hdf5/test/set_extent.c
jhendersonHDF 27bb358f7a
Subfiling VFD (#1883)
* Added support for vector I/O calls to the VFD layer, and
associated test code.  Note that this includes the optimization
to allow shortened sizes and types arrays to allow more space
efficient representations of vectors in which all entries are
of the same size and/or type.  See the Selection I/o RFC for
further details.

Tested serial and parallel, debug and production on Charis.
       serial and parallel debug only on Jelly.

* ran code formatter

quick serial build and test on jelly

* Add H5FD_read_selection() and H5FD_write_selection().  Currently only
translate to scalar calls.  Fix const buf in H5FD_write_vector().

* Format source

* Fix comments

* Add selection I/O to chunk code, used when: not using chunk cache, no
datatype conversion, no I/O filters, no page buffer, not using collective
I/O.  Requires global variable H5_use_selection_io_g be set to TRUE.
Implemented selection to vector I/O transaltion at the file driver
layer.

* Fix formatting unrelated to previous change to stop github from
complaining.

* Add full API support for selection I/O.  Add tests for this.

* Implement selection I/O for contiguous datasets.  Fix bug in selection
I/O translation.  Add const qualifiers to some internal selection I/O
routines to maintain const-correctness while avoiding memcpys.

* Added vector read / write support to the MPIO VFD, with associated
test code (see testpar/t_vfd.c).

Note that this implementation does NOT support vector entries of
size greater than 2 GB.  This must be repaired before release,
but it should be good enough for correctness testing.

As MPIO requires vector I/O requests to be sorted in increasing
address order, also added a vector sort utility in H5FDint.c  This
function is tested in passing by the MPIO vector I/O extension.

In passing, repaired a bug in size / type vector extension management
in H5FD_read/write_vector()

Tested parallel debug and production on charis and Jelly.

* Ran source code formatter

* Add support for independent parallel I/O with selection I/O.  Add
HDF5_USE_SELECTION_IO env var to control selection I/O (default off).

* Implement parallel collective support for selection I/O.

* Fix comments and run formatter.

* Update selection IO branch with develop (#1215)

Merged branch 'develop' into selection_io

* Sync with develop (#1262)

Updated the branch with develop changes.

* Implement big I/O support for vector I/O requests in the MPIO file
driver.

* Free arrays in H5FD__mpio_read/write_vector() as soon as they're not
needed, to cut down on memory usage during I/O.

* Address comments from code review.  Fix const warnings with
H5S_SEL_ITER_INIT().

* Committing clang-format changes

* Feature/subfiling (#1464)

* Initial checkin of merged sub-filing VFD.

Passes regression tests (debug/shared/paralle) on Jelly.
However, bugs and many compiler warnings remain -- not suitable
for merge to develop.

* Minor mods to src/H5FDsubfile_mpi.c to address errors reported by autogen.sh

* Code formatting run -- no test

* Merged my subfiling code fixes into the new selection_io_branch

* Forgot to add the FindMERCURY.cmake file. This will probably disappear soon

* attempting to make a more reliable subfile file open which doesn't return errors. For some unknown reason, the regular posix open will occasionally fail to create a subfile.  Some better error handling for file close has been added.

* added NULL option for H5FD_subfiling_config_t in H5Pset_fapl_subfiling (#1034)

* NULL option automatically stacks IOC VFD for subfiling and returns a valid fapl.
* added doxygen subfiling APIs

* Various fixes which allow the IOR benchmark to run correctly

* Lots of updates including the packaging up of the mercury_util source files to enable easier builds for our Benchmarking

* Interim checkin of selection_io_with_subfiling_vfd branch

    Moddified testpar/t_vfd.c to test the subfiling vfd with default configuration.
    Must update this code to run with a variety of configurations -- most particularly
    multiple IO concentrators, and stripe depth small enough to test the other IO
    concentrators.

    testpar/t_vfd.c exposed a large number of race condidtions -- symtoms included:

      1) Crashes (usually seg faults)

      2) Heap corruption

      3) Stack corruption

      4) Double frees of heap space

      5) Hangs

      6) Out of order execution of I/O requests / violations of POSIX semantics

      7) Swapped write requests

        Items 1 - 4 turned out to be primarily caused by file close issues --
    specifically, the main I/O concentrator thread and its pool of worker threads
    were not being shut down properly on file close.  Addressing this issue in
    combination with some other minor fixes seems to have addressed these issues.

        Items 5 & 6 appear to have been caused by issue of I/O requests to the
    thread pool in an order that did not maintain POSIX semantics.  A rewrite of
    the I/O request dispatch code appears to have solved these issues.

        Item 7 seems to have been caused by multiple write requests from a given
    rank being read by the wrong worker thread.  Code to issue "unique" tags for
    each write request via the ACK message appears to have cleaned this up.

        Note that the code is still in poor condtition.  A partial list of known
    defects includes:

     a) Race condiditon on file close that allows superblock writes to arrive
        at the I/O concentrator after it has been shutdown.  This defect is
        most evident when testpar/t_subfiling_vfd is run with 8 ranks.

     b) No error reporting from I/O concentrators -- must design and implement
        this.  For now, mostly just asserts, which suggests that it should be
        run in debug mode.

     c) Much commented out and/or un-used code.

     d) Code orgnaization

     e) Build system with bits of Mercury is awkward -- think of shifting
        to pthreads with our own thread pool code.

     f) Need to add native support for vector and selection I/O to the subfiling
        VFD.

     g) Need to review, and posibly rework configuration code.

     h) Need to store subfile configuration data in a superblock extension message,
        and add code to use this data on file open.

     i) Test code is inadequate -- expect more issues as it is extended.

        In particular, there is no unit test code for the I/O request dispatch code.
        While I think it is correct at present, we need test code to verify this.

        Similarly, we need to test with multiple I/O concentrators and much smaller
        stripe depth.

    My actual code changes were limited to:

          src/H5FDioc.c
          src/H5FDioc_threads.c
          src/H5FDsubfile_int.c
          src/H5FDsubfile_mpi.c
          src/H5FDsubfiling.c
          src/H5FDsubfiling.h
          src/H5FDsubfiling_priv.h
          testpar/t_subfiling_vfd.c
          testpar/t_vfd.c

    I'm not sure what is going on with the deletions in src/mercury/src/util.

    Tested parallel/debug on Charis and Jelly

* subfiling with selection IO (#1219)

Merged branch 'selection_io' into subfiling branch.

* Subfile name fixes (#1250)

* fixed subfiling naming convention, and added leading zero to rank names.

* Merge branch 'selection_io' into selection_io_with_subfiling_vfd (#1265)

* Added script to join subfiles into a single HDF5 file (#1350)

* Modified  H5FD__subfiling_query() to report that the sub-filing VFD supports MPI
This exposed issues with truncate and get EOF in the sub-filing VFD.
I believe I have addressed these issues (get EOF not as fully tested as it should be), howeer,
it exposed race conditions resulting in hangs.  As of this writing, I have not been able
to chase these down.

Note that the tests that expose these race conditions are in testpar/t_subfiling_vfd.c, and
are currently skipped.  Unskip these tests to reproduce the race conditions.

tested (to the extent possible) debug/parallel on charis and jelly.

* Committing clang-format changes

* fixed H5MM_free

Co-authored-by: mainzer <mainzer#hdfgroup.org>
Co-authored-by: jrmainzer <72230804+jrmainzer@users.noreply.github.com>
Co-authored-by: Richard Warren <Richard.Warren@hdfgroup.org>
Co-authored-by: Richard.Warren <richard.warren@jelly.ad.hdfgroup.org>
Co-authored-by: github-actions <41898282+github-actions[bot]@users.noreply.github.com>

* Move Subfiling VFD components into H5FDsubfiling source directory

* Update Autotools build and add H5_HAVE_SUBFILING_VFD macro to H5pubconf.h

* Tidy up CMake build of subfiling sources

* Merge branch 'develop' into feature/subfiling (#1539)

Merge branch 'develop' into feature/subfiling

* Add VFD interface version field to Subfiling and IOC VFDs

* Merge branch 'develop' into feature/subfiling (#1557)

Merge branch 'develop' into feature/subfiling

* Merge branch 'develop' into feature/subfiling (#1563)

Merge branch 'develop' into feature/subfiling

* Tidy up merge artifacts after rebase on develop

* Fix incorrect variable in mirror VFD utils CMake

* Ensure VFD values are always defined

* Add subfiling to CMake VFD_LIST if built

* Mark MPI I/O driver self-initialization global as static

* Add Subfiling VFD to predefined VFDs for HDF5_DRIVER env. variable

* Initial progress towards separating private vs. public subfiling code

* include libgen.h in t_vfd tests for correct dirname/basename

* Committing clang-format changes

* removed mercury option, included subfiling header path (#1577)

Added subfiling status to configure output, installed h5fuse.sh to build directory for use in future tests.

* added check for stdatomic.h (#1578)

* added check for stdatomic.h with subfiling
* added H5_HAVE_SUBFILING_VFD for cmake

* fix old-style-definition warning (#1582)

* fix old-style-definition warning

* added test for enable parallel with subfiling VFD (#1586)

Fails if subfiling VFD is not used with parallel support.

* Subfiling/IOC VFD fixes and tidying (#1619)

* Rename CMake option for Subfiling VFD to be consistent with other VFDs

* Miscellaneous Subfiling fixes

Add error message for unset MPI communicator

Support dynamic loading of subfiling VFD with default configuration

* Temporary fix for subfile name issue

* Added subfile checks (#1634)

* added subfile checks

* Feature/subfiling (#1655)

* Subfiling/IOC VFD cleanup

Fix misuse of MPI_COMM_WORLD in IOC VFD

Propagate Subfiling FAPL MPI settings down to IOC FAPL in default
configuration case

Cleanup IOC VFD debugging code

Change sprintf to snprintf in a few places

* Major work on separating Subfiling and IOC VFDs from each other

* Re-write async_completion func to not overuse stack

* Replace usage of MPI_COMM_WORLD with file's actual MPI communicator

* Refactor H5FDsubfile_mpi.c

* Remove empty file H5FDsubfile_mpi.c

* Separate IOC VFD errors to its own error stack

* Committing clang-format changes

* Remove H5TRACE macros from H5FDioc.c

* Integrate H5FDioc_threads.c with IOC error stack

* Fix for subfile name generation

Use number of I/O concentrators from existing subfiling configuration file, if one exists

* Add temporary barrier in "Get EOF" operation to prevent races on EOF

Co-authored-by: github-actions <41898282+github-actions[bot]@users.noreply.github.com>

* Fix for retrieval of machine Host ID

* Default to MPI_COMM_WORLD if no MPI params set

* added libs rt and pthreads (#1673)

* added libs rt and pthreads

* Feature/subfiling (#1689)

* More tidying of IOC VFD and subfiling debug code

* Remove old unused log file code

* Clear FID from active file map on failure

* Fix bug in generation of subfile names when truncating file

* Change subfile names to start from 1 instead of 0

* Use long long for user-specified stripe size from environment variable

* Skip 0-sized I/Os in low-level IOC I/O routines

* Don't update EOF on read

* Convert printed warning about data size mismatch to assertion

* Don't add base file address to I/O addresses twice

Base address should already be applied as part of H5FDwrite/read_vector calls

* Account for 0-sized I/O vector entries in subfile write/read functions

* Rewrite init_indep_io for clarity

* Correction for IOC wraparound calculations

* Some corrections to iovec calculations

* Remove temporary barrier on EOF retrieval

* Complete work request queue entry on error instead of skipping over

* Account for stripe size wraparound for sf_col_offset calculation

* Committing clang-format changes

Co-authored-by: github-actions <41898282+github-actions[bot]@users.noreply.github.com>

* Re-write and fix bugs in I/O vector filling routines (#1703)

* Rewrite I/O vector filling routines for clarity

* Fix bug with iovec_fill_last when last I/O size is 0

* added subfiling_dir line read (#1714)

* added subfiling_dir line read and use it
* shellcheck fixes

* I/O request dispatch logic update (#1731)

Short-circuit I/O request dispatch when head of I/O queue is an
in-progress get EOF or truncate operation. This prevents an issue where
a write operation can be dispatched alongside a get EOF/truncate
operation, whereas all I/O requests are supposed to be ineligible for
dispatch until the get EOF/truncate is completed

* h5fuse.sh.in clean-up (#1757)

