hdf5/testpar/t_pread.c
Scot Breitenfeld f859cb732b
Fixed Spelling Errors (#1166)
* fixed missed closing of a dataset

* fixed missed closing of a dataset

* fixed typo in error return

* Committing clang-format changes

* minor edits

* code format

* Committing clang-format changes

* code format

* minor edit

* switched from using MPI_count, to actual bytes written for H5FD_mpio_debug rw debugging

* Committing clang-format changes

* changed size_i in printf to reflect the I/O.

* Committing clang-format changes

* Fixed seg fault with xlf on BE with -qintsize=8

* fixed error function string

* spelling corrections via codespell, added new spell check github actions

* Committing clang-format changes

* misc

* misc

* misc

* misc

* misc

* misc

* misc

* misc

* misc

* misc

* misc

* misc

* misc

* misc

* Committing clang-format changes

* misc

* misc

* misc

* misc

* misc

* misc

* Committing clang-format changes

* misc

* work around for https://github.com/codespell-project/codespell/issues/2137

* misc

* added missing file

* misc

* misc.

* misc

* switch to using Codespell with GitHub Actions

* misc.

* misc.

* fixed more sp errors

* Fix new typos found by codespell.

* fixed proceed with precede

* fixed variable in fortran test

* fixed minnum

* updated spelling list

Co-authored-by: github-actions <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Larry Knox <lrknox@hdfgroup.org>
2021-12-07 08:27:29 -06:00

