hdf5/test/dtypes.c
Raymond Lu 593d0c490a [svn-r9898] Purpose: Bug fix for test program
Description:
For Intel machines, the size of "long double" is 12 byte, precision
is 80 bits, mantissa size is 64 bits, and no normalization.  So the
most significant bit of mantissa is always 1 unless the floating number
has special value.  This step tries to compensate this case by turning
on the most significant bit of mantissa if the mantissa bits aren't
all 0s.


Solution:
Tries to compensate this case by turning on the most significant bit of
mantissa if the mantissa bits aren't all 0s.

Platforms tested: eirene and fuss(production enabled).  Small change for
production only.
2005-01-31 17:08:09 -05:00

7853 lines
252 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the files COPYING and Copyright.html. COPYING can be found at the root *
* of the source code distribution tree; Copyright.html can be found at the *
* root level of an installed copy of the electronic HDF5 document set and *
* is linked from the top-level documents page. It can also be found at *
* http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html. If you do not have *
* access to either file, you may request a copy from hdfhelp@ncsa.uiuc.edu. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Programmer: Robb Matzke <matzke@llnl.gov>
* Tuesday, December 9, 1997
*
* Purpose: Tests the data type interface (H5T)
*/
#include <math.h>
#include <time.h>
#include "h5test.h"
/* Number of times to run each test */
#define NTESTS 1
/* Number of elements in each test */
#define NTESTELEM 100000
/* For test_compound_10 */
#define ARRAY_DIM 4
/* Define if you want to see a count of overflows */
#undef SHOW_OVERFLOWS
/* Epsilon for floating-point comparisons */
#define FP_EPSILON 0.000001
/*
* Offset from alinged memory returned by malloc(). This can be used to test
* that type conversions handle non-aligned buffers correctly.
*/
#define ALIGNMENT 1
/*
* Define if you want to test alignment code on a machine that doesn't
* normally require alignment. When set, all native data types must be aligned
* on a byte boundary equal to the data size.
*/
#define TEST_ALIGNMENT
/* Alignment test stuff */
#ifdef TEST_ALIGNMENT
#define H5T_PACKAGE
#include "H5Tpkg.h"
#endif
#define SET_ALIGNMENT(TYPE,VAL) \
H5T_NATIVE_##TYPE##_ALIGN_g=MAX(H5T_NATIVE_##TYPE##_ALIGN_g, VAL)
const char *FILENAME[] = {
"dtypes1",
"dtypes2",
"dtypes3",
"dtypes4",
"dtypes5",
"dtypes6",
"dtypes7",
"dtypes8",
NULL
};
typedef struct complex_t {
double re;
double im;
} complex_t;
/*
* Count up or down depending on whether the machine is big endian or little
* endian. If local variable `endian' is H5T_ORDER_BE then the result will
* be I, otherwise the result will be Z-(I+1).
*/
#define ENDIAN(Z,I) (H5T_ORDER_BE==endian?(I):(Z)-((I)+1))
typedef enum dtype_t {
INT_SCHAR, INT_UCHAR, INT_SHORT, INT_USHORT, INT_INT, INT_UINT,
INT_LONG, INT_ULONG, INT_LLONG, INT_ULLONG, FLT_FLOAT, FLT_DOUBLE,
FLT_LDOUBLE, OTHER
} dtype_t;
/* Count the number of overflows */
#ifdef SHOW_OVERFLOWS
static int noverflows_g = 0;
#endif
/* Skip overflow tests if non-zero */
static int skip_overflow_tests_g = 0;
/* Don't use hardware conversions if set */
static int without_hardware_g = 0;
/* Count opaque conversions */
static int num_opaque_conversions_g = 0;
/*
* Although we check whether a floating point overflow generates a SIGFPE and
* turn off overflow tests in that case, it might still be possible for an
* overflow condition to occur. Once a SIGFPE is raised the program cannot
* be allowed to continue (cf. Posix signals) so in order to recover from a
* SIGFPE we run tests that might generate one in a child process.
*/
#if defined(H5_HAVE_FORK) && defined(H5_HAVE_WAITPID)
# define HANDLE_SIGFPE
#endif
/* Allocates memory aligned on a certain boundary. */
#define aligned_malloc(Z) ((void*)((char*)HDmalloc(ALIGNMENT+Z)+ALIGNMENT))
#define aligned_free(M) HDfree((char*)(M)-ALIGNMENT)
void some_dummy_func(float x);
static hbool_t overflows(unsigned char *origin_bits, hid_t src_id, size_t dst_num_bits);
static int my_isnan(dtype_t type, void *val);
static int opaque_check(int tag_it);
static herr_t convert_opaque(hid_t UNUSED st, hid_t UNUSED dt,
H5T_cdata_t *cdata,
size_t UNUSED nelmts, size_t UNUSED buf_stride,
size_t UNUSED bkg_stride, void UNUSED *_buf,
void UNUSED *bkg, hid_t UNUSED dset_xfer_plid);
/*-------------------------------------------------------------------------
* Function: fpe_handler
*
* Purpose: Exit with 255
*
* Return: void
*
* Programmer: Robb Matzke
* Monday, July 6, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
fpe_handler(int UNUSED signo)
{
SKIPPED();
HDputs(" Test skipped due to SIGFPE.");
#ifndef HANDLE_SIGFPE
HDputs(" Remaining tests could not be run.");
HDputs(" Please turn off SIGFPE on overflows and try again.");
#endif
HDexit(255);
}
/*-------------------------------------------------------------------------
* Function: overflow_handler
*
* Purpose: Gets called for all data type conversion overflows.
*
* Return: Success: 0
*
* Failure: -1
*
* Programmer: Robb Matzke
* Tuesday, July 7, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
#ifdef SHOW_OVERFLOWS
static herr_t
overflow_handler(hid_t UNUSED src_id, hid_t UNUSED dst_id,
void UNUSED *src_buf, void UNUSED *dst_buf)
{
noverflows_g++;
return -1;
}
#endif
/*-------------------------------------------------------------------------
* Function: except_func
*
* Purpose: Gets called for all data type conversion exceptions.
*
* Return: H5T_CONV_ABORT: -1
*
* H5T_CONV_UNHANDLED 0
*
* H5T_CONV_HANDLED 1
*
* Programmer: Raymond Lu
* April 19, 2004
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static H5T_conv_ret_t
except_func(int except_type, hid_t UNUSED src_id, hid_t UNUSED dst_id, void UNUSED *src_buf,
void *dst_buf, void *user_data)
{
H5T_conv_ret_t ret = H5T_CONV_HANDLED;
if(except_type == H5T_CONV_EXCEPT_RANGE_HI)
/*only test integer case*/
*(int*)dst_buf = *(int*)user_data;
else if(except_type == H5T_CONV_EXCEPT_RANGE_LOW)
/*only test integer case*/
*(int*)dst_buf = *(int*)user_data;
else if(except_type == H5T_CONV_EXCEPT_TRUNCATE) {
ret = H5T_CONV_UNHANDLED;
} else if(except_type == H5T_CONV_EXCEPT_PRECISION) {
ret = H5T_CONV_UNHANDLED;
}
return ret;
}
/*-------------------------------------------------------------------------
* Function: some_dummy_func
*
* Purpose: A dummy function to help check for overflow.
*
* Note: DO NOT DECLARE THIS FUNCTION STATIC OR THE COMPILER MIGHT
* PROMOTE ARGUMENT `x' TO DOUBLE AND DEFEAT THE OVERFLOW
* CHECKING.
