge_image_len,
huge_pre_serialize,
huge_serialize,
NULL,
huge_free_icr,
NULL,
}};
static const H5C_class_t monster_class[1] = {{
MONSTER_ENTRY_TYPE,
"monster_entry",
H5FD_MEM_DEFAULT,
H5C__CLASS_NO_FLAGS_SET,
monster_get_initial_load_size,
NULL,
NULL,
monster_deserialize,
monster_image_len,
monster_pre_serialize,
monster_serialize,
NULL,
monster_free_icr,
NULL,
}};
static const H5C_class_t variable_class[1] = {{
VARIABLE_ENTRY_TYPE,
"variable_entry",
H5FD_MEM_DEFAULT,
H5C__CLASS_SPECULATIVE_LOAD_FLAG,
variable_get_initial_load_size,
variable_get_final_load_size,
variable_verify_chksum,
variable_deserialize,
variable_image_len,
variable_pre_serialize,
variable_serialize,
NULL,
variable_free_icr,
NULL,
}};
static const H5C_class_t notify_class[1] = {{
NOTIFY_ENTRY_TYPE,
"notify_entry",
H5FD_MEM_DEFAULT,
H5C__CLASS_NO_FLAGS_SET,
notify_get_initial_load_size,
NULL,
NULL,
notify_deserialize,
notify_image_len,
notify_pre_serialize,
notify_serialize,
notify_notify,
notify_free_icr,
NULL,
}};
/* callback table declaration */
const H5C_class_t *types[NUMBER_OF_ENTRY_TYPES] = {
pico_class,
nano_class,
micro_class,
tiny_class,
small_class,
medium_class,
large_class,
huge_class,
monster_class,
variable_class,
notify_class
};
/* address translation functions: */
/*-------------------------------------------------------------------------
* Function: addr_to_type_and_index
*
* Purpose: Given an address, compute the type and index of the
* associated entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/10/04
*
*-------------------------------------------------------------------------
*/
void
addr_to_type_and_index(haddr_t addr,
int32_t *type_ptr,
int32_t *index_ptr)
{
int i;
int32_t type;
int32_t idx;
HDassert( type_ptr );
HDassert( index_ptr );
/* we only have a small number of entry types, so just do a
* linear search. If NUMBER_OF_ENTRY_TYPES grows, we may want
* to do a binary search instead.
*/
i = 1;
if ( addr >= PICO_ALT_BASE_ADDR ) {
while ( ( i < NUMBER_OF_ENTRY_TYPES ) &&
( addr >= alt_base_addrs[i] ) )
{
i++;
}
} else {
while ( ( i < NUMBER_OF_ENTRY_TYPES ) &&
( addr >= base_addrs[i] ) )
{
i++;
}
}
type = i - 1;
HDassert( ( type >= 0 ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
if ( addr >= PICO_ALT_BASE_ADDR ) {
idx = (int32_t)((addr - alt_base_addrs[type]) / entry_sizes[type]);
HDassert( ( idx >= 0 ) && ( idx <= max_indices[type] ) );
HDassert( !((entries[type])[idx].at_main_addr) );
HDassert( addr == (entries[type])[idx].alt_addr );
} else {
idx = (int32_t)((addr - base_addrs[type]) / entry_sizes[type]);
HDassert( ( idx >= 0 ) && ( idx <= max_indices[type] ) );
HDassert( (entries[type])[idx].at_main_addr );
HDassert( addr == (entries[type])[idx].main_addr );
}
HDassert( addr == (entries[type])[idx].addr );
*type_ptr = type;
*index_ptr = idx;
return;
} /* addr_to_type_and_index() */
/* Call back functions: */
/*-------------------------------------------------------------------------
*
* Function: check_if_write_permitted
*
* Purpose: Determine if a write is permitted under the current
* circumstances, and set *write_permitted_ptr accordingly.
* As a general rule it is, but when we are running in parallel
* mode with collective I/O, we must ensure that a read cannot
* cause a write.
*
* In the event of failure, the value of *write_permitted_ptr
* is undefined.
*
* Return: Non-negative on success/Negative on failure.
*
* Programmer: John Mainzer, 5/15/04
*
*-------------------------------------------------------------------------
*/
static herr_t
check_write_permitted(const H5F_t H5_ATTR_UNUSED *f, hbool_t *write_permitted_ptr)
{
HDassert( write_permitted_ptr );
*write_permitted_ptr = write_permitted;
return(SUCCEED);
} /* check_write_permitted() */
/*-------------------------------------------------------------------------
* Function: get_initial_load_size & friends
*
* Purpose: Query the image size for loading an entry. The helper
* functions funnel into get_initial_load_size proper.
*
* Return: SUCCEED
*
* Programmer: Quincey Koziol
* 5/18/10
*
*-------------------------------------------------------------------------
*/
static herr_t
get_initial_load_size(void *udata, size_t *image_length, int32_t entry_type)
{
test_entry_t *entry;
test_entry_t *base_addr;
haddr_t addr = *(const haddr_t *)udata;
int32_t type;
int32_t idx;
addr_to_type_and_index(addr, &type, &idx);
base_addr = entries[type];
entry = &(base_addr[idx]);
HDassert(entry->type >= 0);
HDassert(entry->type == type);
HDassert(entry->type == entry_type);
HDassert(entry->type < NUMBER_OF_ENTRY_TYPES);
HDassert(entry->index == idx);
HDassert(entry->index >= 0);
HDassert(entry->index <= max_indices[type]);
HDassert(entry == entry->self);
HDassert(entry->addr == addr);
*image_length = entry->size;
return(SUCCEED);
} /* get_initial_load_size() */
static herr_t
pico_get_initial_load_size(void *udata, size_t *image_length)
{
return get_initial_load_size(udata, image_length, PICO_ENTRY_TYPE);
}
static herr_t
nano_get_initial_load_size(void *udata, size_t *image_length)
{
return get_initial_load_size(udata, image_length, NANO_ENTRY_TYPE);
}
static herr_t
micro_get_initial_load_size(void *udata, size_t *image_length)
{
return get_initial_load_size(udata, image_length, MICRO_ENTRY_TYPE);
}
static herr_t
tiny_get_initial_load_size(void *udata, size_t *image_length)
{
return get_initial_load_size(udata, image_length, TINY_ENTRY_TYPE);
}
static herr_t
small_get_initial_load_size(void *udata, size_t *image_length)
{
return get_initial_load_size(udata, image_length, SMALL_ENTRY_TYPE);
}
static herr_t
medium_get_initial_load_size(void *udata, size_t *image_length)
{
return get_initial_load_size(udata, image_length, MEDIUM_ENTRY_TYPE);
}
static herr_t
large_get_initial_load_size(void *udata, size_t *image_length)
{
return get_initial_load_size(udata, image_length, LARGE_ENTRY_TYPE);
}
static herr_t
huge_get_initial_load_size(void *udata, size_t *image_length)
{
return get_initial_load_size(udata, image_length, HUGE_ENTRY_TYPE);
}
static herr_t
monster_get_initial_load_size(void *udata, size_t *image_length)
{
return get_initial_load_size(udata, image_length, MONSTER_ENTRY_TYPE);
}
static herr_t
variable_get_initial_load_size(void *udata, size_t *image_length)
{
return get_initial_load_size(udata, image_length, VARIABLE_ENTRY_TYPE);
}
static herr_t
notify_get_initial_load_size(void *udata, size_t *image_length)
{
return get_initial_load_size(udata, image_length, NOTIFY_ENTRY_TYPE);
}
/*-------------------------------------------------------------------------
* Function: get_final_load_size & friends
*
* Purpose: Query the final image size for loading an entry. The helper
* functions funnel into get_final_load_size proper.
*
* Return: SUCCEED
*
* Programmer: Quincey Koziol
* 11/18/16
*
*-------------------------------------------------------------------------
*/
static herr_t
get_final_load_size(const void H5_ATTR_UNUSED *image, size_t H5_ATTR_UNUSED image_len,
void *udata, size_t *actual_len, int32_t entry_type)
{
test_entry_t *entry;
test_entry_t *base_addr;
haddr_t addr = *(const haddr_t *)udata;
int32_t type;
int32_t idx;
addr_to_type_and_index(addr, &type, &idx);
base_addr = entries[type];
entry = &(base_addr[idx]);
HDassert(entry->type >= 0);
HDassert(entry->type == type);
HDassert(entry->type == entry_type);
HDassert(entry->type < NUMBER_OF_ENTRY_TYPES);
HDassert(entry->index == idx);
HDassert(entry->index >= 0);
HDassert(entry->index <= max_indices[type]);
HDassert(entry == entry->self);
HDassert(entry->addr == addr);
HDassert(type == VARIABLE_ENTRY_TYPE);
/* Simulate SPECULATIVE read with a specified actual_len */
if(entry->actual_len) {
*actual_len = entry->actual_len;
entry->size = entry->actual_len;
} /* end if */
else
*actual_len = entry->size;
return(SUCCEED);
} /* get_final_load_size() */
static herr_t
variable_get_final_load_size(const void *image, size_t image_len,
void *udata, size_t *actual_len)
{
return get_final_load_size(image, image_len, udata, actual_len, VARIABLE_ENTRY_TYPE);
}
/*-------------------------------------------------------------------------
* Function: verify_chksum & friends
* (only done for VARIABLE_ENTRY_TYPE which has a speculative read)
*
* Purpose: Simulate checksum verification:
* --check is ok only after 'max_verify_ct' is reached
* --otherwise check is not ok
*
* Return: TRUE: checksum is ok
* FALSE: checksum is not ok
*
* Programmer:
*
*-------------------------------------------------------------------------
*/
static htri_t
verify_chksum(const void H5_ATTR_UNUSED *image, size_t H5_ATTR_UNUSED len, void *udata, int32_t entry_type)
{
test_entry_t *entry;
test_entry_t *base_addr;
haddr_t addr = *(const haddr_t *)udata;
int32_t type;
int32_t idx;
addr_to_type_and_index(addr, &type, &idx);
base_addr = entries[type];
entry = &(base_addr[idx]);
HDassert(entry->type >= 0);
HDassert(entry->type == type);
HDassert(entry->type == entry_type);
HDassert(entry->type < NUMBER_OF_ENTRY_TYPES);
HDassert(type == VARIABLE_ENTRY_TYPE);
HDassert(entry->index == idx);
HDassert(entry->index >= 0);
HDassert(entry->index <= max_indices[type]);
HDassert(entry == entry->self);
HDassert(entry->addr == addr);
if(++entry->verify_ct >= entry->max_verify_ct)
return(TRUE);
else
return(FALSE);
} /* verify_chksum() */
static htri_t
variable_verify_chksum(const void *image, size_t len, void *udata)
{
return verify_chksum(image, len, udata, VARIABLE_ENTRY_TYPE);
}
/*-------------------------------------------------------------------------
* Function: deserialize & friends
*
* Purpose: deserialize the entry. The helper functions verify that the
* correct version of deserialize is being called, and then call
* deserialize proper.
*
* Return: void * (pointer to the in core representation of the entry)
*
* Programmer: John Mainzer
* 9/20/07
*
*-------------------------------------------------------------------------
*/
static void *
deserialize(const void *image, size_t len, void *udata, hbool_t *dirty,
int32_t entry_type)
{
test_entry_t *entry;
test_entry_t *base_addr;
haddr_t addr = *(haddr_t *)udata;
int32_t type;
int32_t idx;
addr_to_type_and_index(addr, &type, &idx);
base_addr = entries[type];
entry = &(base_addr[idx]);
HDassert(entry->type >= 0);
HDassert(entry->type == type);
HDassert(entry->type == entry_type);
HDassert(entry->type < NUMBER_OF_ENTRY_TYPES);
HDassert(entry->index == idx);
HDassert(entry->index >= 0);
HDassert(entry->index <= max_indices[type]);
HDassert(entry == entry->self);
HDassert(entry->addr == addr);
HDassert(entry->size == len);
HDassert((entry->type == VARIABLE_ENTRY_TYPE) || (entry->size == entry_sizes[type]));
HDassert(dirty != NULL);
HDassert( entry->flush_dep_npar == 0 );
HDassert( entry->flush_dep_nchd == 0 );
/* for now *dirty will always be FALSE */
*dirty = FALSE;
/* verify that the image contains the expected data. */
HDassert(image != NULL);
if((entry->at_main_addr && entry->written_to_main_addr) ||
(!entry->at_main_addr && entry->written_to_alt_addr)) {
if((type == PICO_ENTRY_TYPE) || (type == VARIABLE_ENTRY_TYPE) ||
(type == NOTIFY_ENTRY_TYPE)) {
if((*((const char *)image)) != (char)(idx & 0xFF)) {
HDfprintf(stdout, "type = %d, idx = %d, addr = 0x%lx.\n",
type, idx, (long)addr);
HDfprintf(stdout, "*image = 0x%x\n",
(int)(*((const char *)image)));
HDfprintf(stdout, "expected *image = 0x%x\n",
(int)(idx & 0xFF));
} /* end if */
HDassert((*((const char *)image)) == (char)(idx & 0xFF));
} /* end if */
else {
if((*(((const char *)image) + 2)) != (char)(idx & 0xFF)) {
HDfprintf(stdout, "type = %d, idx = %d, addr = 0x%lx.\n",
type, idx, (long)addr);
HDfprintf(stdout, "*image = 0x%x 0x%x 0x%x\n",
(int)(*((const char *)image)),
(int)(*(((const char *)image) + 1)),
(int)(*(((const char *)image) + 2)));
HDfprintf(stdout, "expected *image = 0x%x\n",
(int)(idx & 0xFF),
(int)((idx & 0xFF00) >> 8));
} /* end if */
HDassert((*((const char *)image)) == (char)(type & 0xFF));
HDassert((*(((const char *)image) + 1)) == (char)((idx & 0xFF00) >> 8));
HDassert((*(((const char *)image) + 2)) == (char)(idx & 0xFF));
} /* end else */
} /* end if */
entry->deserialized = TRUE;
entry->header.is_dirty = FALSE;
entry->is_dirty = FALSE;
(entry->deserializes)++;
return((void *)entry);
} /* deserialize() */
void *
pico_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
return deserialize(image, len, udata, dirty, PICO_ENTRY_TYPE);
}
void *
nano_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
return deserialize(image, len, udata, dirty, NANO_ENTRY_TYPE);
}
void *
micro_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
return deserialize(image, len, udata, dirty, MICRO_ENTRY_TYPE);
}
void *
tiny_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
return deserialize(image, len, udata, dirty, TINY_ENTRY_TYPE);
}
void *
small_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
return deserialize(image, len, udata, dirty, SMALL_ENTRY_TYPE);
}
void *
medium_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
return deserialize(image, len, udata, dirty, MEDIUM_ENTRY_TYPE);
}
void *
large_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
return deserialize(image, len, udata, dirty, LARGE_ENTRY_TYPE);
}
void *
huge_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
return deserialize(image, len, udata, dirty, HUGE_ENTRY_TYPE);
}
void *
monster_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
return deserialize(image, len, udata, dirty, MONSTER_ENTRY_TYPE);
}
void *
variable_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
return deserialize(image, len, udata, dirty, VARIABLE_ENTRY_TYPE);
}
void *
notify_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
return deserialize(image, len, udata, dirty, NOTIFY_ENTRY_TYPE);
}
/*-------------------------------------------------------------------------
* Function: image_len & friends
*
* Purpose: Return the real (and possibly reduced) length of the image.
* The helper functions verify that the correct version of
* deserialize is being called, and then call deserialize
* proper.
*
* Return: SUCCEED
*
* Programmer: John Mainzer
* 9/19/07
*
*-------------------------------------------------------------------------
*/
herr_t
image_len(const void *thing, size_t *image_length, int32_t entry_type)
{
const test_entry_t *entry;
test_entry_t *base_addr;
int32_t type;
int32_t idx;
HDassert(thing);
HDassert(image_length);
entry = (const test_entry_t *)thing;
HDassert(entry->self == entry);
type = entry->type;
idx = entry->index;
HDassert((type >= 0) && (type < NUMBER_OF_ENTRY_TYPES));
HDassert(type == entry_type);
HDassert((idx >= 0) && (idx <= max_indices[type]));
base_addr = entries[type];
HDassert(entry == &(base_addr[idx]));
if(type != VARIABLE_ENTRY_TYPE)
HDassert(entry->size == entry_sizes[type]);
else {
HDassert(entry->size <= entry_sizes[type]);
HDassert(entry->size > 0);
} /* end else */
*image_length = entry->size;
return(SUCCEED);
} /* image_len() */
herr_t
pico_image_len(const void *thing, size_t *image_length)
{
return image_len(thing, image_length, PICO_ENTRY_TYPE);
}
herr_t
nano_image_len(const void *thing, size_t *image_length)
{
return image_len(thing, image_length, NANO_ENTRY_TYPE);
}
herr_t
micro_image_len(const void *thing, size_t *image_length)
{
return image_len(thing, image_length, MICRO_ENTRY_TYPE);
}
herr_t
tiny_image_len(const void *thing, size_t *image_length)
{
return image_len(thing, image_length, TINY_ENTRY_TYPE);
}
herr_t
small_image_len(const void *thing, size_t *image_length)
{
return image_len(thing, image_length, SMALL_ENTRY_TYPE);
}
herr_t
medium_image_len(const void *thing, size_t *image_length)
{
return image_len(thing, image_length, MEDIUM_ENTRY_TYPE);
}
herr_t
large_image_len(const void *thing, size_t *image_length)
{
return image_len(thing, image_length, LARGE_ENTRY_TYPE);
}
herr_t
huge_image_len(const void *thing, size_t *image_length)
{
return image_len(thing, image_length, HUGE_ENTRY_TYPE);
}
herr_t
monster_image_len(const void *thing, size_t *image_length)
{
return image_len(thing, image_length, MONSTER_ENTRY_TYPE);
}
herr_t
variable_image_len(const void *thing, size_t *image_length)
{
return image_len(thing, image_length, VARIABLE_ENTRY_TYPE);
}
herr_t
notify_image_len(const void *thing, size_t *image_length)
{
return image_len(thing, image_length, NOTIFY_ENTRY_TYPE);
}
/*-------------------------------------------------------------------------
* Function: pre_serialize & friends
*
* Purpose: Pre_serialize the supplied entry. For now this consistes of
* executing any flush operations and loading the appropriate
* values into *new_addr_ptr, *new_len_ptr, and *flags_ptr.
*
* The helper functions verify that the correct version of
* serialize is being called, and then call serialize
* proper.
*
* Return: SUCCEED if successful, FAIL otherwise.