* Added command-line options

* Committing clang-format changes

* Align with changes from develop

* Mimic MPI I/O VFD for EOF handling

* Initialize context_id field for work request objects

* Use logfile for some debugging information

* Use atomic store to set IOC ready flag

* Use separate communicator for sending file EOF data

Minor IOC cleanup

* Use H5_subfile_fid_to_context to get context ID for file in Subfiling
VFD

* IOVEC calculation fixes

* Updates for debugging code

* Minor fixes for threaded code

* Committing clang-format changes

* Use separate MPI communicator for barrier operations

* Committing clang-format changes

* Rewrite EOF routine to use nonblocking MPI communication

* Committing clang-format changes

* Always dispatch I/O work requests in IOC main loop

* Return distinct MPI communicator to library when requested

* Minor warning cleanup

* Committing clang-format changes

* Generate h5fuse.sh from h5fuse.sh.in in CMake

* Send truncate messages to correct IOC rank

* Committing clang-format changes

* Miscellaneous cleanup

Post some MPI receives before sends

Free some duplicated MPI communicator/Info objects

Remove unnecessary extra MPI_Barrier

* Warning cleanup

* Fix for leaked MPI communicator

* Retrieve file EOF on single rank and bcast it

* Fixes for a few failure paths

* Cleanup of IOC file opens

* Committing clang-format changes

* Use plan MPI_Send for send of EOF messages

* Always check MPI thread support level during Subfiling init

* Committing clang-format changes

* Handle a hang on failure when IOCs can't open subfiles

* Committing clang-format changes

* Refactor file open status consensus check

* Committing clang-format changes

* Fix for MPI_Comm_free being called after MPI_Finalize

* Fix VFD test by setting MPI params before setting subfiling on FAPL

* Update Subfiling VFD error handling and error stack usage

* Improvements for Subfiling logfiles

* Remove prototypes for currently unused routines

* Disable I/O queue stat collecting by default

* Remove unused serialization mutex variable

* Update VFD testing to take subfiling VFD into account

* Fix usage of global subfiling application layout object

* Minor fixes for failure pathways

* Keep track of the number of failures in an IOC I/O queue

* Make sure not to exceed MPI_TAG_UB value for data communication messages

* Committing clang-format changes

* Update for rename of some H5FD 'ctl' opcodes

* Always include Subfiling's public header files in hdf5.h

* Remove old unused code and comments

* Implement support for per-file I/O queues

Allows the subfiling VFD to have multiple HDF5 files open simultaneously

* Use simple MPI_Iprobe over unnecessary MPI_Improbe

* Committing clang-format changes

* Update HDF5 testing to query driver for H5FD_FEAT_DEFAULT_VFD_COMPATIBLE
flag

* Fix a few bugs related to file multi-opens

* Avoid calling MPI routines if subfiling gets reinitialized

* Fix issue when files are closed in a random order

* Update HDF5 testing to query VFD for "using MPI" feature flag

* Register atexit handler in subfiling VFD to call MPI_Finalize after HDF5
closes

* Fail for collective I/O requests until support is implemented

* Correct VOL test function prototypes

* Minor cleanup of old code and comments

* Update mercury dependency

* Cleanup of subfiling configuration structure

* Committing clang-format changes

* Build system updates for Subfiling VFD

* Fix possible hang on failure in t_vfd tests caused by mismatched
MPI_Barrier calls

* Copy subfiling IOC fapl in "fapl get" method

* Mirror subfiling superblock writes to stub file for legacy POSIX-y HDF5
applications

* Allow collective I/O for MPI_BYTE types and rank 0 bcast strategy

* Committing clang-format changes

* Use different scheme for subfiling write message MPI tag calculations

* Committing clang-format changes

* Avoid performing fstat calls on all MPI ranks

* Add MPI_Barrier before finalizing IOC threads

* Use try_lock in I/O queue dispatch to minimize contention from worker threads

* Use simple Waitall for nonblocking I/O waits

* Add configurable IOC main thread delay and try_lock option to I/O queue dispatch

* Fix bug that could cause serialization of non-overlapping I/O requests

* Temporarily treat collective subfiling vector I/O calls as independent

* Removed unused mercury bits

* Add stubs for subfiling and IOC file delete callback

* Update VFD testing for Subfiling VFD

* Work around HDF5 metadata cache bug for Subfiling VFD when MPI Comm size
= 1

* Committing clang-format changes

Co-authored-by: mainzer <mainzer#hdfgroup.org>
Co-authored-by: Neil Fortner <nfortne2@hdfgroup.org>
Co-authored-by: Scot Breitenfeld <brtnfld@hdfgroup.org>
Co-authored-by: github-actions <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: jrmainzer <72230804+jrmainzer@users.noreply.github.com>
Co-authored-by: Richard Warren <Richard.Warren@hdfgroup.org>
Co-authored-by: Richard.Warren <richard.warren@jelly.ad.hdfgroup.org>
2022-07-22 13:03:12 -07:00