*
* Return: void
*
* Programmer: Robb Matzke
* Tuesday, July 21, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
some_dummy_func(float x)
{
char s[128];
sprintf(s, "%g", x);
}
/*-------------------------------------------------------------------------
* Function: generates_sigfpe
*
* Purpose: Determines if SIGFPE is generated from overflows. We must be
* able to fork() and waitpid() in order for this test to work
* properly. Sets skip_overflow_tests_g to non-zero if they
* would generate SIGBUS, zero otherwise.
*
* Programmer: Robb Matzke
* Tuesday, July 21, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
generates_sigfpe(void)
{
#if defined(H5_HAVE_FORK) && defined(H5_HAVE_WAITPID)
pid_t pid;
int status;
size_t i, j;
double d;
unsigned char *dp = (unsigned char*)&d;
float f;
HDfflush(stdout);
HDfflush(stderr);
if ((pid=fork())<0) {
HDperror("fork");
HDexit(1);
} else if (0==pid) {
for (i=0; i<2000; i++) {
for (j=0; j<sizeof(double); j++) dp[j] = HDrand();
f = (float)d;
some_dummy_func((float)f);
}
HDexit(0);
}
while (pid!=waitpid(pid, &status, 0))
/*void*/;
if (WIFEXITED(status) && 0==WEXITSTATUS(status)) {
HDputs("Floating-point overflow cases will be tested.");
skip_overflow_tests_g = FALSE;
} else if (WIFSIGNALED(status) && SIGFPE==WTERMSIG(status)) {
HDputs("Floating-point overflow cases cannot be safely tested.");
skip_overflow_tests_g = TRUE;
/* delete the core dump file that SIGFPE may have created */
HDunlink("core");
}
#else
HDputs("Cannot determine if floating-point overflows generate a SIGFPE;");
HDputs("assuming yes.");
HDputs("Overflow cases will not be tested.");
skip_overflow_tests_g = TRUE;
#endif
}
/*-------------------------------------------------------------------------
* Function: reset_hdf5
*
* Purpose: Reset the hdf5 library. This causes statistics to be printed
* and counters to be reset.
*
* Return: void
*
* Programmer: Robb Matzke
* Monday, November 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
reset_hdf5(void)
{
h5_reset();
#ifdef SHOW_OVERFLOWS
H5Tset_overflow(overflow_handler);
#endif
if (without_hardware_g) h5_no_hwconv();
#ifdef TEST_ALIGNMENT
SET_ALIGNMENT(SCHAR, H5_SIZEOF_CHAR);
SET_ALIGNMENT(UCHAR, H5_SIZEOF_CHAR);
SET_ALIGNMENT(SHORT, H5_SIZEOF_SHORT);
SET_ALIGNMENT(USHORT, H5_SIZEOF_SHORT);
SET_ALIGNMENT(INT, H5_SIZEOF_INT);
SET_ALIGNMENT(UINT, H5_SIZEOF_INT);
SET_ALIGNMENT(LONG, H5_SIZEOF_LONG);
SET_ALIGNMENT(ULONG, H5_SIZEOF_LONG);
SET_ALIGNMENT(LLONG, H5_SIZEOF_LONG_LONG);
SET_ALIGNMENT(ULLONG, H5_SIZEOF_LONG_LONG);
SET_ALIGNMENT(FLOAT, H5_SIZEOF_FLOAT);
SET_ALIGNMENT(DOUBLE, H5_SIZEOF_DOUBLE);
SET_ALIGNMENT(LDOUBLE, H5_SIZEOF_LONG_DOUBLE);
#endif
}
/*-------------------------------------------------------------------------
* Function: test_classes
*
* Purpose: Test type classes
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Tuesday, December 9, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_classes(void)
{
H5T_class_t tcls;
TESTING("H5Tget_class()");
if ((tcls=H5Tget_class(H5T_NATIVE_INT))<0) goto error;
if (H5T_INTEGER!=tcls) {
H5_FAILED();
HDputs(" Invalid type class for H5T_NATIVE_INT");
goto error;
}
if ((tcls=H5Tget_class(H5T_NATIVE_DOUBLE))<0) goto error;
if (H5T_FLOAT!=tcls) {
H5_FAILED();
HDputs(" Invalid type class for H5T_NATIVE_DOUBLE");
goto error;
}
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_copy
*
* Purpose: Are we able to copy a data type?
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Tuesday, December 9, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_copy(void)
{
hid_t a_copy;
herr_t status;
TESTING("H5Tcopy()");
if ((a_copy = H5Tcopy(H5T_NATIVE_SHORT)) < 0) goto error;
if (H5Tclose(a_copy) < 0) goto error;
/* We should not be able to close a built-in byte */
H5E_BEGIN_TRY {
status = H5Tclose (H5T_NATIVE_SCHAR);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
HDputs (" Should not be able to close a predefined type!");
goto error;
}
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_detect
*
* Purpose: Are we able to detect datatype classes correctly? (Especially
* in nested types)
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Quincey Koziol
* Saturday, August 30, 2003
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_detect(void)
{
struct atomic { /* Struct with atomic fields */
int i;
float f;
char c;
double d;
short s;
};
struct complex { /* Struct with complex fields */
hobj_ref_t arr_r[3][3];
int i;
hvl_t vl_f;
char c;
short s;
};
hid_t atom_cmpd_id; /* Atomic Compound datatype */
hid_t atom_arr_id; /* Atomic Array datatype */
hid_t atom_vl_id; /* Atomic VL datatype */
hid_t cplx_cmpd_id; /* Complex Compound datatype */
int rank=2; /* Rank for array datatype */
hsize_t dims[2]={3,3}; /* Dimensions for array datatype */
TESTING("H5Tdetect_class()");
/* Native integers should be in the integer class */
if(H5Tdetect_class(H5T_NATIVE_INT,H5T_INTEGER)!=TRUE) TEST_ERROR
/* Native integers should _not_ be in other classes */
if(H5Tdetect_class(H5T_NATIVE_INT,H5T_FLOAT)!=FALSE) TEST_ERROR
if(H5Tdetect_class(H5T_NATIVE_INT,H5T_ARRAY)!=FALSE) TEST_ERROR
if(H5Tdetect_class(H5T_NATIVE_INT,H5T_ENUM)!=FALSE) TEST_ERROR
/* Create a compound datatype and insert some atomic types */
if ((atom_cmpd_id = H5Tcreate(H5T_COMPOUND, sizeof(struct atomic)))<0) TEST_ERROR
if (H5Tinsert(atom_cmpd_id, "i", HOFFSET(struct atomic, i), H5T_NATIVE_INT)<0) TEST_ERROR
if (H5Tinsert(atom_cmpd_id, "f", HOFFSET(struct atomic, f), H5T_NATIVE_FLOAT)<0) TEST_ERROR
if (H5Tinsert(atom_cmpd_id, "c", HOFFSET(struct atomic, c), H5T_NATIVE_CHAR)<0) TEST_ERROR
if (H5Tinsert(atom_cmpd_id, "d", HOFFSET(struct atomic, d), H5T_NATIVE_DOUBLE)<0) TEST_ERROR
if (H5Tinsert(atom_cmpd_id, "s", HOFFSET(struct atomic, s), H5T_NATIVE_SHORT)<0) TEST_ERROR
/* Make certain that the correct classes can be detected */
if(H5Tdetect_class(atom_cmpd_id,H5T_COMPOUND)!=TRUE) TEST_ERROR
if(H5Tdetect_class(atom_cmpd_id,H5T_INTEGER)!=TRUE) TEST_ERROR
if(H5Tdetect_class(atom_cmpd_id,H5T_FLOAT)!=TRUE) TEST_ERROR