*
* Programmer: John Mainzer
* 8/07/14
*
*-------------------------------------------------------------------------
*/
herr_t
pre_serialize(H5F_t *f,
hid_t H5_ATTR_UNUSED dxpl_id,
void *thing,
haddr_t addr,
size_t len,
haddr_t *new_addr_ptr,
size_t *new_len_ptr,
unsigned *flags_ptr)
{
test_entry_t *entry;
test_entry_t *base_addr;
int32_t type;
int32_t idx;
int32_t i;
HDassert(f);
HDassert(thing);
HDassert(flags_ptr);
*flags_ptr = H5C__SERIALIZE_NO_FLAGS_SET;
HDassert(new_addr_ptr);
HDassert(new_len_ptr);
entry = (test_entry_t *)thing;
HDassert(entry->self == entry);
HDassert(entry->addr == addr);
HDassert(entry->size == len);
/* shouldn't serialize the entry unless it is dirty */
HDassert(entry->is_dirty);
type = entry->type;
idx = entry->index;
HDassert((type >= 0) && (type < NUMBER_OF_ENTRY_TYPES));
HDassert((idx >= 0) && (idx <= max_indices[type]));
base_addr = entries[type];
HDassert(entry == &(base_addr[idx]));
HDassert(entry->num_flush_ops >= 0);
HDassert(entry->num_flush_ops < MAX_FLUSH_OPS);
if(entry->num_flush_ops > 0) {
for(i = 0; i < entry->num_flush_ops; i++ ) {
HDassert(entry->file_ptr);
execute_flush_op(entry->file_ptr, entry,
&((entry->flush_ops)[i]), flags_ptr);
} /* end for */
entry->num_flush_ops = 0;
entry->flush_op_self_resize_in_progress = FALSE;
/* This looks wrong, but it isn't -- *flags_ptr will be modified
* by execute_flush_op() only if the target is this entry --
* and the flags set will accumulate over the set of calls in
* the for loop.
*/
if(pass && (((*flags_ptr) & H5C__SERIALIZE_RESIZED_FLAG) != 0)) {
/* set *new_len_ptr to the new length. */
HDassert(entry->type == VARIABLE_ENTRY_TYPE);
HDassert(entry->size > 0);
HDassert(entry->size <= VARIABLE_ENTRY_SIZE);
*new_len_ptr = entry->size;
} /* end if */
if(((*flags_ptr) & H5C__SERIALIZE_MOVED_FLAG) != 0) {
HDassert(((*flags_ptr) | H5C__SERIALIZE_RESIZED_FLAG) != 0);
/* place the new address in *new_addr */
*new_addr_ptr = entry->addr;
} /* end if */
} /* end if */
return(SUCCEED);
} /* pre_serialize() */
herr_t
pico_pre_serialize(H5F_t *f,
hid_t dxpl_id,
void *thing,
haddr_t addr,
size_t len,
haddr_t *new_addr_ptr,
size_t *new_len_ptr,
unsigned *flags_ptr)
{
return pre_serialize(f, dxpl_id, thing, addr, len,
new_addr_ptr, new_len_ptr, flags_ptr);
}
herr_t
nano_pre_serialize(H5F_t *f,
hid_t dxpl_id,
void *thing,
haddr_t addr,
size_t len,
haddr_t *new_addr_ptr,
size_t *new_len_ptr,
unsigned *flags_ptr)
{
return pre_serialize(f, dxpl_id, thing, addr, len,
new_addr_ptr, new_len_ptr, flags_ptr);
}
herr_t
micro_pre_serialize(H5F_t *f,
hid_t dxpl_id,
void *thing,
haddr_t addr,
size_t len,
haddr_t *new_addr_ptr,
size_t *new_len_ptr,
unsigned *flags_ptr)
{
return pre_serialize(f, dxpl_id, thing, addr, len,
new_addr_ptr, new_len_ptr, flags_ptr);
}
herr_t
tiny_pre_serialize(H5F_t *f,
hid_t dxpl_id,
void *thing,
haddr_t addr,
size_t len,
haddr_t *new_addr_ptr,
size_t *new_len_ptr,
unsigned *flags_ptr)
{
return pre_serialize(f, dxpl_id, thing, addr, len,
new_addr_ptr, new_len_ptr, flags_ptr);
}
herr_t
small_pre_serialize(H5F_t *f,
hid_t dxpl_id,
void *thing,
haddr_t addr,
size_t len,
haddr_t *new_addr_ptr,
size_t *new_len_ptr,
unsigned *flags_ptr)
{
return pre_serialize(f, dxpl_id, thing, addr, len,
new_addr_ptr, new_len_ptr, flags_ptr);
}
herr_t
medium_pre_serialize(H5F_t *f,
hid_t dxpl_id,
void *thing,
haddr_t addr,
size_t len,
haddr_t *new_addr_ptr,
size_t *new_len_ptr,
unsigned *flags_ptr)
{
return pre_serialize(f, dxpl_id, thing, addr, len,
new_addr_ptr, new_len_ptr, flags_ptr);
}
herr_t
large_pre_serialize(H5F_t *f,
hid_t dxpl_id,
void *thing,
haddr_t addr,
size_t len,
haddr_t *new_addr_ptr,
size_t *new_len_ptr,
unsigned *flags_ptr)
{
return pre_serialize(f, dxpl_id, thing, addr, len,
new_addr_ptr, new_len_ptr, flags_ptr);
}
herr_t
huge_pre_serialize(H5F_t *f,
hid_t dxpl_id,
void *thing,
haddr_t addr,
size_t len,
haddr_t *new_addr_ptr,
size_t *new_len_ptr,
unsigned *flags_ptr)
{
return pre_serialize(f, dxpl_id, thing, addr, len,
new_addr_ptr, new_len_ptr, flags_ptr);
}
herr_t
monster_pre_serialize(H5F_t *f,
hid_t dxpl_id,
void *thing,
haddr_t addr,
size_t len,
haddr_t *new_addr_ptr,
size_t *new_len_ptr,
unsigned *flags_ptr)
{
return pre_serialize(f, dxpl_id, thing, addr, len,
new_addr_ptr, new_len_ptr, flags_ptr);
}
herr_t
variable_pre_serialize(H5F_t *f,
hid_t dxpl_id,
void *thing,
haddr_t addr,
size_t len,
haddr_t *new_addr_ptr,
size_t *new_len_ptr,
unsigned *flags_ptr)
{
return pre_serialize(f, dxpl_id, thing, addr, len,
new_addr_ptr, new_len_ptr, flags_ptr);
}
herr_t
notify_pre_serialize(H5F_t *f,
hid_t dxpl_id,
void *thing,
haddr_t addr,
size_t len,
haddr_t *new_addr_ptr,
size_t *new_len_ptr,
unsigned *flags_ptr)
{
return pre_serialize(f, dxpl_id, thing, addr, len,
new_addr_ptr, new_len_ptr, flags_ptr);
}
/*-------------------------------------------------------------------------
* Function: serialize & friends
*
* Purpose: Serialize the supplied entry. For now this consistes of
* loading the type and index of the entry into the first
* three bytes of the image (if it is long enough -- if not
* just load the low order byte of the index into the first
* byte of the image).
*
* The helper functions verify that the correct version of
* serialize is being called, and then call serialize
* proper.
*
* Return: SUCCEED if successful, FAIL otherwise.
*
* Programmer: John Mainzer
* 9/19/07
*
*-------------------------------------------------------------------------
*/
herr_t
serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
test_entry_t *entry;
test_entry_t *base_addr;
int32_t type;
int32_t idx;
HDassert(image_ptr);
HDassert(thing);
entry = (test_entry_t *)thing;
HDassert(entry->self == entry);
HDassert(entry->size == len);
/* shouldn't serialize the entry unless it is dirty */
HDassert(entry->is_dirty);
type = entry->type;
idx = entry->index;
HDassert((type >= 0) && (type < NUMBER_OF_ENTRY_TYPES));
HDassert((idx >= 0) && (idx <= max_indices[type]));
base_addr = entries[type];
HDassert(entry == &(base_addr[idx]));
HDassert(entry->num_flush_ops >= 0);
HDassert(entry->num_flush_ops < MAX_FLUSH_OPS);
/* null out the image to avoid spurious failures */
HDmemset(image_ptr, 0, len);
if((type == PICO_ENTRY_TYPE) || (type == VARIABLE_ENTRY_TYPE) ||
(type == NOTIFY_ENTRY_TYPE )) {
HDassert(entry->size >= PICO_ENTRY_SIZE);
*((char *)image_ptr) = (char)((entry->index) & 0xFF);
} /* end if */
else {
HDassert(entry->size >= NANO_ENTRY_SIZE);
*((char *)image_ptr) = (char)((entry->type) & 0xFF);
*(((char *)image_ptr) + 1) = (char)(((entry->index) & 0xFF00) >> 8);
*(((char *)image_ptr) + 2) = (char)((entry->index) & 0xFF);
} /* end else */
/* We no longer do the actual write through an callback -- this is
* as close to that callback as we will get. Hence mark the entry
* clean here. If all goes well, it will be flushed shortly.
*/
entry->is_dirty = FALSE;
if(entry->flush_dep_npar > 0) {
HDassert(entry->flush_dep_ndirty_chd == 0);
mark_flush_dep_clean(entry);
} /* end if */
/* since the entry is about to be written to disk, we can mark it
* as initialized.
*/
if(entry->at_main_addr)
entry->written_to_main_addr = TRUE;
else
entry->written_to_alt_addr = TRUE;
/* do book keeping */
(entry->serializes)++;
entry->serialized = TRUE;
return(SUCCEED);
} /* serialize() */
herr_t
pico_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
return serialize(f, image_ptr, len, thing);
}
herr_t
nano_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
return serialize(f, image_ptr, len, thing);
}
herr_t
micro_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
return serialize(f, image_ptr, len, thing);
}
herr_t
tiny_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
return serialize(f, image_ptr, len, thing);
}
herr_t
small_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
return serialize(f, image_ptr, len, thing);
}
herr_t
medium_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len,
void *thing)
{
return serialize(f, image_ptr, len, thing);
}
herr_t
large_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
return serialize(f, image_ptr, len, thing);
}
herr_t
huge_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
return serialize(f, image_ptr, len, thing);
}
herr_t
monster_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len,
void *thing)
{
return serialize(f, image_ptr, len, thing);
}
herr_t
variable_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len,
void *thing)
{
return serialize(f, image_ptr, len, thing);
}
herr_t
notify_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len,
void *thing)
{
return serialize(f, image_ptr, len, thing);
}
/*-------------------------------------------------------------------------
* Function: notify & friends
*
* Purpose: Record notifications of cache events for the entry.
* The helper functions verify that the correct version of notify
* is being called, and then call notify proper.
*
* Return: SUCCEED
*
* Programmer: Quincey Koziol
* 4/28/09
*
*-------------------------------------------------------------------------
*/
static herr_t
notify(H5C_notify_action_t action, void *thing, int32_t entry_type)
{
test_entry_t *entry;
test_entry_t *base_addr;
HDassert(thing);
entry = (test_entry_t *)thing;
base_addr = entries[entry->type];
HDassert(entry->index >= 0);
HDassert(entry->index <= max_indices[entry->type]);
HDassert((entry->type >= 0) && (entry->type < NUMBER_OF_ENTRY_TYPES));
HDassert(entry->type == entry_type);
HDassert(entry == &(base_addr[entry->index]));
HDassert(entry == entry->self);
if(!(action == H5C_NOTIFY_ACTION_ENTRY_DIRTIED && entry->action == TEST_ENTRY_ACTION_MOVE))
HDassert(entry->header.addr == entry->addr);
HDassert((entry->type == VARIABLE_ENTRY_TYPE) || \
(entry->size == entry_sizes[entry->type]));
/* Increment count for appropriate action */
switch(action) {
case H5C_NOTIFY_ACTION_AFTER_INSERT: /* Entry has been added */
case H5C_NOTIFY_ACTION_AFTER_LOAD: /* to the cache. */
entry->notify_after_insert_count++;
break;
case H5C_NOTIFY_ACTION_AFTER_FLUSH:
case H5C_NOTIFY_ACTION_ENTRY_DIRTIED:
case H5C_NOTIFY_ACTION_ENTRY_CLEANED:
case H5C_NOTIFY_ACTION_CHILD_DIRTIED:
case H5C_NOTIFY_ACTION_CHILD_CLEANED:
case H5C_NOTIFY_ACTION_CHILD_UNSERIALIZED:
case H5C_NOTIFY_ACTION_CHILD_SERIALIZED:
/* do nothing */
break;
case H5C_NOTIFY_ACTION_BEFORE_EVICT: /* Entry is about to be evicted from cache */
entry->notify_before_evict_count++;
break;
default:
HDassert(0 && "Unknown notify action!?!");
} /* end switch */
return(SUCCEED);
} /* notify() */
herr_t
notify_notify(H5C_notify_action_t action, void *thing)
{
return(notify(action, thing, NOTIFY_ENTRY_TYPE));
}
/*-------------------------------------------------------------------------
* Function: free_icr & friends
*
* Purpose: Nominally, this callback is supposed to free the
* in core representation of the entry.
*
* In the context of this test bed, we use it to do
* do all the processing we used to do on a destroy.
* In particular, we use it to release all the pins
* that this entry may have on other entries.
*
* The helper functions verify that the correct version of
* serialize is being called, and then call free_icr
* proper.
*
* Return: SUCCEED
*
* Programmer: John Mainzer
* 9/19/07
*
*-------------------------------------------------------------------------
*/
herr_t
free_icr(test_entry_t *entry, int32_t entry_type)
{
test_entry_t *base_addr;
HDassert(entry);
base_addr = entries[entry->type];
HDassert(entry->type == entry_type);
HDassert(entry->index >= 0);
HDassert(entry->index <= max_indices[entry->type]);
HDassert(entry == &(base_addr[entry->index]));
HDassert(entry == entry->self);
HDassert(entry->cache_ptr != NULL);
HDassert(entry->cache_ptr->magic == H5C__H5C_T_MAGIC);
HDassert((entry->header.destroy_in_progress) ||
(entry->header.addr == entry->addr));
HDassert(entry->header.size == entry->size);
HDassert((entry->type == VARIABLE_ENTRY_TYPE) ||
(entry->size == entry_sizes[entry->type]));
if(entry->num_pins > 0) {
int i;
for(i = 0; i < entry->num_pins; i++) {
test_entry_t *pinned_entry;
test_entry_t *pinned_base_addr;
pinned_base_addr = entries[entry->pin_type[i]];
pinned_entry = &(pinned_base_addr[entry->pin_idx[i]]);
HDassert(0 <= pinned_entry->type);
HDassert(pinned_entry->type < NUMBER_OF_ENTRY_TYPES);
HDassert(pinned_entry->type == entry->pin_type[i]);
HDassert(pinned_entry->index >= 0);
HDassert(pinned_entry->index <= max_indices[pinned_entry->type]);
HDassert(pinned_entry->index == entry->pin_idx[i]);
HDassert(pinned_entry == pinned_entry->self);
HDassert(pinned_entry->header.is_pinned);
HDassert(pinned_entry->is_pinned);
HDassert(pinned_entry->pinning_ref_count > 0);
pinned_entry->pinning_ref_count--;
if(pinned_entry->pinning_ref_count <= 0) {
HDassert(pinned_entry->file_ptr);
unpin_entry(pinned_entry->type, pinned_entry->index);
} /* end if */
entry->pin_type[i] = -1;
entry->pin_idx[i] = -1;
} /* end if */
entry->num_pins = 0;
} /* end if */
entry->destroyed = TRUE;
entry->cache_ptr = NULL;
return(SUCCEED);
} /* free_icr() */
herr_t
pico_free_icr(void *thing)
{
return free_icr((test_entry_t *)thing, PICO_ENTRY_TYPE);
}
herr_t
nano_free_icr(void *thing)
{
return free_icr((test_entry_t *)thing, NANO_ENTRY_TYPE);
}
herr_t
micro_free_icr(void *thing)
{
return free_icr((test_entry_t *)thing, MICRO_ENTRY_TYPE);
}
herr_t
tiny_free_icr(void *thing)
{
return free_icr((test_entry_t *)thing, TINY_ENTRY_TYPE);
}
herr_t
small_free_icr(void *thing)
{
return free_icr((test_entry_t *)thing, SMALL_ENTRY_TYPE);
}
herr_t
medium_free_icr(void *thing)
{
return free_icr((test_entry_t *)thing, MEDIUM_ENTRY_TYPE);
}
herr_t
large_free_icr(void *thing)
{
return free_icr((test_entry_t *)thing, LARGE_ENTRY_TYPE);
}
herr_t
huge_free_icr(void *thing)
{
return free_icr((test_entry_t *)thing, HUGE_ENTRY_TYPE);
}
herr_t
monster_free_icr(void *thing)
{
return free_icr((test_entry_t *)thing, MONSTER_ENTRY_TYPE);
}
herr_t
variable_free_icr(void *thing)
{
return free_icr((test_entry_t *)thing, VARIABLE_ENTRY_TYPE);
}
herr_t
notify_free_icr(void *thing)
{
return free_icr((test_entry_t *)thing, NOTIFY_ENTRY_TYPE);
}
/**************************************************************************/
/**************************************************************************/
/************************** test utility functions: ***********************/
/**************************************************************************/
/**************************************************************************/
/*-------------------------------------------------------------------------
* Function: add_flush_op
*
* Purpose: Do nothing if pass is FALSE on entry.
*
* Otherwise, add the specified flush operation to the
* target instance of test_entry_t.
*
* Return: void
*
* Programmer: John Mainzer
* 9/1/06
*
*-------------------------------------------------------------------------
*/
void
add_flush_op(int target_type,
int target_idx,
int op_code,
int type,
int idx,
hbool_t flag,
size_t new_size,
unsigned * order_ptr)
{
int i;
test_entry_t * target_base_addr;
test_entry_t * target_entry_ptr;
HDassert( ( 0 <= target_type ) && ( target_type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= target_idx ) &&
( target_idx <= max_indices[target_type] ) );
HDassert( ( 0 <= op_code ) && ( op_code <= FLUSH_OP__MAX_OP ) );
HDassert( ( op_code != FLUSH_OP__RESIZE ) ||
( type == VARIABLE_ENTRY_TYPE ) );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
HDassert( new_size <= VARIABLE_ENTRY_SIZE );
#ifndef H5_HAVE_STDBOOL_H
/* Check for TRUE or FALSE if we're using an integer type instead
* of a real Boolean type.
*/
HDassert( ( flag == TRUE ) || ( flag == FALSE ) );
#endif /* H5_HAVE_STDBOOL_H */
if ( pass ) {
target_base_addr = entries[target_type];
target_entry_ptr = &(target_base_addr[target_idx]);
HDassert( target_entry_ptr->index == target_idx );
HDassert( target_entry_ptr->type == target_type );
HDassert( target_entry_ptr == target_entry_ptr->self );
HDassert( target_entry_ptr->num_flush_ops < MAX_FLUSH_OPS );
i = (target_entry_ptr->num_flush_ops)++;
(target_entry_ptr->flush_ops)[i].op_code = op_code;
(target_entry_ptr->flush_ops)[i].type = type;
(target_entry_ptr->flush_ops)[i].idx = idx;
(target_entry_ptr->flush_ops)[i].flag = flag;
(target_entry_ptr->flush_ops)[i].size = new_size;
(target_entry_ptr->flush_ops)[i].order_ptr = order_ptr;
}
return;
} /* add_flush_op() */
/*-------------------------------------------------------------------------
* Function: create_pinned_entry_dependency
*
* Purpose: Do nothing if pass is FALSE on entry.
*
* Otherwise, set up a pinned entry dependency so we can
* test the pinned entry modifications to the flush routine.