2758 lines
85 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Programmer: Pedro Vicente
* April 12, 2002
*
* Purpose: Tests the H5Dset_extent call
*/
#include "h5test.h"
/*-------------------------------------------------------------------------
*
* Tests the function H5Dset_extent.
*
*-------------------------------------------------------------------------
*/
const char *FILENAME[] = {"set_extent1", "set_extent2", "set_extent3", "set_extent4",
"set_extent5", "set_extent6", NULL};
#define NAME_BUF_SIZE 1024
#define EXT_FILE_NAME1 "ext1.bin"
#define EXT_FILE_NAME2 "ext2.bin"
#define CONFIG_COMPRESS 0x01u
#define CONFIG_FILL 0x02u
#define CONFIG_EARLY_ALLOC 0x04u
#define CONFIG_UNFILT_EDGE 0x08u
#define CONFIG_ALL (CONFIG_COMPRESS + CONFIG_FILL + CONFIG_EARLY_ALLOC + CONFIG_UNFILT_EDGE)
#define FILL_VALUE (-1)
#define DO_RANKS_PRINT_CONFIG(TEST) \
{ \
HDprintf(" Config:\n"); \
HDprintf(" Test: %s\n", TEST); \
HDprintf(" Compression: %s\n", (config & CONFIG_COMPRESS ? "yes" : "no")); \
HDprintf(" Fill value: %s\n", (do_fillvalue ? "yes" : "no")); \
HDprintf(" Early allocation: %s\n", (config & CONFIG_EARLY_ALLOC ? "yes" : "no")); \
HDprintf(" Edge chunk filters: %s\n", (config & CONFIG_UNFILT_EDGE ? "disabled" : "enabled")); \
} /* end DO_RANKS_PRINT_CONFIG */
#define RANK1 1
#define RANK2 2
#define RANK3 3
#define DIM0 5
#define DIM1 5
#define DIM2 5
#define DIMS0 3
#define DIMS1 3
#define DIMS2 3
#define DIME0 7
#define DIME1 7
#define DIME2 7
#define ISTORE_IK 64
#define RAND4_NITER 100
#define RAND4_SPARSE_SWITCH 10
#define RAND4_FAIL_DUMP(NDIM_SETS, J, K, L, M) \
{ \
H5_FAILED(); \
AT(); \
test_random_rank4_dump(NDIM_SETS, dim_log->arr, cdims, J, K, L, M); \
goto error; \
} /* end RAND4_FAIL_DUMP */
#define RAND4_VL_NITER 40
#define RAND4_VL_SPARSE_SWITCH 5
typedef enum rank4_index_t {
RANK4_INDEX_BTREE = 0, /* Use b-tree (1/2) as chunk index */
RANK4_INDEX_FARRAY, /* Use fixed array as chunk index */
RANK4_INDEX_EARRAY, /* Use extensible array as chunk index */
RANK4_NINDICES, /* Must be last */
} rank4_index_t;
static int do_ranks(hid_t fapl, hbool_t new_format);
static int do_layouts(hid_t fapl);
static int test_rank1(hid_t fapl, hid_t dcpl, hbool_t do_fill_value, hbool_t disable_edge_filters,
hbool_t set_istore_k);
static int test_rank2(hid_t fapl, hid_t dcpl, hbool_t do_fill_value, hbool_t disable_edge_filters,
hbool_t set_istore_k);
static int test_rank3(hid_t fapl, hid_t dcpl, hbool_t do_fill_value, hbool_t disable_edge_filters,
hbool_t set_istore_k);
static int test_random_rank4(hid_t fapl, hid_t dcpl, hbool_t do_fillvalue, hbool_t disable_edge_filters,
hbool_t do_sparse, rank4_index_t index_type);
static int test_random_rank4_vl(hid_t fapl, hid_t dcpl, hbool_t do_fillvalue, hbool_t disable_edge_filters,
hbool_t do_sparse, rank4_index_t index_type);
static int test_external(hid_t fapl);
static int test_layouts(H5D_layout_t layout, hid_t fapl);
static void test_random_rank4_dump(unsigned ndim_sets, hsize_t dim_log[][4], hsize_t cdims[4], int j, int k,
int l, int m);
/*-------------------------------------------------------------------------
* main
*-------------------------------------------------------------------------
*/
int
main(void)
{
hid_t fapl; /* file access property list */
hid_t fapl2; /* file access property list w/latest format set */
unsigned new_format; /* Whether to use the latest file format */
unsigned chunk_cache; /* Whether to enable chunk caching */
int nerrors = 0;
const char *env_h5_drvr; /* File Driver value from environment */
hbool_t contig_addr_vfd; /* Whether VFD used has a contiguous address space */
env_h5_drvr = HDgetenv(HDF5_DRIVER);
if (env_h5_drvr == NULL)
env_h5_drvr = "nomatch";
/* Current VFD that does not support contiguous address space */
contig_addr_vfd = (hbool_t)(HDstrcmp(env_h5_drvr, "split") != 0 && HDstrcmp(env_h5_drvr, "multi") != 0);
/* Initialize random number seed */
HDsrandom((unsigned)HDtime(NULL));
h5_reset();
fapl = h5_fileaccess();
/* Copy the file access property list */
if ((fapl2 = H5Pcopy(fapl)) < 0)
TEST_ERROR;
/* Set chunk cache so only part of the chunks can be cached on fapl */
if (H5Pset_cache(fapl, 0, (size_t)8, 256 * sizeof(int), 0.75) < 0)
TEST_ERROR;
/* Disable chunk caching on fapl2 */
if (H5Pset_cache(fapl2, 0, (size_t)0, (size_t)0, 0.0) < 0)
TEST_ERROR;
/* Set the "use the latest version of the format" bounds for creating objects in the file */
if (H5Pset_libver_bounds(fapl2, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) < 0)
TEST_ERROR;
/* Test with old & new format groups */
for (new_format = FALSE; new_format <= TRUE; new_format++) {
hid_t my_fapl;
/* Test chunked datasets with and without chunk cache */
for (chunk_cache = FALSE; chunk_cache <= TRUE; chunk_cache++) {
/* Output message about the type of format */
if (new_format)
HDprintf("Testing with new file format");
else
HDprintf("Testing with old file format");
/* Set the FAPL for the chunk cache settings */
if (chunk_cache) {
HDputs(" and chunk cache enabled:");
my_fapl = fapl;
} /* end if */
else {
HDputs(" and chunk cache disabled:");
my_fapl = fapl2;
} /* end else */
/* Set the FAPL for the type of format */
if (new_format) {
/* Set the "use the latest version of the format" bounds for
* creating objects in the file */
if (H5Pset_libver_bounds(my_fapl, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) < 0)
TEST_ERROR;
} /* end if */
else
/* Set the "use the earliest version of the format" bounds for
* creating objects in the file */
if (H5Pset_libver_bounds(my_fapl, H5F_LIBVER_EARLIEST, H5F_LIBVER_LATEST) < 0)
TEST_ERROR;
/* Tests which use chunked datasets */
if (!new_format || (new_format && contig_addr_vfd))
nerrors += do_ranks(my_fapl, new_format) < 0 ? 1 : 0;
} /* end for */
/* Tests which do not use chunked datasets */
if (!new_format || (new_format && contig_addr_vfd)) {
nerrors += test_external(fapl) < 0 ? 1 : 0;
nerrors += do_layouts(fapl) < 0 ? 1 : 0;
}
} /* end for */
/* Close 2nd FAPL */
if (H5Pclose(fapl2) < 0)
TEST_ERROR;
/* Verify symbol table messages are cached */
nerrors += (h5_verify_cached_stabs(FILENAME, fapl) < 0 ? 1 : 0);
h5_cleanup(FILENAME, fapl);
HDremove(EXT_FILE_NAME1);
HDremove(EXT_FILE_NAME2);
if (nerrors)
goto error;
HDputs("All H5Dset_extent tests passed.");
return 0;
error:
nerrors = MAX(1, nerrors);
HDprintf("***** %d H5Dset_extent TEST%s FAILED! *****\n", nerrors, 1 == nerrors ? "" : "S");
return 1;
}
/*-------------------------------------------------------------------------
* test with several ranks
*-------------------------------------------------------------------------
*/
static int
do_ranks(hid_t fapl, hbool_t new_format)
{
hbool_t do_fillvalue = FALSE;
hbool_t disable_edge_filters = FALSE;
rank4_index_t index_type;
hid_t dcpl = -1;
int fillvalue = FILL_VALUE;
unsigned config;
hbool_t driver_is_parallel;
TESTING_2("datasets with ranks 1 to 4 (all configurations)");
if (h5_using_parallel_driver(fapl, &driver_is_parallel) < 0)
TEST_ERROR;
/* Loop over different configurations for tests */
for (config = 0; config <= CONFIG_ALL; config++) {
/* Create DCPL and add appropriate settings */
if ((dcpl = H5Pcreate(H5P_DATASET_CREATE)) < 0)
TEST_ERROR;
if (config & CONFIG_COMPRESS) {
#ifdef H5_HAVE_FILTER_DEFLATE
if (H5Pset_deflate(dcpl, 9) < 0)
TEST_ERROR;
#else /* H5_HAVE_FILTER_DEFLATE */
if (H5Pclose(dcpl) < 0)
TEST_ERROR;
continue;
#endif /* H5_HAVE_FILTER_DEFLATE */
} /* end if */
if (config & CONFIG_FILL) {
do_fillvalue = TRUE;
if (H5Pset_fill_value(dcpl, H5T_NATIVE_INT, &fillvalue) < 0)
TEST_ERROR;
} /* end if */
else
do_fillvalue = FALSE;
if (config & CONFIG_EARLY_ALLOC)
if (H5Pset_alloc_time(dcpl, H5D_ALLOC_TIME_EARLY) < 0)
TEST_ERROR;
if (config & CONFIG_UNFILT_EDGE)
disable_edge_filters = TRUE;
else
disable_edge_filters = FALSE;
/* Run tests */
if (do_fillvalue) {
unsigned ifset;
/* Iterate over different fill times */
for (ifset = 0; ifset <= 1; ifset++) {
if (ifset) {
if (H5Pset_fill_time(dcpl, H5D_FILL_TIME_IFSET) < 0)
TEST_ERROR;
} /* end if */
else if (H5Pset_fill_time(dcpl, H5D_FILL_TIME_ALLOC) < 0)
TEST_ERROR;
if (test_rank1(fapl, dcpl, do_fillvalue, disable_edge_filters, FALSE) < 0) {
DO_RANKS_PRINT_CONFIG("Rank 1")
HDprintf(" Fill time: %s\n", (ifset ? "H5D_FILL_TIME_IFSET" : "H5D_FILL_TIME_ALLOC"));
goto error;
} /* end if */
if (test_rank2(fapl, dcpl, do_fillvalue, disable_edge_filters, FALSE) < 0) {
DO_RANKS_PRINT_CONFIG("Rank 2")
HDprintf(" Fill time: %s\n", (ifset ? "H5D_FILL_TIME_IFSET" : "H5D_FILL_TIME_ALLOC"));
goto error;
} /* end if */
if (test_rank3(fapl, dcpl, do_fillvalue, disable_edge_filters, FALSE) < 0) {
DO_RANKS_PRINT_CONFIG("Rank 3")
HDprintf(" Fill time: %s\n", (ifset ? "H5D_FILL_TIME_IFSET" : "H5D_FILL_TIME_ALLOC"));
goto error;
} /* end if */
if (test_rank2(fapl, dcpl, do_fillvalue, disable_edge_filters, TRUE) < 0) {
DO_RANKS_PRINT_CONFIG("Rank 2 with non-default indexed storage B-tree")
HDprintf(" Fill time: %s\n", (ifset ? "H5D_FILL_TIME_IFSET" : "H5D_FILL_TIME_ALLOC"));
goto error;
} /* end if */
} /* end for */
} /* end if */
else {
/* These tests expect fill values to be written even if there is no
* fill value defined */
if (H5Pset_fill_time(dcpl, H5D_FILL_TIME_ALLOC) < 0)
TEST_ERROR;
if (test_rank1(fapl, dcpl, do_fillvalue, disable_edge_filters, FALSE) < 0) {
DO_RANKS_PRINT_CONFIG("Rank 1")
goto error;
} /* end if */
if (test_rank2(fapl, dcpl, do_fillvalue, disable_edge_filters, FALSE) < 0) {
DO_RANKS_PRINT_CONFIG("Rank 2")
goto error;
} /* end if */
if (test_rank3(fapl, dcpl, do_fillvalue, disable_edge_filters, FALSE) < 0) {
DO_RANKS_PRINT_CONFIG("Rank 3")
goto error;
} /* end if */
if (test_rank2(fapl, dcpl, do_fillvalue, disable_edge_filters, TRUE) < 0) {
DO_RANKS_PRINT_CONFIG("Rank 2 with non-default indexed storage B-tree")
goto error;
} /* end if */
} /* end else */
/* The rank 4 test expects the fill value to be written only if
* defined */
if (H5Pset_fill_time(dcpl, H5D_FILL_TIME_IFSET) < 0)
TEST_ERROR;
/* Iterate over different index types, but only if using the new format
*/
for (index_type = RANK4_INDEX_BTREE; index_type < RANK4_NINDICES; index_type++) {
/* Standard test */
if (test_random_rank4(fapl, dcpl, do_fillvalue, disable_edge_filters, FALSE, index_type) < 0) {
DO_RANKS_PRINT_CONFIG("Randomized rank 4")
HDprintf(" Index: %s\n", index_type == RANK4_INDEX_BTREE
? "btree"
: (index_type == RANK4_INDEX_FARRAY ? "farray" : "earray"));
goto error;
} /* end if */
if (!driver_is_parallel) {
/* VL test */
if (test_random_rank4_vl(fapl, dcpl, do_fillvalue, disable_edge_filters, FALSE, index_type) <
0) {
DO_RANKS_PRINT_CONFIG("Randomized rank 4 variable length")
HDprintf(" Index: %s\n",
index_type == RANK4_INDEX_BTREE
? "btree"
: (index_type == RANK4_INDEX_FARRAY ? "farray" : "earray"));
goto error;
} /* end if */
}
/* Sparse allocation test (regular and VL) */
if (!(config & CONFIG_EARLY_ALLOC)) {
if (test_random_rank4(fapl, dcpl, do_fillvalue, disable_edge_filters, TRUE, index_type) < 0) {
DO_RANKS_PRINT_CONFIG("Randomized rank 4 with sparse allocation")