/* Make certain that an incorrect class is not detected */
if(H5Tdetect_class(atom_cmpd_id,H5T_VLEN)!=FALSE) TEST_ERROR
/* Create an array datatype with an atomic base type */
if((atom_arr_id=H5Tarray_create(H5T_STD_REF_OBJ, rank, dims, NULL))<0) TEST_ERROR
/* Make certain that the correct classes can be detected */
if(H5Tdetect_class(atom_arr_id,H5T_ARRAY)!=TRUE) TEST_ERROR
if(H5Tdetect_class(atom_arr_id,H5T_REFERENCE)!=TRUE) TEST_ERROR
/* Make certain that an incorrect class is not detected */
if(H5Tdetect_class(atom_arr_id,H5T_VLEN)!=FALSE) TEST_ERROR
if(H5Tdetect_class(atom_arr_id,H5T_FLOAT)!=FALSE) TEST_ERROR
if(H5Tdetect_class(atom_arr_id,H5T_INTEGER)!=FALSE) TEST_ERROR
/* Create a VL datatype with an atomic base type */
if((atom_vl_id=H5Tvlen_create(H5T_NATIVE_FLOAT))<0) TEST_ERROR
/* Make certain that the correct classes can be detected */
if(H5Tdetect_class(atom_vl_id,H5T_VLEN)!=TRUE) TEST_ERROR
if(H5Tdetect_class(atom_vl_id,H5T_FLOAT)!=TRUE) TEST_ERROR
/* Make certain that an incorrect class is not detected */
if(H5Tdetect_class(atom_vl_id,H5T_COMPOUND)!=FALSE) TEST_ERROR
if(H5Tdetect_class(atom_vl_id,H5T_INTEGER)!=FALSE) TEST_ERROR
/* Create a compound datatype and insert some atomic types */
if ((cplx_cmpd_id = H5Tcreate(H5T_COMPOUND, sizeof(struct complex)))<0) TEST_ERROR
if (H5Tinsert(cplx_cmpd_id, "arr_r", HOFFSET(struct complex, arr_r), atom_arr_id)<0) TEST_ERROR
if (H5Tinsert(cplx_cmpd_id, "i", HOFFSET(struct complex, i), H5T_NATIVE_INT)<0) TEST_ERROR
if (H5Tinsert(cplx_cmpd_id, "vl_f", HOFFSET(struct complex, vl_f), atom_vl_id)<0) TEST_ERROR
if (H5Tinsert(cplx_cmpd_id, "c", HOFFSET(struct complex, c), H5T_NATIVE_CHAR)<0) TEST_ERROR
if (H5Tinsert(cplx_cmpd_id, "s", HOFFSET(struct complex, s), H5T_NATIVE_SHORT)<0) TEST_ERROR
/* Make certain that the correct classes can be detected */
if(H5Tdetect_class(cplx_cmpd_id,H5T_COMPOUND)!=TRUE) TEST_ERROR
if(H5Tdetect_class(cplx_cmpd_id,H5T_ARRAY)!=TRUE) TEST_ERROR
if(H5Tdetect_class(cplx_cmpd_id,H5T_REFERENCE)!=TRUE) TEST_ERROR
if(H5Tdetect_class(cplx_cmpd_id,H5T_INTEGER)!=TRUE) TEST_ERROR
if(H5Tdetect_class(cplx_cmpd_id,H5T_FLOAT)!=TRUE) TEST_ERROR
if(H5Tdetect_class(cplx_cmpd_id,H5T_VLEN)!=TRUE) TEST_ERROR
/* Make certain that an incorrect class is not detected */
if(H5Tdetect_class(cplx_cmpd_id,H5T_TIME)!=FALSE) TEST_ERROR
if(H5Tdetect_class(cplx_cmpd_id,H5T_ENUM)!=FALSE) TEST_ERROR
if(H5Tdetect_class(cplx_cmpd_id,H5T_STRING)!=FALSE) TEST_ERROR
/* Close complex compound datatype */
if(H5Tclose(cplx_cmpd_id)<0) TEST_ERROR
/* Close atomic VL datatype */
if(H5Tclose(atom_vl_id)<0) TEST_ERROR
/* Close atomic array datatype */
if(H5Tclose(atom_arr_id)<0) TEST_ERROR
/* Close atomic compound datatype */
if(H5Tclose(atom_cmpd_id)<0) TEST_ERROR
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_1
*
* Purpose: Tests various things about compound data types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Wednesday, January 7, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_1(void)
{
complex_t tmp;
hid_t complex_id;
herr_t ret;
TESTING("compound data types");
/* Create the empty type */
if ((complex_id = H5Tcreate(H5T_COMPOUND, sizeof tmp))<0) goto error;
/* Attempt to add the new compound datatype as a field within itself */
H5E_BEGIN_TRY {
ret=H5Tinsert(complex_id, "compound", 0, complex_id);
} H5E_END_TRY;
if (ret>=0) {
H5_FAILED();
printf("Inserted compound datatype into itself?\n");
goto error;
} /* end if */
/* Add a couple fields */
if (H5Tinsert(complex_id, "real", HOFFSET(complex_t, re),
H5T_NATIVE_DOUBLE)<0) goto error;
if (H5Tinsert(complex_id, "imaginary", HOFFSET(complex_t, im),
H5T_NATIVE_DOUBLE)<0) goto error;
if (H5Tclose (complex_id)<0) goto error;
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_2
*
* Purpose: Tests a compound type conversion where the source and
* destination are the same except for the order of the
* elements.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, June 17, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_2(void)
{
struct st {
int a, b, c[4], d, e;
} *s_ptr;
struct dt {
int e, d, c[4], b, a;
} *d_ptr;
const size_t nelmts = NTESTELEM;
const hsize_t four = 4;
unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
hid_t src_t=-1, dst_t=-1;
hid_t array_dt;
int i;
TESTING("compound element reordering");
/* Sizes should be the same, but be careful just in case */
buf = (unsigned char*)malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
bkg = (unsigned char*)malloc(nelmts * sizeof(struct dt));
orig = (unsigned char*)malloc(nelmts * sizeof(struct st));
for (i=0; i<(int)nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
s_ptr->a = i*8+0;
s_ptr->b = i*8+1;
s_ptr->c[0] = i*8+2;
s_ptr->c[1] = i*8+3;
s_ptr->c[2] = i*8+4;
s_ptr->c[3] = i*8+5;
s_ptr->d = i*8+6;
s_ptr->e = i*8+7;
}
HDmemcpy(buf, orig, nelmts*sizeof(struct st));
/* Build hdf5 datatypes */
array_dt=H5Tarray_create(H5T_NATIVE_INT,1, &four, NULL);
if ((src_t=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
H5Tinsert(src_t, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(src_t, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 ||
H5Tinsert(src_t, "c", HOFFSET(struct st, c), array_dt)<0 ||
H5Tinsert(src_t, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 ||
H5Tinsert(src_t, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0)
goto error;
H5Tclose(array_dt);
array_dt=H5Tarray_create(H5T_NATIVE_INT,1, &four, NULL);
if ((dst_t=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
H5Tinsert(dst_t, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(dst_t, "b", HOFFSET(struct dt, b), H5T_NATIVE_INT)<0 ||
H5Tinsert(dst_t, "c", HOFFSET(struct dt, c), array_dt)<0 ||
H5Tinsert(dst_t, "d", HOFFSET(struct dt, d), H5T_NATIVE_INT)<0 ||
H5Tinsert(dst_t, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0)
goto error;
H5Tclose(array_dt);
/* Perform the conversion */
if (H5Tconvert(src_t, dst_t, nelmts, buf, bkg, H5P_DEFAULT)<0) goto error;
/* Compare results */
for (i=0; i<(int)nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