*
* Given the types and indicies of the pinned and pinning
* entries, add the pinned entry to the list of pinned
* entries in the pinning entry, increment the
* pinning reference count of the pinned entry, and
* if that count was zero initially, pin the entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/10/04
*
*-------------------------------------------------------------------------
*/
void
create_pinned_entry_dependency(H5F_t * file_ptr,
int pinning_type,
int pinning_idx,
int pinned_type,
int pinned_idx)
{
test_entry_t * pinning_base_addr;
test_entry_t * pinning_entry_ptr;
test_entry_t * pinned_base_addr;
test_entry_t * pinned_entry_ptr;
if ( pass ) {
HDassert( ( 0 <= pinning_type ) &&
( pinning_type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= pinning_idx ) &&
( pinning_idx <= max_indices[pinning_type] ) );
HDassert( ( 0 <= pinned_type ) &&
( pinned_type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= pinned_idx ) &&
( pinned_idx <= max_indices[pinned_type] ) );
pinning_base_addr = entries[pinning_type];
pinning_entry_ptr = &(pinning_base_addr[pinning_idx]);
pinned_base_addr = entries[pinned_type];
pinned_entry_ptr = &(pinned_base_addr[pinned_idx]);
HDassert( pinning_entry_ptr->index == pinning_idx );
HDassert( pinning_entry_ptr->type == pinning_type );
HDassert( pinning_entry_ptr == pinning_entry_ptr->self );
HDassert( pinning_entry_ptr->num_pins < MAX_PINS );
HDassert( pinning_entry_ptr->index == pinning_idx );
HDassert( pinning_entry_ptr->type == pinning_type );
HDassert( pinning_entry_ptr == pinning_entry_ptr->self );
HDassert( ! ( pinning_entry_ptr->is_protected ) );
pinning_entry_ptr->pin_type[pinning_entry_ptr->num_pins] = pinned_type;
pinning_entry_ptr->pin_idx[pinning_entry_ptr->num_pins] = pinned_idx;
(pinning_entry_ptr->num_pins)++;
if ( pinned_entry_ptr->pinning_ref_count == 0 ) {
protect_entry(file_ptr, pinned_type, pinned_idx);
unprotect_entry(file_ptr, pinned_type, pinned_idx, H5C__PIN_ENTRY_FLAG);
}
(pinned_entry_ptr->pinning_ref_count)++;
}
return;
} /* create_pinned_entry_dependency() */
/*-------------------------------------------------------------------------
* Function: dirty_entry
*
* Purpose: Given a pointer to a cache, an entry type, and an index,
* dirty the target entry.
*
* If the dirty_pin parameter is true, verify that the
* target entry is in the cache and is pinned. If it
* isn't, scream and die. If it is, use the
* H5C_mark_entry_dirty() call to dirty it.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/10/04
*
*-------------------------------------------------------------------------
*/
void
dirty_entry(H5F_t * file_ptr,
int32_t type,
int32_t idx,
hbool_t dirty_pin)
{
test_entry_t * base_addr;
test_entry_t * entry_ptr;
HDassert( file_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
if ( pass ) {
if ( dirty_pin ) {
H5C_t *cache_ptr = file_ptr->shared->cache;
HDassert(cache_ptr);
if ( ! entry_in_cache(cache_ptr, type, idx) ) {
pass = FALSE;
failure_mssg = "entry to be dirty pinned is not in cache.";
} else {
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
if ( ! ( (entry_ptr->header).is_pinned ) ) {
pass = FALSE;
failure_mssg = "entry to be dirty pinned is not pinned.";
} else {
mark_entry_dirty(type, idx);
}
}
} else {
protect_entry(file_ptr, type, idx);
unprotect_entry(file_ptr, type, idx, H5C__DIRTIED_FLAG);
}
}
return;
} /* dirty_entry() */
/*-------------------------------------------------------------------------
* Function: execute_flush_op
*
* Purpose: Given a pointer to an instance of struct flush_op, execute
* it.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 9/1/06
*
*-------------------------------------------------------------------------
*/
void
execute_flush_op(H5F_t * file_ptr,
struct test_entry_t * entry_ptr,
struct flush_op * op_ptr,
unsigned * flags_ptr)
{
H5C_t * cache_ptr;
HDassert( file_ptr );
cache_ptr = file_ptr->shared->cache;
HDassert( cache_ptr != NULL );
HDassert( cache_ptr->magic == H5C__H5C_T_MAGIC );
HDassert( entry_ptr != NULL );
HDassert( entry_ptr = entry_ptr->self );
HDassert( entry_ptr->header.addr == entry_ptr->addr );
HDassert( ( entry_ptr->flush_op_self_resize_in_progress ) ||
( entry_ptr->header.size == entry_ptr->size ) );
HDassert( op_ptr != NULL );
HDassert( ( 0 <= entry_ptr->type ) &&
( entry_ptr->type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= entry_ptr->index ) &&
( entry_ptr->index <= max_indices[entry_ptr->type] ) );
HDassert( ( 0 <= op_ptr->type ) &&
( op_ptr->type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= op_ptr->idx ) &&
( op_ptr->idx <= max_indices[op_ptr->type] ) );
HDassert( flags_ptr != NULL );
#ifndef H5_HAVE_STDBOOL_H
/* Check for TRUE or FALSE if we're using an integer type instead
* of a real Boolean type.
*/
HDassert( ( op_ptr->flag == FALSE ) || ( op_ptr->flag == TRUE ) );
#endif /* H5_HAVE_STDBOOL_H */
if ( pass ) {
switch ( op_ptr->op_code )
{
case FLUSH_OP__NO_OP:
break;
case FLUSH_OP__DIRTY:
HDassert( ( entry_ptr->type != op_ptr->type ) ||
( entry_ptr->index != op_ptr->idx ) );
dirty_entry(file_ptr, op_ptr->type, op_ptr->idx, op_ptr->flag);
break;
case FLUSH_OP__RESIZE:
if ( ( entry_ptr->type == op_ptr->type ) &&
( entry_ptr->index == op_ptr->idx ) ) {
/* the flush operation is acting on the entry to
* which it is attached. Handle this here:
*/
HDassert( entry_ptr->type == VARIABLE_ENTRY_TYPE );
HDassert( op_ptr->size > 0 );
HDassert( op_ptr->size <= VARIABLE_ENTRY_SIZE );
entry_ptr->size = op_ptr->size;
(*flags_ptr) |= H5C__SERIALIZE_RESIZED_FLAG;
entry_ptr->flush_op_self_resize_in_progress = TRUE;
} else {
/* change the size of some other entry */
resize_entry(file_ptr, op_ptr->type, op_ptr->idx,
op_ptr->size, op_ptr->flag);
}
break;
case FLUSH_OP__MOVE:
if((entry_ptr->type == op_ptr->type) &&
(entry_ptr->index == op_ptr->idx)) {
/* the flush operation is acting on the entry to
* which it is attached. Handle this here:
*/
HDassert(((*flags_ptr) & H5C__SERIALIZE_RESIZED_FLAG) != 0);
(*flags_ptr) |= H5C__SERIALIZE_MOVED_FLAG;
if(op_ptr->flag) {
HDassert(entry_ptr->addr == entry_ptr->alt_addr);
entry_ptr->addr = entry_ptr->main_addr;
entry_ptr->at_main_addr = TRUE;
} /* end if */
else {
HDassert(entry_ptr->addr == entry_ptr->main_addr);
entry_ptr->addr = entry_ptr->alt_addr;
entry_ptr->at_main_addr = FALSE;
} /* end else */
} /* end if */
else
move_entry(cache_ptr, op_ptr->type, op_ptr->idx, op_ptr->flag);
break;
case FLUSH_OP__ORDER:
HDassert( op_ptr->order_ptr );
entry_ptr->flush_order = *op_ptr->order_ptr;
(*op_ptr->order_ptr)++;
break;
case FLUSH_OP__EXPUNGE:
/* the expunge flush op exists to allow us to simulate the
* case in which an entry is removed from the cashe as the
* the result of the flush of a second entry. At present,
* this can only happen via the take ownership flag, but
* we will make this test feature more general to as to make
* tests easier to write.
*
* When this operation is executed, the target entry is
* removed from the cache without being flushed if dirty
* via the expunge_entry() test function (which calls
* H5C_expunge_entry()). Note that this flush operation
* must always be executed on an entry other than the
* entry being flushed.
*/
HDassert( ( entry_ptr->type != op_ptr->type ) ||
( entry_ptr->index != op_ptr->idx ) );
expunge_entry(file_ptr, op_ptr->type, op_ptr->idx);
break;
case FLUSH_OP__DEST_FLUSH_DEP:
HDassert( ( entry_ptr->type != op_ptr->type ) ||
( entry_ptr->index != op_ptr->idx ) );
destroy_flush_dependency(op_ptr->type, op_ptr->idx,
entry_ptr->type, entry_ptr->index);
break;
default:
pass = FALSE;
failure_mssg = "Undefined flush op code.";
break;
}
}
return;
} /* execute_flush_op() */
/*-------------------------------------------------------------------------
* Function: entry_in_cache
*
* Purpose: Given a pointer to a cache, an entry type, and an index,
* determine if the entry is currently in the cache.
*
* Return: TRUE if the entry is in the cache, and FALSE otherwise.
*
* Programmer: John Mainzer
* 6/10/04
*
*-------------------------------------------------------------------------
*/
hbool_t
entry_in_cache(H5C_t * cache_ptr,
int32_t type,
int32_t idx)
{
hbool_t in_cache = FALSE; /* will set to TRUE if necessary */
test_entry_t * base_addr;
test_entry_t * entry_ptr;
H5C_cache_entry_t * test_ptr = NULL;
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
H5C_TEST__SEARCH_INDEX(cache_ptr, entry_ptr->addr, test_ptr)
if ( test_ptr != NULL ) {
in_cache = TRUE;
HDassert( test_ptr == (H5C_cache_entry_t *)entry_ptr );
HDassert( entry_ptr->addr == entry_ptr->header.addr );
}
return(in_cache);
} /* entry_in_cache() */
/*-------------------------------------------------------------------------
* Function: create_entry_arrays
*
* Purpose: Create the entry arrays, both regular and original.
*
* Return: SUCCEED/FAIL
*
* Programmer: Dana Robinson
* Spring 2016
*
*-------------------------------------------------------------------------
*/
herr_t
create_entry_arrays(void)
{
/* pico entries */
if(NULL == (pico_entries = (test_entry_t *)HDcalloc(NUM_PICO_ENTRIES, sizeof(test_entry_t))))
goto error;
if(NULL == (orig_pico_entries = (test_entry_t *)HDcalloc(NUM_PICO_ENTRIES, sizeof(test_entry_t))))
goto error;
/* nano entries */
if(NULL == (nano_entries = (test_entry_t *)HDcalloc(NUM_NANO_ENTRIES, sizeof(test_entry_t))))
goto error;
if(NULL == (orig_nano_entries = (test_entry_t *)HDcalloc(NUM_NANO_ENTRIES, sizeof(test_entry_t))))
goto error;
/* micro entries */
if(NULL == (micro_entries = (test_entry_t *)HDcalloc(NUM_MICRO_ENTRIES, sizeof(test_entry_t))))
goto error;
if(NULL == (orig_micro_entries = (test_entry_t *)HDcalloc(NUM_MICRO_ENTRIES, sizeof(test_entry_t))))
goto error;
/* tiny entries */
if(NULL == (tiny_entries = (test_entry_t *)HDcalloc(NUM_TINY_ENTRIES, sizeof(test_entry_t))))
goto error;
if(NULL == (orig_tiny_entries = (test_entry_t *)HDcalloc(NUM_TINY_ENTRIES, sizeof(test_entry_t))))
goto error;
/* small entries */
if(NULL == (small_entries = (test_entry_t *)HDcalloc(NUM_SMALL_ENTRIES, sizeof(test_entry_t))))
goto error;
if(NULL == (orig_small_entries = (test_entry_t *)HDcalloc(NUM_SMALL_ENTRIES, sizeof(test_entry_t))))
goto error;
/* medium entries */
if(NULL == (medium_entries = (test_entry_t *)HDcalloc(NUM_MEDIUM_ENTRIES, sizeof(test_entry_t))))
goto error;
if(NULL == (orig_medium_entries = (test_entry_t *)HDcalloc(NUM_MEDIUM_ENTRIES, sizeof(test_entry_t))))
goto error;
/* large entries */
if(NULL == (large_entries = (test_entry_t *)HDcalloc(NUM_LARGE_ENTRIES, sizeof(test_entry_t))))
goto error;
if(NULL == (orig_large_entries = (test_entry_t *)HDcalloc(NUM_LARGE_ENTRIES, sizeof(test_entry_t))))
goto error;
/* huge entries */
if(NULL == (huge_entries = (test_entry_t *)HDcalloc(NUM_HUGE_ENTRIES, sizeof(test_entry_t))))
goto error;
if(NULL == (orig_huge_entries = (test_entry_t *)HDcalloc(NUM_HUGE_ENTRIES, sizeof(test_entry_t))))
goto error;
/* monster entries */
if(NULL == (monster_entries = (test_entry_t *)HDcalloc(NUM_MONSTER_ENTRIES, sizeof(test_entry_t))))
goto error;
if(NULL == (orig_monster_entries = (test_entry_t *)HDcalloc(NUM_MONSTER_ENTRIES, sizeof(test_entry_t))))
goto error;
/* variable entries */
if(NULL == (variable_entries = (test_entry_t *)HDcalloc(NUM_VARIABLE_ENTRIES, sizeof(test_entry_t))))
goto error;
if(NULL == (orig_variable_entries = (test_entry_t *)HDcalloc(NUM_VARIABLE_ENTRIES, sizeof(test_entry_t))))
goto error;
/* notify entries */
if(NULL == (notify_entries = (test_entry_t *)HDcalloc(NUM_NOTIFY_ENTRIES, sizeof(test_entry_t))))
goto error;
if(NULL == (orig_notify_entries = (test_entry_t *)HDcalloc(NUM_NOTIFY_ENTRIES, sizeof(test_entry_t))))
goto error;
entries[0] = pico_entries;
entries[1] = nano_entries;
entries[2] = micro_entries;
entries[3] = tiny_entries;
entries[4] = small_entries;
entries[5] = medium_entries;
entries[6] = large_entries;
entries[7] = huge_entries;
entries[8] = monster_entries;
entries[9] = variable_entries;
entries[10] = notify_entries;
orig_entries[0] = orig_pico_entries;
orig_entries[1] = orig_nano_entries;
orig_entries[2] = orig_micro_entries;
orig_entries[3] = orig_tiny_entries;
orig_entries[4] = orig_small_entries;
orig_entries[5] = orig_medium_entries;
orig_entries[6] = orig_large_entries;
orig_entries[7] = orig_huge_entries;
orig_entries[8] = orig_monster_entries;
orig_entries[9] = orig_variable_entries;
orig_entries[10] = orig_notify_entries;
return SUCCEED;
error:
free_entry_arrays();
return FAIL;
} /* create_entry_arrays() */
/*-------------------------------------------------------------------------
* Function: free_entry_arrays
*
* Purpose: Free the entry arrays, both regular and original.
*
* Return: void
*
* Programmer: Dana Robinson
* Spring 2016
*
*-------------------------------------------------------------------------
*/
void
free_entry_arrays(void)
{
/* pico entries */
HDfree(pico_entries);
HDfree(orig_pico_entries);
/* nano entries */
HDfree(nano_entries);
HDfree(orig_nano_entries);
/* micro entries */
HDfree(micro_entries);
HDfree(orig_micro_entries);
/* tiny entries */
HDfree(tiny_entries);
HDfree(orig_tiny_entries);
/* small entries */
HDfree(small_entries);
HDfree(orig_small_entries);
/* medium entries */
HDfree(medium_entries);
HDfree(orig_medium_entries);
/* large entries */
HDfree(large_entries);
HDfree(orig_large_entries);
/* huge entries */
HDfree(huge_entries);
HDfree(orig_huge_entries);
/* monster entries */
HDfree(monster_entries);
HDfree(orig_monster_entries);
/* variable entries */
HDfree(variable_entries);
HDfree(orig_variable_entries);
/* notify entries */
HDfree(notify_entries);
HDfree(orig_notify_entries);
return;
} /* free_entry_arrays() */
/*-------------------------------------------------------------------------
* Function: reset_entries
*
* Purpose: reset the contents of the entries arrays to known values.
*
* Return: void
*
* Programmer: John Mainzer
* 6/10/04
*
*-------------------------------------------------------------------------
*/
void
reset_entries(void)
{
int i;
int32_t max_index;
test_entry_t * base_addr;
test_entry_t * orig_base_addr;
if( !orig_entry_arrays_init)
{
haddr_t addr = PICO_BASE_ADDR;
haddr_t alt_addr = PICO_ALT_BASE_ADDR;
size_t entry_size;
for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
{
int j;
entry_size = entry_sizes[i];
max_index = max_indices[i];
base_addr = entries[i];
orig_base_addr = orig_entries[i];
HDassert( base_addr );
HDassert( orig_base_addr );
for ( j = 0; j <= max_index; j++ )
{
int k;
/* one can argue that we should fill the header with garbage.
* If this is desired, we can simply comment out the header
* initialization - the headers will be full of garbage soon
* enough.
*/
base_addr[j].header.addr = (haddr_t)0;
base_addr[j].header.size = (size_t)0;
base_addr[j].header.type = NULL;
base_addr[j].header.is_dirty = FALSE;
base_addr[j].header.is_protected = FALSE;
base_addr[j].header.is_read_only = FALSE;
base_addr[j].header.ro_ref_count = FALSE;
base_addr[j].header.next = NULL;
base_addr[j].header.prev = NULL;
base_addr[j].header.aux_next = NULL;
base_addr[j].header.aux_prev = NULL;
base_addr[j].self = &(base_addr[j]);
base_addr[j].cache_ptr = NULL;
base_addr[j].written_to_main_addr = FALSE;
base_addr[j].written_to_alt_addr = FALSE;
base_addr[j].addr = addr;
base_addr[j].at_main_addr = TRUE;
base_addr[j].main_addr = addr;
base_addr[j].alt_addr = alt_addr;
base_addr[j].size = entry_size;
base_addr[j].type = i;
base_addr[j].index = j;
base_addr[j].serializes = 0;
base_addr[j].deserializes = 0;
base_addr[j].is_dirty = FALSE;
base_addr[j].is_protected = FALSE;
base_addr[j].is_read_only = FALSE;
base_addr[j].ro_ref_count = FALSE;
base_addr[j].is_corked = FALSE;
base_addr[j].is_pinned = FALSE;
base_addr[j].pinning_ref_count = 0;
base_addr[j].num_pins = 0;
for ( k = 0; k < MAX_PINS; k++ )
{
base_addr[j].pin_type[k] = -1;
base_addr[j].pin_idx[k] = -1;
}
base_addr[j].num_flush_ops = 0;
for ( k = 0; k < MAX_FLUSH_OPS; k++ )
{
base_addr[j].flush_ops[k].op_code = FLUSH_OP__NO_OP;
base_addr[j].flush_ops[k].type = -1;
base_addr[j].flush_ops[k].idx = -1;
base_addr[j].flush_ops[k].flag = FALSE;
base_addr[j].flush_ops[k].size = 0;
}
base_addr[j].flush_op_self_resize_in_progress = FALSE;
base_addr[j].deserialized = FALSE;
base_addr[j].serialized = FALSE;
base_addr[j].destroyed = FALSE;
base_addr[j].expunged = FALSE;
base_addr[j].flush_dep_npar = 0;
base_addr[j].flush_dep_nchd = 0;
base_addr[j].flush_dep_ndirty_chd = 0;
base_addr[j].pinned_from_client = FALSE;
base_addr[j].pinned_from_cache = FALSE;
base_addr[j].flush_order = 0;
base_addr[j].notify_after_insert_count = 0;
base_addr[j].notify_before_evict_count = 0;
base_addr[j].actual_len = 0;
base_addr[j].max_verify_ct = 0;
base_addr[j].verify_ct = 0;
addr += (haddr_t)entry_size;
alt_addr += (haddr_t)entry_size;
} /* end for */
/* Make copy of entries in base_addr for later */
HDmemcpy(orig_base_addr, base_addr, (size_t)(max_index + 1) * sizeof( *base_addr ));
} /* end for */
/* Indicate that we've made a copy for later */
orig_entry_arrays_init = TRUE;
} /* end if */
else {
for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
{
max_index = max_indices[i];
base_addr = entries[i];
orig_base_addr = orig_entries[i];
/* Make copy of entries in base_addr for later */
HDmemcpy(base_addr, orig_base_addr, (size_t)(max_index + 1) * sizeof( *base_addr ));
} /* end for */
} /* end else */
return;
} /* reset_entries() */
/*-------------------------------------------------------------------------
* Function: resize_entry
*
* Purpose: Given a pointer to a cache, an entry type, an index, and
* a new size, set the size of the target entry to the new size.
