hdf5/test/cmpd_dset.c

572 lines
15 KiB
C

/*
* Copyright (C) 1998 NCSA
* All rights reserved.
*
* Programmer: Robb Matzke <matzke@llnl.gov>
* Friday, January 23, 1998
*/
#include <assert.h>
#include <hdf5.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* The first dataset */
typedef struct s1_t {
int a;
int b;
int c;
int d;
int e;
} s1_t;
/* The second dataset (same as first) */
typedef s1_t s2_t;
/* The third dataset (reversed fields of s1) */
typedef struct s3_t {
int e;
int d;
int c;
int b;
int a;
} s3_t;
/* The fourth dataset (a subset of s1) */
typedef struct s4_t {
int b;
int d;
} s4_t;
/* The fifth dataset (a superset of s1) */
typedef struct s5_t {
int pre;
int a;
int b;
int mid1;
int c;
int mid2;
int d;
int e;
int post;
} s5_t;
#if 1
# define NX 100
# define NY 2000
#else
# define NX 12
# define NY 9
#endif
/*-------------------------------------------------------------------------
* Function: main
*
* Purpose: Creates a simple dataset of a compound type and then reads
* it back. The dataset is read back in various ways to
* exercise the I/O pipeline and compound type conversion.
*
* Return: Success: 0
*
* Failure: 1
*
* Programmer: Robb Matzke
* Friday, January 23, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
int
main (void)
{
/* First dataset */
static s1_t s1[NX*NY];
hid_t s1_tid;
/* Second dataset */
static s2_t s2[NX*NY];
hid_t s2_tid;
/* Third dataset */
static s3_t s3[NX*NY];
hid_t s3_tid;
/* Fourth dataset */
static s4_t s4[NX*NY];
hid_t s4_tid;
/* Fifth dataset */
static s5_t s5[NX*NY];
hid_t s5_tid;
/* Sixth dataset */
/* Seventh dataset */
hid_t s7_sid;
/* Eighth dataset */
s1_t *s8 = NULL;
hid_t s8_f_sid; /*file data space */
hid_t s8_m_sid; /*memory data space */
/* Ninth dataset */
/* Tenth dataset */
/* Eleventh dataset */
s5_t *s11 = NULL;
/* Other variables */
int i, j, ndims;
hid_t file, dataset, space;
herr_t status;
static size_t dim[] = {NX, NY};
int f_offset[2]; /*offset of hyperslab in file */
size_t h_size[2]; /*size of hyperslab */
size_t h_sample[2]; /*hyperslab sampling */
/* Create the file */
file = H5Fcreate ("cmpd_dset.h5", H5F_ACC_TRUNC,
H5P_DEFAULT, H5P_DEFAULT);
assert (file>=0);
/* Create the data space */
space = H5Screate_simple (2, dim, NULL);
assert (space>=0);
/*
*######################################################################
* STEP 1: Save the original dataset natively.
*/
printf ("\
STEP 1: Initialize dataset `s1' and store it on disk in native order.\n");
fflush (stdout);
/* Initialize the dataset */
for (i=0; i<NX*NY; i++) {
s1[i].a = 5*i+0;
s1[i].b = 2000*2*i;
s1[i].c = 5*i+2;
s1[i].d = 2001+2*i;
s1[i].e = 5*i+4;
}
/* Create the memory data type */
s1_tid = H5Tcreate (H5T_COMPOUND, sizeof(s1_t));
H5Tinsert (s1_tid, "a", HPOFFSET(s1,a), H5T_NATIVE_INT);
H5Tinsert (s1_tid, "b", HPOFFSET(s1,b), H5T_NATIVE_INT);
H5Tinsert (s1_tid, "c", HPOFFSET(s1,c), H5T_NATIVE_INT);
H5Tinsert (s1_tid, "d", HPOFFSET(s1,d), H5T_NATIVE_INT);
H5Tinsert (s1_tid, "e", HPOFFSET(s1,e), H5T_NATIVE_INT);
assert (s1_tid>=0);
/* Create the dataset */
dataset = H5Dcreate (file, "s1", s1_tid, space, H5P_DEFAULT);
assert (dataset>=0);
/* Write the data */
status = H5Dwrite (dataset, s1_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s1);
assert (status>=0);
/*
*######################################################################
* STEP 2: We create a new type ID for the second dataset even though
* it's the same as the first just to test things better, but
* in fact, we could have used s1_tid.