d_ptr = ((struct dt*)buf) + i;
if (s_ptr->a != d_ptr->a ||
s_ptr->b != d_ptr->b ||
s_ptr->c[0] != d_ptr->c[0] ||
s_ptr->c[1] != d_ptr->c[1] ||
s_ptr->c[2] != d_ptr->c[2] ||
s_ptr->c[3] != d_ptr->c[3] ||
s_ptr->d != d_ptr->d ||
s_ptr->e != d_ptr->e) {
H5_FAILED();
printf(" i=%d\n", i);
printf(" src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2],
s_ptr->c[3], s_ptr->d, s_ptr->e);
printf(" dst={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
d_ptr->a, d_ptr->b, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2],
d_ptr->c[3], d_ptr->d, d_ptr->e);
goto error;
}
}
/* Release resources */
free(buf);
free(bkg);
free(orig);
if (H5Tclose(src_t)<0 || H5Tclose(dst_t)<0) goto error;
PASSED();
reset_hdf5();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_3
*
* Purpose: Tests compound conversions where the source and destination
* are the same except the destination is missing a couple
* members which appear in the source.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, June 17, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_3(void)
{
struct st {
int a, b, c[4], d, e;
} *s_ptr;
struct dt {
int a, c[4], e;
} *d_ptr;
const size_t nelmts = NTESTELEM;
const hsize_t four = 4;
unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
hid_t src_t=-1, dst_t=-1;
hid_t array_dt;
int i;
TESTING("compound subset conversions");
/* Initialize */
buf = (unsigned char*)malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
bkg = (unsigned char*)malloc(nelmts * sizeof(struct dt));
orig = (unsigned char*)malloc(nelmts * sizeof(struct st));
for (i=0; i<(int)nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
s_ptr->a = i*8+0;
s_ptr->b = i*8+1;
s_ptr->c[0] = i*8+2;
s_ptr->c[1] = i*8+3;
s_ptr->c[2] = i*8+4;
s_ptr->c[3] = i*8+5;
s_ptr->d = i*8+6;
s_ptr->e = i*8+7;
}
HDmemcpy(buf, orig, nelmts*sizeof(struct st));
/* Build hdf5 datatypes */
array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL);
if ((src_t=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
H5Tinsert(src_t, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(src_t, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 ||
H5Tinsert(src_t, "c", HOFFSET(struct st, c), array_dt)<0 ||
H5Tinsert(src_t, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 ||
H5Tinsert(src_t, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0)
goto error;
H5Tclose(array_dt);
array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL);
if ((dst_t=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
H5Tinsert(dst_t, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(dst_t, "c", HOFFSET(struct dt, c), array_dt)<0 ||
H5Tinsert(dst_t, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0)
goto error;
H5Tclose(array_dt);
/* Perform the conversion */
if (H5Tconvert(src_t, dst_t, nelmts, buf, bkg, H5P_DEFAULT)<0)
goto error;
/* Compare results */
for (i=0; i<(int)nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
d_ptr = ((struct dt*)buf) + i;
if (s_ptr->a != d_ptr->a ||
s_ptr->c[0] != d_ptr->c[0] ||
s_ptr->c[1] != d_ptr->c[1] ||
s_ptr->c[2] != d_ptr->c[2] ||
s_ptr->c[3] != d_ptr->c[3] ||
s_ptr->e != d_ptr->e) {
H5_FAILED();
printf(" i=%d\n", i);
printf(" src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2],
s_ptr->c[3], s_ptr->d, s_ptr->e);
printf(" dst={a=%d, c=[%d,%d,%d,%d], e=%d\n",
d_ptr->a, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2],
d_ptr->c[3], d_ptr->e);
goto error;
}
}
/* Release resources */
free(buf);
free(bkg);
free(orig);
if (H5Tclose(src_t)<0 || H5Tclose(dst_t)<0) goto error;
PASSED();
reset_hdf5();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_4
*
* Purpose: Tests compound conversions when the destination has the same
* fields as the source but one or more of the fields are
* smaller.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, June 17, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_4(void)
{
struct st {
int a, b, c[4], d, e;
} *s_ptr;
struct dt {
short b;
int a, c[4];
short d;
int e;
} *d_ptr;
const size_t nelmts = NTESTELEM;
const hsize_t four = 4;
unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
hid_t src_t=-1, dst_t=-1;
hid_t array_dt;
int i;
TESTING("compound element shrinking & reordering");
/* Sizes should be the same, but be careful just in case */
buf = (unsigned char*)malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
bkg = (unsigned char*)malloc(nelmts * sizeof(struct dt));
orig = (unsigned char*)malloc(nelmts * sizeof(struct st));
for (i=0; i<(int)nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
s_ptr->a = i*8+0;
s_ptr->b = (i*8+1) & 0x7fff;
s_ptr->c[0] = i*8+2;
s_ptr->c[1] = i*8+3;
s_ptr->c[2] = i*8+4;
s_ptr->c[3] = i*8+5;
s_ptr->d = (i*8+6) & 0x7fff;
s_ptr->e = i*8+7;
}
HDmemcpy(buf, orig, nelmts*sizeof(struct st));
/* Build hdf5 datatypes */
array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL);
if ((src_t=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
H5Tinsert(src_t, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(src_t, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 ||
H5Tinsert(src_t, "c", HOFFSET(struct st, c), array_dt)<0 ||
H5Tinsert(src_t, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 ||
H5Tinsert(src_t, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0)
goto error;
H5Tclose(array_dt);
array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL);
if ((dst_t=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
H5Tinsert(dst_t, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(dst_t, "b", HOFFSET(struct dt, b), H5T_NATIVE_SHORT)<0 ||
H5Tinsert(dst_t, "c", HOFFSET(struct dt, c), array_dt)<0 ||
H5Tinsert(dst_t, "d", HOFFSET(struct dt, d), H5T_NATIVE_SHORT)<0 ||
H5Tinsert(dst_t, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0)
goto error;
H5Tclose(array_dt);
/* Perform the conversion */
if (H5Tconvert(src_t, dst_t, nelmts, buf, bkg, H5P_DEFAULT)<0)
goto error;
/* Compare results */
for (i=0; i<(int)nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