HDprintf(" Index: %s\n",
index_type == RANK4_INDEX_BTREE
? "btree"
: (index_type == RANK4_INDEX_FARRAY ? "farray" : "earray"));
goto error;
} /* end if */
if (!driver_is_parallel) {
if (test_random_rank4_vl(fapl, dcpl, do_fillvalue, disable_edge_filters, TRUE,
index_type) < 0) {
DO_RANKS_PRINT_CONFIG("Randomized rank 4 variable length with sparse allocation")
HDprintf(" Index: %s\n",
index_type == RANK4_INDEX_BTREE
? "btree"
: (index_type == RANK4_INDEX_FARRAY ? "farray" : "earray"));
goto error;
} /* end if */
}
} /* end if */
/* Break out if using the old format */
if (!new_format)
break;
} /* end for */
/* Close dcpl */
if (H5Pclose(dcpl) < 0)
TEST_ERROR;
} /* end for */
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Pclose(dcpl);
}
H5E_END_TRY
return -1;
} /* end do_ranks */
/*-------------------------------------------------------------------------
* test with different storage layouts
*-------------------------------------------------------------------------
*/
static int
do_layouts(hid_t fapl)
{
hid_t new_fapl = -1;
H5F_libver_t low, high; /* Low and high bounds */
herr_t ret; /* Generic return value */
TESTING("storage layout use - tested with all low/high library format bounds");
/* Loop through all the combinations of low/high library format bounds */
for (low = H5F_LIBVER_EARLIEST; low < H5F_LIBVER_NBOUNDS; low++) {
for (high = H5F_LIBVER_EARLIEST; high < H5F_LIBVER_NBOUNDS; high++) {
/* Copy plist to use locally to avoid modifying the original */
new_fapl = H5Pcopy(fapl);
/* Set version bounds */
H5E_BEGIN_TRY
{
ret = H5Pset_libver_bounds(new_fapl, low, high);
}
H5E_END_TRY;
if (ret < 0) /* Invalid low/high combinations */
{
if (H5Pclose(new_fapl) < 0)
goto error;
continue;
}
if (test_layouts(H5D_COMPACT, new_fapl) < 0)
goto error;
if (test_layouts(H5D_CONTIGUOUS, new_fapl) < 0)
goto error;
if (H5Pclose(new_fapl) < 0)
goto error;
} /* end for high */
} /* end for low */
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Pclose(new_fapl);
}
H5E_END_TRY;
return -1;
}
/*-------------------------------------------------------------------------
* test usage with a 1D rank
*-------------------------------------------------------------------------
*/
static int
test_rank1(hid_t fapl, hid_t dcpl, hbool_t do_fill_value, hbool_t disable_edge_filters, hbool_t set_istore_k)
{
hid_t fid = -1;
hid_t did = -1;
hid_t sid = -1;
hid_t my_dcpl = -1;
hid_t fcpl;
hsize_t dims_o[RANK1] = {DIM0}; /* original dimensions */
hsize_t dims_s[RANK1] = {DIMS0}; /* shrinking dimensions */
hsize_t dims_e[RANK1] = {DIME0}; /* extended dimensions */
hsize_t dims_c[RANK1] = {2}; /* chunk dimensions */
hsize_t dims_r[RANK1]; /* read dimensions */
hsize_t maxdims[RANK1] = {H5S_UNLIMITED};
int buf_o[DIM0];
int buf_s[DIMS0];
int buf_e[DIME0];
int buf_r[DIM0];
int i;
int comp_value;
char filename[NAME_BUF_SIZE];
if (do_fill_value)
comp_value = FILL_VALUE;
else
comp_value = 0;
for (i = 0; i < DIM0; i++)
buf_o[i] = 2;
/* create a file creation property list */
if ((fcpl = H5Pcreate(H5P_FILE_CREATE)) < 0)
TEST_ERROR;
/* set non-default indexed storage B-tree internal 'K' value */
if (set_istore_k)
if (H5Pset_istore_k(fcpl, ISTORE_IK) < 0)
TEST_ERROR;
/* create a new file */
h5_fixname(FILENAME[0], fapl, filename, sizeof filename);
if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, fcpl, fapl)) < 0)
TEST_ERROR;
/* close property list */
if (H5Pclose(fcpl) < 0)
TEST_ERROR;
/* create the data space with unlimited dimensions. */
if ((sid = H5Screate_simple(RANK1, dims_o, maxdims)) < 0)
TEST_ERROR;
/* modify dataset creation properties, i.e. enable chunking. */
if ((my_dcpl = H5Pcopy(dcpl)) < 0)
TEST_ERROR;
if (H5Pset_chunk(my_dcpl, RANK1, dims_c) < 0)
TEST_ERROR;
if (disable_edge_filters)
if (H5Pset_chunk_opts(my_dcpl, H5D_CHUNK_DONT_FILTER_PARTIAL_CHUNKS) < 0)
TEST_ERROR;
/*-------------------------------------------------------------------------
* create, write dataset
*-------------------------------------------------------------------------
*/
/* create a dataset */
if ((did = H5Dcreate2(fid, "dset1", H5T_NATIVE_INT, sid, H5P_DEFAULT, my_dcpl, H5P_DEFAULT)) < 0)
TEST_ERROR;
/* write */
if (H5Dwrite(did, H5T_NATIVE_INT, sid, H5S_ALL, H5P_DEFAULT, buf_o) < 0)
TEST_ERROR;
#if defined(H5_SET_EXTENT_DEBUG)
HDprintf("\n buf_o: ");
for (i = 0; i < (int)dims_o[0]; i++)
HDprintf("%d ", buf_o[i]);
HDprintf("\n");
#endif
if (H5Sclose(sid) < 0)
TEST_ERROR;
/*-------------------------------------------------------------------------
* set new dimensions for the array; expand it
*-------------------------------------------------------------------------
*/
/* set new dimensions for the array. */
if (H5Dset_extent(did, dims_e) < 0)
TEST_ERROR;
/* get the space */
if ((sid = H5Dget_space(did)) < 0)
TEST_ERROR;
/* get dimensions */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0)
TEST_ERROR;
if (H5Sclose(sid) < 0)
TEST_ERROR;
/* check dimensions */
for (i = 0; i < RANK1; i++)
if (dims_r[i] != dims_e[i])
TEST_ERROR;
/* read */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_e) < 0)
TEST_ERROR;
#if defined(H5_SET_EXTENT_DEBUG)
HDprintf("\n buf_e: ");
for (i = 0; i < (int)dims_r[0]; i++)
HDprintf("%d ", buf_e[i]);
HDprintf("\n");
#endif
/* compare the read array with the expanded array */
for (i = 0; i < (int)dims_r[0]; i++)
if (i >= DIM0) {
if (buf_e[i] != comp_value) {
HDprintf("buf_e[%d] = %d\n", i, buf_e[i]);
HDprintf("expected = %d\n", comp_value);
TEST_ERROR;
} /* end if */
} /* end if */
else {
if (buf_e[i] != buf_o[i])
TEST_ERROR;
} /* end else */
/*-------------------------------------------------------------------------
* shrink
*-------------------------------------------------------------------------
*/
/* set new dimensions for the array. */
if (H5Dset_extent(did, dims_s) < 0)
TEST_ERROR;
/* get the space */
if ((sid = H5Dget_space(did)) < 0)
TEST_ERROR;
/* get dimensions */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0)
TEST_ERROR;
if (H5Sclose(sid) < 0)
TEST_ERROR;
/* check dimensions */
for (i = 0; i < RANK1; i++)
if (dims_r[i] != dims_s[i])
TEST_ERROR;
/* for this case we close and reopen file */
if (set_istore_k) {
if (H5Dclose(did) < 0)
TEST_ERROR;
if (H5Fclose(fid) < 0)
TEST_ERROR;
if ((fid = H5Fopen(filename, H5F_ACC_RDWR, fapl)) < 0)
TEST_ERROR;
if ((did = H5Dopen2(fid, "dset1", H5P_DEFAULT)) < 0)
TEST_ERROR;
} /* end if */
/*-------------------------------------------------------------------------
* read
*-------------------------------------------------------------------------
*/
/* read */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_s) < 0)
TEST_ERROR;
#if defined(H5_SET_EXTENT_DEBUG)
HDprintf("\n dims_r: ");
for (i = 0; i < (int)dims_r[0]; i++)
HDprintf("%d ", buf_s[i]);
HDprintf("\n");
#endif
/* compare the read array with the shrunk array */
for (i = 0; i < (int)dims_r[0]; i++)
if (buf_s[i] != buf_o[i]) {
HDprintf("buf_s[%d] = %d\n", i, buf_s[i]);
HDprintf("buf_o[%d] = %d\n", i, buf_o[i]);
TEST_ERROR;
} /* end if */
/*-------------------------------------------------------------------------
* expand it back to original size
*-------------------------------------------------------------------------
*/
/* set new dimensions for the array */
if (H5Dset_extent(did, dims_o) < 0)
TEST_ERROR;
/* get the space */
if ((sid = H5Dget_space(did)) < 0)
TEST_ERROR;
/* get dimensions. */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0)
TEST_ERROR;
if (H5Sclose(sid) < 0)
TEST_ERROR;
/* check dimensions */
for (i = 0; i < RANK1; i++)
if (dims_r[i] != dims_o[i])
TEST_ERROR;
/* read */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_r) < 0)
TEST_ERROR;
#if defined(H5_SET_EXTENT_DEBUG)
HDprintf("\n dims_r: ");
for (i = 0; i < (int)dims_r[0]; i++)
HDprintf("%d ", buf_r[i]);
HDprintf("\n");
#endif
/* compare the read array with the original array */
for (i = 0; i < (int)dims_r[0]; i++)
if (i >= DIMS0) {
if (buf_r[i] != comp_value) {
HDprintf("buf_r[%d] = %d\n", i, buf_r[i]);
HDprintf("expected = %d\n", comp_value);
TEST_ERROR;
} /* end if */
} /* end if */
else {
if (buf_r[i] != buf_o[i])
TEST_ERROR;
} /* end else */
/*-------------------------------------------------------------------------
* shrink to 0
*-------------------------------------------------------------------------
*/
dims_s[0] = 0;
/* set new dimensions for the array. */
if (H5Dset_extent(did, dims_s) < 0)
TEST_ERROR;
/* get the space */
if ((sid = H5Dget_space(did)) < 0)
TEST_ERROR;
/* get dimensions */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0)
TEST_ERROR;
if (H5Sclose(sid) < 0)
TEST_ERROR;
/* check dimensions */
for (i = 0; i < RANK1; i++)
if (dims_r[i] != dims_s[i])
TEST_ERROR;
/*-------------------------------------------------------------------------
* close dataset
*-------------------------------------------------------------------------
*/
if (H5Dclose(did) < 0)
TEST_ERROR;
/*-------------------------------------------------------------------------
* test a dataset with non initialized chunks
*-------------------------------------------------------------------------
*/
if ((sid = H5Screate_simple(RANK1, dims_o, maxdims)) < 0)
TEST_ERROR;
if ((did = H5Dcreate2(fid, "dset3", H5T_NATIVE_INT, sid, H5P_DEFAULT, my_dcpl, H5P_DEFAULT)) < 0)
TEST_ERROR;
/* set new dimensions for the array */
dims_o[0] = 0;
if (H5Dset_extent(did, dims_o) < 0)
TEST_ERROR;
if (H5Dclose(did) < 0)
TEST_ERROR;
if (H5Sclose(sid) < 0)
TEST_ERROR;
/*-------------------------------------------------------------------------
* close property list
*-------------------------------------------------------------------------
*/
if (H5Pclose(my_dcpl) < 0)
TEST_ERROR;
if (H5Fclose(fid) < 0)
TEST_ERROR;
return 0;
error:
H5E_BEGIN_TRY
{
H5Dclose(did);
H5Sclose(sid);
H5Pclose(my_dcpl);
H5Pclose(fcpl);
H5Fclose(fid);
}
H5E_END_TRY;
return -1;
} /* end test_rank1() */
/*-------------------------------------------------------------------------
* test usage with a 2D rank
*-------------------------------------------------------------------------
*/
static int
test_rank2(hid_t fapl, hid_t dcpl, hbool_t do_fill_value, hbool_t disable_edge_filters, hbool_t set_istore_k)
{
hid_t fid = -1;
hid_t did = -1;
hid_t sid = -1;
hid_t my_dcpl = -1;
hid_t fcpl;
hsize_t dims_o[RANK2] = {DIM0, DIM1}; /* original dimensions */
hsize_t dims_s[RANK2] = {DIMS0, DIMS1}; /* shrinking dimensions */
hsize_t dims_e[RANK2] = {DIME0, DIME1}; /* extended dimensions */
hsize_t dims_c[RANK2] = {2, 2}; /* chunk dimensions */
hsize_t dims_r[RANK2]; /* read dimensions */
hsize_t maxdims[RANK2] = {H5S_UNLIMITED, H5S_UNLIMITED};
int buf_o[DIM0][DIM1];
int buf_s[DIMS0][DIMS1];
int buf_e[DIME0][DIME1];
int buf_r[DIM0][DIM1];
int i, j;
int comp_value;
char filename[NAME_BUF_SIZE];
if (do_fill_value) {
comp_value = FILL_VALUE;
}
else {
comp_value = 0;
}
for (i = 0; i < DIM0; i++) {
for (j = 0; j < DIM1; j++) {
buf_o[i][j] = 2;
}
}
/* create a file creation property list */
if ((fcpl = H5Pcreate(H5P_FILE_CREATE)) < 0) {
TEST_ERROR;
}
if (set_istore_k) {
/* set non-default indexed storage B-tree internal 'K' value */