*/
printf ("\
STEP 2: Read the dataset from disk into a new memory buffer which has the\n\
same data type and space. This will be the typical case.\n");
fflush (stdout);
/* Create a data type for s2 */
s2_tid = H5Tcreate (H5T_COMPOUND, sizeof(s2_t));
H5Tinsert (s2_tid, "a", HPOFFSET(s2,a), H5T_NATIVE_INT);
H5Tinsert (s2_tid, "b", HPOFFSET(s2,b), H5T_NATIVE_INT);
H5Tinsert (s2_tid, "c", HPOFFSET(s2,c), H5T_NATIVE_INT);
H5Tinsert (s2_tid, "d", HPOFFSET(s2,d), H5T_NATIVE_INT);
H5Tinsert (s2_tid, "e", HPOFFSET(s2,e), H5T_NATIVE_INT);
assert (s2_tid>=0);
/* Read the data */
status = H5Dread (dataset, s2_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s2);
assert (status>=0);
/* Compare s2 with s1. They should be the same */
for (i=0; i<NX*NY; i++) {
assert (s1[i].a==s2[i].a);
assert (s1[i].b==s2[i].b);
assert (s1[i].c==s2[i].c);
assert (s1[i].d==s2[i].d);
assert (s1[i].e==s2[i].e);
}
/*
*######################################################################
* STEP 3: Read the dataset back into a third memory buffer. This buffer
* has the same data space but the data type is different: the
* data type is a struct whose members are in the opposite order.
*/
printf ("\
STEP 3: Read the dataset again with members in a different order.\n");
fflush (stdout);
/* Create a data type for s3 */
s3_tid = H5Tcreate (H5T_COMPOUND, sizeof(s3_t));
H5Tinsert (s3_tid, "a", HPOFFSET(s3,a), H5T_NATIVE_INT);
H5Tinsert (s3_tid, "b", HPOFFSET(s3,b), H5T_NATIVE_INT);
H5Tinsert (s3_tid, "c", HPOFFSET(s3,c), H5T_NATIVE_INT);
H5Tinsert (s3_tid, "d", HPOFFSET(s3,d), H5T_NATIVE_INT);
H5Tinsert (s3_tid, "e", HPOFFSET(s3,e), H5T_NATIVE_INT);
assert (s3_tid>=0);
/* Read the data */
status = H5Dread (dataset, s3_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s3);
assert (status>=0);
/* Compare s3 with s1. They should be the same */
for (i=0; i<NX*NY; i++) {
assert (s1[i].a==s3[i].a);
assert (s1[i].b==s3[i].b);
assert (s1[i].c==s3[i].c);
assert (s1[i].d==s3[i].d);
assert (s1[i].e==s3[i].e);
}
/*
*######################################################################
* STEP 4: Read a subset of the members. Of the <a,b,c,d,e> members
* stored on disk we'll read <b,d>.
*/
printf ("\
STEP 4: Read a subset of the members.\n");
fflush (stdout);
/* Create a datatype for s4 */
s4_tid = H5Tcreate (H5T_COMPOUND, sizeof(s4_t));
H5Tinsert (s4_tid, "b", HPOFFSET(s4,b), H5T_NATIVE_INT);
H5Tinsert (s4_tid, "d", HPOFFSET(s4,d), H5T_NATIVE_INT);
assert (s4_tid>=0);
/* Read the data */
status = H5Dread (dataset, s4_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s4);
assert (status>=0);
/* Compare s4 with s1 */
for (i=0; i<NX*NY; i++) {
assert (s1[i].b==s4[i].b);
assert (s1[i].d==s4[i].d);
}
/*
*######################################################################
* STEP 5: Read all the members into a struct which has other members
* which have already been initialized.