d_ptr = ((struct dt*)buf) + i;
if (s_ptr->a != d_ptr->a ||
s_ptr->b != d_ptr->b ||
s_ptr->c[0] != d_ptr->c[0] ||
s_ptr->c[1] != d_ptr->c[1] ||
s_ptr->c[2] != d_ptr->c[2] ||
s_ptr->c[3] != d_ptr->c[3] ||
s_ptr->d != d_ptr->d ||
s_ptr->e != d_ptr->e) {
H5_FAILED();
printf(" i=%d\n", i);
printf(" src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2],
s_ptr->c[3], s_ptr->d, s_ptr->e);
printf(" dst={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
d_ptr->a, d_ptr->b, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2],
d_ptr->c[3], d_ptr->d, d_ptr->e);
goto error;
}
}
/* Release resources */
free(buf);
free(bkg);
free(orig);
if (H5Tclose(src_t)<0 || H5Tclose(dst_t)<0) goto error;
PASSED();
reset_hdf5();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_5
*
* Purpose: Many versions of HDF5 have a bug in the optimized compound
* datatype conversion function, H5T_conv_struct_opt(), which
* is triggered when the top-level type contains a struct
* which must undergo a conversion.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, June 17, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_5(void)
{
typedef struct {
char name[16];
short tdim;
short coll_ids[4];
} src_type_t;
typedef struct {
char name[16];
short tdim;
int coll_ids[4];
} dst_type_t;
hsize_t dims[1] = {4};
hid_t src_type, dst_type, short_array, int_array, string;
hid_t array_dt;
src_type_t src[2] = {{"one", 102, {104, 105, 106, 107}},
{"two", 202, {204, 205, 206, 207}}};
dst_type_t *dst;
void *buf = calloc(2, sizeof(dst_type_t));
void *bkg = calloc(2, sizeof(dst_type_t));
#if 1
TESTING("optimized struct converter");
#else
/* Turn off optimized compound conversion function to work around
* the problem. */
TESTING("optimized struct converter bug workaround");
H5Tunregister(H5T_PERS_DONTCARE, "struct(opt)", -1, -1, NULL);
#endif
/* Build datatypes */
short_array = H5Tcreate(H5T_COMPOUND, 4*sizeof(short));
array_dt=H5Tarray_create(H5T_NATIVE_SHORT, 1, dims, NULL);
H5Tinsert(short_array, "_", 0, array_dt);
H5Tclose(array_dt);
int_array = H5Tcreate(H5T_COMPOUND, 4*sizeof(int));
array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, dims, NULL);
H5Tinsert(int_array, "_", 0, array_dt);
H5Tclose(array_dt);
string = H5Tcopy(H5T_C_S1);
H5Tset_size(string, 16);
src_type = H5Tcreate(H5T_COMPOUND, sizeof(src_type_t));
H5Tinsert(src_type, "name", HOFFSET(src_type_t, name), string );
H5Tinsert(src_type, "tdim", HOFFSET(src_type_t, tdim), H5T_NATIVE_SHORT);
H5Tinsert(src_type, "coll_ids", HOFFSET(src_type_t, coll_ids), short_array );
dst_type = H5Tcreate(H5T_COMPOUND, sizeof(dst_type_t));
H5Tinsert(dst_type, "name", HOFFSET(dst_type_t, name), string );
H5Tinsert(dst_type, "tdim", HOFFSET(dst_type_t, tdim), H5T_NATIVE_SHORT);
H5Tinsert(dst_type, "coll_ids", HOFFSET(dst_type_t, coll_ids), int_array );
/* Convert data */
HDmemcpy(buf, src, sizeof(src));
H5Tconvert(src_type, dst_type, 2, buf, bkg, H5P_DEFAULT);
dst = (dst_type_t*)buf;
/* Cleanup */
H5Tclose(src_type);
H5Tclose(dst_type);
H5Tclose(string);
H5Tclose(short_array);
H5Tclose(int_array);
/* Check results */
if (HDmemcmp(src[1].name, dst[1].name, sizeof(src[1].name)) ||
src[1].tdim!=dst[1].tdim ||
src[1].coll_ids[0]!=dst[1].coll_ids[0] ||
src[1].coll_ids[1]!=dst[1].coll_ids[1] ||
src[1].coll_ids[2]!=dst[1].coll_ids[2] ||
src[1].coll_ids[3]!=dst[1].coll_ids[3]) {
H5_FAILED();
return 1;
}
/* Free memory buffers */
free(buf);
free(bkg);
PASSED();
return 0;
}
/*-------------------------------------------------------------------------
* Function: test_compound_6
*
* Purpose: Tests compound conversions when the destination has the same
* fields as the source but one or more of the fields are
* larger.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Quincey Koziol
* Wednesday, December 13, 2000
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_6(void)
{
struct st {
short b;
short d;
} *s_ptr;
struct dt {
long b;
long d;
} *d_ptr;
const size_t nelmts = NTESTELEM;
unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
hid_t src_t=-1, dst_t=-1;
int i;
TESTING("compound element growing");
/* Sizes should be the same, but be careful just in case */
buf = (unsigned char*)malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
bkg = (unsigned char*)malloc(nelmts * sizeof(struct dt));
orig = (unsigned char*)malloc(nelmts * sizeof(struct st));
for (i=0; i<(int)nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
s_ptr->b = (i*8+1) & 0x7fff;
s_ptr->d = (i*8+6) & 0x7fff;
}
HDmemcpy(buf, orig, nelmts*sizeof(struct st));
/* Build hdf5 datatypes */
if ((src_t=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
H5Tinsert(src_t, "b", HOFFSET(struct st, b), H5T_NATIVE_SHORT)<0 ||
H5Tinsert(src_t, "d", HOFFSET(struct st, d), H5T_NATIVE_SHORT)<0) {
H5_FAILED();
goto error;
}
if ((dst_t=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
H5Tinsert(dst_t, "b", HOFFSET(struct dt, b), H5T_NATIVE_LONG)<0 ||
H5Tinsert(dst_t, "d", HOFFSET(struct dt, d), H5T_NATIVE_LONG)<0) {
H5_FAILED();
goto error;
}
/* Perform the conversion */
if (H5Tconvert(src_t, dst_t, nelmts, buf, bkg, H5P_DEFAULT)<0) {
H5_FAILED();
goto error;
}
/* Compare results */
for (i=0; i<(int)nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
d_ptr = ((struct dt*)buf) + i;
if (s_ptr->b != d_ptr->b ||
s_ptr->d != d_ptr->d) {
H5_FAILED();
printf(" i=%d\n", i);
printf(" src={b=%d, d=%d\n",
(int)s_ptr->b, (int)s_ptr->d);
printf(" dst={b=%ld, d=%ld\n",
d_ptr->b, d_ptr->d);
goto error;
}
}
/* Release resources */
free(buf);
free(bkg);
free(orig);
if (H5Tclose(src_t)<0 || H5Tclose(dst_t)<0) {
H5_FAILED();
goto error;
}
PASSED();
reset_hdf5();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_7
*
* Purpose: Tests inserting fields into compound datatypes when the field
* overlaps the end of the compound datatype. Also, tests
* increasing compound type size.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Quincey Koziol
* Tuesday, December 18, 2001
*
* Modifications:
* The size of compound datatype can be expanded now.