if (H5Pset_istore_k(fcpl, ISTORE_IK) < 0) {
TEST_ERROR;
}
}
/* create a new file */
h5_fixname(FILENAME[1], fapl, filename, sizeof filename);
if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, fcpl, fapl)) < 0) {
TEST_ERROR;
}
/* create the data space with unlimited dimensions. */
if ((sid = H5Screate_simple(RANK2, dims_o, maxdims)) < 0) {
TEST_ERROR;
}
/* modify dataset creation properties, i.e. enable chunking. */
if ((my_dcpl = H5Pcopy(dcpl)) < 0) {
TEST_ERROR;
}
if (H5Pset_chunk(my_dcpl, RANK2, dims_c) < 0) {
TEST_ERROR;
}
if (disable_edge_filters)
if (H5Pset_chunk_opts(my_dcpl, H5D_CHUNK_DONT_FILTER_PARTIAL_CHUNKS) < 0)
TEST_ERROR;
/*-------------------------------------------------------------------------
* Procedure 1
* a. Write an array AxB. These are the dimensions for creating the dataset
* b. Define a greater array CxD where C > A and D > B
* c. Read data back
* d. Verify if new dimensions are C and D
* e. Verify if data from A to C and B to D is what it is to be expected
*
* original data is
*
* 2 2 2 2
* 2 2 2 2
* 2 2 2 2
* 2 2 2 2
*
*-------------------------------------------------------------------------
*/
/* create a dataset */
if ((did = H5Dcreate2(fid, "dset1", H5T_NATIVE_INT, sid, H5P_DEFAULT, my_dcpl, H5P_DEFAULT)) < 0) {
TEST_ERROR;
}
/* write */
if (H5Dwrite(did, H5T_NATIVE_INT, sid, H5S_ALL, H5P_DEFAULT, buf_o) < 0) {
TEST_ERROR;
}
#if defined(H5_SET_EXTENT_DEBUG2)
HDprintf("\n");
for (i = 0; i < (int)dims_o[0]; i++) {
for (j = 0; j < (int)dims_o[1]; j++) {
HDprintf("%d ", buf_o[i][j]);
}
HDprintf("\n");
}
#endif
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/*-------------------------------------------------------------------------
* set new dimensions for the array; expand it
* data is now, extended space was initialized with fill value or default value
*
* 2 2 2 2 1 1 1
* 2 2 2 2 1 1 1
* 2 2 2 2 1 1 1
* 2 2 2 2 1 1 1
* 1 1 1 1 1 1 1
* 1 1 1 1 1 1 1
* 1 1 1 1 1 1 1
*
*-------------------------------------------------------------------------
*/
/* set new dimensions for the array. */
if (H5Dset_extent(did, dims_e) < 0) {
TEST_ERROR;
}
/* get the space */
if ((sid = H5Dget_space(did)) < 0) {
TEST_ERROR;
}
/* get dimensions */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0) {
TEST_ERROR;
}
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/* check dimensions */
for (i = 0; i < RANK2; i++) {
if (dims_r[i] != dims_e[i])
TEST_ERROR;
}
/* read */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_e) < 0)
TEST_ERROR;
#if defined(H5_SET_EXTENT_DEBUG2)
HDprintf("\n");
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
HDprintf("%d ", buf_e[i][j]);
}
HDprintf("\n");
}
#endif
/* compare the read array with the expanded array */
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
if (i >= DIM0 || j >= DIM1) {
if (buf_e[i][j] != comp_value) {
HDprintf("buf_e[%d][%d] = %d\n", i, j, buf_e[i][j]);
HDprintf("value = %d\n", comp_value);
TEST_ERROR;
}
}
else {
if (buf_e[i][j] != buf_o[i][j])
TEST_ERROR;
}
}
}
/*-------------------------------------------------------------------------
*
* Procedure 2
* a. Define a smaller array ExF where E < A and F < B
* b. Read data back
* c. Verify if new dimensions are E and F
* d. Verify if data up until E and F is what to be expected
*
* data is now
*
* 2 2
* 2 2
*
*-------------------------------------------------------------------------
*/
/* set new dimensions for the array. */
if (H5Dset_extent(did, dims_s) < 0) {
TEST_ERROR;
}
/* get the space */
if ((sid = H5Dget_space(did)) < 0) {
TEST_ERROR;
}
/* get dimensions */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0) {
TEST_ERROR;
}
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/* check dimensions */
for (i = 0; i < RANK2; i++) {
if (dims_r[i] != dims_s[i])
TEST_ERROR;
}
/* for this case we close and reopen file */
if (set_istore_k) {
if (H5Dclose(did) < 0) {
TEST_ERROR;
}
if (H5Fclose(fid) < 0) {
TEST_ERROR;
}
if ((fid = H5Fopen(filename, H5F_ACC_RDWR, fapl)) < 0) {
TEST_ERROR;
}
if ((did = H5Dopen2(fid, "dset1", H5P_DEFAULT)) < 0) {
TEST_ERROR;
}
}
/*-------------------------------------------------------------------------
* read
*-------------------------------------------------------------------------
*/
/* read */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_s) < 0) {
TEST_ERROR;
}
#if defined(H5_SET_EXTENT_DEBUG2)
HDprintf("\n");
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
HDprintf("%d ", buf_s[i][j]);
}
HDprintf("\n");
}
#endif
/* compare the read array with the shrunk array */
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
if (buf_s[i][j] != buf_o[i][j]) {
HDprintf("buf_s[%d][%d] = %d\n", i, j, buf_s[i][j]);
HDprintf("buf_o[%d][%d] = %d\n", i, j, buf_o[i][j]);
TEST_ERROR;
}
}
}
/*-------------------------------------------------------------------------
* set new dimensions for the array; expand it back to original size
* data is now, extended space was initialized with fill value or default value
*
* 2 2 1 1
* 2 2 1 1
* 1 1 1 1
* 1 1 1 1
*
*-------------------------------------------------------------------------
*/
/* set new dimensions for the array */
if (H5Dset_extent(did, dims_o) < 0) {
TEST_ERROR;
}
/* get the space */
if ((sid = H5Dget_space(did)) < 0) {
TEST_ERROR;
}
/* get dimensions. */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0) {
TEST_ERROR;
}
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/* check dimensions */
for (i = 0; i < RANK2; i++) {
if (dims_r[i] != dims_o[i])
TEST_ERROR;
}
/*-------------------------------------------------------------------------
* read
*-------------------------------------------------------------------------
*/
/* read */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_r) < 0)
TEST_ERROR;
#if defined(H5_SET_EXTENT_DEBUG2)
HDprintf("\n");
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
HDprintf("%d ", buf_r[i][j]);
}
HDprintf("\n");
}
#endif
/* compare the read array with the original array */
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
if (i >= DIMS0 || j >= DIMS1) {
if (buf_r[i][j] != comp_value) {
HDprintf("buf_r[%d][%d] = %d\n", i, j, buf_r[i][j]);
HDprintf("value = %d\n", comp_value);
TEST_ERROR;
}
}
else {
if (buf_r[i][j] != buf_o[i][j])
TEST_ERROR;
}
}
}
/*-------------------------------------------------------------------------
* shrink to 0
*
*-------------------------------------------------------------------------
*/
dims_s[0] = 0;
dims_s[1] = 0;
/* set new dimensions for the array. */
if (H5Dset_extent(did, dims_s) < 0) {
TEST_ERROR;
}
/* get the space */
if ((sid = H5Dget_space(did)) < 0) {
TEST_ERROR;
}
/* get dimensions */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0) {
TEST_ERROR;
}
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/* check dimensions */
for (i = 0; i < RANK2; i++) {
if (dims_r[i] != dims_s[i])
TEST_ERROR;
}
/*-------------------------------------------------------------------------
* expand then shrink to 0 in dimension 1 while expanding again in
* dimension 0
*
*-------------------------------------------------------------------------
*/
/* expand to original dimensions for the array. */
if (H5Dset_extent(did, dims_o) < 0) {
TEST_ERROR;
}
dims_s[0] = dims_e[0];
dims_s[1] = 0;
/* set new dimensions for the array. */
if (H5Dset_extent(did, dims_s) < 0) {
TEST_ERROR;
}
/* get the space */
if ((sid = H5Dget_space(did)) < 0) {
TEST_ERROR;
}
/* get dimensions */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0) {
TEST_ERROR;
}
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/* check dimensions */
for (i = 0; i < RANK2; i++) {
if (dims_r[i] != dims_s[i])
TEST_ERROR;
}
/*-------------------------------------------------------------------------
* close dataset
*-------------------------------------------------------------------------
*/
if (H5Dclose(did) < 0) {
TEST_ERROR;
}
/*-------------------------------------------------------------------------
* test a dataset with non initialized chunks
*-------------------------------------------------------------------------
*/
if ((sid = H5Screate_simple(RANK2, dims_o, maxdims)) < 0) {
TEST_ERROR;
}
if ((did = H5Dcreate2(fid, "dset3", H5T_NATIVE_INT, sid, H5P_DEFAULT, my_dcpl, H5P_DEFAULT)) < 0) {
TEST_ERROR;
}
/* set new dimensions for the array */
dims_o[0] = 0;
dims_o[1] = 0;
if (H5Dset_extent(did, dims_o) < 0) {
TEST_ERROR;
}
if (H5Dclose(did) < 0) {
TEST_ERROR;
}
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/*-------------------------------------------------------------------------
* close property list
*-------------------------------------------------------------------------
*/
if (H5Pclose(my_dcpl) < 0) {
TEST_ERROR;
}
/* close file creation property list */
if (H5Pclose(fcpl) < 0) {
TEST_ERROR;
}
if (H5Fclose(fid) < 0) {
TEST_ERROR;
}
return 0;
error:
H5E_BEGIN_TRY
{
H5Dclose(did);
H5Sclose(sid);
H5Pclose(my_dcpl);
H5Pclose(fcpl);
H5Fclose(fid);
}
H5E_END_TRY;
return -1;
}
/*-------------------------------------------------------------------------
* test usage with a 3D rank
*-------------------------------------------------------------------------
*/
static int
test_rank3(hid_t fapl, hid_t dcpl, hbool_t do_fill_value, hbool_t disable_edge_filters, hbool_t set_istore_k)
{
hid_t fid = -1;
hid_t did = -1;
hid_t sid = -1;
hid_t my_dcpl = -1;
hid_t fcpl;
hsize_t dims_o[RANK3] = {DIM0, DIM1, DIM2}; /* original dimensions */
hsize_t dims_s[RANK3] = {DIMS0, DIMS1, DIMS2}; /* shrinking dimensions */
hsize_t dims_e[RANK3] = {DIME0, DIME1, DIME2}; /* extended dimensions */
hsize_t dims_c[RANK3] = {2, 2, 2}; /* chunk dimensions */
hsize_t dims_r[RANK3]; /* read dimensions */
hsize_t maxdims[RANK3] = {H5S_UNLIMITED, H5S_UNLIMITED, H5S_UNLIMITED};
int buf_o[DIM0][DIM1][DIM2];
int buf_s[DIMS0][DIMS1][DIMS2];
int buf_e[DIME0][DIME1][DIME2];
int buf_r[DIM0][DIM1][DIM2];
int i, j, k;
int comp_value;
char filename[NAME_BUF_SIZE];
if (do_fill_value) {
comp_value = FILL_VALUE;
}
else {
comp_value = 0;
}
for (i = 0; i < DIM0; i++) {
for (j = 0; j < DIM1; j++) {
for (k = 0; k < DIM2; k++) {
buf_o[i][j][k] = 2;
}
}
}
/* create a file creation property list */
if ((fcpl = H5Pcreate(H5P_FILE_CREATE)) < 0) {
TEST_ERROR;
}
if (set_istore_k) {
/* set non-default indexed storage B-tree internal 'K' value */
if (H5Pset_istore_k(fcpl, ISTORE_IK) < 0) {
TEST_ERROR;
}
}
/* create a new file */
h5_fixname(FILENAME[2], fapl, filename, sizeof filename);
if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, fcpl, fapl)) < 0) {
TEST_ERROR;
}
/* close property list */
if (H5Pclose(fcpl) < 0) {
TEST_ERROR;
}
/* create the data space with unlimited dimensions. */
if ((sid = H5Screate_simple(RANK3, dims_o, maxdims)) < 0) {
TEST_ERROR;
}
/* modify dataset creation properties, i.e. enable chunking. */
if ((my_dcpl = H5Pcopy(dcpl)) < 0) {
TEST_ERROR;
}
if (H5Pset_chunk(my_dcpl, RANK3, dims_c) < 0) {
TEST_ERROR;
}
if (disable_edge_filters)
if (H5Pset_chunk_opts(my_dcpl, H5D_CHUNK_DONT_FILTER_PARTIAL_CHUNKS) < 0)
TEST_ERROR;
/*-------------------------------------------------------------------------