1221 lines
39 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Collective file open optimization tests
*
*/
#include "testpar.h"
#include "H5Dprivate.h"
/* The collection of files is included below to aid
* an external "cleanup" process if required.
*
* Note that the code below relies on the ordering of this array
* since each set of three is used by the tests either to construct
* or to read and validate.
*/
#define NFILENAME 3
const char *FILENAMES[NFILENAME + 1] = {"reloc_t_pread_data_file", "reloc_t_pread_group_0_file",
"reloc_t_pread_group_1_file", NULL};
#define FILENAME_BUF_SIZE 1024
#define COUNT 1000
#define LIMIT_NPROC 6
hbool_t pass = TRUE;
static const char *random_hdf5_text = "Now is the time for all first-time-users of HDF5 to read their \
manual or go thru the tutorials!\n\
While you\'re at it, now is also the time to read up on MPI-IO.";
static const char *hitchhiker_quote = "A common mistake that people make when trying to design something\n\
completely foolproof is to underestimate the ingenuity of complete\n\
fools.\n";
static int generate_test_file(MPI_Comm comm, int mpi_rank, int group);
static int test_parallel_read(MPI_Comm comm, int mpi_rank, int mpi_size, int group);
static char *test_argv0 = NULL;
/*-------------------------------------------------------------------------
* Function: generate_test_file
*
* Purpose: This function is called to produce an HDF5 data file
* whose superblock is relocated to a power-of-2 boundary.
*
* Since data will be read back and validated, we generate
* data in a predictable manner rather than randomly.
* For now, we simply use the global mpi_rank of the writing
* process as a starting component for the data generation.
* Subsequent writes are increments from the initial start
* value.
*
* In the overall scheme of running the test, we'll call
* this function twice: first as a collection of all MPI
* processes and then a second time with the processes split
* more or less in half. Each sub group will operate
* collectively on their assigned file. This split into
* subgroups validates that parallel groups can successfully
* open and read data independently from the other parallel
* operations taking place.
*
* Return: Success: 0
*
* Failure: 1
*
* Programmer: Richard Warren
* 10/1/17
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
generate_test_file(MPI_Comm comm, int mpi_rank, int group_id)
{
int header = -1;
const char *fcn_name = "generate_test_file()";
const char *failure_mssg = NULL;
const char *group_filename = NULL;
char data_filename[FILENAME_BUF_SIZE];
int file_index = 0;
int group_size;
int group_rank;
int local_failure = 0;
int global_failures = 0;
hsize_t count = COUNT;
hsize_t i;
hsize_t offset;
hsize_t dims[1] = {0};
hid_t file_id = -1;
hid_t memspace = -1;
hid_t filespace = -1;
hid_t fctmpl = -1;
hid_t fapl_id = -1;
hid_t dxpl_id = -1;
hid_t dset_id = -1;
hid_t dset_id_ch = -1;
hid_t dcpl_id = H5P_DEFAULT;
hsize_t chunk[1];
float nextValue;
float * data_slice = NULL;
pass = TRUE;
HDassert(comm != MPI_COMM_NULL);
if ((MPI_Comm_rank(comm, &group_rank)) != MPI_SUCCESS) {
pass = FALSE;
failure_mssg = "generate_test_file: MPI_Comm_rank failed.\n";
}
if ((MPI_Comm_size(comm, &group_size)) != MPI_SUCCESS) {
pass = FALSE;
failure_mssg = "generate_test_file: MPI_Comm_size failed.\n";
}
if (mpi_rank == 0) {
HDfprintf(stdout, "Constructing test files...");
}
/* Setup the file names
* The test specific filenames are stored as consecutive
* array entries in the global 'FILENAMES' array above.
* Here, we simply decide on the starting index for
* file construction. The reading portion of the test
* will have a similar setup process...
*/
if (pass) {
if (comm == MPI_COMM_WORLD) { /* Test 1 */
file_index = 0;
}
else if (group_id == 0) { /* Test 2 group 0 */
file_index = 1;
}
else { /* Test 2 group 1 */
file_index = 2;
}
/* The 'group_filename' is just a temp variable and
* is used to call into the h5_fixname function. No
* need to worry that we reassign it for each file!
*/
group_filename = FILENAMES[file_index];
HDassert(group_filename);
/* Assign the 'data_filename' */
if (h5_fixname(group_filename, H5P_DEFAULT, data_filename, sizeof(data_filename)) == NULL) {