* Raymond Lu
* Wednesday, September 10, 2003
*
*-------------------------------------------------------------------------
*/
static int
test_compound_7(void)
{
struct s1 {
int a;
float b;
long c;
};
struct s2 {
int a;
float b;
long c;
double d;
};
hid_t tid1,tid2;
herr_t ret;
TESTING("compound element insertion");
if((tid1= H5Tcreate( H5T_COMPOUND, sizeof(struct s1)))<0) {
H5_FAILED();
printf("Can't create datatype!\n");
goto error;
} /* end if */
if(H5Tinsert(tid1,"a",HOFFSET(struct s1,a),H5T_NATIVE_INT)<0) {
H5_FAILED();
printf("Can't insert field 'a'\n");
goto error;
} /* end if */
if(H5Tinsert(tid1,"b",HOFFSET(struct s1,b),H5T_NATIVE_FLOAT)<0) {
H5_FAILED();
printf("Can't insert field 'b'\n");
goto error;
} /* end if */
if(H5Tinsert(tid1,"c",HOFFSET(struct s1,c),H5T_NATIVE_LONG)<0) {
H5_FAILED();
printf("Can't insert field 'c'\n");
goto error;
} /* end if */
if(H5Tget_size(tid1)!=sizeof(struct s1)) {
H5_FAILED();
printf("Incorrect size for struct 1\n");
goto error;
} /* end if */
if((tid2= H5Tcopy(tid1))<0) {
H5_FAILED();
printf("Can't copy datatype\n");
goto error;
} /* end if */
if(H5Tget_size(tid2)==sizeof(struct s2)) {
H5_FAILED();
printf("Incorrect size for struct 2\n");
goto error;
} /* end if */
/* Should not be able to insert field past end of compound datatype */
H5E_BEGIN_TRY {
ret=H5Tinsert(tid2,"d",HOFFSET(struct s2,d),H5T_NATIVE_DOUBLE);
} H5E_END_TRY;
if(ret>=0) {
H5_FAILED();
printf("Inserted field 'd'?\n");
goto error;
} /* end if */
/* Should not be able to shrink size of compound datatype */
H5E_BEGIN_TRY {
ret=H5Tset_size(tid2, sizeof(struct s1)/2);
} H5E_END_TRY;
if(ret>=0) {
H5_FAILED();
printf("Shrunk compound type?\n");
goto error;
} /* end if */
/* Increase compound type size and try inserting field again */
if(H5Tset_size(tid2, sizeof(struct s2))<0) {
H5_FAILED();
printf("Can't increase size for compound type\n");
goto error;
} /* end if */
if( H5Tinsert(tid2,"d",HOFFSET(struct s2,d),H5T_NATIVE_DOUBLE)<0) {
H5_FAILED();
printf("Can't expand compound datatype\n");
goto error;
} /* end if */
if(H5Tget_size(tid2)!=sizeof(struct s2)) {
H5_FAILED();
printf("Incorrect size for struct 2\n");
goto error;
} /* end if */
/* Release resources */
if (H5Tclose(tid1)<0 || H5Tclose(tid2)<0) {
H5_FAILED();
printf("Can't close datatypes\n");
goto error;
} /* end if */
PASSED();
reset_hdf5();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_8
*
* Purpose: Tests H5Tpack for compound data types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Wednesday, January 7, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_8(void)
{
typedef struct s1 {
char a;
int b;
} s1;
typedef struct s2 {
char c;
s1 d;
} s2;
hid_t tid1, tid2, tid3;
herr_t ret;
TESTING("packing compound data types");
/* Create first compound datatype */
if((tid1 = H5Tcreate( H5T_COMPOUND, sizeof(struct s1)))<0) {
H5_FAILED(); AT();
printf("Can't create datatype!\n");
goto error;
} /* end if */
if(H5Tinsert(tid1,"a",HOFFSET(struct s1,a),H5T_NATIVE_CHAR)<0) {
H5_FAILED(); AT();
printf("Can't insert field 'a'\n");
goto error;
} /* end if */
if(H5Tinsert(tid1,"b",HOFFSET(struct s1,b),H5T_NATIVE_INT)<0) {
H5_FAILED(); AT();
printf("Can't insert field 'b'\n");
goto error;
} /* end if */
/* Test H5Tpack for the first compound type */
if(H5Tpack(tid1)<0) {
H5_FAILED(); AT();
printf("Can't pack the compound data type\n");
goto error;
} /* end if */
if(H5Tlock(tid1)<0) {
H5_FAILED(); AT();
printf("Can't lock the compound data type\n");
goto error;
} /* end if */
/* If the type is already packed, packing a locked type is OK */
if(H5Tpack(tid1)<0) {
H5_FAILED(); AT();
printf("Can't pack the compound data type for second time\n");
goto error;
} /* end if */
/* Create second compound datatype */
if((tid2 = H5Tcreate( H5T_COMPOUND, sizeof(struct s2)))<0) {
H5_FAILED(); AT();
printf("Can't create datatype!\n");
goto error;
} /* end if */
if(H5Tinsert(tid2,"c",HOFFSET(struct s2,c),H5T_NATIVE_CHAR)<0) {
H5_FAILED(); AT();
printf("Can't insert field 'c'\n");
goto error;
} /* end if */
if(H5Tinsert(tid2,"d",HOFFSET(struct s2,d),tid1)<0) {
H5_FAILED(); AT();
printf("Can't insert field 'd'\n");
goto error;
} /* end if */
/* Make a copy of the type for later */
if((tid3=H5Tcopy(tid2))<0) {
H5_FAILED(); AT();
printf("Can't copy type #2\n");
goto error;
} /* end if */
/* Test H5Tpack for the second compound type */
if(H5Tpack(tid2)<0) {
H5_FAILED(); AT();
printf("Can't pack the compound data type\n");
goto error;
} /* end if */
if(H5Tlock(tid2)<0) {
H5_FAILED(); AT();
printf("Can't lock the compound data type\n");
goto error;
} /* end if */
/* If the type is already packed, packing a locked type is OK */
if(H5Tpack(tid2)<0) {
H5_FAILED(); AT();
printf("Can't pack the compound data type for second time\n");
goto error;
} /* end if */
/* Lock unpacked type */
if(H5Tlock(tid3)<0) {
H5_FAILED(); AT();
printf("Can't lock the compound data type\n");
goto error;
} /* end if */
/* If the type is not packed, packing a locked type shouldn't work */
H5E_BEGIN_TRY {
ret=H5Tpack(tid3);
} H5E_END_TRY;
if(ret>=0) {
H5_FAILED(); AT();
printf("Packing locked datatype worked?\n");
goto error;
} /* end if */
/* Can't release resources - they are locked */
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_9
*
* Purpose: Tests compound data type with VL string as field.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Wednesday, June 9, 2004
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_9(void)
{
typedef struct cmpd_struct {
int i1;
char* str;
int i2;
} cmpd_struct;
cmpd_struct wdata = {11, "variable-length string", 22};
cmpd_struct rdata;
hid_t file;
hid_t cmpd_tid, str_id, dup_tid;
hid_t space_id;
hid_t dset_id;
hsize_t dim1[1];
char filename[1024];
TESTING("compound data type with VL string");
/* Create File */
h5_fixname(FILENAME[3], H5P_DEFAULT, filename, sizeof filename);
if((file=H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT))<0) {
H5_FAILED(); AT();
printf("Can't create file!\n");
goto error;
} /* end if */
/* Create first compound datatype */
if((cmpd_tid = H5Tcreate( H5T_COMPOUND, sizeof(struct cmpd_struct)))<0) {
H5_FAILED(); AT();
printf("Can't create datatype!\n");
goto error;
} /* end if */