* create, write array
*-------------------------------------------------------------------------
*/
/* create a dataset */
if ((did = H5Dcreate2(fid, "dset1", H5T_NATIVE_INT, sid, H5P_DEFAULT, my_dcpl, H5P_DEFAULT)) < 0) {
TEST_ERROR;
}
/* write */
if (H5Dwrite(did, H5T_NATIVE_INT, sid, H5S_ALL, H5P_DEFAULT, buf_o) < 0) {
TEST_ERROR;
}
#if defined(H5_SET_EXTENT_DEBUG3)
HDprintf("\n");
for (i = 0; i < (int)dims_o[0]; i++) {
for (j = 0; j < (int)dims_o[1]; j++) {
for (k = 0; k < (int)dims_o[2]; k++) {
HDprintf("%d ", buf_o[i][j][k]);
}
HDprintf("[%d] ", j);
}
HDprintf("\n");
}
HDprintf("\n");
#endif
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/*-------------------------------------------------------------------------
* set new dimensions for the array; expand it
*
*-------------------------------------------------------------------------
*/
/* set new dimensions for the array. */
if (H5Dset_extent(did, dims_e) < 0) {
TEST_ERROR;
}
/* get the space */
if ((sid = H5Dget_space(did)) < 0) {
TEST_ERROR;
}
/* get dimensions */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0) {
TEST_ERROR;
}
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/* check dimensions */
for (i = 0; i < RANK3; i++) {
if (dims_r[i] != dims_e[i])
TEST_ERROR;
}
/* read */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_e) < 0)
TEST_ERROR;
#if defined(H5_SET_EXTENT_DEBUG3)
HDprintf("\n");
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
for (k = 0; k < (int)dims_r[2]; k++) {
HDprintf("%d ", buf_e[i][j][k]);
}
HDprintf("[%d] ", j);
}
HDprintf("\n");
}
HDprintf("\n");
#endif
/* compare the read array with the expanded array */
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
for (k = 0; k < (int)dims_r[2]; k++) {
if (i >= DIM0 || j >= DIM1 || k >= DIM2) {
if (buf_e[i][j][k] != comp_value) {
HDprintf("buf_e[%d][%d][%d] = %d\n", i, j, k, buf_e[i][j][k]);
HDprintf("value = %d\n", comp_value);
TEST_ERROR;
}
}
else {
if (buf_e[i][j][k] != buf_o[i][j][k])
TEST_ERROR;
}
}
}
}
/*-------------------------------------------------------------------------
* shrink
*-------------------------------------------------------------------------
*/
/* set new dimensions for the array. */
if (H5Dset_extent(did, dims_s) < 0) {
TEST_ERROR;
}
/* get the space */
if ((sid = H5Dget_space(did)) < 0) {
TEST_ERROR;
}
/* get dimensions */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0) {
TEST_ERROR;
}
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/* check dimensions */
for (i = 0; i < RANK3; i++) {
if (dims_r[i] != dims_s[i])
TEST_ERROR;
}
/* for this case we close and reopen file */
if (set_istore_k) {
if (H5Dclose(did) < 0) {
TEST_ERROR;
}
if (H5Fclose(fid) < 0) {
TEST_ERROR;
}
if ((fid = H5Fopen(filename, H5F_ACC_RDWR, fapl)) < 0) {
TEST_ERROR;
}
if ((did = H5Dopen2(fid, "dset1", H5P_DEFAULT)) < 0) {
TEST_ERROR;
}
}
/*-------------------------------------------------------------------------
* read
*-------------------------------------------------------------------------
*/
/* read */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_s) < 0) {
TEST_ERROR;
}
#if defined(H5_SET_EXTENT_DEBUG3)
HDprintf("\n");
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
for (k = 0; k < (int)dims_r[2]; k++) {
HDprintf("%d ", buf_s[i][j][k]);
}
HDprintf("[%d] ", j);
}
HDprintf("\n");
}
HDprintf("\n");
#endif
/* compare the read array with the shrunk array */
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
for (k = 0; k < (int)dims_r[2]; k++) {
if (buf_s[i][j][k] != buf_o[i][j][k]) {
HDprintf("buf_s[%d][%d][%d] = %d\n", i, j, k, buf_s[i][j][k]);
HDprintf("buf_o[%d][%d][%d] = %d\n", i, j, k, buf_o[i][j][k]);
TEST_ERROR;
}
}
}
}
/*-------------------------------------------------------------------------
* set new dimensions for the array; expand it back to original size
*-------------------------------------------------------------------------
*/
/* set new dimensions for the array */
if (H5Dset_extent(did, dims_o) < 0) {
TEST_ERROR;
}
/* get the space */
if ((sid = H5Dget_space(did)) < 0) {
TEST_ERROR;
}
/* get dimensions. */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0) {
TEST_ERROR;
}
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/* check dimensions */
for (i = 0; i < RANK3; i++) {
if (dims_r[i] != dims_o[i])
TEST_ERROR;
}
/* read */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_r) < 0)
TEST_ERROR;
#if defined(H5_SET_EXTENT_DEBUG3)
HDprintf("\n");
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
for (k = 0; k < (int)dims_r[2]; k++) {
HDprintf("%d ", buf_r[i][j][k]);
}
HDprintf("[%d] ", j);
}
HDprintf("\n");
}
HDprintf("\n");
#endif
/* compare the read array with the original array */
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
for (k = 0; k < (int)dims_r[2]; k++) {
if (i >= DIMS0 || j >= DIMS1 || k >= DIMS2) {
if (buf_r[i][j][k] != comp_value) {
HDprintf("buf_r[%d][%d][%d] = %d\n", i, j, k, buf_r[i][j][k]);
HDprintf("value = %d\n", comp_value);
TEST_ERROR;
}
}
else {
if (buf_r[i][j][k] != buf_o[i][j][k])
TEST_ERROR;
}
}
}
}
/*-------------------------------------------------------------------------
* shrink to 0
*
*-------------------------------------------------------------------------
*/
dims_s[0] = 0;
dims_s[1] = 0;
dims_s[2] = 0;
/* set new dimensions for the array. */
if (H5Dset_extent(did, dims_s) < 0) {
TEST_ERROR;
}
/* get the space */
if ((sid = H5Dget_space(did)) < 0) {
TEST_ERROR;
}
/* get dimensions */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0) {
TEST_ERROR;
}
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/* check dimensions */
for (i = 0; i < RANK3; i++) {
if (dims_r[i] != dims_s[i])
TEST_ERROR;
}
/*-------------------------------------------------------------------------
* close dataset
*-------------------------------------------------------------------------
*/
if (H5Dclose(did) < 0) {
TEST_ERROR;
}
/*-------------------------------------------------------------------------
* test a dataset with non initialized chunks
*-------------------------------------------------------------------------
*/
if ((sid = H5Screate_simple(RANK3, dims_o, maxdims)) < 0) {
TEST_ERROR;
}
if ((did = H5Dcreate2(fid, "dset3", H5T_NATIVE_INT, sid, H5P_DEFAULT, my_dcpl, H5P_DEFAULT)) < 0) {
TEST_ERROR;
}
/* set new dimensions for the array */
dims_o[0] = 0;
dims_o[1] = 0;
dims_o[2] = 0;
if (H5Dset_extent(did, dims_o) < 0) {
TEST_ERROR;
}
if (H5Dclose(did) < 0) {
TEST_ERROR;
}
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/*-------------------------------------------------------------------------
* close property list
*-------------------------------------------------------------------------
*/
if (H5Pclose(my_dcpl) < 0) {
TEST_ERROR;
}
if (H5Fclose(fid) < 0) {
TEST_ERROR;
}
return 0;
error:
H5E_BEGIN_TRY
{
H5Dclose(did);
H5Sclose(sid);
H5Pclose(my_dcpl);
H5Pclose(fcpl);
H5Fclose(fid);
}
H5E_END_TRY;
return -1;
}
/*-------------------------------------------------------------------------
* test usage with external storage
*-------------------------------------------------------------------------
*/
static int
test_external(hid_t fapl)
{
hid_t fid = -1;
hid_t did = -1;
hid_t sid = -1;
hid_t dcpl = -1;
hsize_t dims_o[RANK2] = {DIM0, DIM1}; /* original dimensions */
hsize_t dims_s[RANK2] = {DIMS0, DIMS1}; /* shrinking dimensions */
hsize_t dims_e[RANK2] = {DIME0, DIM1}; /* extended dimensions, dimension 1 is the original */
hsize_t dims_r[RANK2]; /* read dimensions */
hsize_t maxdims[RANK2] = {DIME0, DIM1}; /* only the first dimension can be extendible */
int buf_o[DIM0][DIM1]; /* original buffer, for writing */
int buf_s[DIMS0][DIMS1]; /* shrunk buffer, for reading */
int buf_e[DIME0][DIM1]; /* extended buffer, for writing, dimension 1 is the original */
int buf_ro[DIM0][DIM1]; /* original buffer for reading */
int i, j;
int comp_value = 0;
char filename[NAME_BUF_SIZE];
hsize_t size; /* number of bytes reserved in the file for the data */
hsize_t max_size[2];
max_size[0] = dims_e[0];
max_size[1] = dims_e[1];
size = max_size[0] * max_size[1] * sizeof(int) / 2;
for (i = 0; i < DIM0; i++) {
for (j = 0; j < DIM1; j++) {
buf_o[i][j] = 2;
}
}
TESTING("external file use");
/* create a new file */
h5_fixname(FILENAME[3], fapl, filename, sizeof filename);
if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0)
FAIL_STACK_ERROR;
/* modify dataset creation properties */
if ((dcpl = H5Pcreate(H5P_DATASET_CREATE)) < 0)
FAIL_STACK_ERROR;
if (H5Pset_external(dcpl, EXT_FILE_NAME1, (off_t)0, size) < 0)
FAIL_STACK_ERROR;
if (H5Pset_external(dcpl, EXT_FILE_NAME2, (off_t)0, size) < 0)
FAIL_STACK_ERROR;
{
char name[256]; /*external file name */
off_t file_offset; /*external file offset */
hsize_t file_size; /*sizeof external file segment */
if (H5Pget_external(dcpl, 0, sizeof(name), name, &file_offset, &file_size) < 0)
FAIL_STACK_ERROR;
}
/*-------------------------------------------------------------------------
* Write an array AxB. These are the dimensions for creating the dataset
*
* original data is
*
* 2 2 2 2
* 2 2 2 2
* 2 2 2 2
* 2 2 2 2
*
*-------------------------------------------------------------------------
*/
/* create the data space with unlimited dimensions. */
if ((sid = H5Screate_simple(RANK2, dims_o, maxdims)) < 0)
FAIL_STACK_ERROR;
if ((did = H5Dcreate2(fid, "dset1", H5T_NATIVE_INT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT)) < 0)
FAIL_STACK_ERROR;
if (H5Dwrite(did, H5T_NATIVE_INT, sid, H5S_ALL, H5P_DEFAULT, buf_o) < 0)
FAIL_STACK_ERROR;
if (H5Sclose(sid) < 0)
FAIL_STACK_ERROR;
/*-------------------------------------------------------------------------
* read
*-------------------------------------------------------------------------
*/
/* read */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_ro) < 0)
FAIL_STACK_ERROR;
#if defined(H5_SET_EXTENT_DEBUG)
HDprintf("\n");
for (i = 0; i < (int)dims_o[0]; i++) {
for (j = 0; j < (int)dims_o[1]; j++) {
HDprintf("%d ", buf_ro[i][j]);
}
HDprintf("\n");
}
#endif
/*-------------------------------------------------------------------------
* expand
*-------------------------------------------------------------------------
*/
/*-------------------------------------------------------------------------
* set new dimensions for the array; expand it
* data is now, extended space was initialized with default value
*
* 2 2 2 2
* 2 2 2 2
* 2 2 2 2
* 2 2 2 2
* 0 0 0 0
* 0 0 0 0
* 0 0 0 0
*
*-------------------------------------------------------------------------
*/
/* set new dimensions for the array. */
if (H5Dset_extent(did, dims_e) < 0)
FAIL_STACK_ERROR;
/* get the space */
if ((sid = H5Dget_space(did)) < 0)
FAIL_STACK_ERROR;
/* get dimensions */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0)
FAIL_STACK_ERROR;
if (H5Sclose(sid) < 0)
FAIL_STACK_ERROR;
/* check dimensions */
for (i = 0; i < RANK2; i++) {
if (dims_r[i] != dims_e[i])
TEST_ERROR;
}
/* read */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_e) < 0)
FAIL_STACK_ERROR;
#if defined(H5_SET_EXTENT_DEBUG)
HDprintf("\n");
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