pass = FALSE;
failure_mssg = "h5_fixname(0) failed.\n";
}
}
/* setup data to write */
if (pass) {
if ((data_slice = (float *)HDmalloc(COUNT * sizeof(float))) == NULL) {
pass = FALSE;
failure_mssg = "malloc of data_slice failed.\n";
}
}
if (pass) {
nextValue = (float)(mpi_rank * COUNT);
for (i = 0; i < COUNT; i++) {
data_slice[i] = nextValue;
nextValue += 1;
}
}
/* Initialize a file creation template */
if (pass) {
if ((fctmpl = H5Pcreate(H5P_FILE_CREATE)) < 0) {
pass = FALSE;
failure_mssg = "H5Pcreate(H5P_FILE_CREATE) failed.\n";
}
else if (H5Pset_userblock(fctmpl, 512) != SUCCEED) {
pass = FALSE;
failure_mssg = "H5Pset_userblock(,size) failed.\n";
}
}
/* setup FAPL */
if (pass) {
if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) {
pass = FALSE;
failure_mssg = "H5Pcreate(H5P_FILE_ACCESS) failed.\n";
}
}
if (pass) {
if ((H5Pset_fapl_mpio(fapl_id, comm, MPI_INFO_NULL)) < 0) {
pass = FALSE;
failure_mssg = "H5Pset_fapl_mpio() failed\n";
}
}
/* create the data file */
if (pass) {
if ((file_id = H5Fcreate(data_filename, H5F_ACC_TRUNC, fctmpl, fapl_id)) < 0) {
pass = FALSE;
failure_mssg = "H5Fcreate() failed.\n";
}
}
/* create and write the dataset */
if (pass) {
if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) {
pass = FALSE;
failure_mssg = "H5Pcreate(H5P_DATASET_XFER) failed.\n";
}
}
if (pass) {
if ((H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE)) < 0) {
pass = FALSE;
failure_mssg = "H5Pset_dxpl_mpio() failed.\n";
}
}
if (pass) {
dims[0] = COUNT;
if ((memspace = H5Screate_simple(1, dims, NULL)) < 0) {
pass = FALSE;
failure_mssg = "H5Screate_simple(1, dims, NULL) failed (1).\n";
}
}
if (pass) {
dims[0] *= (hsize_t)group_size;
if ((filespace = H5Screate_simple(1, dims, NULL)) < 0) {
pass = FALSE;
failure_mssg = "H5Screate_simple(1, dims, NULL) failed (2).\n";
}
}
if (pass) {
offset = (hsize_t)group_rank * (hsize_t)COUNT;
if ((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, &offset, NULL, &count, NULL)) < 0) {
pass = FALSE;
failure_mssg = "H5Sselect_hyperslab() failed.\n";
}
}
if (pass) {
if ((dset_id = H5Dcreate2(file_id, "dataset0", H5T_NATIVE_FLOAT, filespace, H5P_DEFAULT, H5P_DEFAULT,
H5P_DEFAULT)) < 0) {
pass = FALSE;
failure_mssg = "H5Dcreate2() failed.\n";
}
}
if (pass) {
if ((H5Dwrite(dset_id, H5T_NATIVE_FLOAT, memspace, filespace, dxpl_id, data_slice)) < 0) {
pass = FALSE;
failure_mssg = "H5Dwrite() failed.\n";
}
}
/* create a chunked dataset */
chunk[0] = COUNT / 8;
if (pass) {
if ((dcpl_id = H5Pcreate(H5P_DATASET_CREATE)) < 0) {
pass = FALSE;
failure_mssg = "H5Pcreate() failed.\n";
}
}
if (pass) {
if ((H5Pset_chunk(dcpl_id, 1, chunk)) < 0) {
pass = FALSE;
failure_mssg = "H5Pset_chunk() failed.\n";
}
}
if (pass) {
if ((dset_id_ch = H5Dcreate2(file_id, "dataset0_chunked", H5T_NATIVE_FLOAT, filespace, H5P_DEFAULT,
dcpl_id, H5P_DEFAULT)) < 0) {
pass = FALSE;
failure_mssg = "H5Dcreate2() failed.\n";
}
}
if (pass) {
if ((H5Dwrite(dset_id_ch, H5T_NATIVE_FLOAT, memspace, filespace, dxpl_id, data_slice)) < 0) {
pass = FALSE;
failure_mssg = "H5Dwrite() failed.\n";
}
}
if (pass || (dcpl_id != -1)) {
if (H5Pclose(dcpl_id) < 0) {
pass = FALSE;
failure_mssg = "H5Pclose(dcpl_id) failed.\n";
}
}
if (pass || (dset_id_ch != -1)) {
if (H5Dclose(dset_id_ch) < 0) {
pass = FALSE;
failure_mssg = "H5Dclose(dset_id_ch) failed.\n";
}
}
/* close file, etc. */
if (pass || (dset_id != -1)) {
if (H5Dclose(dset_id) < 0) {
pass = FALSE;
failure_mssg = "H5Dclose(dset_id) failed.\n";
}
}
if (pass || (memspace != -1)) {
if (H5Sclose(memspace) < 0) {
pass = FALSE;
failure_mssg = "H5Sclose(memspace) failed.\n";
}
}
if (pass || (filespace != -1)) {
if (H5Sclose(filespace) < 0) {
pass = FALSE;
failure_mssg = "H5Sclose(filespace) failed.\n";
}
}
if (pass || (file_id != -1)) {
if (H5Fclose(file_id) < 0) {
pass = FALSE;
failure_mssg = "H5Fclose(file_id) failed.\n";
}
}
if (pass || (dxpl_id != -1)) {
if (H5Pclose(dxpl_id) < 0) {
pass = FALSE;
failure_mssg = "H5Pclose(dxpl_id) failed.\n";
}
}
if (pass || (fapl_id != -1)) {
if (H5Pclose(fapl_id) < 0) {
pass = FALSE;
failure_mssg = "H5Pclose(fapl_id) failed.\n";
}
}
if (pass || (fctmpl != -1)) {