if(H5Tinsert(cmpd_tid,"i1",HOFFSET(struct cmpd_struct,i1),H5T_NATIVE_INT)<0) {
H5_FAILED(); AT();
printf("Can't insert field 'i1'\n");
goto error;
} /* end if */
str_id = H5Tcopy(H5T_C_S1);
if(H5Tset_size(str_id,H5T_VARIABLE)<0) {
H5_FAILED(); AT();
printf("Can't set size for VL string\n");
goto error;
} /* end if */
if(H5Tinsert(cmpd_tid,"vl_string",HOFFSET(cmpd_struct,str),str_id)<0) {
H5_FAILED(); AT();
printf("Can't insert field 'i1'\n");
goto error;
} /* end if */
if(H5Tinsert(cmpd_tid,"i2",HOFFSET(struct cmpd_struct,i2),H5T_NATIVE_INT)<0) {
H5_FAILED(); AT();
printf("Can't insert field 'i2'\n");
goto error;
} /* end if */
if(H5Tcommit(file,"compound",cmpd_tid)<0) {
H5_FAILED(); AT();
printf("Can't commit datatype\n");
goto error;
} /* end if */
if(H5Tclose(cmpd_tid)<0) {
H5_FAILED(); AT();
printf("Can't close datatype\n");
goto error;
} /* end if */
if((cmpd_tid = H5Topen(file, "compound"))<0) {
H5_FAILED(); AT();
printf("Can't open datatype\n");
goto error;
} /* end if */
if((dup_tid = H5Tcopy(cmpd_tid))<0) {
H5_FAILED(); AT();
printf("Can't copy datatype\n");
goto error;
} /* end if */
dim1[0] = 1;
if((space_id=H5Screate_simple(1,dim1,NULL))<0) {
H5_FAILED(); AT();
printf("Can't create space\n");
goto error;
} /* end if */
if((dset_id = H5Dcreate(file,"Dataset",dup_tid,space_id,H5P_DEFAULT))<0) {
H5_FAILED(); AT();
printf("Can't create dataset\n");
goto error;
} /* end if */
if(H5Dwrite(dset_id,dup_tid,H5S_ALL,H5S_ALL,H5P_DEFAULT,&wdata)<0) {
H5_FAILED(); AT();
printf("Can't write data\n");
goto error;
} /* end if */
if(H5Dread(dset_id,dup_tid,H5S_ALL,H5S_ALL,H5P_DEFAULT,&rdata)<0) {
H5_FAILED(); AT();
printf("Can't read data\n");
goto error;
} /* end if */
if(rdata.i1!=wdata.i1 || rdata.i2!=wdata.i2 || HDstrcmp(rdata.str, wdata.str)) {
H5_FAILED(); AT();
printf("incorrect read data\n");
goto error;
} /* end if */
if(H5Dclose(dset_id)<0)
goto error;
if(H5Tclose(cmpd_tid)<0)
goto error;
if(H5Tclose(dup_tid)<0)
goto error;
if(H5Tclose(str_id)<0)
goto error;
if(H5Sclose(space_id)<0)
goto error;
if(H5Fclose(file)<0)
goto error;
if((file=H5Fopen(filename, H5F_ACC_RDONLY, H5P_DEFAULT))<0) {
H5_FAILED(); AT();
printf("cannot open file\n");
goto error;
} /* end if */
if((dset_id = H5Dopen(file, "Dataset"))<0) {
H5_FAILED(); AT();
printf("cannot open dataset\n");
goto error;
} /* end if */
if((cmpd_tid = H5Dget_type(dset_id))<0) {
H5_FAILED(); AT();
printf("cannot open dataset\n");
goto error;
} /* end if */
if((dup_tid = H5Tcopy(cmpd_tid))<0) {
H5_FAILED(); AT();
printf("Can't copy datatype\n");
goto error;
} /* end if */
rdata.i1 = rdata.i2 = 0;
if(rdata.str) free(rdata.str);
if(H5Dread(dset_id,dup_tid,H5S_ALL,H5S_ALL,H5P_DEFAULT,&rdata)<0) {
H5_FAILED(); AT();
printf("Can't read data\n");
goto error;
} /* end if */
if(rdata.i1!=wdata.i1 || rdata.i2!=wdata.i2 || strcmp(rdata.str, wdata.str)) {
H5_FAILED(); AT();
printf("incorrect read data\n");
goto error;
} /* end if */
if(rdata.str) free(rdata.str);
if(H5Dclose(dset_id)<0)
goto error;
if(H5Tclose(cmpd_tid)<0)
goto error;
if(H5Tclose(dup_tid)<0)
goto error;
if(H5Fclose(file)<0)
goto error;
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_10
*
* Purpose: Tests array data type of compound type with VL string as field.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Tuesday, June 15, 2004
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_10(void)
{
typedef struct cmpd_struct {
int i1;
char* str;
hvl_t text;
int i2;
} cmpd_struct;
cmpd_struct wdata[ARRAY_DIM];
cmpd_struct rdata[ARRAY_DIM];
hid_t file;
hid_t arr_tid, cmpd_tid, cstr_id, vlstr_id;
hid_t space_id;
hid_t dset_id;
hsize_t arr_dim[1] = {ARRAY_DIM}; /* Array dimensions */
hsize_t dim1[1];
void *t1, *t2;
char filename[1024];
int len;
int i;
TESTING("array data type of compound type with VL string");
for(i=0; i<ARRAY_DIM; i++) {
wdata[i].i1 = i*10+i;
wdata[i].str = strdup("C string A");
wdata[i].str[9] += i;
wdata[i].i2 = i*1000+i*10;
wdata[i].text.p = (void*)strdup("variable-length text A\0");
len = wdata[i].text.len = strlen((char*)wdata[i].text.p)+1;
((char*)(wdata[i].text.p))[len-2] += i;
((char*)(wdata[i].text.p))[len-1] = '\0';
}
/* Create File */
h5_fixname(FILENAME[4], H5P_DEFAULT, filename, sizeof filename);
if((file=H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT))<0) {
H5_FAILED(); AT();
printf("Can't create file!\n");
goto error;
} /* end if */
/* Create first compound datatype */
if((cmpd_tid = H5Tcreate( H5T_COMPOUND, sizeof(struct cmpd_struct)))<0) {
H5_FAILED(); AT();
printf("Can't create datatype!\n");
goto error;
} /* end if */
if(H5Tinsert(cmpd_tid,"i1",HOFFSET(struct cmpd_struct,i1),H5T_NATIVE_INT)<0) {
H5_FAILED(); AT();
printf("Can't insert field 'i1'\n");
goto error;
} /* end if */
cstr_id = H5Tcopy(H5T_C_S1);
if(H5Tset_size(cstr_id,H5T_VARIABLE)<0) {
H5_FAILED(); AT();
printf("Can't set size for C string\n");
goto error;
} /* end if */
if(H5Tinsert(cmpd_tid,"c_string",HOFFSET(cmpd_struct,str),cstr_id)<0) {
H5_FAILED(); AT();
printf("Can't insert field 'str'\n");
goto error;
} /* end if */
/* Create vl-string data type */
if((vlstr_id = H5Tvlen_create(H5T_NATIVE_CHAR))<0) {
H5_FAILED(); AT();
printf("Can't create VL string\n");
goto error;
} /* end if */
if(H5Tinsert(cmpd_tid, "vl_string",HOFFSET(cmpd_struct, text), vlstr_id)<0) {
H5_FAILED(); AT();
printf("Can't insert field 'text'\n");
goto error;
} /* end if */
if(H5Tinsert(cmpd_tid,"i2",HOFFSET(struct cmpd_struct,i2),H5T_NATIVE_INT)<0) {
H5_FAILED(); AT();
printf("Can't insert field 'i2'\n");
goto error;
} /* end if */
/* Create the array data type for c_string data */
if((arr_tid = H5Tarray_create(cmpd_tid,1,arr_dim, NULL))<0) {
H5_FAILED(); AT();
printf("Can't create array type\n");
goto error;
} /* end if */
dim1[0] = 1;
if((space_id=H5Screate_simple(1,dim1,NULL))<0) {
H5_FAILED(); AT();
printf("Can't create space\n");
goto error;
} /* end if */
if((dset_id = H5Dcreate(file,"Dataset",arr_tid,space_id,H5P_DEFAULT))<0) {
H5_FAILED(); AT();
printf("Can't create dataset\n");
goto error;
} /* end if */
if(H5Dwrite(dset_id,arr_tid,H5S_ALL,H5S_ALL,H5P_DEFAULT,&wdata)<0) {
H5_FAILED(); AT();
printf("Can't write data\n");
goto error;
} /* end if */