*
* Note that at present, the type of the entry must be
* VARIABLE_ENTRY_TYPE.
*
* Do nothing if pass is false on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 1/11/08
*
*-------------------------------------------------------------------------
*/
void
resize_entry(H5F_t * file_ptr,
int32_t type,
int32_t idx,
size_t new_size,
hbool_t in_cache)
{
test_entry_t * base_addr;
test_entry_t * entry_ptr;
herr_t result;
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( type == VARIABLE_ENTRY_TYPE );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
HDassert( ( 0 < new_size ) && ( new_size <= entry_sizes[type] ) );
if ( pass ) {
if ( in_cache ) {
H5C_t *cache_ptr = file_ptr->shared->cache;
HDassert( cache_ptr );
if ( ! entry_in_cache(cache_ptr, type, idx) ) {
pass = FALSE;
failure_mssg = "entry to be resized pinned is not in cache.";
} else {
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr->cache_ptr == cache_ptr );
HDassert( entry_ptr == entry_ptr->self );
if ( ! ( entry_ptr->header.is_pinned || entry_ptr->header.is_protected ) ) {
pass = FALSE;
failure_mssg = "entry to be resized is not pinned or protected.";
} else {
hbool_t was_dirty = entry_ptr->is_dirty;
entry_ptr->size = new_size;
result = H5C_resize_entry((void *)entry_ptr, new_size);
entry_ptr->is_dirty = TRUE;
if(entry_ptr->flush_dep_npar > 0 && !was_dirty)
mark_flush_dep_dirty(entry_ptr);
if ( result != SUCCEED ) {
pass = FALSE;
failure_mssg = "error(s) in H5C_resize_entry().";
} else {
HDassert( entry_ptr->size = (entry_ptr->header).size );
}
}
}
} else {
protect_entry(file_ptr, type, idx);
resize_entry(file_ptr, type, idx, new_size, TRUE);
unprotect_entry(file_ptr, type, idx, H5C__DIRTIED_FLAG);
}
}
return;
} /* resize_entry() */
/*-------------------------------------------------------------------------
* Function: verify_clean
*
* Purpose: Verify that all cache entries are marked as clean. If any
* are not, set pass to FALSE.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/10/04
*
*-------------------------------------------------------------------------
*/
void
verify_clean(void)
{
int i;
int j;
int dirty_count = 0;
int32_t max_index;
test_entry_t * base_addr;
if ( pass ) {
for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
{
max_index = max_indices[i];
base_addr = entries[i];
HDassert( base_addr );
for ( j = 0; j <= max_index; j++ )
{
if ( ( base_addr[j].header.is_dirty ) ||
( base_addr[j].is_dirty ) ) {
dirty_count++;
}
}
}
if ( dirty_count > 0 ) {
pass = FALSE;
failure_mssg = "verify_clean() found dirty entry(s).";
}
}
return;
} /* verify_clean() */
/*-------------------------------------------------------------------------
* Function: verify_entry_status
*
* Purpose: Verify that a list of entries have the expected status.
* If any discrepencies are found, set the failure message
* and set pass to FALSE.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 10/8/04
*
*-------------------------------------------------------------------------
*/
void
verify_entry_status(H5C_t * cache_ptr,
int tag,
int num_entries,
struct expected_entry_status expected[])
{
static char msg[256];
int i;
i = 0;
while ( ( pass ) && ( i < num_entries ) )
{
test_entry_t * base_addr = entries[expected[i].entry_type];
test_entry_t * entry_ptr = &(base_addr[expected[i].entry_index]);
hbool_t in_cache = FALSE; /* will set to TRUE if necessary */
unsigned u; /* Local index variable */
if ( ( ! expected[i].in_cache ) &&
( ( expected[i].is_protected ) || ( expected[i].is_pinned ) ) ) {
pass = FALSE;
sprintf(msg, "%d: Contradictory data in expected[%d].\n", tag, i);
failure_mssg = msg;
}
if ( ( ! expected[i].in_cache ) &&
( expected[i].is_dirty ) &&
( ! entry_ptr->expunged ) ) {
pass = FALSE;
sprintf(msg,
"%d: expected[%d] specs non-expunged, dirty, non-resident.\n",
tag, i);
failure_mssg = msg;
}
if ( pass ) {
in_cache = entry_in_cache(cache_ptr, expected[i].entry_type,
expected[i].entry_index);
if ( in_cache != expected[i].in_cache ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) in cache actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)in_cache,
(int)expected[i].in_cache);
failure_mssg = msg;
}
}
if ( pass ) {
if ( entry_ptr->size != expected[i].size ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) size actual/expected = %ld/%ld.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(long)(entry_ptr->size),
(long)expected[i].size);
failure_mssg = msg;
}
}
if ( ( pass ) && ( in_cache ) ) {
if ( entry_ptr->header.size != expected[i].size ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) header size actual/expected = %ld/%ld.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(long)(entry_ptr->header.size),
(long)expected[i].size);
failure_mssg = msg;
}
}
if ( pass ) {
if ( entry_ptr->at_main_addr != expected[i].at_main_addr ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) at main addr actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->at_main_addr),
(int)expected[i].at_main_addr);
failure_mssg = msg;
}
}
if ( pass ) {
if ( entry_ptr->is_dirty != expected[i].is_dirty ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) is_dirty actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->is_dirty),
(int)expected[i].is_dirty);
failure_mssg = msg;
}
}
if ( ( pass ) && ( in_cache ) ) {
if ( entry_ptr->header.is_dirty != expected[i].is_dirty ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) header is_dirty actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->header.is_dirty),
(int)expected[i].is_dirty);
failure_mssg = msg;
}
}
if ( pass ) {
if ( entry_ptr->is_protected != expected[i].is_protected ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) is_protected actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->is_protected),
(int)expected[i].is_protected);
failure_mssg = msg;
}
}
if ( ( pass ) && ( in_cache ) ) {
if ( entry_ptr->header.is_protected != expected[i].is_protected ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) header is_protected actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->header.is_protected),
(int)expected[i].is_protected);
failure_mssg = msg;
}
}
if ( pass ) {
if ( entry_ptr->is_pinned != expected[i].is_pinned ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) is_pinned actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->is_pinned),
(int)expected[i].is_pinned);
failure_mssg = msg;
}
}
if ( pass ) {
if ( entry_ptr->is_corked != expected[i].is_corked) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) is_corked actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->is_corked),
(int)expected[i].is_corked);
failure_mssg = msg;
}
}
if ( ( pass ) && ( in_cache ) ) {
if ( entry_ptr->header.is_pinned != expected[i].is_pinned ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) header is_pinned actual/expected = %d/%d.\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->header.is_pinned),
(int)expected[i].is_pinned);
failure_mssg = msg;
}
}
if ( pass ) {
if ( ( entry_ptr->deserialized != expected[i].deserialized ) ||
( entry_ptr->serialized != expected[i].serialized ) ||
( entry_ptr->destroyed != expected[i].destroyed ) ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d,%d) deserialized = %d(%d), serialized = %d(%d), dest = %d(%d)\n",
tag,
(int)expected[i].entry_type,
(int)expected[i].entry_index,
(int)(entry_ptr->deserialized),
(int)(expected[i].deserialized),
(int)(entry_ptr->serialized),
(int)(expected[i].serialized),
(int)(entry_ptr->destroyed),
(int)(expected[i].destroyed));
failure_mssg = msg;
}
}
/* Check flush dependency fields */
/* # of flush dependency parents */
if ( pass ) {
if ( entry_ptr->flush_dep_npar != expected[i].flush_dep_npar ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) flush_dep_npar actual/expected = %u/%u.\n",
tag,
expected[i].entry_type,
expected[i].entry_index,
entry_ptr->flush_dep_npar,
expected[i].flush_dep_npar);
failure_mssg = msg;
} /* end if */
} /* end if */
if ( ( pass ) && ( in_cache ) ) {
if ( entry_ptr->header.flush_dep_nparents != expected[i].flush_dep_npar ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) header flush_dep_nparents actual/expected = %u/%u.\n",
tag,
expected[i].entry_type,
expected[i].entry_index,
entry_ptr->header.flush_dep_nparents,
expected[i].flush_dep_npar);
failure_mssg = msg;
} /* end if */
} /* end if */
/* Flush dependency parent type & index. Note this algorithm assumes
* that the parents in both arrays are in the same order. */
if ( pass ) {
for ( u = 0; u < entry_ptr->flush_dep_npar; u++ ) {
if ( entry_ptr->flush_dep_par_type[u] != expected[i].flush_dep_par_type[u] ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) flush_dep_par_type[%u] actual/expected = %d/%d.\n",
tag,
expected[i].entry_type,
expected[i].entry_index,
u,
entry_ptr->flush_dep_par_type[u],
expected[i].flush_dep_par_type[u]);
failure_mssg = msg;
} /* end if */
} /* end for */
} /* end if */
if ( pass ) {
for ( u = 0; u < entry_ptr->flush_dep_npar; u++ ) {
if ( entry_ptr->flush_dep_par_idx[u] != expected[i].flush_dep_par_idx[u] ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) flush_dep_par_idx[%u] actual/expected = %d/%d.\n",
tag,
expected[i].entry_type,
expected[i].entry_index,
u,
entry_ptr->flush_dep_par_idx[u],
expected[i].flush_dep_par_idx[u]);
failure_mssg = msg;
} /* end if */
} /* end for */
} /* end if */
/* # of flush dependency children and dirty children */
if ( pass ) {
if ( entry_ptr->flush_dep_nchd != expected[i].flush_dep_nchd ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) flush_dep_nchd actual/expected = %u/%u.\n",
tag,
expected[i].entry_type,
expected[i].entry_index,
entry_ptr->flush_dep_nchd,
expected[i].flush_dep_nchd);
failure_mssg = msg;
} /* end if */
} /* end if */
if ( ( pass ) && ( in_cache ) ) {
if ( entry_ptr->header.flush_dep_nchildren != expected[i].flush_dep_nchd ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) header flush_dep_nchildren actual/expected = %u/%u.\n",
tag,
expected[i].entry_type,
expected[i].entry_index,
entry_ptr->header.flush_dep_nchildren,
expected[i].flush_dep_nchd);
failure_mssg = msg;
} /* end if */
} /* end if */
if ( pass ) {
if ( entry_ptr->flush_dep_ndirty_chd != expected[i].flush_dep_ndirty_chd ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) flush_dep_ndirty_chd actual/expected = %u/%u.\n",
tag,
expected[i].entry_type,
expected[i].entry_index,
entry_ptr->flush_dep_ndirty_chd,
expected[i].flush_dep_ndirty_chd);
failure_mssg = msg;
} /* end if */
} /* end if */
if ( ( pass ) && ( in_cache ) ) {
if ( entry_ptr->header.flush_dep_ndirty_children != expected[i].flush_dep_ndirty_chd ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) header flush_dep_ndirty_children actual/expected = %u/%u.\n",
tag,
expected[i].entry_type,
expected[i].entry_index,
entry_ptr->header.flush_dep_ndirty_children,
expected[i].flush_dep_ndirty_chd);
failure_mssg = msg;
} /* end if */
} /* end if */
/* Flush dependency flush order */
if ( pass ) {
if ( expected[i].flush_order >= 0 && entry_ptr->flush_order != (unsigned)expected[i].flush_order ) {
pass = FALSE;
sprintf(msg,
"%d entry (%d, %d) flush_order actual/expected = %u/%d.\n",
tag,
expected[i].entry_type,
expected[i].entry_index,
entry_ptr->flush_order,
expected[i].flush_order);
failure_mssg = msg;
} /* end if */
} /* end if */
i++;
} /* while */
return;
} /* verify_entry_status() */
/*-------------------------------------------------------------------------
* Function: verify_unprotected
*
* Purpose: Verify that no cache entries are marked as protected. If
* any are, set pass to FALSE.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/10/04
*
*-------------------------------------------------------------------------
*/
void
verify_unprotected(void)
{
int i;
int j;
int protected_count = 0;
int32_t max_index;
test_entry_t * base_addr;
if ( pass ) {
for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
{
max_index = max_indices[i];
base_addr = entries[i];
HDassert( base_addr );
for ( j = 0; j <= max_index; j++ )
{
HDassert( base_addr[j].header.is_protected ==
base_addr[j].is_protected );
if ( ( base_addr[j].header.is_protected ) ||
( base_addr[j].is_protected ) ) {
protected_count++;
}
}
}
if ( protected_count > 0 ) {
pass = FALSE;
failure_mssg = "verify_unprotected() found protected entry(s).";
}
}
return;
} /* verify_unprotected() */
/*****************************************************************************
*
* Function: setup_cache()
*
* Purpose: Open an HDF file. This will allocate an instance and
* initialize an associated instance of H5C_t. However,
* we want to test an instance of H5C_t, so allocate and
* initialize one with the file ID returned by the call to
* H5Fcreate(). Return a pointer to this instance of H5C_t.
*
* Observe that we open a HDF file because the cache now
* writes directly to file, and we need the file I/O facilities
* associated with the file.
*
* To avoid tripping on error check code, must allocate enough
* space in the file to hold all the test entries and their
* alternates. This is a little sticky, as the addresses of
* all the test entries are determined at compile time.
*
* Deal with this by choosing BASE_ADDR large enough that
* the base address of the allocate space will be less than
* or equal to BASE_ADDR, and then requesting an extra BASE_ADDR
* bytes, so we don't have to wory about exceeding the allocation.
*
* Return: Success: Ptr to H5C_t
*
* Failure: NULL
*
* Programmer: JRM -- 9/13/07
*
*****************************************************************************/
H5F_t *
setup_cache(size_t max_cache_size,
size_t min_clean_size)
{
char filename[512];
hbool_t show_progress = FALSE;
hbool_t verbose = TRUE;
int mile_stone = 1;
hid_t fid = -1;
H5F_t * file_ptr = NULL;
H5C_t * cache_ptr = NULL;
H5F_t * ret_val = NULL;
haddr_t actual_base_addr;
hid_t fapl_id = H5P_DEFAULT;
if(show_progress) /* 1 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n",
FUNC, mile_stone++, (int)pass);
saved_fid = -1;
/* setup the file name */
if(pass) {
if(NULL == h5_fixname(FILENAME[0], H5P_DEFAULT, filename, sizeof(filename))) {
pass = FALSE;
failure_mssg = "h5_fixname() failed.\n";
}
}
if(show_progress) /* 2 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n",
FUNC, mile_stone++, (int)pass);
if(pass && try_core_file_driver) {
if((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) == FAIL) {
pass = FALSE;
failure_mssg = "H5Pcreate(H5P_FILE_ACCESS) failed.\n";
}
else if(H5Pset_fapl_core(fapl_id, MAX_ADDR, FALSE) < 0) {
H5Pclose(fapl_id);
fapl_id = H5P_DEFAULT;
pass = FALSE;
failure_mssg = "H5P_set_fapl_core() failed.\n";
}
else if((fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) < 0) {
core_file_driver_failed = TRUE;
if(verbose)
HDfprintf(stdout, "%s: H5Fcreate() with CFD failed.\n", FUNC);
} else {
saved_fapl_id = fapl_id;
}
}
if(show_progress) /* 3 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n",
FUNC, mile_stone++, (int)pass);
/* if we either aren't using the core file driver, or a create
* with the core file driver failed, try again with a regular file.
* If this fails, we are cooked.
*/
if(pass && fid < 0) {
fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
saved_fid = fid;
if(fid < 0) {
pass = FALSE;
failure_mssg = "H5Fcreate() failed.";
if(verbose)
HDfprintf(stdout, "%s: H5Fcreate() failed.\n", FUNC);
}
}
if(show_progress) /* 4 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n",
FUNC, mile_stone++, (int)pass);
if(pass) {
HDassert(fid >= 0);
saved_fid = fid;
if(H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) {
pass = FALSE;
failure_mssg = "H5Fflush() failed.";
if(verbose)
HDfprintf(stdout, "%s: H5Fflush() failed.\n", FUNC);
} else {
file_ptr = (H5F_t *)H5I_object_verify(fid, H5I_FILE);
if(file_ptr == NULL) {
pass = FALSE;
failure_mssg = "Can't get file_ptr.";
if(verbose)
HDfprintf(stdout, "%s: H5Fflush() failed.\n", FUNC);
}
}
}
if(show_progress) /* 5 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n",
FUNC, mile_stone++, (int)pass);
if(pass) {
/* A bit of fancy footwork here:
*
* The call to H5Fcreate() allocates an instance of H5C_t,
* initializes it, and stores its address in f->shared->cache.
*
* We don't want to use this cache, as it has a bunch of extra
* initialization that may change over time, and in any case
* it will not in general be configured the way we want it.
*
* We used to deal with this problem by storing the file pointer
* in another instance of H5C_t, and then ignoring the original
* version. However, this strategy doesn't work any more, as
* we can't store the file pointer in the instance of H5C_t,
* and we have modified many cache routines to use a file
* pointer to look up the target cache.
*
* Thus we now make note of the address of the instance of
* H5C_t created by the call to H5Fcreate(), set
* file_ptr->shared->cache to NULL, call H5C_create()
* to allocate a new instance of H5C_t for test purposes,
* and store than new instance's address in
* file_ptr->shared->cache.
*
* On shut down, we call H5C_dest on our instance of H5C_t,
* set file_ptr->shared->cache to point to the original
* instance, and then close the file normally.
*/
HDassert(saved_cache == NULL);
saved_cache = file_ptr->shared->cache;
file_ptr->shared->cache = NULL;
cache_ptr = H5C_create(max_cache_size,
min_clean_size,
(NUMBER_OF_ENTRY_TYPES - 1),
types,
check_write_permitted,
TRUE,
NULL,
NULL);
file_ptr->shared->cache = cache_ptr;
}
if(show_progress) /* 6 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n",
FUNC, mile_stone++, (int)pass);
if(pass) {
if(cache_ptr == NULL) {
pass = FALSE;
failure_mssg = "H5C_create() failed.";
if(verbose)
HDfprintf(stdout, "%s: H5C_create() failed.\n", FUNC);
} else if(cache_ptr->magic != H5C__H5C_T_MAGIC) {
pass = FALSE;
failure_mssg = "Bad cache_ptr magic.";
if(verbose)
HDfprintf(stdout, "%s: Bad cache_ptr magic.\n", FUNC);
}
}
if(show_progress) /* 7 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n",
FUNC, mile_stone++, (int)pass);
if(pass) { /* allocate space for test entries */
actual_base_addr = H5MF_alloc(file_ptr, H5FD_MEM_DEFAULT, H5AC_ind_read_dxpl_id,
(hsize_t)(ADDR_SPACE_SIZE + BASE_ADDR));
if(actual_base_addr == HADDR_UNDEF) {
pass = FALSE;
failure_mssg = "H5MF_alloc() failed.";
if(verbose)
HDfprintf(stdout, "%s: H5MF_alloc() failed.\n", FUNC);
} else if(actual_base_addr > BASE_ADDR) {
/* If this happens, must increase BASE_ADDR so that the
* actual_base_addr is <= BASE_ADDR. This should only happen
* if the size of the superblock is increase.