if (H5Pclose(fctmpl) < 0) {
pass = FALSE;
failure_mssg = "H5Pclose(fctmpl) failed.\n";
}
}
/* Add a userblock to the head of the datafile.
* We will use this to for a functional test of the
* file open optimization. This is superblock
* relocation is done by the rank 0 process associated
* with the communicator being used. For test 1, we
* utilize MPI_COMM_WORLD, so group_rank 0 is the
* same as mpi_rank 0. For test 2 which utilizes
* two groups resulting from an MPI_Comm_split, we
* will have parallel groups and hence two
* group_rank(0) processes. Each parallel group
* will create a unique file with different text
* headers and different data.
*/
if (group_rank == 0) {
const char *text_to_write;
size_t bytes_to_write;
if (group_id == 0)
text_to_write = random_hdf5_text;
else
text_to_write = hitchhiker_quote;
bytes_to_write = HDstrlen(text_to_write);
if (pass) {
if ((header = HDopen(data_filename, O_WRONLY)) < 0) {
pass = FALSE;
failure_mssg = "HDopen(data_filename, O_WRONLY) failed.\n";
}
}
if (pass) {
HDlseek(header, 0, SEEK_SET);
if (HDwrite(header, text_to_write, bytes_to_write) < 0) {
pass = FALSE;
failure_mssg = "Unable to write user text into file.\n";
}
}
if (pass || (header > 0)) {
if (HDclose(header) < 0) {
pass = FALSE;
failure_mssg = "HDclose() failed.\n";
}
}
}
/* collect results from other processes.
* Only overwrite the failure message if no previous error
* has been detected
*/
local_failure = (pass ? 0 : 1);
/* This is a global all reduce (NOT group specific) */
if (MPI_Allreduce(&local_failure, &global_failures, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD) != MPI_SUCCESS) {
if (pass) {
pass = FALSE;
failure_mssg = "MPI_Allreduce() failed.\n";
}
}
else if ((pass) && (global_failures > 0)) {
pass = FALSE;
failure_mssg = "One or more processes report failure.\n";
}
/* report results */
if (mpi_rank == 0) {
if (pass) {
HDfprintf(stdout, "Done.\n");
}
else {
HDfprintf(stdout, "FAILED.\n");
HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
}
}
/* free data_slice if it has been allocated */
if (data_slice != NULL) {
HDfree(data_slice);
data_slice = NULL;
}
return (!pass);
} /* generate_test_file() */
/*-------------------------------------------------------------------------
* Function: test_parallel_read
*
* Purpose: This actually tests the superblock optimization
* and covers the three primary cases we're interested in.
* 1). That HDF5 files can be opened in parallel by
* the rank 0 process and that the superblock
* offset is correctly broadcast to the other
* parallel file readers.
* 2). That a parallel application can correctly
* handle reading multiple files by using
* subgroups of MPI_COMM_WORLD and that each
* subgroup operates as described in (1) to
* collectively read the data.
* 3). Testing proc0-read-and-MPI_Bcast using
* sub-communicators, and reading into
* a memory space that is different from the
* file space, and chunked datasets.
*
* The global MPI rank is used for reading and
* writing data for process specific data in the
* dataset. We do this rather simplisticly, i.e.
* rank 0: writes/reads 0-9999
* rank 1: writes/reads 1000-1999
* rank 2: writes/reads 2000-2999
* ...
*
* Return: Success: 0
*
* Failure: 1
*
* Programmer: Richard Warren
* 10/1/17
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_parallel_read(MPI_Comm comm, int mpi_rank, int mpi_size, int group_id)
{
const char *failure_mssg;
const char *fcn_name = "test_parallel_read()";
const char *group_filename = NULL;
char reloc_data_filename[FILENAME_BUF_SIZE];
int local_failure = 0;
int global_failures = 0;
int group_size;
int group_rank;
hid_t fapl_id = -1;
hid_t file_id = -1;
hid_t dset_id = -1;
hid_t dset_id_ch = -1;
hid_t dxpl_id = H5P_DEFAULT;
hid_t memspace = -1;
hid_t filespace = -1;
hid_t filetype = -1;
size_t filetype_size;
hssize_t dset_size;
hsize_t i;
hsize_t offset;
hsize_t count = COUNT;
hsize_t dims[1] = {0};
float nextValue;
float * data_slice = NULL;
pass = TRUE;
HDassert(comm != MPI_COMM_NULL);
if ((MPI_Comm_rank(comm, &group_rank)) != MPI_SUCCESS) {
pass = FALSE;
failure_mssg = "test_parallel_read: MPI_Comm_rank failed.\n";
}
if ((MPI_Comm_size(comm, &group_size)) != MPI_SUCCESS) {