HDprintf("%d ", buf_e[i][j]);
}
HDprintf("\n");
}
#endif
/* compare the read array with the expanded array */
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
if (i >= DIM0 || j >= DIM1) {
if (buf_e[i][j] != comp_value) {
HDprintf("buf_e[%d][%d] = %d\n", i, j, buf_e[i][j]);
HDprintf("value = %d\n", comp_value);
TEST_ERROR;
}
}
else {
if (buf_e[i][j] != buf_o[i][j])
TEST_ERROR;
}
}
}
/*-------------------------------------------------------------------------
* shrink
*
* data is now
*
* 2 2
* 2 2
*
*-------------------------------------------------------------------------
*/
/* set new dimensions for the array. */
if (H5Dset_extent(did, dims_s) < 0)
FAIL_STACK_ERROR;
/* get the space */
if ((sid = H5Dget_space(did)) < 0)
FAIL_STACK_ERROR;
/* get dimensions */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0)
FAIL_STACK_ERROR;
if (H5Sclose(sid) < 0)
FAIL_STACK_ERROR;
/* check dimensions */
for (i = 0; i < RANK2; i++) {
if (dims_r[i] != dims_s[i])
TEST_ERROR;
}
/*-------------------------------------------------------------------------
* read
*-------------------------------------------------------------------------
*/
/* read */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_s) < 0)
FAIL_STACK_ERROR;
#if defined(H5_SET_EXTENT_DEBUG)
HDprintf("\n");
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
HDprintf("%d ", buf_s[i][j]);
}
HDprintf("\n");
}
#endif
/* compare the read array with the shrunk array */
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
if (buf_s[i][j] != buf_o[i][j]) {
HDprintf("buf_s[%d][%d] = %d\n", i, j, buf_s[i][j]);
HDprintf("buf_o[%d][%d] = %d\n", i, j, buf_o[i][j]);
TEST_ERROR;
}
}
}
/*-------------------------------------------------------------------------
* negative test
* try to extend dimension above maximum
*-------------------------------------------------------------------------
*/
dims_e[1] = DIME1;
H5E_BEGIN_TRY
{
/* set new dimensions for the array. */
if (H5Dset_extent(did, dims_e) == SUCCEED) {
TEST_ERROR;
}
}
H5E_END_TRY;
/*-------------------------------------------------------------------------
* close property list
*-------------------------------------------------------------------------
*/
if (H5Pclose(dcpl) < 0)
FAIL_STACK_ERROR;
if (H5Dclose(did) < 0)
FAIL_STACK_ERROR;
if (H5Fclose(fid) < 0)
FAIL_STACK_ERROR;
PASSED();
return 0;
error:
H5E_BEGIN_TRY
{
H5Dclose(did);
H5Sclose(sid);
H5Pclose(dcpl);
H5Fclose(fid);
}
H5E_END_TRY;
return -1;
}
/*-------------------------------------------------------------------------
* test usage with layouts compact and contiguous
*-------------------------------------------------------------------------
*/
static int
test_layouts(H5D_layout_t layout, hid_t fapl)
{
hid_t fid = -1;
hid_t did = -1;
hid_t sid = -1;
hid_t dcpl = -1;
herr_t ret;
hsize_t dims_o[RANK2] = {DIM0, DIM1}; /* original dimensions */
hsize_t dims_s[RANK2] = {DIMS0, DIMS1}; /* shrinking dimensions */
hsize_t dims_e[RANK2] = {DIME0, DIME1}; /* extended dimensions */
hsize_t dims_r[RANK2]; /* read dimensions */
int buf_o[DIM0][DIM1];
int buf_r[DIM0][DIM1];
int i, j;
char filename[NAME_BUF_SIZE];
for (i = 0; i < DIM0; i++) {
for (j = 0; j < DIM1; j++) {
buf_o[i][j] = 2;
}
}
/* create a new file */
h5_fixname(FILENAME[4], fapl, filename, sizeof filename);
if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0) {
TEST_ERROR;
}
/* create the data space with unlimited dimensions. */
if ((sid = H5Screate_simple(RANK2, dims_o, NULL)) < 0) {
TEST_ERROR;
}
/* modify dataset creation properties */
if ((dcpl = H5Pcreate(H5P_DATASET_CREATE)) < 0) {
TEST_ERROR;
}
if (H5Pset_layout(dcpl, layout) < 0) {
TEST_ERROR;
}
/* create a dataset */
if ((did = H5Dcreate2(fid, "dset1", H5T_NATIVE_INT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT)) < 0) {
TEST_ERROR;
}
/* write */
if (H5Dwrite(did, H5T_NATIVE_INT, sid, H5S_ALL, H5P_DEFAULT, buf_o) < 0) {
TEST_ERROR;
}
#if defined(H5_SET_EXTENT_DEBUG4)
HDprintf("\n");
for (i = 0; i < (int)dims_o[0]; i++) {
for (j = 0; j < (int)dims_o[1]; j++) {
HDprintf("%d ", buf_o[i][j]);
}
HDprintf("\n");
}
#endif
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/*-------------------------------------------------------------------------
* negative test
* try to extend dimension
*-------------------------------------------------------------------------
*/
H5E_BEGIN_TRY
{
ret = H5Dset_extent(did, dims_e);
}
H5E_END_TRY;
if (ret >= 0)
TEST_ERROR;
/* get the space */
if ((sid = H5Dget_space(did)) < 0) {
TEST_ERROR;
}
/* get dimensions */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0) {
TEST_ERROR;
}
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/* check dimensions */
for (i = 0; i < RANK2; i++) {
if (dims_r[i] != dims_o[i])
TEST_ERROR;
}
/* read */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_r) < 0)
TEST_ERROR;
#if defined(H5_SET_EXTENT_DEBUG4)
HDprintf("\n");
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
HDprintf("%d ", buf_r[i][j]);
}
HDprintf("\n");
}
#endif
/*-------------------------------------------------------------------------
* negative test
* try to shrink dimension
*-------------------------------------------------------------------------
*/
H5E_BEGIN_TRY
{
ret = H5Dset_extent(did, dims_s);
}
H5E_END_TRY;
if (ret >= 0)
TEST_ERROR;
/* get the space */
if ((sid = H5Dget_space(did)) < 0) {
TEST_ERROR;
}
/* get dimensions */
if (H5Sget_simple_extent_dims(sid, dims_r, NULL) < 0) {
TEST_ERROR;
}
if (H5Sclose(sid) < 0) {
TEST_ERROR;
}
/* check dimensions */
for (i = 0; i < RANK2; i++) {
if (dims_r[i] != dims_o[i])
TEST_ERROR;
}
/*-------------------------------------------------------------------------
* read
*-------------------------------------------------------------------------
*/
/* read */
if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_r) < 0) {
TEST_ERROR;
}
#if defined(H5_SET_EXTENT_DEBUG4)
HDprintf("\n");
for (i = 0; i < (int)dims_r[0]; i++) {
for (j = 0; j < (int)dims_r[1]; j++) {
HDprintf("%d ", buf_r[i][j]);
}
HDprintf("\n");
}
#endif
/*-------------------------------------------------------------------------
* close
*-------------------------------------------------------------------------
*/
if (H5Dclose(did) < 0) {
TEST_ERROR;
}
if (H5Pclose(dcpl) < 0) {
TEST_ERROR;
}
if (H5Fclose(fid) < 0) {
TEST_ERROR;
}
return 0;
error:
H5E_BEGIN_TRY
{
H5Dclose(did);
H5Sclose(sid);
H5Pclose(dcpl);
H5Fclose(fid);
}
H5E_END_TRY;
return -1;
}
/*-------------------------------------------------------------------------
* Function: test_random_rank4
*
* Purpose: Test expanding and shrinking a rank 4 dataset in a
* randomized fashion. Verifies that data is preserved (and
* filled, if do_fillvalue is true) as expected.
*
* Return: Success: 0
* Failure: -1
*
* Programmer: Neil Fortner
* Monday, January 11, 2010
*
*-------------------------------------------------------------------------
*/
static int
test_random_rank4(hid_t fapl, hid_t dcpl, hbool_t do_fillvalue, hbool_t disable_edge_filters,
hbool_t do_sparse, rank4_index_t index_type)
{
hid_t file = -1;
hid_t dset = -1;
hid_t fspace = -1;
hid_t mspace = -1;
hid_t my_dcpl = -1;
hsize_t dims[4] = {10, 10, 10, 10}; /* Dataset's dimensions */
hsize_t max_dims[4] = {10, 10, 10, 10}; /* Maximum dimensions */
hsize_t old_dims[4]; /* Old dataset dimensions */
hsize_t min_unwritten_dims[4]; /* Minimum dimensions since last write */
hsize_t * valid_dims = old_dims; /* Dimensions of region still containing written data */
hsize_t cdims[4]; /* Chunk dimensions */
const hsize_t mdims[4] = {10, 10, 10, 10}; /* Memory buffer dimensions */
const hsize_t start[4] = {0, 0, 0, 0}; /* Start for hyperslabe operations on memory */
struct {
int arr[10][10][10][10];
} *rbuf = NULL; /* Read buffer */
struct {
int arr[10][10][10][10];
} *wbuf = NULL; /* Write buffer */
struct {
hsize_t arr[RAND4_NITER + 1][4];
} *dim_log = NULL; /* Log of dataset dimensions */
hbool_t zero_dim = FALSE; /* Whether a dimension is 0 */
hbool_t writing = TRUE; /* Whether we're writing to the dset */
unsigned scalar_iter; /* Iteration to shrink dset to 1x1x1x1 */
unsigned i, j, k, l, m; /* Local indices */
char filename[NAME_BUF_SIZE];
/* Initialize large arrays */
if (NULL == (rbuf = HDcalloc(1, sizeof(*rbuf))))
TEST_ERROR;
if (NULL == (wbuf = HDcalloc(1, sizeof(*wbuf))))
TEST_ERROR;
if (NULL == (dim_log = HDcalloc(1, sizeof(*dim_log))))
TEST_ERROR;
/* Create a new file */
h5_fixname(FILENAME[4], fapl, filename, sizeof filename);
if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0)
TEST_ERROR;
/* Set maximum dimensions as appropriate for index type */
if (index_type == RANK4_INDEX_BTREE)
for (i = 0; i < 4; i++)
max_dims[i] = H5S_UNLIMITED;
else if (index_type == RANK4_INDEX_EARRAY)
max_dims[1] = H5S_UNLIMITED;
/* Generate random chunk dimensions, 2-4 */
for (i = 0; i < 4; i++)
cdims[i] = (hsize_t)((HDrandom() % 3) + 2);
/* Pick iteration to shrink dataset to 1x1x1x1 */
scalar_iter = (unsigned)(HDrandom() % RAND4_NITER);
/* Generate initial dataset size, 1-10, unless using fixed array index or
* scalar_iter is 0 */
for (i = 0; i < 4; i++) {
dims[i] = (hsize_t)(
index_type != RANK4_INDEX_FARRAY ? (0 == scalar_iter ? 1 : ((HDrandom() % 10) + 1)) : 10);
dim_log->arr[0][i] = dims[i];
} /* end for */
/* Create dataset */
if ((fspace = H5Screate_simple(4, dims, max_dims)) < 0)
TEST_ERROR;
if ((my_dcpl = H5Pcopy(dcpl)) < 0)
TEST_ERROR;
if (H5Pset_chunk(my_dcpl, 4, cdims) < 0)
TEST_ERROR;
if (disable_edge_filters)
if (H5Pset_chunk_opts(my_dcpl, H5D_CHUNK_DONT_FILTER_PARTIAL_CHUNKS) < 0)
TEST_ERROR;
if ((dset = H5Dcreate2(file, "dset", H5T_NATIVE_INT, fspace, H5P_DEFAULT, my_dcpl, H5P_DEFAULT)) < 0)
TEST_ERROR;
if (H5Sclose(fspace) < 0)
TEST_ERROR;
/* Create memory space, and set initial selection */
if ((mspace = H5Screate_simple(4, mdims, NULL)) < 0)
TEST_ERROR;
if (H5Sselect_hyperslab(mspace, H5S_SELECT_SET, start, NULL, dims, NULL) < 0)
TEST_ERROR;
/* Main loop */
for (i = 0; i < RAND4_NITER; i++) {
/* Generate random write buffer */
if (writing && !zero_dim) {
for (j = 0; j < dims[0]; j++)
for (k = 0; k < dims[1]; k++)
for (l = 0; l < dims[2]; l++)
for (m = 0; m < dims[3]; m++)
wbuf->arr[j][k][l][m] = HDrandom();
/* Write data */
if (H5Dwrite(dset, H5T_NATIVE_INT, mspace, H5S_ALL, H5P_DEFAULT, wbuf) < 0)
RAND4_FAIL_DUMP(i + 1, -1, -1, -1, -1)
} /* end if */
/* Generate new dataset size, 0-10 (0 much less likely). If i is
* scalar_iter, set all dims to 1. */
zero_dim = FALSE;
for (j = 0; j < 4; j++) {
old_dims[j] = dims[j];
if ((dims[j] = (hsize_t)(i == scalar_iter ? 1 : (HDrandom() % 11))) == 0)
if ((dims[j] = (hsize_t)(HDrandom() % 11)) == 0)
zero_dim = TRUE;
dim_log->arr[i + 1][j] = dims[j];
} /* end for */
/* If writing is disabled, update min_unwritten_dims */
if (!writing)
for (j = 0; j < 4; j++)
if (old_dims[j] < min_unwritten_dims[j])
min_unwritten_dims[j] = old_dims[j];
/* Resize dataset */
if (H5Dset_extent(dset, dims) < 0)
RAND4_FAIL_DUMP(i + 2, -1, -1, -1, -1)
if (!zero_dim) {
/* Read data from resized dataset */
if (H5Sselect_hyperslab(mspace, H5S_SELECT_SET, start, NULL, dims, NULL) < 0)