*/
printf ("\
STEP 5: Read members into a superset which is partially initialized.\n");
fflush (stdout);
/* Initialize some members */
for (i=0; i<NX*NY; i++) {
s5[i].pre = 1000+4*i;
s5[i].mid1 = 1001+4*i;
s5[i].mid2 = 1002+4*i;
s5[i].post = 1003+4*i;
}
/* Create a data type for s5 */
s5_tid = H5Tcreate (H5T_COMPOUND, sizeof(s5_t));
H5Tinsert (s5_tid, "a", HPOFFSET(s5,a), H5T_NATIVE_INT);
H5Tinsert (s5_tid, "b", HPOFFSET(s5,b), H5T_NATIVE_INT);
H5Tinsert (s5_tid, "c", HPOFFSET(s5,c), H5T_NATIVE_INT);
H5Tinsert (s5_tid, "d", HPOFFSET(s5,d), H5T_NATIVE_INT);
H5Tinsert (s5_tid, "e", HPOFFSET(s5,e), H5T_NATIVE_INT);
assert (s5_tid>=0);
/* Read the data */
status = H5Dread (dataset, s5_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s5);
assert (status>=0);
/* Check that the data was read properly */
for (i=0; i<NX*NY; i++) {
assert (s1[i].a==s5[i].a);
assert (s1[i].b==s5[i].b);
assert (s1[i].c==s5[i].c);
assert (s1[i].d==s5[i].d);
assert (s1[i].e==s5[i].e);
}
/* Check that no previous values were clobbered */
for (i=0; i<NX*NY; i++) {
assert (s5[i].pre == 1000+4*i);
assert (s5[i].mid1 == 1001+4*i);
assert (s5[i].mid2 == 1002+4*i);
assert (s5[i].post == 1003+4*i);
}
/*
*######################################################################
* STEP 6: Update fields `b' and `d' on the file leaving the other
* fields unchanged. This tests member alignment and background
* buffers.
*/
printf ("\
STEP 6: Update fields `b' and `d' on the file, leaving the other fields\n\
unchanged.\n");
fflush (stdout);
/* Initialize `s4' with new values */
for (i=0; i<NX*NY; i++) {
s4[i].b = 5*i+1;
s4[i].d = 5*i+3;
}
/* Write the data to file */
status = H5Dwrite (dataset, s4_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s4);
assert (status>=0);
/* Read the data back */
status = H5Dread (dataset, s1_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s1);
assert (status>=0);
/* Compare */
for (i=0; i<NX*NY; i++) {
assert (s1[i].a == 5*i+0);
assert (s1[i].b == 5*i+1);
assert (s1[i].c == 5*i+2);
assert (s1[i].d == 5*i+3);
assert (s1[i].e == 5*i+4);
}
/*
*######################################################################
* STEP 7. Read the original dataset with an explicit data space. Even
* though these data spaces are equal it tests a different part of the
* library.
*/
printf ("\
STEP 7: Reading original dataset with explicit data space.\n");
fflush (stdout);
/* Create the data space */
s7_sid = H5Screate_simple (2, dim, NULL);
assert (s7_sid>=0);
/* Read the dataset */
status = H5Dread (dataset, s2_tid, s7_sid, H5S_ALL, H5P_DEFAULT, s2);
assert (status>=0);
/* Compare */
for (i=0; i<NX*NY; i++) {
assert (s2[i].a == s1[i].a);
assert (s2[i].b == s1[i].b);
assert (s2[i].c == s1[i].c);
assert (s2[i].d == s1[i].d);
assert (s2[i].e == s1[i].e);
}
/*
*######################################################################
* STEP 8. Read a hyperslab of the file into a complete array in memory.
* The hyperslab is the middle third of the array.
*/
printf ("\
STEP 8: Read middle third hyperslab into memory array.\n");
fflush (stdout);
/* Create the file data space */
s8_f_sid = H5Dget_space (dataset);
assert (s8_f_sid>=0);
f_offset[0] = NX/3;
f_offset[1] = NY/3;
h_size[0] = 2*NX/3 - f_offset[0];
h_size[1] = 2*NY/3 - f_offset[1];
h_sample[0] = 1;
h_sample[1] = 1;
status = H5Sset_hyperslab (s8_f_sid, f_offset, h_size, h_sample);
assert (status>=0);
/* Create memory data space */
s8_m_sid = H5Screate_simple (2, h_size, NULL);
assert (s8_m_sid>=0);
/* Read the dataset */
s8 = calloc (h_size[0]*h_size[1], sizeof(s1_t));
assert (s8);
status = H5Dread (dataset, s1_tid, s8_m_sid, s8_f_sid, H5P_DEFAULT, s8);
assert (status>=0);
/* Compare */
for (i=0; i<h_size[0]; i++) {
for (j=0; j<h_size[1]; j++) {
s1_t *ps1 = s1 + (f_offset[0]+i)*NY + f_offset[1] + j;
s1_t *ps8 = s8 + i*h_size[1] + j;
assert (ps8->a == ps1->a);
assert (ps8->b == ps1->b);
assert (ps8->c == ps1->c);
assert (ps8->d == ps1->d);
assert (ps8->e == ps1->e);
}
}
free (s8);
s8 = NULL;
/*
*######################################################################
* STEP 9. Read a hyperslab of the file into a hyperslab of memory. The
* part of memory not read is already initialized and must not change.