pass = FALSE;
failure_mssg = "test_parallel_read: MPI_Comm_size failed.\n";
}
if (mpi_rank == 0) {
if (comm == MPI_COMM_WORLD) {
TESTING("parallel file open test 1");
}
else {
TESTING("parallel file open test 2");
}
}
/* allocate space for the data_slice array */
if (pass) {
if ((data_slice = (float *)HDmalloc(COUNT * sizeof(float))) == NULL) {
pass = FALSE;
failure_mssg = "malloc of data_slice failed.\n";
}
}
/* Select the file file name to read
* Please see the comments in the 'generate_test_file' function
* for more details...
*/
if (pass) {
if (comm == MPI_COMM_WORLD) /* test 1 */
group_filename = FILENAMES[0];
else if (group_id == 0) /* test 2 group 0 */
group_filename = FILENAMES[1];
else /* test 2 group 1 */
group_filename = FILENAMES[2];
HDassert(group_filename);
if (h5_fixname(group_filename, H5P_DEFAULT, reloc_data_filename, sizeof(reloc_data_filename)) ==
NULL) {
pass = FALSE;
failure_mssg = "h5_fixname(1) failed.\n";
}
}
/* setup FAPL */
if (pass) {
if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) {
pass = FALSE;
failure_mssg = "H5Pcreate(H5P_FILE_ACCESS) failed.\n";
}
}
if (pass) {
if ((H5Pset_fapl_mpio(fapl_id, comm, MPI_INFO_NULL)) < 0) {
pass = FALSE;
failure_mssg = "H5Pset_fapl_mpio() failed\n";
}
}
/* open the file -- should have user block, exercising the optimization */
if (pass) {
if ((file_id = H5Fopen(reloc_data_filename, H5F_ACC_RDONLY, fapl_id)) < 0) {
pass = FALSE;
failure_mssg = "H5Fopen() failed\n";
}
}
/* open the data set */
if (pass) {
if ((dset_id = H5Dopen2(file_id, "dataset0", H5P_DEFAULT)) < 0) {
pass = FALSE;
failure_mssg = "H5Dopen2() failed\n";
}
}
/* open the chunked data set */
if (pass) {
if ((dset_id_ch = H5Dopen2(file_id, "dataset0_chunked", H5P_DEFAULT)) < 0) {
pass = FALSE;
failure_mssg = "H5Dopen2() failed\n";
}
}
/* setup memspace */
if (pass) {
dims[0] = count;
if ((memspace = H5Screate_simple(1, dims, NULL)) < 0) {
pass = FALSE;
failure_mssg = "H5Screate_simple(1, dims, NULL) failed\n";
}
}
/* setup filespace */
if (pass) {
if ((filespace = H5Dget_space(dset_id)) < 0) {
pass = FALSE;
failure_mssg = "H5Dget_space(dataset) failed\n";
}
}
if (pass) {
offset = (hsize_t)group_rank * count;
if ((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, &offset, NULL, &count, NULL)) < 0) {
pass = FALSE;
failure_mssg = "H5Sselect_hyperslab() failed\n";
}
}
/* read this processes section of the data */
if (pass) {
if ((H5Dread(dset_id, H5T_NATIVE_FLOAT, memspace, filespace, H5P_DEFAULT, data_slice)) < 0) {
pass = FALSE;
failure_mssg = "H5Dread() failed\n";
}
}
/* verify the data */
if (pass) {
nextValue = (float)((hsize_t)mpi_rank * count);
i = 0;
while ((pass) && (i < count)) {
/* what we really want is data_slice[i] != nextValue --
* the following is a circumlocution to shut up the
* the compiler.
*/
if ((data_slice[i] > nextValue) || (data_slice[i] < nextValue)) {
pass = FALSE;
failure_mssg = "Unexpected dset contents.\n";
}
nextValue += 1;
i++;
}
}
if (pass || (memspace != -1)) {
if (H5Sclose(memspace) < 0) {
pass = FALSE;
failure_mssg = "H5Sclose(memspace) failed.\n";
}
}
if (pass || (filespace != -1)) {
if (H5Sclose(filespace) < 0) {
pass = FALSE;
failure_mssg = "H5Sclose(filespace) failed.\n";
}
}
/* free data_slice if it has been allocated */
if (data_slice != NULL) {
HDfree(data_slice);
data_slice = NULL;
}
/*
* Test reading proc0-read-and-bcast with sub-communicators
*/
/* Don't test with more than LIMIT_NPROC processes to avoid memory issues */
if (group_size <= LIMIT_NPROC) {
#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
hbool_t prop_value;
#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
if ((filespace = H5Dget_space(dset_id)) < 0) {
pass = FALSE;
failure_mssg = "H5Dget_space failed.\n";
}
if ((dset_size = H5Sget_simple_extent_npoints(filespace)) < 0) {
pass = FALSE;
failure_mssg = "H5Sget_simple_extent_npoints failed.\n";
}
if ((filetype = H5Dget_type(dset_id)) < 0) {
pass = FALSE;
failure_mssg = "H5Dget_type failed.\n";
}
if ((filetype_size = H5Tget_size(filetype)) == 0) {
pass = FALSE;
failure_mssg = "H5Tget_size failed.\n";
}
if (H5Tclose(filetype) < 0) {
pass = FALSE;