RAND4_FAIL_DUMP(i + 2, -1, -1, -1, -1)
if (H5Dread(dset, H5T_NATIVE_INT, mspace, H5S_ALL, H5P_DEFAULT, rbuf) < 0)
RAND4_FAIL_DUMP(i + 2, -1, -1, -1, -1)
/* Verify correctness of read data */
if (do_fillvalue) {
for (j = 0; j < dims[0]; j++)
for (k = 0; k < dims[1]; k++)
for (l = 0; l < dims[2]; l++)
for (m = 0; m < dims[3]; m++)
if (j >= valid_dims[0] || k >= valid_dims[1] || l >= valid_dims[2] ||
m >= valid_dims[3]) {
if (FILL_VALUE != rbuf->arr[j][k][l][m])
RAND4_FAIL_DUMP(i + 2, (int)j, (int)k, (int)l, (int)m)
} /* end if */
else if (wbuf->arr[j][k][l][m] != rbuf->arr[j][k][l][m])
RAND4_FAIL_DUMP(i + 2, (int)j, (int)k, (int)l, (int)m)
} /* end if */
else {
for (j = 0; j < MIN(dims[0], valid_dims[0]); j++)
for (k = 0; k < MIN(dims[1], valid_dims[1]); k++)
for (l = 0; l < MIN(dims[2], valid_dims[2]); l++)
for (m = 0; m < MIN(dims[3], valid_dims[3]); m++)
if (wbuf->arr[j][k][l][m] != rbuf->arr[j][k][l][m])
RAND4_FAIL_DUMP(i + 2, (int)j, (int)k, (int)l, (int)m)
} /* end else */
} /* end if */
/* Handle the switch between writing and not writing */
if (do_sparse && !(i % RAND4_SPARSE_SWITCH)) {
writing = !writing;
if (!writing) {
for (j = 0; j < 4; j++)
min_unwritten_dims[j] = old_dims[j];
valid_dims = min_unwritten_dims;
} /* end if */
else
valid_dims = old_dims;
} /* end if */
} /* end for */
/* Close */
if (H5Sclose(mspace) < 0)
TEST_ERROR;
if (H5Pclose(my_dcpl) < 0)
TEST_ERROR;
if (H5Dclose(dset) < 0)
TEST_ERROR;
if (H5Fclose(file) < 0)
TEST_ERROR;
HDfree(rbuf);
HDfree(wbuf);
HDfree(dim_log);
return 0;
error:
H5E_BEGIN_TRY
{
H5Sclose(fspace);
H5Sclose(mspace);
H5Pclose(dcpl);
H5Dclose(dset);
H5Fclose(file);
}
H5E_END_TRY;
HDfree(rbuf);
HDfree(wbuf);
HDfree(dim_log);
return -1;
} /* end test_random_rank4 */
/*-------------------------------------------------------------------------
* Function: test_random_rank4_vl
*
* Purpose: Test expanding and shrinking a rank 4 dataset with
* variable length data in a randomized fashion. Verifies
* that data is preserved (and filled, if do_fillvalue is
* true) as expected.
*
* Return: Success: 0
* Failure: -1
*
* Programmer: Neil Fortner
* Tueday, June 29, 2010
*
*-------------------------------------------------------------------------
*/
static int
test_random_rank4_vl(hid_t fapl, hid_t dcpl, hbool_t do_fillvalue, hbool_t disable_edge_filters,
hbool_t do_sparse, rank4_index_t index_type)
{
hid_t file = -1;
hid_t dset = -1;
hid_t type = -1;
hid_t fspace = -1;
hid_t mspace = -1;
hid_t my_dcpl = -1;
hsize_t dims[4] = {10, 10, 10, 10}; /* Dataset's dimensions */
hsize_t max_dims[4] = {10, 10, 10, 10}; /* Maximum dimensions */
hsize_t old_dims[4]; /* Old dataset dimensions */
hsize_t min_unwritten_dims[4]; /* Minimum dimensions since last write */
hsize_t * valid_dims = old_dims; /* Dimensions of region still containing written data */
hsize_t cdims[4]; /* Chunk dimensions */
const hsize_t mdims[4] = {10, 10, 10, 10}; /* Memory buffer dimensions */
const hsize_t start[4] = {0, 0, 0, 0}; /* Start for hyperslab operations on memory */
struct {
hvl_t arr[10][10][10][10];
} *rbuf = NULL; /* Read buffer */
struct {
hvl_t arr[10][10][10][10];
} *wbuf = NULL; /* Write buffer */
struct {
hsize_t arr[RAND4_NITER + 1][4];
} *dim_log = NULL; /* Log of dataset dimensions */
hbool_t zero_dim = FALSE; /* Whether a dimension is 0 */
hbool_t writing = TRUE; /* Whether we're writing to the dset */
hvl_t fill_value; /* Fill value */
unsigned scalar_iter; /* Iteration to shrink dset to 1x1x1x1 */
unsigned i, j, k, l, m; /* Local indices */
char filename[NAME_BUF_SIZE];
/* Initialize large arrays */
if (NULL == (rbuf = HDcalloc(1, sizeof(*rbuf))))
TEST_ERROR;
if (NULL == (wbuf = HDcalloc(1, sizeof(*wbuf))))
TEST_ERROR;
if (NULL == (dim_log = HDcalloc(1, sizeof(*dim_log))))
TEST_ERROR;
/* Initialize fill value buffers so they aren't freed in case of an error */
fill_value.len = 0;
fill_value.p = NULL;
for (i = 0; i < dims[0]; i++)
for (j = 0; j < dims[1]; j++)
for (k = 0; k < dims[2]; k++)
for (l = 0; l < dims[3]; l++) {
rbuf->arr[i][j][k][l].len = 0;
rbuf->arr[i][j][k][l].p = NULL;
wbuf->arr[i][j][k][l].len = 0;
wbuf->arr[i][j][k][l].p = NULL;
} /* end for */
/* Allocate space for VL write buffers, since these never need to be
* reallocated */
for (i = 0; i < dims[0]; i++)
for (j = 0; j < dims[1]; j++)
for (k = 0; k < dims[2]; k++)
for (l = 0; l < dims[3]; l++) {
wbuf->arr[i][j][k][l].len = 2;
if (NULL == (wbuf->arr[i][j][k][l].p = HDmalloc(2 * sizeof(int))))
TEST_ERROR;
} /* end for */
/* create a new file */
h5_fixname(FILENAME[4], fapl, filename, sizeof filename);
if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0)
TEST_ERROR;
/* Create VL type */
if ((type = H5Tvlen_create(H5T_NATIVE_INT)) < 0)
TEST_ERROR;
/* Set maximum dimensions as appropriate for index type */
if (index_type == RANK4_INDEX_BTREE)
for (i = 0; i < 4; i++)
max_dims[i] = H5S_UNLIMITED;
else if (index_type == RANK4_INDEX_EARRAY)
max_dims[1] = H5S_UNLIMITED;
/* Generate random chunk dimensions, 2-4 */
for (i = 0; i < 4; i++)
cdims[i] = (hsize_t)((HDrandom() % 3) + 2);
/* Pick iteration to shrink dataset to 1x1x1x1 */
scalar_iter = (unsigned)(HDrandom() % RAND4_NITER);
/* Generate initial dataset size, 1-10, unless using fixed array index or
* scalar_iter is 0 */
for (i = 0; i < 4; i++) {
dims[i] = (hsize_t)(
index_type != RANK4_INDEX_FARRAY ? (0 == scalar_iter ? 1 : ((HDrandom() % 10) + 1)) : 10);
dim_log->arr[0][i] = dims[i];
}
/* Make a copy of the dcpl */
if ((my_dcpl = H5Pcopy(dcpl)) < 0)
TEST_ERROR;
/* Create VL fill value, if requested */
if (do_fillvalue) {
fill_value.len = 2;
if (NULL == (fill_value.p = HDmalloc(2 * sizeof(int))))
TEST_ERROR;
((int *)fill_value.p)[0] = 1;
((int *)fill_value.p)[1] = 2;
if (H5Pset_fill_value(my_dcpl, type, &fill_value) < 0)
TEST_ERROR;
} /* end if */
/* Create dataset */
if ((fspace = H5Screate_simple(4, dims, max_dims)) < 0)
TEST_ERROR;
if (H5Pset_chunk(my_dcpl, 4, cdims) < 0)
TEST_ERROR;
if (disable_edge_filters)
if (H5Pset_chunk_opts(my_dcpl, H5D_CHUNK_DONT_FILTER_PARTIAL_CHUNKS) < 0)
TEST_ERROR;
if ((dset = H5Dcreate2(file, "dset", type, fspace, H5P_DEFAULT, my_dcpl, H5P_DEFAULT)) < 0)
TEST_ERROR;
if (H5Sclose(fspace) < 0)
TEST_ERROR;
/* Create memory space, and set initial selection */
if ((mspace = H5Screate_simple(4, mdims, NULL)) < 0)
TEST_ERROR;
if (H5Sselect_hyperslab(mspace, H5S_SELECT_SET, start, NULL, dims, NULL) < 0)
TEST_ERROR;
/* Main loop */
for (i = 0; i < RAND4_VL_NITER; i++) {
/* Generate random write buffer */
if (writing && !zero_dim) {
for (j = 0; j < dims[0]; j++)
for (k = 0; k < dims[1]; k++)
for (l = 0; l < dims[2]; l++)
for (m = 0; m < dims[3]; m++) {
((int *)wbuf->arr[j][k][l][m].p)[0] = HDrandom();
((int *)wbuf->arr[j][k][l][m].p)[1] = HDrandom();
} /* end for */
/* Write data */
if (H5Dwrite(dset, type, mspace, H5S_ALL, H5P_DEFAULT, wbuf) < 0)
RAND4_FAIL_DUMP(i + 1, -1, -1, -1, -1)
} /* end if */
/* Generate new dataset size, 0-10 (0 much less likely). If i is
* scalar_iter, set all dims to 1. */
zero_dim = FALSE;
for (j = 0; j < 4; j++) {
old_dims[j] = dims[j];
if ((dims[j] = (hsize_t)(i == scalar_iter ? 1 : (HDrandom() % 11))) == 0)
if ((dims[j] = (hsize_t)(HDrandom() % 11)) == 0)
zero_dim = TRUE;
dim_log->arr[i + 1][j] = dims[j];
}
/* If writing is disabled, update min_unwritten_dims */
if (!writing)
for (j = 0; j < 4; j++)
if (old_dims[j] < min_unwritten_dims[j])
min_unwritten_dims[j] = old_dims[j];
/* Resize dataset */
if (H5Dset_extent(dset, dims) < 0)
RAND4_FAIL_DUMP(i + 2, -1, -1, -1, -1)
if (!zero_dim) {
/* Read data from resized dataset */
if (H5Sselect_hyperslab(mspace, H5S_SELECT_SET, start, NULL, dims, NULL) < 0)
RAND4_FAIL_DUMP(i + 2, -1, -1, -1, -1)
if (H5Dread(dset, type, mspace, H5S_ALL, H5P_DEFAULT, rbuf) < 0)
RAND4_FAIL_DUMP(i + 2, -1, -1, -1, -1)
/* Verify correctness of read data */
if (do_fillvalue) {
for (j = 0; j < dims[0]; j++)
for (k = 0; k < dims[1]; k++)
for (l = 0; l < dims[2]; l++)
for (m = 0; m < dims[3]; m++)
if (j >= valid_dims[0] || k >= valid_dims[1] || l >= valid_dims[2] ||
m >= valid_dims[3]) {
if (((int *)fill_value.p)[0] != ((int *)rbuf->arr[j][k][l][m].p)[0] ||
((int *)fill_value.p)[1] != ((int *)rbuf->arr[j][k][l][m].p)[1])
RAND4_FAIL_DUMP(i + 2, (int)j, (int)k, (int)l, (int)m)
} /* end if */
else if (((int *)wbuf->arr[j][k][l][m].p)[0] !=
((int *)rbuf->arr[j][k][l][m].p)[0] ||
((int *)wbuf->arr[j][k][l][m].p)[1] !=
((int *)rbuf->arr[j][k][l][m].p)[1])
RAND4_FAIL_DUMP(i + 2, (int)j, (int)k, (int)l, (int)m)
} /* end if */
else {
for (j = 0; j < MIN(dims[0], valid_dims[0]); j++)
for (k = 0; k < MIN(dims[1], valid_dims[1]); k++)
for (l = 0; l < MIN(dims[2], valid_dims[2]); l++)
for (m = 0; m < MIN(dims[3], valid_dims[3]); m++)
if (((int *)wbuf->arr[j][k][l][m].p)[0] !=
((int *)rbuf->arr[j][k][l][m].p)[0] ||
((int *)wbuf->arr[j][k][l][m].p)[1] !=
((int *)rbuf->arr[j][k][l][m].p)[1])
RAND4_FAIL_DUMP(i + 2, (int)j, (int)k, (int)l, (int)m)
} /* end else */
/* Free read buffer */
if (H5Treclaim(type, mspace, H5P_DEFAULT, rbuf) < 0)
TEST_ERROR;
} /* end if */
/* Handle the switch between writing and not writing */
if (do_sparse && !(i % RAND4_VL_SPARSE_SWITCH)) {
writing = !writing;
if (!writing) {
for (j = 0; j < 4; j++)
min_unwritten_dims[j] = old_dims[j];
valid_dims = min_unwritten_dims;
} /* end if */
else
valid_dims = old_dims;
} /* end if */
} /* end for */
/* Close */
if (H5Sselect_all(mspace) < 0)
TEST_ERROR;
if (H5Treclaim(type, mspace, H5P_DEFAULT, wbuf) < 0)
TEST_ERROR;
HDfree(fill_value.p);
if (H5Sclose(mspace) < 0)
TEST_ERROR;
if (H5Pclose(my_dcpl) < 0)
TEST_ERROR;
if (H5Dclose(dset) < 0)
TEST_ERROR;
if (H5Tclose(type) < 0)
TEST_ERROR;
if (H5Fclose(file) < 0)
TEST_ERROR;
HDfree(rbuf);
HDfree(wbuf);
HDfree(dim_log);
return 0;
error:
H5E_BEGIN_TRY
{
for (i = 0; i < dims[0]; i++)
for (j = 0; j < dims[1]; j++)
for (k = 0; k < dims[2]; k++)
for (l = 0; l < dims[3]; l++) {
if (rbuf->arr[i][j][k][l].p)
HDfree(rbuf->arr[i][j][k][l].p);
if (wbuf->arr[i][j][k][l].p)
HDfree(wbuf->arr[i][j][k][l].p);
} /* end for */
if (fill_value.p)
HDfree(fill_value.p);
H5Sclose(fspace);
H5Sclose(mspace);
H5Pclose(dcpl);
H5Dclose(dset);
H5Tclose(type);
H5Fclose(file);
}
H5E_END_TRY;
HDfree(rbuf);
HDfree(wbuf);
HDfree(dim_log);
return -1;
} /* end test_random_rank4_vl */
/*
* test_random_rank4_dump: Dump debugging info from test_random_rank4 to screen
* after failure.
*/
static void
test_random_rank4_dump(unsigned ndim_sets, hsize_t dim_log[][4], hsize_t cdims[4], int j, int k, int l, int m)
{
unsigned i;
HDprintf(" Chunk dimensions: ( %u, %u, %u, %u )\n", (unsigned)cdims[0], (unsigned)cdims[1],
(unsigned)cdims[2], (unsigned)cdims[3]);
HDprintf(" Log of dataset dimensions (oldest first):\n");
for (i = 0; i < ndim_sets; i++)
HDprintf(" Iteration %-3u: ( %2u, %2u, %2u, %2u )\n", i, (unsigned)dim_log[i][0],
(unsigned)dim_log[i][1], (unsigned)dim_log[i][2], (unsigned)dim_log[i][3]);
if (j >= 0)
HDprintf(" First incorrect value read: ( %d, %d, %d, %d )\n", j, k, l, m);
} /* end test_random_rank4_dump */