*/
printf ("\
STEP 9: Read middle third of hyperslab into middle third of memory array.\n");
fflush (stdout);
/* Initialize with some bit pattern */
memset (s2, 0xFF, NX*NY*sizeof(s2_t));
/* Read the hyperslab */
status = H5Dread (dataset, s2_tid, s8_f_sid, s8_f_sid, H5P_DEFAULT, s2);
assert (status>=0);
/* Compare */
for (i=0; i<NX; i++) {
for (j=0; j<NY; j++) {
s1_t *ps1 = s1 + i*NY + j;
s2_t *ps2 = s2 + i*NY + j;
if (i>=f_offset[0] && i<f_offset[0]+h_size[0] &&
j>=f_offset[1] && j<f_offset[1]+h_size[1]) {
assert (ps2->a == ps1->a);
assert (ps2->b == ps1->b);
assert (ps2->c == ps1->c);
assert (ps2->d == ps1->d);
assert (ps2->e == ps1->e);
} else {
assert (ps2->a == -1);
assert (ps2->b == -1);
assert (ps2->c == -1);
assert (ps2->d == -1);
assert (ps2->e == -1);
}
}
}
/*
*######################################################################
* STEP 10. Same as step 9 except the memory array contains some members
* which are already initialized, like step 5.
*/
printf ("\
STEP 10: Read middle third of hyperslab into middle third of memory array\n\
where some of the struct members are already initialized.\n");
fflush (stdout);
/* Initialize with some bit pattern */
memset (s5, 0xFF, NX*NY*sizeof(s5_t));
/* Read the hyperslab */
status = H5Dread (dataset, s5_tid, s8_f_sid, s8_f_sid, H5P_DEFAULT, s5);
assert (status>=0);
/* Compare */
for (i=0; i<NX; i++) {
for (j=0; j<NY; j++) {
s1_t *ps1 = s1 + i*NY + j;
s5_t *ps5 = s5 + i*NY + j;
if (i>=f_offset[0] && i<f_offset[0]+h_size[0] &&
j>=f_offset[1] && j<f_offset[1]+h_size[1]) {
assert (ps5->pre == -1);
assert (ps5->a == ps1->a);
assert (ps5->b == ps1->b);
assert (ps5->mid1 == -1);
assert (ps5->c == ps1->c);
assert (ps5->mid2 == -1);
assert (ps5->d == ps1->d);
assert (ps5->e == ps1->e);
assert (ps5->post == -1);
} else {
assert (ps5->pre == -1);
assert (ps5->a == -1);
assert (ps5->b == -1);
assert (ps5->mid1 == -1);
assert (ps5->c == -1);
assert (ps5->mid2 == -1);
assert (ps5->d == -1);
assert (ps5->e == -1);
assert (ps5->post == -1);
}
}
}
/*
*######################################################################
* Step 11: Write an array into the middle third of the dataset
* initializeing only members `b' and `d' to -1.
*/
printf ("\
STEP 11: Write an array back to the middle third of the dataset to\n\
initialize the `b' and `d' members to -1.\n");
fflush (stdout);
/* Create the memory array and initialize all fields to zero */
ndims = H5Sget_hyperslab (s8_f_sid, f_offset, h_size, h_sample);
assert (ndims==2);
s11 = malloc (h_size[0]*h_size[1]*sizeof(s4_t));
assert (s11);
memset (s11, 0xff, h_size[0]*h_size[1]*sizeof(s4_t));
/* Write to disk */
status = H5Dwrite (dataset, s4_tid, s8_m_sid, s8_f_sid, H5P_DEFAULT, s11);
assert (status>=0);
/* Read the whole thing */
status = H5Dread (dataset, s1_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s1);
assert (status>=0);
/* Compare */
for (i=0; i<NX; i++) {
for (j=0; j<NY; j++) {
s1_t *ps1 = s1 + i*NY + j;
assert (ps1->a == 5*(i*NY+j)+0);
assert (ps1->c == 5*(i*NY+j)+2);
assert (ps1->e == 5*(i*NY+j)+4);
if (i>=f_offset[0] && i<f_offset[0]+h_size[0] &&
j>=f_offset[1] && j<f_offset[1]+h_size[1]) {
assert (ps1->b == -1);
assert (ps1->d == -1);
} else {
assert (ps1->b == 5*(i*NY+j)+1);
assert (ps1->d == 5*(i*NY+j)+3);
}
}
}
/*
* Release resources.
*/
H5Dclose (dataset);
H5Fclose (file);
return 0;
}