failure_mssg = "H5Tclose failed.\n";
};
if ((data_slice = (float *)HDmalloc((size_t)dset_size * filetype_size)) == NULL) {
pass = FALSE;
failure_mssg = "malloc of data_slice failed.\n";
}
if (pass) {
if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) {
pass = FALSE;
failure_mssg = "H5Pcreate(H5P_DATASET_XFER) failed.\n";
}
}
if (pass) {
if ((H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE)) < 0) {
pass = FALSE;
failure_mssg = "H5Pset_dxpl_mpio() failed.\n";
}
}
#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
if (pass) {
prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF;
if (H5Pinsert2(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, H5D_XFER_COLL_RANK0_BCAST_SIZE,
&prop_value, NULL, NULL, NULL, NULL, NULL, NULL) < 0) {
pass = FALSE;
failure_mssg = "H5Pinsert2() failed\n";
}
}
#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
/* read H5S_ALL section */
if (pass) {
if ((H5Dread(dset_id, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, dxpl_id, data_slice)) < 0) {
pass = FALSE;
failure_mssg = "H5Dread() failed\n";
}
}
#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
if (pass) {
prop_value = FALSE;
if (H5Pget(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) {
pass = FALSE;
failure_mssg = "H5Pget() failed\n";
}
if (pass) {
if (prop_value != TRUE) {
pass = FALSE;
failure_mssg = "rank 0 Bcast optimization was mistakenly not performed\n";
}
}
}
#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
/* verify the data */
if (pass) {
if (comm == MPI_COMM_WORLD) /* test 1 */
nextValue = 0;
else if (group_id == 0) /* test 2 group 0 */
nextValue = 0;
else /* test 2 group 1 */
nextValue = (float)((hsize_t)(mpi_size / 2) * count);
i = 0;
while ((pass) && (i < (hsize_t)dset_size)) {
/* what we really want is data_slice[i] != nextValue --
* the following is a circumlocution to shut up the
* the compiler.
*/
if ((data_slice[i] > nextValue) || (data_slice[i] < nextValue)) {
pass = FALSE;
failure_mssg = "Unexpected dset contents.\n";
}
nextValue += 1;
i++;
}
}
/* read H5S_ALL section for the chunked dataset */
#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
if (pass) {
prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF;
if (H5Pset(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) {
pass = FALSE;
failure_mssg = "H5Pset() failed\n";
}
}
#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
for (i = 0; i < (hsize_t)dset_size; i++) {
data_slice[i] = 0;
}
if (pass) {
if ((H5Dread(dset_id_ch, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, dxpl_id, data_slice)) < 0) {
pass = FALSE;
failure_mssg = "H5Dread() failed\n";
}
}
#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
if (pass) {
prop_value = FALSE;
if (H5Pget(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) {
pass = FALSE;
failure_mssg = "H5Pget() failed\n";
}
if (pass) {
if (prop_value == TRUE) {
pass = FALSE;
failure_mssg = "rank 0 Bcast optimization was mistakenly performed for chunked dataset\n";
}
}
}
#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
/* verify the data */
if (pass) {
if (comm == MPI_COMM_WORLD) /* test 1 */
nextValue = 0;
else if (group_id == 0) /* test 2 group 0 */
nextValue = 0;
else /* test 2 group 1 */
nextValue = (float)((hsize_t)(mpi_size / 2) * count);
i = 0;
while ((pass) && (i < (hsize_t)dset_size)) {
/* what we really want is data_slice[i] != nextValue --
* the following is a circumlocution to shut up the
* the compiler.
*/
if ((data_slice[i] > nextValue) || (data_slice[i] < nextValue)) {
pass = FALSE;
failure_mssg = "Unexpected chunked dset contents.\n";
}
nextValue += 1;
i++;
}
}
if (pass || (filespace != -1)) {
if (H5Sclose(filespace) < 0) {
pass = FALSE;
failure_mssg = "H5Sclose(filespace) failed.\n";
}
}
/* free data_slice if it has been allocated */
if (data_slice != NULL) {
HDfree(data_slice);
data_slice = NULL;
}
/*
* Read an H5S_ALL filespace into a hyperslab defined memory space
*/
if ((data_slice = (float *)HDmalloc((size_t)(dset_size * 2) * filetype_size)) == NULL) {
pass = FALSE;
failure_mssg = "malloc of data_slice failed.\n";
}
/* setup memspace */
if (pass) {
dims[0] = (hsize_t)dset_size * 2;