*/
pass = FALSE;
failure_mssg = "actual_base_addr > BASE_ADDR";
if(verbose)
HDfprintf(stdout, "%s: actual_base_addr > BASE_ADDR.\n", FUNC);
}
saved_actual_base_addr = actual_base_addr;
}
if(show_progress) /* 8 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n",
FUNC, mile_stone++, (int)pass);
if(pass) {
/* Need to set this else all cache tests will fail */
cache_ptr->ignore_tags = TRUE;
H5C_stats__reset(cache_ptr);
ret_val = file_ptr;
}
if(show_progress) /* 9 */
HDfprintf(stdout, "%s() - %0d -- pass = %d\n",
FUNC, mile_stone++, (int)pass);
return(ret_val);
} /* setup_cache() */
/*-------------------------------------------------------------------------
* Function: takedown_cache()
*
* Purpose: Flush the specified cache and destroy it. If requested,
* dump stats first. Then close and delete the associate
* file.
*
* If pass is FALSE, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 9/14/07
*
*-------------------------------------------------------------------------
*/
void
takedown_cache(H5F_t * file_ptr,
hbool_t dump_stats,
hbool_t dump_detailed_stats)
{
char filename[512];
if ( file_ptr != NULL ) {
H5C_t * cache_ptr = file_ptr->shared->cache;
if ( dump_stats ) {
H5C_stats(cache_ptr, "test cache", dump_detailed_stats);
}
if ( H5C_prep_for_file_close(file_ptr, H5P_DATASET_XFER_DEFAULT) < 0 ) {
pass = FALSE;
failure_mssg = "unexpected failure of prep for file close.\n";
}
flush_cache(file_ptr, TRUE, FALSE, FALSE);
H5C_dest(file_ptr, H5AC_ind_read_dxpl_id);
if ( saved_cache != NULL ) {
file_ptr->shared->cache = saved_cache;
saved_cache = NULL;
}
}
if ( saved_fapl_id != H5P_DEFAULT ) {
H5Pclose(saved_fapl_id);
saved_fapl_id = H5P_DEFAULT;
}
if ( saved_fid != -1 ) {
if ( H5F_addr_defined(saved_actual_base_addr) ) {
if ( NULL == file_ptr ) {
file_ptr = (H5F_t *)H5I_object_verify(saved_fid, H5I_FILE);
HDassert ( file_ptr );
}
H5MF_xfree(file_ptr, H5FD_MEM_DEFAULT, H5AC_ind_read_dxpl_id, saved_actual_base_addr,
(hsize_t)(ADDR_SPACE_SIZE + BASE_ADDR));
saved_actual_base_addr = HADDR_UNDEF;
}
if ( H5Fclose(saved_fid) < 0 ) {
pass = FALSE;
failure_mssg = "couldn't close test file.";
} else {
saved_fid = -1;
}
if ( ( ! try_core_file_driver ) || ( core_file_driver_failed ) ) {
if ( h5_fixname(FILENAME[0], H5P_DEFAULT, filename, sizeof(filename))
== NULL ) {
pass = FALSE;
failure_mssg = "h5_fixname() failed.\n";
}
if ( HDremove(filename) < 0 ) {
pass = FALSE;
failure_mssg = "couldn't delete test file.";
}
}
}
return;
} /* takedown_cache() */
/*-------------------------------------------------------------------------
* Function: expunge_entry()
*
* Purpose: Expunge the entry indicated by the type and index.
*
*
* Return: void
*
* Programmer: John Mainzer
* 7/6/06
*
* Changes: Added code to set entry_ptr->expunged to TRUE if
* H5C_expunge_entry() returns without error.
*
* JRM -- 8/21/14
*
*-------------------------------------------------------------------------
*/
void
expunge_entry(H5F_t * file_ptr,
int32_t type,
int32_t idx)
{
herr_t result;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
if ( pass ) {
#ifndef NDEBUG
H5C_t * cache_ptr = file_ptr->shared->cache;
HDassert( cache_ptr );
#endif /* NDEBUG */
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->cache_ptr == cache_ptr );
HDassert( ! ( entry_ptr->header.is_protected ) );
HDassert( ! ( entry_ptr->is_protected ) );
HDassert( ! ( entry_ptr->header.is_pinned ) );
HDassert( ! ( entry_ptr->is_pinned ) );
result = H5C_expunge_entry(file_ptr, H5AC_ind_read_dxpl_id,
types[type], entry_ptr->addr, H5C__NO_FLAGS_SET);
if ( result < 0 ) {
pass = FALSE;
failure_mssg = "error in H5C_expunge_entry().";
} else {
entry_ptr->expunged = TRUE;
}
}
return;
} /* expunge_entry() */
/*-------------------------------------------------------------------------
* Function: flush_cache()
*
* Purpose: Flush the specified cache, destroying all entries if
requested. If requested, dump stats first.
*
* Return: void
*
* Programmer: John Mainzer
* 6/23/04
*
*-------------------------------------------------------------------------
*/
void
flush_cache(H5F_t * file_ptr,
hbool_t destroy_entries,
hbool_t dump_stats,
hbool_t dump_detailed_stats)
{
hbool_t verbose = FALSE;
verify_unprotected();
if(pass) {
H5C_t * cache_ptr;
herr_t result = 0;
HDassert(file_ptr);
cache_ptr = file_ptr->shared->cache;
if(destroy_entries)
result = H5C_flush_cache(file_ptr, H5AC_ind_read_dxpl_id,
H5C__FLUSH_INVALIDATE_FLAG);
else
result = H5C_flush_cache(file_ptr, H5AC_ind_read_dxpl_id,
H5C__NO_FLAGS_SET);
if(dump_stats)
H5C_stats(cache_ptr, "test cache", dump_detailed_stats);
if(result < 0) {
pass = FALSE;
failure_mssg = "error in H5C_flush_cache().";
}
else if((destroy_entries) && ((cache_ptr->index_len != 0)
|| (cache_ptr->index_size != 0)
|| (cache_ptr->clean_index_size != 0)
|| (cache_ptr->dirty_index_size != 0))) {
if(verbose) {
HDfprintf(stdout,
"%s: unexpected il/is/cis/dis = %lld/%lld/%lld/%lld.\n",
FUNC,
(long long)(cache_ptr->index_len),
(long long)(cache_ptr->index_size),
(long long)(cache_ptr->clean_index_size),
(long long)(cache_ptr->dirty_index_size));
}
pass = FALSE;
failure_mssg = "non zero index len/sizes after H5C_flush_cache() with invalidate.";
}
}
return;
} /* flush_cache() */
/*-------------------------------------------------------------------------
* Function: cork_entry_type()
*
* Purpose: To "cork" an object:
* --insert the base address of an entry type into
* the cache's list of corked object addresses
*
* Return: void
*
* Programmer: Vailin Choi
* Jan 2014
*
*-------------------------------------------------------------------------
*/
void
cork_entry_type(H5F_t *file_ptr, int32_t type)
{
if(pass) {
H5C_t *cache_ptr;
haddr_t baddrs;
cache_ptr = file_ptr->shared->cache;
HDassert(cache_ptr);
HDassert((0 <= type) && (type < NUMBER_OF_ENTRY_TYPES));
baddrs = base_addrs[type];
if(H5C_cork(cache_ptr, baddrs, H5C__SET_CORK, NULL) < 0) {
pass = FALSE;
failure_mssg = "error in H5C_cork().";
} /* end if */
} /* end if */
} /* cork_entry_type() */
/*-------------------------------------------------------------------------
* Function: uncork_entry_type()
*
* Purpose: To "uncork" an object:
* --insert the base address of an entry type into
* the cache's list of corked object addresses
*
* Return: void
*
* Programmer: Vailin Choi
* Jan 2014
*
*-------------------------------------------------------------------------
*/
void
uncork_entry_type(H5F_t *file_ptr, int32_t type)
{
if(pass) {
H5C_t *cache_ptr;
haddr_t baddrs;
cache_ptr = file_ptr->shared->cache;
HDassert(cache_ptr);
HDassert((0 <= type) && (type < NUMBER_OF_ENTRY_TYPES));
baddrs = base_addrs[type];
if(H5C_cork(cache_ptr, baddrs, H5C__UNCORK, NULL) < 0) {
pass = FALSE;
failure_mssg = "error in H5C_cork().";
} /* end if */
} /* end if */
} /* uncork_entry_type() */
/*-------------------------------------------------------------------------
* Function: insert_entry()
*
* Purpose: Insert the entry indicated by the type and index.
*
* Do nothing if pass is false.
*
* Return: void
*
* Programmer: John Mainzer
* 6/16/04
*
*-------------------------------------------------------------------------
*/
void
insert_entry(H5F_t * file_ptr,
int32_t type,
int32_t idx,
unsigned int flags)
{
H5C_t * cache_ptr;
herr_t result;
hid_t xfer = H5AC_ind_read_dxpl_id;
hbool_t insert_pinned;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
haddr_t baddrs;
if ( pass ) {
cache_ptr = file_ptr->shared->cache;
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
baddrs = base_addrs[type];
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( !(entry_ptr->is_protected) );
HDassert( entry_ptr->flush_dep_npar == 0 );
HDassert( entry_ptr->flush_dep_nchd == 0 );
insert_pinned = (hbool_t)((flags & H5C__PIN_ENTRY_FLAG) != 0 );
entry_ptr->is_dirty = TRUE;
/* Set the base address of the entry type into the property list as tag */
/* Use to cork entries for the object */
if(H5AC_tag(xfer, baddrs, NULL) < 0) {
pass = FALSE;
failure_mssg = "error in H5P_set().";
}
result = H5C_insert_entry(file_ptr, xfer,
types[type], entry_ptr->addr, (void *)entry_ptr, flags);
if ( ( result < 0 ) ||
( entry_ptr->header.is_protected ) ||
( entry_ptr->header.type != types[type] ) ||
( entry_ptr->size != entry_ptr->header.size ) ||
( entry_ptr->addr != entry_ptr->header.addr ) ) {
pass = FALSE;
failure_mssg = "error in H5C_insert().";
#if 0 /* This is useful debugging code. Lets keep it around. */
HDfprintf(stdout, "result = %d\n", (int)result);
HDfprintf(stdout, "entry_ptr->header.is_protected = %d\n",
(int)(entry_ptr->header.is_protected));
HDfprintf(stdout,
"entry_ptr->header.type != types[type] = %d\n",
(int)(entry_ptr->header.type != types[type]));
HDfprintf(stdout,
"entry_ptr->size != entry_ptr->header.size = %d\n",
(int)(entry_ptr->size != entry_ptr->header.size));
HDfprintf(stdout,
"entry_ptr->addr != entry_ptr->header.addr = %d\n",
(int)(entry_ptr->addr != entry_ptr->header.addr));
#endif
} /* end if */
HDassert(entry_ptr->cache_ptr == NULL);
entry_ptr->file_ptr = file_ptr;
entry_ptr->cache_ptr = cache_ptr;
if(insert_pinned)
HDassert(entry_ptr->header.is_pinned);
else
HDassert(!(entry_ptr->header.is_pinned));
entry_ptr->is_pinned = insert_pinned;
entry_ptr->pinned_from_client = insert_pinned;
if(entry_ptr->header.tag_info && entry_ptr->header.tag_info->corked)
entry_ptr->is_corked = TRUE;
HDassert(entry_ptr->header.is_dirty);
HDassert(((entry_ptr->header).type)->id == type);
} /* end if */
return;
} /* insert_entry() */
/*-------------------------------------------------------------------------
* Function: mark_entry_dirty()
*
* Purpose: Mark the specified entry as dirty.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 3/28/06
*
*-------------------------------------------------------------------------
*/
void
mark_entry_dirty(int32_t type,
int32_t idx)
{
herr_t result;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
hbool_t was_dirty;
if ( pass ) {
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->header.is_protected ||
entry_ptr->header.is_pinned );
was_dirty = entry_ptr->is_dirty;
entry_ptr->is_dirty = TRUE;
if(entry_ptr->flush_dep_npar > 0 && !was_dirty)
mark_flush_dep_dirty(entry_ptr);
result = H5C_mark_entry_dirty((void *)entry_ptr);
if ( ( result < 0 ) ||
( !entry_ptr->header.is_protected && !entry_ptr->header.is_pinned ) ||
( entry_ptr->header.is_protected && !entry_ptr->header.dirtied ) ||
( !entry_ptr->header.is_protected && !entry_ptr->header.is_dirty ) ||
( entry_ptr->header.type != types[type] ) ||
( entry_ptr->size != entry_ptr->header.size ) ||
( entry_ptr->addr != entry_ptr->header.addr ) ) {
pass = FALSE;
failure_mssg = "error in H5C_mark_entry_dirty().";
}
HDassert( ((entry_ptr->header).type)->id == type );
}
return;
} /* mark_entry_dirty() */
/*-------------------------------------------------------------------------
* Function: move_entry()
*
* Purpose: Move the entry indicated by the type and index to its
* main or alternate address as indicated. If the entry is
* already at the desired entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 6/21/04
*
*-------------------------------------------------------------------------
*/
void
move_entry(H5C_t * cache_ptr,
int32_t type,
int32_t idx,
hbool_t main_addr)
{
herr_t result;
hbool_t done = TRUE; /* will set to FALSE if we have work to do */
haddr_t old_addr = HADDR_UNDEF;
haddr_t new_addr = HADDR_UNDEF;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
if ( pass ) {
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->cache_ptr == cache_ptr );
HDassert( !entry_ptr->is_read_only );
HDassert( !entry_ptr->header.is_read_only );
if ( entry_ptr->at_main_addr && !main_addr ) {
/* move to alt addr */
HDassert( entry_ptr->addr == entry_ptr->main_addr );
done = FALSE;
old_addr = entry_ptr->addr;
new_addr = entry_ptr->alt_addr;
} else if ( !(entry_ptr->at_main_addr) && main_addr ) {
/* move to main addr */
HDassert( entry_ptr->addr == entry_ptr->alt_addr );
done = FALSE;
old_addr = entry_ptr->addr;
new_addr = entry_ptr->main_addr;
}
if ( ! done ) {
hbool_t was_dirty = entry_ptr->is_dirty;
entry_ptr->is_dirty = TRUE;
if(entry_ptr->flush_dep_npar > 0 && !was_dirty)
mark_flush_dep_dirty(entry_ptr);
entry_ptr->action = TEST_ENTRY_ACTION_MOVE;
result = H5C_move_entry(cache_ptr, types[type], old_addr, new_addr);
entry_ptr->action = TEST_ENTRY_ACTION_NUL;
}
if ( ! done ) {
if ( ( result < 0 ) ||
( ( ! ( entry_ptr->header.destroy_in_progress ) ) &&
( entry_ptr->header.addr != new_addr ) ) ) {
pass = FALSE;
failure_mssg = "error in H5C_move_entry().";
} else {
entry_ptr->addr = new_addr;
entry_ptr->at_main_addr = main_addr;
}
}
HDassert( ((entry_ptr->header).type)->id == type );
HDassert( entry_ptr->header.is_dirty );
HDassert( entry_ptr->is_dirty );
}
return;
} /* move_entry() */
/*-------------------------------------------------------------------------
* Function: protect_entry()
*
* Purpose: Protect the entry indicated by the type and index.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/11/04
*
*-------------------------------------------------------------------------
*/
void
protect_entry(H5F_t * file_ptr, int32_t type, int32_t idx)
{
H5C_t * cache_ptr;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
haddr_t baddrs;
hid_t xfer = H5AC_ind_read_dxpl_id;
H5C_cache_entry_t * cache_entry_ptr;
if(pass) {
cache_ptr = file_ptr->shared->cache;
HDassert(cache_ptr);
HDassert((0 <= type) && (type < NUMBER_OF_ENTRY_TYPES));
HDassert((0 <= idx) && (idx <= max_indices[type]));
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
baddrs = base_addrs[type];
HDassert(entry_ptr->index == idx);
HDassert(entry_ptr->type == type);
HDassert(entry_ptr == entry_ptr->self);
HDassert(!(entry_ptr->is_protected));
/* Set the base address of the entry type into the property list as tag */
/* Use to cork entries for the object */
if(H5AC_tag(xfer, baddrs, NULL) < 0) {
pass = FALSE;
failure_mssg = "error in H5P_set().";
} /* end if */
cache_entry_ptr = (H5C_cache_entry_t *)H5C_protect(file_ptr, xfer,
types[type], entry_ptr->addr, &entry_ptr->addr,
H5C__NO_FLAGS_SET);
if ( ( cache_entry_ptr != (void *)entry_ptr ) ||
( !(entry_ptr->header.is_protected) ) ||
( entry_ptr->header.type != types[type] ) ||
( entry_ptr->size != entry_ptr->header.size ) ||
( entry_ptr->addr != entry_ptr->header.addr ) ) {
#if 0
/* I've written the following debugging code several times
* now. Lets keep it around so I don't have to write it
* again.