if ((memspace = H5Screate_simple(1, dims, NULL)) < 0) {
pass = FALSE;
failure_mssg = "H5Screate_simple(1, dims, NULL) failed\n";
}
}
if (pass) {
offset = (hsize_t)dset_size;
if ((H5Sselect_hyperslab(memspace, H5S_SELECT_SET, &offset, NULL, &offset, NULL)) < 0) {
pass = FALSE;
failure_mssg = "H5Sselect_hyperslab() failed\n";
}
}
#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
if (pass) {
prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF;
if (H5Pset(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) {
pass = FALSE;
failure_mssg = "H5Pset() failed\n";
}
}
#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
/* read this processes section of the data */
if (pass) {
if ((H5Dread(dset_id, H5T_NATIVE_FLOAT, memspace, H5S_ALL, dxpl_id, data_slice)) < 0) {
pass = FALSE;
failure_mssg = "H5Dread() failed\n";
}
}
#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
if (pass) {
prop_value = FALSE;
if (H5Pget(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) {
pass = FALSE;
failure_mssg = "H5Pget() failed\n";
}
if (pass) {
if (prop_value != TRUE) {
pass = FALSE;
failure_mssg = "rank 0 Bcast optimization was mistakenly not performed\n";
}
}
}
#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
/* verify the data */
if (pass) {
if (comm == MPI_COMM_WORLD) /* test 1 */
nextValue = 0;
else if (group_id == 0) /* test 2 group 0 */
nextValue = 0;
else /* test 2 group 1 */
nextValue = (float)((hsize_t)(mpi_size / 2) * count);
i = (hsize_t)dset_size;
while ((pass) && (i < (hsize_t)dset_size)) {
/* what we really want is data_slice[i] != nextValue --
* the following is a circumlocution to shut up the
* the compiler.
*/
if ((data_slice[i] > nextValue) || (data_slice[i] < nextValue)) {
pass = FALSE;
failure_mssg = "Unexpected dset contents.\n";
}
nextValue += 1;
i++;
}
}
if (pass || (memspace != -1)) {
if (H5Sclose(memspace) < 0) {
pass = FALSE;
failure_mssg = "H5Sclose(memspace) failed.\n";
}
}
/* free data_slice if it has been allocated */
if (data_slice != NULL) {
HDfree(data_slice);
data_slice = NULL;
}
if (pass || (dxpl_id != -1)) {
if (H5Pclose(dxpl_id) < 0) {
pass = FALSE;
failure_mssg = "H5Pclose(dxpl_id) failed.\n";
}
}
}
/* close file, etc. */
if (pass || (dset_id != -1)) {
if (H5Dclose(dset_id) < 0) {
pass = FALSE;
failure_mssg = "H5Dclose(dset_id) failed.\n";
}
}
if (pass || (dset_id_ch != -1)) {
if (H5Dclose(dset_id_ch) < 0) {
pass = FALSE;
failure_mssg = "H5Dclose(dset_id_ch) failed.\n";
}
}
if (pass || (file_id != -1)) {
if (H5Fclose(file_id) < 0) {
pass = FALSE;
failure_mssg = "H5Fclose(file_id) failed.\n";
}
}
if (pass || (fapl_id != -1)) {
if (H5Pclose(fapl_id) < 0) {
pass = FALSE;
failure_mssg = "H5Pclose(fapl_id) failed.\n";
}
}
/* collect results from other processes.
* Only overwrite the failure message if no previous error
* has been detected
*/
local_failure = (pass ? 0 : 1);
if (MPI_Allreduce(&local_failure, &global_failures, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD) != MPI_SUCCESS) {
if (pass) {
pass = FALSE;
failure_mssg = "MPI_Allreduce() failed.\n";
}
}
else if ((pass) && (global_failures > 0)) {
pass = FALSE;
failure_mssg = "One or more processes report failure.\n";
}
/* report results and finish cleanup */
if (group_rank == 0) {
if (pass) {
PASSED();
}
else {
H5_FAILED();
HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
}
HDremove(reloc_data_filename);
}
return (!pass);
} /* test_parallel_read() */
/*-------------------------------------------------------------------------
* Function: main
*
* Purpose: To implement a parallel test which validates whether the
* new superblock lookup functionality is working correctly.
*
* The test consists of creating two separate HDF datasets
* in which random text is inserted at the start of each
* file using the 'j5jam' application. This forces the
* HDF5 file superblock to a non-zero offset.
* Having created the two independent files, we create two
* non-overlapping MPI groups, each of which is then tasked
* with the opening and validation of the data contained
* therein.
*
* Return: Success: 0
* Failure: 1
*
* Programmer: Richard Warren
* 10/1/17
*-------------------------------------------------------------------------
*/
int
main(int argc, char **argv)
{
int nerrs = 0;
int which_group = 0;
int mpi_rank;
int mpi_size;
int split_size;
MPI_Comm group_comm = MPI_COMM_NULL;
/* I don't believe that argv[0] can ever be NULL.
* It should thus be safe to dup and save as a check
* for cmake testing. Note that in our Cmake builds,
* all executables are located in the same directory.
* We assume (but we'll check) that the h5jam utility
* is in the directory as this executable. If that
* isn't true, then we can use a relative path that
* should be valid for the autotools environment.
*/
test_argv0 = HDstrdup(argv[0]);
if ((MPI_Init(&argc, &argv)) != MPI_SUCCESS) {
HDfprintf(stderr, "FATAL: Unable to initialize MPI\n");
HDexit(EXIT_FAILURE);
}
if ((MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank)) != MPI_SUCCESS) {
HDfprintf(stderr, "FATAL: MPI_Comm_rank returned an error\n");
HDexit(EXIT_FAILURE);
}
if ((MPI_Comm_size(MPI_COMM_WORLD, &mpi_size)) != MPI_SUCCESS) {
HDfprintf(stderr, "FATAL: MPI_Comm_size returned an error\n");
HDexit(EXIT_FAILURE);
}
H5open();
if (mpi_rank == 0) {
HDfprintf(stdout, "========================================\n");
HDfprintf(stdout, "Collective file open optimization tests\n");
HDfprintf(stdout, " mpi_size = %d\n", mpi_size);
HDfprintf(stdout, "========================================\n");
}
if (mpi_size < 3) {
if (mpi_rank == 0) {
HDprintf(" Need at least 3 processes. Exiting.\n");
}
goto finish;
}
/* ------ Create two (2) MPI groups ------
*
* We split MPI_COMM_WORLD into 2 more or less equal sized
* groups. The resulting communicators will be used to generate
* two HDF files which in turn will be opened in parallel and the
* contents verified in the second read test below.
*/
split_size = mpi_size / 2;
which_group = (mpi_rank < split_size ? 0 : 1);
if ((MPI_Comm_split(MPI_COMM_WORLD, which_group, 0, &group_comm)) != MPI_SUCCESS) {
HDfprintf(stderr, "FATAL: MPI_Comm_split returned an error\n");
HDexit(EXIT_FAILURE);
}
/* ------ Generate all files ------ */
/* We generate the file used for test 1 */
nerrs += generate_test_file(MPI_COMM_WORLD, mpi_rank, which_group);
if (nerrs > 0) {
if (mpi_rank == 0) {
HDprintf(" Test(1) file construction failed -- skipping tests.\n");
}
goto finish;
}
/* We generate the file used for test 2 */
nerrs += generate_test_file(group_comm, mpi_rank, which_group);
if (nerrs > 0) {
if (mpi_rank == 0) {
HDprintf(" Test(2) file construction failed -- skipping tests.\n");
}
goto finish;
}
/* Now read the generated test file (still using MPI_COMM_WORLD) */
nerrs += test_parallel_read(MPI_COMM_WORLD, mpi_rank, mpi_size, which_group);
if (nerrs > 0) {
if (mpi_rank == 0) {
HDprintf(" Parallel read test(1) failed -- skipping tests.\n");
}
goto finish;
}
/* Update the user on our progress so far. */
if (mpi_rank == 0) {
HDprintf(" Test 1 of 2 succeeded\n");
HDprintf(" -- Starting multi-group parallel read test.\n");
}
/* run the 2nd set of tests */
nerrs += test_parallel_read(group_comm, mpi_rank, mpi_size, which_group);
if (nerrs > 0) {
if (mpi_rank == 0) {
HDprintf(" Multi-group read test(2) failed\n");
}
goto finish;
}
if (mpi_rank == 0) {
HDprintf(" Test 2 of 2 succeeded\n");
}
finish:
if ((group_comm != MPI_COMM_NULL) && (MPI_Comm_free(&group_comm)) != MPI_SUCCESS) {
HDfprintf(stderr, "MPI_Comm_free failed!\n");
}
/* make sure all processes are finished before final report, cleanup
* and exit.
*/
MPI_Barrier(MPI_COMM_WORLD);
if (mpi_rank == 0) { /* only process 0 reports */
const char *header = "Collective file open optimization tests";
HDfprintf(stdout, "===================================\n");
if (nerrs > 0) {
HDfprintf(stdout, "***%s detected %d failures***\n", header, nerrs);
}
else {
HDfprintf(stdout, "%s finished with no failures\n", header);
}
HDfprintf(stdout, "===================================\n");
}
/* close HDF5 library */
if (H5close() != SUCCEED) {
HDfprintf(stdout, "H5close() failed. (Ignoring)\n");
}
/* MPI_Finalize must be called AFTER H5close which may use MPI calls */
MPI_Finalize();
/* cannot just return (nerrs) because exit code is limited to 1byte */
return ((nerrs > 0) ? EXIT_FAILURE : EXIT_SUCCESS);
} /* main() */