* - JRM
*/
HDfprintf(stdout, "( cache_entry_ptr != (void *)entry_ptr ) = %d\n",
(int)( cache_entry_ptr != (void *)entry_ptr ));
HDfprintf(stdout, "cache_entry_ptr = 0x%lx, entry_ptr = 0x%lx\n",
(long)cache_entry_ptr, (long)entry_ptr);
HDfprintf(stdout, "entry_ptr->header.is_protected = %d\n",
(int)(entry_ptr->header.is_protected));
HDfprintf(stdout,
"( entry_ptr->header.type != types[type] ) = %d\n",
(int)( entry_ptr->header.type != types[type] ));
HDfprintf(stdout,
"entry_ptr->size = %d, entry_ptr->header.size = %d\n",
(int)(entry_ptr->size), (int)(entry_ptr->header.size));
HDfprintf(stdout,
"entry_ptr->addr = %d, entry_ptr->header.addr = %d\n",
(int)(entry_ptr->addr), (int)(entry_ptr->header.addr));
HDfprintf(stdout,
"entry_ptr->verify_ct = %d, entry_ptr->max_verify_ct = %d\n",
entry_ptr->verify_ct, entry_ptr->max_verify_ct);
H5Eprint2(H5E_DEFAULT, stdout);
#endif
pass = FALSE;
failure_mssg = "error in H5C_protect().";
} /* end if */
else {
HDassert( ( entry_ptr->cache_ptr == NULL ) ||
( entry_ptr->cache_ptr == cache_ptr ) );
entry_ptr->cache_ptr = cache_ptr;
entry_ptr->file_ptr = file_ptr;
entry_ptr->is_protected = TRUE;
} /* end else */
if(entry_ptr->header.tag_info && entry_ptr->header.tag_info->corked)
entry_ptr->is_corked = TRUE;
HDassert(((entry_ptr->header).type)->id == type);
} /* end if */
} /* protect_entry() */
/*-------------------------------------------------------------------------
* Function: protect_entry_ro()
*
* Purpose: Do a read only protect the entry indicated by the type
* and index.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 4/1/07
*
*-------------------------------------------------------------------------
*/
void
protect_entry_ro(H5F_t * file_ptr,
int32_t type,
int32_t idx)
{
H5C_t *cache_ptr;
test_entry_t *base_addr;
test_entry_t *entry_ptr;
H5C_cache_entry_t * cache_entry_ptr;
if ( pass ) {
cache_ptr = file_ptr->shared->cache;
HDassert( cache_ptr );
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( ( ! ( entry_ptr->is_protected ) ) ||
( ( entry_ptr->is_read_only ) &&
( entry_ptr->ro_ref_count > 0 ) ) );
cache_entry_ptr = (H5C_cache_entry_t *)H5C_protect(file_ptr, H5AC_ind_read_dxpl_id,
types[type], entry_ptr->addr, &entry_ptr->addr, H5C__READ_ONLY_FLAG);
if ( ( cache_entry_ptr != (void *)entry_ptr ) ||
( !(entry_ptr->header.is_protected) ) ||
( !(entry_ptr->header.is_read_only) ) ||
( entry_ptr->header.ro_ref_count <= 0 ) ||
( entry_ptr->header.type != types[type] ) ||
( entry_ptr->size != entry_ptr->header.size ) ||
( entry_ptr->addr != entry_ptr->header.addr ) ) {
pass = FALSE;
failure_mssg = "error in read only H5C_protect().";
} else {
HDassert( ( entry_ptr->cache_ptr == NULL ) ||
( entry_ptr->cache_ptr == cache_ptr ) );
entry_ptr->cache_ptr = cache_ptr;
entry_ptr->file_ptr = file_ptr;
entry_ptr->is_protected = TRUE;
entry_ptr->is_read_only = TRUE;
entry_ptr->ro_ref_count++;
}
HDassert( ((entry_ptr->header).type)->id == type );
}
return;
} /* protect_entry_ro() */
/*-------------------------------------------------------------------------
* Function: pin_entry()
*
* Purpose: Pin the entry indicated by the type and index.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: Quincey Koziol
* 3/17/09
*
*-------------------------------------------------------------------------
*/
void
pin_entry(int32_t type,
int32_t idx)
{
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
if ( pass ) {
test_entry_t * base_addr;
test_entry_t * entry_ptr;
herr_t result;
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->is_protected );
HDassert( !(entry_ptr->pinned_from_client) );
result = H5C_pin_protected_entry((void *)entry_ptr);
if ( result < 0 ) {
pass = FALSE;
failure_mssg = "H5C_pin_protected_entry() reports failure.";
} else if ( ! ( entry_ptr->header.is_pinned ) ) {
pass = FALSE;
failure_mssg = "entry not pinned when it should be.";
} else {
entry_ptr->pinned_from_client = TRUE;
entry_ptr->is_pinned = TRUE;
}
} /* end if */
return;
} /* pin_entry() */
/*-------------------------------------------------------------------------
* Function: unpin_entry()
*
* Purpose: Unpin the entry indicated by the type and index.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 3/28/06
*
*-------------------------------------------------------------------------
*/
void
unpin_entry(int32_t type,
int32_t idx)
{
herr_t result;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
if ( pass ) {
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->header.is_pinned );
HDassert( entry_ptr->header.pinned_from_client );
HDassert( entry_ptr->is_pinned );
HDassert( entry_ptr->pinned_from_client );
result = H5C_unpin_entry(entry_ptr);
if ( ( result < 0 ) ||
( entry_ptr->header.pinned_from_client ) ||
( entry_ptr->header.is_pinned && !entry_ptr->header.pinned_from_cache ) ||
( entry_ptr->header.type != types[type] ) ||
( entry_ptr->size != entry_ptr->header.size ) ||
( entry_ptr->addr != entry_ptr->header.addr ) ) {
pass = FALSE;
failure_mssg = "error in H5C_unpin().";
}
entry_ptr->pinned_from_client = FALSE;
entry_ptr->is_pinned = entry_ptr->pinned_from_cache;
HDassert( ((entry_ptr->header).type)->id == type );
}
return;
} /* unpin_entry() */
/*-------------------------------------------------------------------------
* Function: unprotect_entry()
*
* Purpose: Unprotect the entry indicated by the type and index.
*
* Do nothing if pass is FALSE on entry.
*
* Return: void
*
* Programmer: John Mainzer
* 6/12/04
*
*-------------------------------------------------------------------------
*/
void
unprotect_entry(H5F_t * file_ptr,
int32_t type,
int32_t idx,
unsigned int flags)
{
herr_t result;
hbool_t pin_flag_set;
hbool_t unpin_flag_set;
test_entry_t * base_addr;
test_entry_t * entry_ptr;
if ( pass ) {
HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
base_addr = entries[type];
entry_ptr = &(base_addr[idx]);
HDassert( entry_ptr->index == idx );
HDassert( entry_ptr->type == type );
HDassert( entry_ptr == entry_ptr->self );
HDassert( entry_ptr->header.is_protected );
HDassert( entry_ptr->is_protected );
pin_flag_set = (hbool_t)((flags & H5C__PIN_ENTRY_FLAG) != 0);
unpin_flag_set = (hbool_t)((flags & H5C__UNPIN_ENTRY_FLAG) != 0);
HDassert ( ! ( pin_flag_set && unpin_flag_set ) );
HDassert ( ( ! pin_flag_set ) || ( ! (entry_ptr->is_pinned) ) );
HDassert ( ( ! unpin_flag_set ) || ( entry_ptr->is_pinned ) );
if(flags & H5C__DIRTIED_FLAG) {
hbool_t was_dirty = entry_ptr->is_dirty;
entry_ptr->is_dirty = TRUE;
if(entry_ptr->flush_dep_npar > 0 && !was_dirty)
mark_flush_dep_dirty(entry_ptr);
} /* end if */
result = H5C_unprotect(file_ptr, H5AC_ind_read_dxpl_id,
entry_ptr->addr, (void *)entry_ptr, flags);
if ( ( result < 0 ) ||
( ( entry_ptr->header.is_protected ) &&
( ( ! ( entry_ptr->is_read_only ) ) ||
( entry_ptr->ro_ref_count <= 0 ) ) ) ||
( entry_ptr->header.type != types[type] ) ||
( entry_ptr->size != entry_ptr->header.size ) ||
( entry_ptr->addr != entry_ptr->header.addr ) ) {
pass = FALSE;
failure_mssg = "error in H5C_unprotect().";
}
else
{
if ( entry_ptr->ro_ref_count > 1 ) {
entry_ptr->ro_ref_count--;
} else if ( entry_ptr->ro_ref_count == 1 ) {
entry_ptr->is_protected = FALSE;
entry_ptr->is_read_only = FALSE;
entry_ptr->ro_ref_count = 0;
} else {
entry_ptr->is_protected = FALSE;
}
if ( pin_flag_set ) {
HDassert(entry_ptr->header.is_pinned);
entry_ptr->pinned_from_client = TRUE;
entry_ptr->is_pinned = TRUE;
} else if ( unpin_flag_set ) {
HDassert(entry_ptr->header.is_pinned == entry_ptr->header.pinned_from_cache);
entry_ptr->pinned_from_client = FALSE;
entry_ptr->is_pinned = entry_ptr->pinned_from_cache;
}
}
HDassert( ((entry_ptr->header).type)->id == type );
if ( ( flags & H5C__DIRTIED_FLAG ) != 0
&& ( (flags & H5C__DELETED_FLAG) == 0 ) ) {
HDassert( entry_ptr->header.is_dirty );
HDassert( entry_ptr->is_dirty );
}
HDassert( entry_ptr->header.is_protected == entry_ptr->is_protected );
HDassert( entry_ptr->header.is_read_only == entry_ptr->is_read_only );
HDassert( entry_ptr->header.ro_ref_count == entry_ptr->ro_ref_count );
}
return;
} /* unprotect_entry() */
/*-------------------------------------------------------------------------
* Function: row_major_scan_forward()
*
* Purpose: Do a sequence of inserts, protects, unprotects, moves,
* destroys while scanning through the set of entries. If
* pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 6/12/04
*
*-------------------------------------------------------------------------
*/
void
row_major_scan_forward(H5F_t * file_ptr,
int32_t max_index,
int32_t lag,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts,
hbool_t do_moves,
hbool_t move_to_main_addr,
hbool_t do_destroys,
hbool_t do_mult_ro_protects,
int dirty_destroys,
int dirty_unprotects)
{
H5C_t * cache_ptr = NULL;
int32_t type = 0;
int32_t idx;
int32_t local_max_index;
if(verbose)
HDfprintf(stdout, "%s(): entering.\n", FUNC);
if(pass) {
cache_ptr = file_ptr->shared->cache;
HDassert(cache_ptr != NULL);
HDassert(lag >= 10);
if(reset_stats)
H5C_stats__reset(cache_ptr);
} /* end if */
while(pass && type < NUMBER_OF_ENTRY_TYPES) {
idx = -lag;
local_max_index = MIN(max_index, max_indices[type]);
while(pass && idx <= (local_max_index + lag)) {
int32_t tmp_idx;
if(verbose)
HDfprintf(stdout, "%d:%d: ", type, idx);
tmp_idx = idx + lag;
if(pass && do_inserts && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
((tmp_idx % 2) == 0 ) && !entry_in_cache(cache_ptr, type, tmp_idx)) {
if(verbose)
HDfprintf(stdout, "1(i, %d, %d) ", type, tmp_idx);
insert_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
tmp_idx--;
if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
(tmp_idx % 3) == 0) {
if(verbose)
HDfprintf(stdout, "2(p, %d, %d) ", type, tmp_idx);
protect_entry(file_ptr, type, tmp_idx);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
tmp_idx--;
if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
(tmp_idx % 3) == 0) {
if(verbose)
HDfprintf(stdout, "3(u, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
/* (don't decrement tmp_idx) */
if(pass && do_moves && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
(tmp_idx % 3) == 0) {
if(verbose)
HDfprintf(stdout, "4(r, %d, %d, %d) ", type, tmp_idx, (int)move_to_main_addr);
move_entry(cache_ptr, type, tmp_idx, move_to_main_addr);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
tmp_idx--;
if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
(tmp_idx % 5) == 0) {
if(verbose)
HDfprintf(stdout, "5(p, %d, %d) ", type, tmp_idx);
protect_entry(file_ptr, type, tmp_idx);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
tmp_idx -= 2;
if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
(tmp_idx % 5) == 0) {
if(verbose)
HDfprintf(stdout, "6(u, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
if(do_mult_ro_protects) {
/* (don't decrement tmp_idx) */
if(pass && (tmp_idx >= 0) && (tmp_idx < local_max_index) &&
(tmp_idx % 9) == 0) {
if(verbose)
HDfprintf(stdout, "7(p-ro, %d, %d) ", type, tmp_idx);
protect_entry_ro(file_ptr, type, tmp_idx);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
tmp_idx--;
if(pass && (tmp_idx >= 0) && (tmp_idx < local_max_index) &&
(tmp_idx % 11) == 0) {
if(verbose)
HDfprintf(stdout, "8(p-ro, %d, %d) ", type, tmp_idx);
protect_entry_ro(file_ptr, type, tmp_idx);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
tmp_idx--;
if(pass && (tmp_idx >= 0) && (tmp_idx < local_max_index) &&
(tmp_idx % 13) == 0) {
if(verbose)
HDfprintf(stdout, "9(p-ro, %d, %d) ", type, tmp_idx);
protect_entry_ro(file_ptr, type, tmp_idx);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
/* (don't decrement tmp_idx) */
if(pass && (tmp_idx >= 0) && (tmp_idx < local_max_index) &&
(tmp_idx % 9) == 0) {
if(verbose)
HDfprintf(stdout, "10(u-ro, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
tmp_idx--;
if(pass && (tmp_idx >= 0) && (tmp_idx < local_max_index) &&
(tmp_idx % 11) == 0) {
if(verbose)
HDfprintf(stdout, "11(u-ro, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
tmp_idx--;
if(pass && (tmp_idx >= 0) && (tmp_idx < local_max_index) &&
(tmp_idx % 13) == 0) {
if(verbose)
HDfprintf(stdout, "12(u-ro, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
} /* if ( do_mult_ro_protects ) */
if(pass && (idx >= 0) && (idx <= local_max_index)) {
if(verbose)
HDfprintf(stdout, "13(p, %d, %d) ", type, idx);
protect_entry(file_ptr, type, idx);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
tmp_idx = idx - lag + 2;
if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
(tmp_idx % 7) == 0) {
if(verbose)
HDfprintf(stdout, "14(u, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
tmp_idx--;
if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
(tmp_idx % 7) == 0) {
if(verbose)
HDfprintf(stdout, "15(p, %d, %d) ", type, tmp_idx);
protect_entry(file_ptr, type, tmp_idx);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
if(do_destroys) {
tmp_idx = idx - lag;
if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index)) {
switch(tmp_idx % 4) {
case 0: /* we just did an insert */
if(verbose)
HDfprintf(stdout, "16(u, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
break;
case 1:
if((entries[type])[tmp_idx].is_dirty) {
if(verbose)
HDfprintf(stdout, "17(u, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
else {
if(verbose)
HDfprintf(stdout, "18(u, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end else */
break;
case 2: /* we just did an insert */
if(verbose)
HDfprintf(stdout, "19(u-del, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__DELETED_FLAG);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
break;
case 3:
if((entries[type])[tmp_idx].is_dirty) {
if(verbose)
HDfprintf(stdout, "20(u-del, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__DELETED_FLAG);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
else {
if(verbose)
HDfprintf(stdout, "21(u-del, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, (dirty_destroys ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET) | H5C__DELETED_FLAG);
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end else */
break;
default:
HDassert(0); /* this can't happen... */
break;
} /* end switch */
} /* end if */
} /* end if */
else {
tmp_idx = idx - lag;
if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index)) {
if(verbose)
HDfprintf(stdout, "22(u, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
} /* end if */
} /* end elsef */
if(verbose)
HDfprintf(stdout, "\n");
idx++;
} /* end while */
type++;
} /* end while */
if(pass && display_stats)
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
} /* row_major_scan_forward() */
/*-------------------------------------------------------------------------
* Function: hl_row_major_scan_forward()
*
* Purpose: Do a high locality sequence of inserts, protects, and
* unprotects while scanning through the set of entries.
* If pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 10/21/04
*
*-------------------------------------------------------------------------
*/
void
hl_row_major_scan_forward(H5F_t * file_ptr,
int32_t max_index,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts)
{
H5C_t * cache_ptr = NULL;
int32_t type = 0;
int32_t idx;
int32_t i;
int32_t lag = 100;
int32_t local_max_index;
if ( verbose )
HDfprintf(stdout, "%s(): entering.\n", FUNC);
if ( pass ) {
cache_ptr = file_ptr->shared->cache;
HDassert( cache_ptr != NULL );
HDassert( lag > 5 );
HDassert( max_index >= 200 );
HDassert( max_index <= MAX_ENTRIES );
if ( reset_stats ) {
H5C_stats__reset(cache_ptr);
}
}
while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) )
{
idx = -lag;
local_max_index = MIN(max_index, max_indices[type]);
while ( ( pass ) && ( idx <= (local_max_index + lag) ) )
{
if ( ( pass ) && ( do_inserts ) && ( (idx + lag) >= 0 ) &&
( (idx + lag) <= max_indices[type] ) &&
( ((idx + lag) % 2) == 0 ) &&
( ! entry_in_cache(cache_ptr, type, (idx + lag)) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, (idx + lag));
insert_entry(file_ptr, type, (idx + lag), H5C__NO_FLAGS_SET);
}
i = idx;
while ( ( pass ) && ( i >= idx - lag ) && ( i >= 0 ) )
{
if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, i);
protect_entry(file_ptr, type, i);
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, i);
unprotect_entry(file_ptr, type, i, H5C__NO_FLAGS_SET);
}
i--;
}
if ( verbose )
HDfprintf(stdout, "\n");
idx++;
}
type++;
}
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
return;
} /* hl_row_major_scan_forward() */
/*-------------------------------------------------------------------------
* Function: row_major_scan_backward()
*
* Purpose: Do a sequence of inserts, protects, unprotects, moves,
* destroys while scanning backwards through the set of
* entries. If pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 6/12/04
*
*-------------------------------------------------------------------------
*/
void
row_major_scan_backward(H5F_t * file_ptr,
int32_t max_index,
int32_t lag,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts,
hbool_t do_moves,
hbool_t move_to_main_addr,
hbool_t do_destroys,
hbool_t do_mult_ro_protects,
int dirty_destroys,
int dirty_unprotects)
{
H5C_t * cache_ptr = NULL;
int32_t type = NUMBER_OF_ENTRY_TYPES - 1;
int32_t idx;
int32_t local_max_index;
if ( verbose )
HDfprintf(stdout, "%s(): Entering.\n", FUNC);
if ( pass ) {
cache_ptr = file_ptr->shared->cache;
HDassert( cache_ptr != NULL );
HDassert( lag >= 10 );
if ( reset_stats ) {
H5C_stats__reset(cache_ptr);
}
}
while ( ( pass ) && ( type >= 0 ) )
{
local_max_index = MIN(max_index, max_indices[type]);
idx = local_max_index + lag;
while ( ( pass ) && ( idx >= -lag ) )
{
int32_t tmp_idx;
tmp_idx = idx - lag;
if ( ( pass ) && ( do_inserts ) && ( tmp_idx >= 0 ) &&
( tmp_idx <= local_max_index ) &&
( (tmp_idx % 2) == 1 ) &&
( ! entry_in_cache(cache_ptr, type, tmp_idx) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, tmp_idx);
insert_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
}
tmp_idx++;
if ( ( pass ) && ( tmp_idx >= 0 ) &&
( tmp_idx <= local_max_index ) &&
( ( tmp_idx % 3 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, tmp_idx);
protect_entry(file_ptr, type, tmp_idx);
}
tmp_idx++;
if ( ( pass ) && ( tmp_idx >= 0 ) &&
( tmp_idx <= local_max_index ) &&
( ( tmp_idx % 3 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
}
/* (don't increment tmp_idx) */
if ( ( pass ) && ( do_moves ) && ( tmp_idx >= 0 ) &&
( tmp_idx <= local_max_index ) &&
( ( tmp_idx % 3 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(r, %d, %d, %d) ",
type, tmp_idx, (int)move_to_main_addr);
move_entry(cache_ptr, type, tmp_idx, move_to_main_addr);
}
tmp_idx++;
if ( ( pass ) && ( tmp_idx >= 0 ) &&
( tmp_idx <= local_max_index ) &&
( ( tmp_idx % 5 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, tmp_idx);
protect_entry(file_ptr, type, (idx - lag + 3));
}
tmp_idx += 2;
if ( ( pass ) && ( tmp_idx >= 0 ) &&
( tmp_idx <= local_max_index ) &&
( ( tmp_idx % 5 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
}
/* (don't increment tmp_idx) */
if ( do_mult_ro_protects )
{
if ( ( pass ) && ( tmp_idx >= 0 ) &&
( tmp_idx < local_max_index ) &&
( tmp_idx % 9 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p-ro, %d, %d) ", type, tmp_idx);
protect_entry_ro(file_ptr, type, tmp_idx);
}
tmp_idx++;
if ( ( pass ) && ( tmp_idx >= 0 ) &&
( tmp_idx < local_max_index ) &&
( tmp_idx % 11 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p-ro, %d, %d) ", type, tmp_idx);
protect_entry_ro(file_ptr, type, tmp_idx);
}
tmp_idx++;
if ( ( pass ) && ( tmp_idx >= 0 ) &&
( tmp_idx < local_max_index ) &&
( tmp_idx % 13 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p-ro, %d, %d) ", type, tmp_idx);
protect_entry_ro(file_ptr, type, tmp_idx);
}
/* (don't increment tmp_idx) */
if ( ( pass ) && ( tmp_idx >= 0 ) &&
( tmp_idx < local_max_index ) &&
( tmp_idx % 9 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u-ro, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
}
tmp_idx++;
if ( ( pass ) && ( tmp_idx >= 0 ) &&
( tmp_idx < local_max_index ) &&
( tmp_idx % 11 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u-ro, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
}
tmp_idx++;
if ( ( pass ) && ( tmp_idx >= 0 ) &&
( tmp_idx < local_max_index ) &&
( tmp_idx % 13 == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u-ro, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
}
} /* if ( do_mult_ro_protects ) */
if ( ( pass ) && ( idx >= 0 ) && ( idx <= local_max_index ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, idx);
protect_entry(file_ptr, type, idx);
}
tmp_idx = idx + lag - 2;
if ( ( pass ) && ( tmp_idx >= 0 ) &&
( tmp_idx <= local_max_index ) &&
( ( tmp_idx % 7 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, tmp_idx);
unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
}
tmp_idx++;
if ( ( pass ) && ( tmp_idx >= 0 ) &&
( tmp_idx <= local_max_index ) &&
( ( tmp_idx % 7 ) == 0 ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, tmp_idx);
protect_entry(file_ptr, type, tmp_idx);
}
if ( do_destroys ) {
if ( ( pass ) && ( (idx + lag) >= 0 ) &&
( ( idx + lag) <= local_max_index ) ) {
switch ( (idx + lag) % 4 ) {
case 0:
if ( (entries[type])[idx+lag].is_dirty ) {
unprotect_entry(file_ptr, type, idx + lag, H5C__NO_FLAGS_SET);
} else {
unprotect_entry(file_ptr, type, idx + lag,
(dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
}
break;
case 1: /* we just did an insert */
unprotect_entry(file_ptr, type, idx + lag, H5C__NO_FLAGS_SET);
break;
case 2:
if ( (entries[type])[idx + lag].is_dirty ) {
unprotect_entry(file_ptr, type, idx + lag, H5C__DELETED_FLAG);
} else {
unprotect_entry(file_ptr, type, idx + lag,
(dirty_destroys ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET)
| H5C__DELETED_FLAG);
}
break;
case 3: /* we just did an insert */
unprotect_entry(file_ptr, type, idx + lag, H5C__DELETED_FLAG);
break;
default:
HDassert(0); /* this can't happen... */
break;
}
}
} else {
if ( ( pass ) && ( (idx + lag) >= 0 ) &&
( ( idx + lag) <= local_max_index ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, (idx + lag));
unprotect_entry(file_ptr, type, idx + lag,
(dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
}
}
if ( verbose )
HDfprintf(stdout, "\n");
idx--;
}
type--;
}
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
return;
} /* row_major_scan_backward() */
/*-------------------------------------------------------------------------
* Function: hl_row_major_scan_backward()
*
* Purpose: Do a high locality sequence of inserts, protects, and
* unprotects while scanning through the set of entries.
* If pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 10/21/04
*
*-------------------------------------------------------------------------
*/
void
hl_row_major_scan_backward(H5F_t * file_ptr,
int32_t max_index,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts)
{
H5C_t * cache_ptr = NULL;
int32_t type = NUMBER_OF_ENTRY_TYPES - 1;
int32_t idx;
int32_t i;
int32_t lag = 100;
int32_t local_max_index;
if ( verbose )
HDfprintf(stdout, "%s(): entering.\n", FUNC);
if ( pass ) {
cache_ptr = file_ptr->shared->cache;
HDassert( cache_ptr != NULL );
HDassert( lag > 5 );
HDassert( max_index >= 200 );
HDassert( max_index <= MAX_ENTRIES );
if ( reset_stats ) {
H5C_stats__reset(cache_ptr);
}
}
while ( ( pass ) && ( type >= 0 ) )
{
idx = max_indices[type] + lag;
local_max_index = MIN(max_index, max_indices[type]);
while ( ( pass ) && ( idx >= -lag ) )
{
if ( ( pass ) && ( do_inserts ) && ( (idx + lag) >= 0 ) &&
( (idx + lag) <= local_max_index ) &&
( ((idx + lag) % 2) == 0 ) &&
( ! entry_in_cache(cache_ptr, type, (idx + lag)) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, (idx + lag));
insert_entry(file_ptr, type, (idx + lag), H5C__NO_FLAGS_SET);
}
i = idx;
while ( ( pass ) && ( i >= idx - lag ) && ( i >= 0 ) )
{
if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, i);
protect_entry(file_ptr, type, i);
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, i);
unprotect_entry(file_ptr, type, i, H5C__NO_FLAGS_SET);
}
i--;
}
if ( verbose )
HDfprintf(stdout, "\n");
idx--;
}
type--;
}
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
return;
} /* hl_row_major_scan_backward() */
/*-------------------------------------------------------------------------
* Function: col_major_scan_forward()
*
* Purpose: Do a sequence of inserts, protects, and unprotects
* while scanning through the set of entries. If
* pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 6/23/04
*
*-------------------------------------------------------------------------
*/
void
col_major_scan_forward(H5F_t * file_ptr,
int32_t max_index,
int32_t lag,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts,
int dirty_unprotects)
{
H5C_t * cache_ptr = NULL;
int32_t type = 0;
int32_t idx;
int32_t local_max_index[NUMBER_OF_ENTRY_TYPES];
if ( verbose )
HDfprintf(stdout, "%s: entering.\n", FUNC);
if ( pass ) {
int i;
cache_ptr = file_ptr->shared->cache;
for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
local_max_index[i] = MIN(max_index, max_indices[i]);
HDassert( lag > 5 );
if ( reset_stats ) {
H5C_stats__reset(cache_ptr);
}
}
idx = -lag;
while ( ( pass ) && ( (idx - lag) <= MAX_ENTRIES ) )
{
type = 0;
while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) )
{
if ( ( pass ) && ( do_inserts ) && ( (idx + lag) >= 0 ) &&
( (idx + lag) <= local_max_index[type] ) &&
( ((idx + lag) % 3) == 0 ) &&
( ! entry_in_cache(cache_ptr, type, (idx + lag)) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, (idx + lag));
insert_entry(file_ptr, type, (idx + lag), H5C__NO_FLAGS_SET);
}
if ( ( pass ) &&
( idx >= 0 ) &&
( idx <= local_max_index[type] ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, idx);
protect_entry(file_ptr, type, idx);
}
if ( ( pass ) && ( (idx - lag) >= 0 ) &&
( (idx - lag) <= local_max_index[type] ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, (idx - lag));
unprotect_entry(file_ptr, type, idx - lag,
(dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
}
if ( verbose )
HDfprintf(stdout, "\n");
type++;
}
idx++;
}
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
return;
} /* col_major_scan_forward() */
/*-------------------------------------------------------------------------
* Function: hl_col_major_scan_forward()
*
* Purpose: Do a high locality sequence of inserts, protects, and
* unprotects while scanning through the set of entries. If
* pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 19/25/04
*
*-------------------------------------------------------------------------
*/
void
hl_col_major_scan_forward(H5F_t * file_ptr,
int32_t max_index,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts,
int dirty_unprotects)
{
H5C_t * cache_ptr = NULL;
int32_t type = 0;
int32_t idx;
int32_t lag = 200;
int32_t i;
int32_t local_max_index;
if ( verbose )
HDfprintf(stdout, "%s: entering.\n", FUNC);
if ( pass ) {
cache_ptr = file_ptr->shared->cache;
HDassert( cache_ptr != NULL );
HDassert( lag > 5 );
HDassert( max_index >= 500 );
HDassert( max_index <= MAX_ENTRIES );
if ( reset_stats ) {
H5C_stats__reset(cache_ptr);
}
}
idx = 0;
local_max_index = MIN(max_index, MAX_ENTRIES);
while ( ( pass ) && ( idx <= local_max_index ) )
{
i = idx;
while ( ( pass ) && ( i >= 0 ) && ( i >= (idx - lag) ) ) {
type = 0;
while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) )
{
if ( ( pass ) && ( do_inserts ) && ( i == idx ) &&
( i <= local_max_index ) &&
( (i % 3) == 0 ) &&
( ! entry_in_cache(cache_ptr, type, i) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, i);
insert_entry(file_ptr, type, i, H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, i);
protect_entry(file_ptr, type, i);
}
if ( ( pass ) && ( i >= 0 ) &&
( i <= local_max_index ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, i);
unprotect_entry(file_ptr, type, i,
(dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
}
if ( verbose )
HDfprintf(stdout, "\n");
type++;
}
i--;
}
idx++;
}
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
return;
} /* hl_col_major_scan_forward() */
/*-------------------------------------------------------------------------
* Function: col_major_scan_backward()
*
* Purpose: Do a sequence of inserts, protects, and unprotects
* while scanning backwards through the set of
* entries. If pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 6/23/04
*
*-------------------------------------------------------------------------
*/
void
col_major_scan_backward(H5F_t * file_ptr,
int32_t max_index,
int32_t lag,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts,
int dirty_unprotects)
{
H5C_t * cache_ptr = NULL;
int mile_stone = 1;
int32_t type;
int32_t idx;
int32_t local_max_index[NUMBER_OF_ENTRY_TYPES];
if ( verbose )
HDfprintf(stdout, "%s: entering.\n", FUNC);
if ( pass ) {
int i;
cache_ptr = file_ptr->shared->cache;
HDassert( cache_ptr != NULL );
for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
local_max_index[i] = MIN(max_index, max_indices[i]);
HDassert( lag > 5 );
if ( reset_stats ) {
H5C_stats__reset(cache_ptr);
}
}
idx = local_max_index[NUMBER_OF_ENTRY_TYPES - 1] + lag;
if ( verbose ) /* 1 */
HDfprintf(stdout, "%s: point %d.\n", FUNC, mile_stone++);
while ( ( pass ) && ( (idx + lag) >= 0 ) )
{
type = NUMBER_OF_ENTRY_TYPES - 1;
while ( ( pass ) && ( type >= 0 ) )
{
if ( ( pass ) && ( do_inserts) && ( (idx - lag) >= 0 ) &&
( (idx - lag) <= local_max_index[type] ) &&
( ((idx - lag) % 3) == 0 ) &&
( ! entry_in_cache(cache_ptr, type, (idx - lag)) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, (idx - lag));
insert_entry(file_ptr, type, (idx - lag), H5C__NO_FLAGS_SET);
}
if ( ( pass ) &&
( idx >= 0 ) &&
( idx <= local_max_index[type] ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, idx);
protect_entry(file_ptr, type, idx);
}
if ( ( pass ) && ( (idx + lag) >= 0 ) &&
( (idx + lag) <= local_max_index[type] ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, (idx + lag));
unprotect_entry(file_ptr, type, idx + lag,
(dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
}
if ( verbose )
HDfprintf(stdout, "\n");
type--;
}
idx--;
}
if ( verbose ) /* 2 */
HDfprintf(stdout, "%s: point %d.\n", FUNC, mile_stone++);
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
if ( verbose )
HDfprintf(stdout, "%s: exiting.\n", FUNC);
return;
} /* col_major_scan_backward() */
/*-------------------------------------------------------------------------
* Function: hl_col_major_scan_backward()
*
* Purpose: Do a high locality sequence of inserts, protects, and
* unprotects while scanning backwards through the set of
* entries. If pass is false on entry, do nothing.
*
* Return: void
*
* Programmer: John Mainzer
* 10/25/04
*
*-------------------------------------------------------------------------
*/
void
hl_col_major_scan_backward(H5F_t * file_ptr,
int32_t max_index,
hbool_t verbose,
hbool_t reset_stats,
hbool_t display_stats,
hbool_t display_detailed_stats,
hbool_t do_inserts,
int dirty_unprotects)
{
H5C_t * cache_ptr = NULL;
int32_t type = 0;
int32_t idx = -1;
int32_t lag = 50;
int32_t i;
int32_t local_max_index = -1;
if ( verbose )
HDfprintf(stdout, "%s: entering.\n", FUNC);
if ( pass ) {
cache_ptr = file_ptr->shared->cache;
HDassert( cache_ptr != NULL );
HDassert( lag > 5 );
HDassert( max_index >= 500 );
HDassert( max_index <= MAX_ENTRIES );
local_max_index = MIN(max_index, MAX_ENTRIES);
if ( reset_stats ) {
H5C_stats__reset(cache_ptr);
}
idx = local_max_index;
}
while ( ( pass ) && ( idx >= 0 ) )
{
i = idx;
while ( ( pass ) && ( i <= local_max_index ) && ( i <= (idx + lag) ) ) {
type = 0;
while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) )
{
if ( ( pass ) && ( do_inserts ) && ( i == idx ) &&
( i <= local_max_index ) &&
( ! entry_in_cache(cache_ptr, type, i) ) ) {
if ( verbose )
HDfprintf(stdout, "(i, %d, %d) ", type, i);
insert_entry(file_ptr, type, i, H5C__NO_FLAGS_SET);
}
if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) {
if ( verbose )
HDfprintf(stdout, "(p, %d, %d) ", type, i);
protect_entry(file_ptr, type, i);
}
if ( ( pass ) && ( i >= 0 ) &&
( i <= local_max_index ) ) {
if ( verbose )
HDfprintf(stdout, "(u, %d, %d) ", type, i);
unprotect_entry(file_ptr, type, i,
(dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
}
if ( verbose )
HDfprintf(stdout, "\n");
type++;
}
i++;
}
idx--;
}
if ( ( pass ) && ( display_stats ) ) {
H5C_stats(cache_ptr, "test cache", display_detailed_stats);
}
return;
} /* hl_col_major_scan_backward() */
/*-------------------------------------------------------------------------
* Function: create_flush_dependency()
*
* Purpose: Create a 'flush dependency' between two entries.
*
* Do nothing if pass is false.
*
* Return: void
*
* Programmer: Quincey Koziol
* 3/16/09
*
*-------------------------------------------------------------------------
*/
void
create_flush_dependency(int32_t par_type,
int32_t par_idx,
int32_t chd_type,
int32_t chd_idx)
{
HDassert( ( 0 <= par_type ) && ( par_type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= par_idx ) && ( par_idx <= max_indices[par_type] ) );
HDassert( ( 0 <= chd_type ) && ( chd_type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= chd_idx ) && ( chd_idx <= max_indices[chd_type] ) );
if ( pass ) {
test_entry_t * par_base_addr; /* Base entry of parent's entry array */
test_entry_t * par_entry_ptr; /* Parent entry */
test_entry_t * chd_base_addr; /* Base entry of child's entry array */
test_entry_t * chd_entry_ptr; /* Child entry */
hbool_t par_is_pinned; /* Whether parent is already pinned */
herr_t result; /* API routine status */
/* Get parent entry */
par_base_addr = entries[par_type];
par_entry_ptr = &(par_base_addr[par_idx]);
par_is_pinned = par_entry_ptr->header.is_pinned;
/* Sanity check parent entry */
HDassert( par_entry_ptr->index == par_idx );
HDassert( par_entry_ptr->type == par_type );
HDassert( par_entry_ptr->header.is_protected );
HDassert( par_entry_ptr == par_entry_ptr->self );
/* Get parent entry */
chd_base_addr = entries[chd_type];
chd_entry_ptr = &(chd_base_addr[chd_idx]);
/* Sanity check child entry */
HDassert( chd_entry_ptr->index == chd_idx );
HDassert( chd_entry_ptr->type == chd_type );
HDassert( chd_entry_ptr == chd_entry_ptr->self );
result = H5C_create_flush_dependency(par_entry_ptr, chd_entry_ptr);
if ( ( result < 0 ) ||
( !par_entry_ptr->header.is_pinned ) ||
( !(par_entry_ptr->header.flush_dep_nchildren > 0) ) ) {
pass = FALSE;
failure_mssg = "error in H5C_create_flush_dependency().";
} /* end if */
/* Update information about entries */
HDassert( chd_entry_ptr->flush_dep_npar < MAX_FLUSH_DEP_PARS );
chd_entry_ptr->flush_dep_par_type[chd_entry_ptr->flush_dep_npar] = par_type;
chd_entry_ptr->flush_dep_par_idx[chd_entry_ptr->flush_dep_npar] = par_idx;
chd_entry_ptr->flush_dep_npar++;
par_entry_ptr->flush_dep_nchd++;
if(chd_entry_ptr->is_dirty || chd_entry_ptr->flush_dep_ndirty_chd > 0) {
HDassert(par_entry_ptr->flush_dep_ndirty_chd < par_entry_ptr->flush_dep_nchd);
par_entry_ptr->flush_dep_ndirty_chd++;
} /* end if */
par_entry_ptr->pinned_from_cache = TRUE;
if( !par_is_pinned )
par_entry_ptr->is_pinned = TRUE;
} /* end if */
} /* create_flush_dependency() */
/*-------------------------------------------------------------------------
* Function: destroy_flush_dependency()
*
* Purpose: Destroy a 'flush dependency' between two entries.
*
* Do nothing if pass is false.
*
* Return: void
*
* Programmer: Quincey Koziol
* 3/16/09
*
*-------------------------------------------------------------------------
*/
void
destroy_flush_dependency(int32_t par_type,
int32_t par_idx,
int32_t chd_type,
int32_t chd_idx)
{
HDassert( ( 0 <= par_type ) && ( par_type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= par_idx ) && ( par_idx <= max_indices[par_type] ) );
HDassert( ( 0 <= chd_type ) && ( chd_type < NUMBER_OF_ENTRY_TYPES ) );
HDassert( ( 0 <= chd_idx ) && ( chd_idx <= max_indices[chd_type] ) );
if ( pass ) {
test_entry_t * par_base_addr; /* Base entry of parent's entry array */
test_entry_t * par_entry_ptr; /* Parent entry */
test_entry_t * chd_base_addr; /* Base entry of child's entry array */
test_entry_t * chd_entry_ptr; /* Child entry */
unsigned i; /* Local index variable */
/* Get parent entry */
par_base_addr = entries[par_type];
par_entry_ptr = &(par_base_addr[par_idx]);
/* Sanity check parent entry */
HDassert( par_entry_ptr->is_pinned );
HDassert( par_entry_ptr->pinned_from_cache );
HDassert( par_entry_ptr->flush_dep_nchd > 0 );
HDassert( par_entry_ptr == par_entry_ptr->self );
/* Get parent entry */
chd_base_addr = entries[chd_type];
chd_entry_ptr = &(chd_base_addr[chd_idx]);
/* Sanity check child entry */
HDassert( chd_entry_ptr->index == chd_idx );
HDassert( chd_entry_ptr->type == chd_type );
HDassert( chd_entry_ptr->flush_dep_npar > 0 );
HDassert( chd_entry_ptr == chd_entry_ptr->self );
if ( H5C_destroy_flush_dependency(par_entry_ptr, chd_entry_ptr) < 0 ) {
pass = FALSE;
failure_mssg = "error in H5C_destroy_flush_dependency().";
} /* end if */
/* Update information about entries */
for(i=0; i<chd_entry_ptr->flush_dep_npar; i++)
if(chd_entry_ptr->flush_dep_par_type[i] == par_type
&& chd_entry_ptr->flush_dep_par_idx[i] == par_idx)
break;
HDassert(i < chd_entry_ptr->flush_dep_npar);
if(i < chd_entry_ptr->flush_dep_npar - 1)
HDmemmove(&chd_entry_ptr->flush_dep_par_type[i],
&chd_entry_ptr->flush_dep_par_type[i+1],
(chd_entry_ptr->flush_dep_npar - i - 1)
* sizeof(chd_entry_ptr->flush_dep_par_type[0]));
if(i < chd_entry_ptr->flush_dep_npar - 1)
HDmemmove(&chd_entry_ptr->flush_dep_par_idx[i],
&chd_entry_ptr->flush_dep_par_idx[i+1],
(chd_entry_ptr->flush_dep_npar - i - 1)
* sizeof(chd_entry_ptr->flush_dep_par_idx[0]));
chd_entry_ptr->flush_dep_npar--;
par_entry_ptr->flush_dep_nchd--;
if(par_entry_ptr->flush_dep_nchd == 0) {
par_entry_ptr->pinned_from_cache = FALSE;
par_entry_ptr->is_pinned = par_entry_ptr->pinned_from_client;
} /* end if */
if(chd_entry_ptr->is_dirty || chd_entry_ptr->flush_dep_ndirty_chd > 0) {
HDassert(par_entry_ptr->flush_dep_ndirty_chd > 0);
par_entry_ptr->flush_dep_ndirty_chd--;
if(!par_entry_ptr->is_dirty
&& par_entry_ptr->flush_dep_ndirty_chd == 0)
mark_flush_dep_clean(par_entry_ptr);
} /* end if */
} /* end if */
} /* destroy_flush_dependency() */
/*-------------------------------------------------------------------------
* Function: mark_flush_dep_dirty()
*
* Purpose: Recursively propagate the flush_dep_ndirty_children flag
* up the dependency chain in response to entry either
* becoming dirty or having its flush_dep_ndirty_children
* increased from 0.
*
* Return: <none>
*
* Programmer: Neil Fortner
* 12/4/12
*
*-------------------------------------------------------------------------
*/
static void
mark_flush_dep_dirty(test_entry_t * entry_ptr)
{
/* Sanity checks */
HDassert(entry_ptr);
/* Iterate over the parent entries */
if(entry_ptr->flush_dep_npar) {
test_entry_t *par_base_addr; /* Base entry of parent's entry array */
test_entry_t *par_entry_ptr; /* Parent entry */
unsigned u; /* Local index variable */
for(u = 0; u < entry_ptr->flush_dep_npar; u++) {
/* Get parent entry */
par_base_addr = entries[entry_ptr->flush_dep_par_type[u]];
par_entry_ptr = &(par_base_addr[entry_ptr->flush_dep_par_idx[u]]);
/* Sanity check */
HDassert(par_entry_ptr->flush_dep_ndirty_chd
< par_entry_ptr->flush_dep_nchd);
/* Adjust the parent's number of dirty children */
par_entry_ptr->flush_dep_ndirty_chd++;
} /* end for */
} /* end if */
} /* end mark_flush_dep_dirty() */
/*-------------------------------------------------------------------------
* Function: mark_flush_dep_clean()
*
* Purpose: Recursively propagate the flush_dep_ndirty_children flag
* up the dependency chain in response to entry either
* becoming clean or having its flush_dep_ndirty_children
* reduced to 0.
*
* Return: <none>
*
* Programmer: Neil Fortner
* 12/4/12
*
*-------------------------------------------------------------------------
*/
static void
mark_flush_dep_clean(test_entry_t * entry_ptr)
{
/* Sanity checks */
HDassert(entry_ptr);
HDassert(!entry_ptr->is_dirty && entry_ptr->flush_dep_ndirty_chd == 0);
/* Iterate over the parent entries */
if(entry_ptr->flush_dep_npar) {
test_entry_t *par_base_addr; /* Base entry of parent's entry array */
test_entry_t *par_entry_ptr; /* Parent entry */
unsigned u; /* Local index variable */
for(u = 0; u < entry_ptr->flush_dep_npar; u++) {
/* Get parent entry */
par_base_addr = entries[entry_ptr->flush_dep_par_type[u]];
par_entry_ptr = &(par_base_addr[entry_ptr->flush_dep_par_idx[u]]);
/* Sanity check */
HDassert(par_entry_ptr->flush_dep_ndirty_chd > 0);
/* Adjust the parent's number of dirty children */
par_entry_ptr->flush_dep_ndirty_chd--;
} /* end for */
} /* end if */
} /* end mark_flush_dep_clean() */
/*** H5AC level utility functions ***/
/*-------------------------------------------------------------------------
* Function: check_and_validate_cache_hit_rate()
*
* Purpose: Use the API functions to get and reset the cache hit rate.
* Verify that the value returned by the API call agrees with
* the cache internal data structures.
*
* If the number of cache accesses exceeds the value provided
* in the min_accesses parameter, and the hit rate is less than
* min_hit_rate, set pass to FALSE, and set failure_mssg to
* a string indicating that hit rate was unexpectedly low.
*
* Return hit rate in *hit_rate_ptr, and print the data to
* stdout if requested.
*
* If an error is detected, set pass to FALSE, and set
* failure_mssg to an appropriate value.
*
* Return: void
*
* Programmer: John Mainzer
* 4/18/04
*
*-------------------------------------------------------------------------
*/
void
check_and_validate_cache_hit_rate(hid_t file_id,
double * hit_rate_ptr,
hbool_t dump_data,
int64_t min_accesses,
double min_hit_rate)
{
herr_t result;
int64_t cache_hits = 0;
int64_t cache_accesses = 0;
double expected_hit_rate;
double hit_rate;
H5F_t * file_ptr = NULL;
H5C_t * cache_ptr = NULL;
/* get a pointer to the files internal data structure */
if ( pass ) {
file_ptr = (H5F_t *)H5I_object_verify(file_id, H5I_FILE);
if ( file_ptr == NULL ) {
pass = FALSE;
failure_mssg = "Can't get file_ptr.";
} else {
cache_ptr = file_ptr->shared->cache;
}
}
/* verify that we can access the cache data structure */
if ( pass ) {
if ( ( cache_ptr == NULL ) ||
( cache_ptr->magic != H5C__H5C_T_MAGIC ) ) {
pass = FALSE;
failure_mssg = "Can't access cache resize_ctl.";
}
}
/* compare the cache's internal configuration with the expected value */
if ( pass ) {
cache_hits = cache_ptr->cache_hits;
cache_accesses = cache_ptr->cache_accesses;
if ( cache_accesses > 0 ) {
expected_hit_rate = ((double)cache_hits) / ((double)cache_accesses);
} else {
expected_hit_rate = 0.0F;
}
result = H5Fget_mdc_hit_rate(file_id, &hit_rate);
if ( result < 0 ) {
pass = FALSE;
failure_mssg = "H5Fget_mdc_hit_rate() failed.";
} else if ( ! H5_DBL_ABS_EQUAL(hit_rate, expected_hit_rate) ) {
pass = FALSE;
failure_mssg = "unexpected hit rate.";
}
}
if ( pass ) { /* reset the hit rate */
result = H5Freset_mdc_hit_rate_stats(file_id);
if ( result < 0 ) {
pass = FALSE;
failure_mssg = "H5Freset_mdc_hit_rate_stats() failed.";
}
}
/* set *hit_rate_ptr if appropriate */
if ( ( pass ) && ( hit_rate_ptr != NULL ) ) {
*hit_rate_ptr = hit_rate;
}
/* dump data to stdout if requested */
if ( ( pass ) && ( dump_data ) ) {
HDfprintf(stdout,
"cache_hits: %ld, cache_accesses: %ld, hit_rate: %lf\n",
(long)cache_hits, (long)cache_accesses, hit_rate);
}
if ( ( pass ) &&
( cache_accesses > min_accesses ) &&
( hit_rate < min_hit_rate ) ) {
pass = FALSE;
failure_mssg = "Unexpectedly low hit rate.";
}
return;
} /* check_and_validate_cache_hit_rate() */
/*-------------------------------------------------------------------------
* Function: check_and_validate_cache_size()
*
* Purpose: Use the API function to get the cache size data. Verify
* that the values returned by the API call agree with
* the cache internal data structures.
*
* Return size data in the locations specified by the pointer
* parameters if these parameters are not NULL. Print the
* data to stdout if requested.
*
* If an error is detected, set pass to FALSE, and set
* failure_mssg to an appropriate value.
*
* Return: void
*
* Programmer: John Mainzer
* 4/18/04
*
*-------------------------------------------------------------------------
*/
void
check_and_validate_cache_size(hid_t file_id,
size_t * max_size_ptr,
size_t * min_clean_size_ptr,
size_t * cur_size_ptr,
int32_t * cur_num_entries_ptr,
hbool_t dump_data)
{
herr_t result;
size_t expected_max_size;
size_t max_size;
size_t expected_min_clean_size;
size_t min_clean_size;
size_t expected_cur_size;
size_t cur_size;
uint32_t expected_cur_num_entries;
int cur_num_entries;
H5F_t * file_ptr = NULL;
H5C_t * cache_ptr = NULL;
/* get a pointer to the files internal data structure */
if ( pass ) {
file_ptr = (H5F_t *)H5I_object_verify(file_id, H5I_FILE);
if ( file_ptr == NULL ) {
pass = FALSE;
failure_mssg = "Can't get file_ptr.";
} else {
cache_ptr = file_ptr->shared->cache;
}
}
/* verify that we can access the cache data structure */
if ( pass ) {
if ( ( cache_ptr == NULL ) ||
( cache_ptr->magic != H5C__H5C_T_MAGIC ) ) {
pass = FALSE;
failure_mssg = "Can't access cache data structure.";
}
}
/* compare the cache's internal configuration with the expected value */
if ( pass ) {
expected_max_size = cache_ptr->max_cache_size;
expected_min_clean_size = cache_ptr->min_clean_size;
expected_cur_size = cache_ptr->index_size;
expected_cur_num_entries = cache_ptr->index_len;
result = H5Fget_mdc_size(file_id,
&max_size,
&min_clean_size,
&cur_size,
&cur_num_entries);
if ( result < 0 ) {
pass = FALSE;
failure_mssg = "H5Fget_mdc_size() failed.";
} else if ( ( max_size != expected_max_size ) ||
( min_clean_size != expected_min_clean_size ) ||
( cur_size != expected_cur_size ) ||
( cur_num_entries != (int)expected_cur_num_entries ) ) {
pass = FALSE;
failure_mssg = "H5Fget_mdc_size() returned unexpected value(s).";
}
}
/* return size values if requested */
if ( ( pass ) && ( max_size_ptr != NULL ) ) {
*max_size_ptr = max_size;
}
if ( ( pass ) && ( min_clean_size_ptr != NULL ) ) {
*min_clean_size_ptr = min_clean_size;
}
if ( ( pass ) && ( cur_size_ptr != NULL ) ) {
*cur_size_ptr = cur_size;
}
if ( ( pass ) && ( cur_num_entries_ptr != NULL ) ) {
*cur_num_entries_ptr = cur_num_entries;
}
/* dump data to stdout if requested */
if ( ( pass ) && ( dump_data ) ) {
HDfprintf(stdout,
"max_sz: %ld, min_clean_sz: %ld, cur_sz: %ld, cur_ent: %ld\n",
(long)max_size, (long)min_clean_size, (long)cur_size,
(long)cur_num_entries);
}
return;
} /* check_and_validate_cache_size() */
H5_ATTR_PURE hbool_t
resize_configs_are_equal(const H5C_auto_size_ctl_t *a,
const H5C_auto_size_ctl_t *b,
hbool_t compare_init)
{
if(a->version != b->version)
return(FALSE);
else if(a->rpt_fcn != b->rpt_fcn)
return(FALSE);
else if(compare_init && (a->set_initial_size != b->set_initial_size))
return(FALSE);
else if(compare_init && (a->initial_size != b->initial_size))
return(FALSE);
else if(!H5_DBL_ABS_EQUAL(a->min_clean_fraction, b->min_clean_fraction))
return(FALSE);
else if(a->max_size != b->max_size)
return(FALSE);
else if(a->min_size != b->min_size)
return(FALSE);
else if(a->epoch_length != b->epoch_length)
return(FALSE);
else if(a->incr_mode != b->incr_mode)
return(FALSE);
else if(!H5_DBL_ABS_EQUAL(a->lower_hr_threshold, b->lower_hr_threshold))
return(FALSE);
else if(!H5_DBL_ABS_EQUAL(a->increment, b->increment))
return(FALSE);
else if(a->apply_max_increment != b->apply_max_increment)
return(FALSE);
else if(a->max_increment != b->max_increment)
return(FALSE);
else if(a->flash_incr_mode != b->flash_incr_mode)
return(FALSE);
else if(!H5_DBL_ABS_EQUAL(a->flash_multiple, b->flash_multiple))
return(FALSE);
else if(!H5_DBL_ABS_EQUAL(a->flash_threshold, b->flash_threshold))
return(FALSE);
else if(a->decr_mode != b->decr_mode)
return(FALSE);
else if(!H5_DBL_ABS_EQUAL(a->upper_hr_threshold, b->upper_hr_threshold))
return(FALSE);
else if(!H5_DBL_ABS_EQUAL(a->decrement, b->decrement))
return(FALSE);
else if(a->apply_max_decrement != b->apply_max_decrement)
return(FALSE);
else if(a->max_decrement != b->max_decrement)
return(FALSE);
else if(a->epochs_before_eviction != b->epochs_before_eviction)
return(FALSE);
else if(a->apply_empty_reserve != b->apply_empty_reserve)
return(FALSE);
else if(!H5_DBL_ABS_EQUAL(a->empty_reserve, b->empty_reserve))
return(FALSE);
return(TRUE);
}
/*-------------------------------------------------------------------------
* Function: validate_mdc_config()
*
* Purpose: Verify that the file indicated by the file_id parameter
* has both internal and external configuration matching
* *config_ptr.
*
* Do nothin on success. On failure, set pass to FALSE, and
* load an error message into failue_mssg. Note that
* failure_msg is assumed to be at least 128 bytes in length.
*
* Return: void
*
* Programmer: John Mainzer
* 4/14/04
*
*-------------------------------------------------------------------------
*/
void
validate_mdc_config(hid_t file_id,
H5AC_cache_config_t * ext_config_ptr,
hbool_t compare_init,
int test_num)
{
static char msg[256];
H5F_t * file_ptr = NULL;
H5C_t * cache_ptr = NULL;
H5AC_cache_config_t scratch;
H5C_auto_size_ctl_t int_config;
XLATE_EXT_TO_INT_MDC_CONFIG(int_config, (*ext_config_ptr))
/* get a pointer to the files internal data structure */
if ( pass ) {
file_ptr = (H5F_t *)H5I_object_verify(file_id, H5I_FILE);
if ( file_ptr == NULL ) {
pass = FALSE;
HDsnprintf(msg, (size_t)128, "Can't get file_ptr #%d.", test_num);
failure_mssg = msg;
} else {
cache_ptr = file_ptr->shared->cache;
}
}
/* verify that we can access the internal version of the cache config */
if ( pass ) {
if ( ( cache_ptr == NULL ) ||
( cache_ptr->magic != H5C__H5C_T_MAGIC ) ||
( cache_ptr->resize_ctl.version != H5C__CURR_AUTO_SIZE_CTL_VER ) ){
pass = FALSE;
HDsnprintf(msg, (size_t)128,
"Can't access cache resize_ctl #%d.", test_num);
failure_mssg = msg;
}
}
/* compare the cache's internal configuration with the expected value */
if ( pass ) {
if ( ! resize_configs_are_equal(&int_config, &cache_ptr->resize_ctl,
compare_init) ) {
pass = FALSE;
HDsnprintf(msg, (size_t)128,
"Unexpected internal config #%d.", test_num);
failure_mssg = msg;
}
}
/* obtain external cache config */
if ( pass ) {
scratch.version = H5AC__CURR_CACHE_CONFIG_VERSION;
if ( H5Fget_mdc_config(file_id, &scratch) < 0 ) {
pass = FALSE;
HDsnprintf(msg, (size_t)128,
"H5Fget_mdc_config() failed #%d.", test_num);
failure_mssg = msg;
}
}
if ( pass ) {
/* Recall that in any configuration supplied by the cache
* at run time, the set_initial_size field will always
* be FALSE, regardless of the value passed in. Thus we
* always presume that this field need not match that of
* the supplied external configuration.
*
* The cache also sets the initial_size field to the current
* cache max size instead of the value initialy supplied.
* Depending on circumstances, this may or may not match
* the original. Hence the compare_init parameter.
*/
if ( ! CACHE_CONFIGS_EQUAL((*ext_config_ptr), scratch, \
FALSE, compare_init) ) {
pass = FALSE;
HDsnprintf(msg, (size_t)128,
"Unexpected external config #%d.", test_num);
failure_mssg = msg;
}
}
return;
} /* validate_mdc_config() */
#if 0 /* debugging functions -- normally commented out */
/*-------------------------------------------------------------------------
* Function: dump_LRU
*
* Purpose: Display a summarize list of the contents of the LRU
* from head to tail.
*
* Return: void
*
* Programmer: John Mainzer
* 2/16/15
*
*-------------------------------------------------------------------------
*/
void
dump_LRU(H5F_t * file_ptr)
{
const char * hdr_0 =
" Entry Entry Entry Entry Entry \n";
const char * hdr_1 =
" Num: Dirty: Size: Addr: Type: \n";
const char * hdr_2 =
"==============================================================\n";
int i = 0;
H5C_cache_entry_t * entry_ptr = NULL;
H5C_t *cache_ptr = file_ptr->shared->cache;
HDassert(cache_ptr);
HDassert(cache_ptr->magic == H5C__H5C_T_MAGIC);
entry_ptr = cache_ptr->LRU_head_ptr;
HDfprintf(stdout,
"\n\nIndex len/size/clean size/dirty size = %d/%lld/%lld/%lld\n",
cache_ptr->index_len, (long long)(cache_ptr->index_size),
(long long)(cache_ptr->clean_index_size),
(long long)(cache_ptr->dirty_index_size));
HDfprintf(stdout, "\nLRU len/size = %d/%lld.\n\n",
cache_ptr->LRU_list_len, (long long)(cache_ptr->LRU_list_size));
if ( entry_ptr != NULL )
{
HDfprintf(stdout, "%s%s%s", hdr_0, hdr_1, hdr_2);
}
while ( entry_ptr != NULL )
{
HDfprintf(stdout,
" %3d %d %10lld 0x%010llx %s(%d)\n",
i,
(int)(entry_ptr->is_dirty),
(long long)(entry_ptr->size),
(long long)(entry_ptr->addr),
entry_ptr->type->name,
entry_ptr->type->id);
i++;
entry_ptr = entry_ptr->next;
}
if ( cache_ptr->LRU_list_len > 0 )
{
HDfprintf(stdout, "%s\n", hdr_2);
}
return;
} /* dump_LRU() */
#endif /* debugging functions -- normally commented out */