if(H5Dread(dset_id,arr_tid,H5S_ALL,H5S_ALL,H5P_DEFAULT,&rdata)<0) {
H5_FAILED(); AT();
printf("Can't read data\n");
goto error;
} /* end if */
for(i=0; i<ARRAY_DIM; i++) {
if(rdata[i].i1!=wdata[i].i1 || rdata[i].i2!=wdata[i].i2 ||
strcmp(rdata[i].str, wdata[i].str)) {
H5_FAILED(); AT();
printf("incorrect read data\n");
goto error;
} /* end if */
if(rdata[i].text.len!=wdata[i].text.len) {
H5_FAILED(); AT();
printf("incorrect VL length\n");
goto error;
} /* end if */
t1 = rdata[i].text.p;
t2 = wdata[i].text.p;
if(strcmp((char*)t1, (char*)t2)) {
H5_FAILED(); AT();
printf("incorrect VL read data\n");
goto error;
}
free(t1);
free(t2);
free(wdata[i].str);
free(rdata[i].str);
} /* end for */
if(H5Dclose(dset_id)<0)
goto error;
if(H5Tclose(cmpd_tid)<0)
goto error;
if(H5Tclose(arr_tid)<0)
goto error;
if(H5Tclose(cstr_id)<0)
goto error;
if(H5Tclose(vlstr_id)<0)
goto error;
if(H5Sclose(space_id)<0)
goto error;
if(H5Fclose(file)<0)
goto error;
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_11
*
* Purpose: Tests whether registering/unregistering a type conversion
* function correctly causes compound datatypes to recalculate
* their cached field conversion information
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Quincey Koziol
* Saturday, August 7, 2004
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_11(void)
{
typedef struct {
double d1;
int i1;
char *s1;
int i2;
double d2;
double d3;
} big_t;
typedef struct {
double d1;
int i1;
char *s1;
} little_t;
hid_t var_string_tid; /* Datatype IDs for type conversion */
hid_t big_tid, little_tid; /* Datatype IDs for type conversion */
hid_t big_tid2, little_tid2; /* Datatype IDs for type conversion */
hid_t opaq_src_tid, opaq_dst_tid; /* Datatype IDs for type conversion */
void *buf, /* Conversion buffer */
*buf_orig, /* Copy of original conversion buffer */
*bkg; /* Background buffer */
size_t u; /* Local index variable */
TESTING("registering type conversion routine with compound conversions");
/* Create variable string type for use in both structs */
if((var_string_tid=H5Tcopy(H5T_C_S1))<0) TEST_ERROR
if(H5Tset_size(var_string_tid,H5T_VARIABLE)<0) TEST_ERROR
/* Create type for 'big' struct */
if((big_tid = H5Tcreate(H5T_COMPOUND, sizeof(big_t)))<0) TEST_ERROR
if(H5Tinsert(big_tid, "d1", HOFFSET(big_t, d1), H5T_NATIVE_DOUBLE)<0) TEST_ERROR
if(H5Tinsert(big_tid, "i1", HOFFSET(big_t, i1), H5T_NATIVE_INT)<0) TEST_ERROR
if(H5Tinsert(big_tid, "s1", HOFFSET(big_t, s1), var_string_tid)<0) TEST_ERROR
if(H5Tinsert(big_tid, "i2", HOFFSET(big_t, i2), H5T_NATIVE_INT)<0) TEST_ERROR
if(H5Tinsert(big_tid, "d2", HOFFSET(big_t, d2), H5T_NATIVE_DOUBLE)<0) TEST_ERROR
if(H5Tinsert(big_tid, "d3", HOFFSET(big_t, d3), H5T_NATIVE_DOUBLE)<0) TEST_ERROR
/* Create type for 'little' struct (with "out of order" inserts) */
if((little_tid = H5Tcreate(H5T_COMPOUND, sizeof(little_t)))<0) TEST_ERROR
if(H5Tinsert(little_tid, "d1", HOFFSET(little_t, d1), H5T_NATIVE_DOUBLE)<0) TEST_ERROR
if(H5Tinsert(little_tid, "s1", HOFFSET(little_t, s1), var_string_tid)<0) TEST_ERROR
if(H5Tinsert(little_tid, "i1", HOFFSET(little_t, i1), H5T_NATIVE_INT)<0) TEST_ERROR
/* Allocate buffers */
if((buf=HDmalloc(sizeof(big_t)*NTESTELEM))==NULL) TEST_ERROR
if((buf_orig=HDmalloc(sizeof(big_t)*NTESTELEM))==NULL) TEST_ERROR
if((bkg=HDmalloc(sizeof(big_t)*NTESTELEM))==NULL) TEST_ERROR
/* Initialize buffer */
for(u=0; u<NTESTELEM; u++) {
((big_t *)buf)[u].d1=(double)u*(double)1.5;
((big_t *)buf)[u].d2=(double)u*(double)2.5;
((big_t *)buf)[u].d2=(double)u*(double)3.5;
((big_t *)buf)[u].i1=u*3;
((big_t *)buf)[u].i2=u*5;
((big_t *)buf)[u].s1=HDmalloc(32);
sprintf(((big_t *)buf)[u].s1,"%u",(unsigned)u);
} /* end for */
/* Make copy of buffer before conversion */
HDmemcpy(buf_orig,buf,sizeof(big_t)*NTESTELEM);
/* Make copies of the 'big' and 'little' datatypes, so the type
* conversion routine doesn't use the same ones this time and next time
*/
if((big_tid2=H5Tcopy(big_tid))<0) TEST_ERROR
if((little_tid2=H5Tcopy(little_tid))<0) TEST_ERROR
/* Convert buffer from 'big' to 'little' struct */
if(H5Tconvert(big_tid2,little_tid2,NTESTELEM,buf,bkg,H5P_DEFAULT)<0) TEST_ERROR
/* Verify converted buffer is correct */
for(u=0; u<NTESTELEM; u++) {
if(((big_t *)buf_orig)[u].d1!=((little_t *)buf)[u].d1) {
printf("Error, line #%d: buf_orig[%u].d1=%f, buf[%u].d1=%f\n",__LINE__,(unsigned)u,((big_t *)buf_orig)[u].d1,(unsigned)u,((little_t *)buf)[u].d1);
TEST_ERROR
} /* end if */
if(((big_t *)buf_orig)[u].i1!=((little_t *)buf)[u].i1) {
printf("Error, line #%d: buf_orig[%u].i1=%d, buf[%u].i1=%d\n",__LINE__,(unsigned)u,((big_t *)buf_orig)[u].i1,(unsigned)u,((little_t *)buf)[u].i1);
TEST_ERROR
} /* end if */
if(((big_t *)buf_orig)[u].s1==NULL || ((little_t *)buf)[u].s1==NULL) {
printf("Error, line #%d: buf_orig[%u].s1=%p, buf[%u].s1=%p\n",__LINE__,(unsigned)u,((big_t *)buf_orig)[u].s1,(unsigned)u,((little_t *)buf)[u].s1);
TEST_ERROR
} /* end if */
else if(HDstrcmp(((big_t *)buf_orig)[u].s1,((little_t *)buf)[u].s1)) {
printf("Error, line #%d: buf_orig[%u].s1=%s, buf[%u].s1=%s\n",__LINE__,(unsigned)u,((big_t *)buf_orig)[u].s1,(unsigned)u,((little_t *)buf)[u].s1);
TEST_ERROR
} /* end if */
HDfree(((little_t *)buf)[u].s1);
} /* end for */
/* Build source and destination types for conversion routine */
if((opaq_src_tid=H5Tcreate(H5T_OPAQUE, 4))<0) TEST_ERROR
if(H5Tset_tag(opaq_src_tid, "opaque source type")<0) TEST_ERROR
if((opaq_dst_tid=H5Tcreate(H5T_OPAQUE, 4))<0) TEST_ERROR
if(H5Tset_tag(opaq_dst_tid, "opaque destination type")<0) TEST_ERROR
/* Register new type conversion routine */
if(H5Tregister(H5T_PERS_HARD, "opaq_test", opaq_src_tid, opaq_dst_tid, convert_opaque)<0) TEST_ERROR
/* Recover the original buffer information */
HDmemcpy(buf,buf_orig,sizeof(big_t)*NTESTELEM);
/* Convert buffer from 'big' to 'little' struct */
if(H5Tconvert(big_tid,little_tid,NTESTELEM,buf,bkg,H5P_DEFAULT)<0) TEST_ERROR
/* Verify converted buffer is correct */
for(u=0; u<NTESTELEM; u++) {
if(((big_t *)buf_orig)[u].d1!=((little_t *)buf)[u].d1) {
printf("Error, line #%d: buf_orig[%u].d1=%f, buf[%u].d1=%f\n",__LINE__,(unsigned)u,((big_t *)buf_orig)[u].d1,(unsigned)u,((little_t *)buf)[u].d1);
TEST_ERROR
} /* end if */
if(((big_t *)buf_orig)[u].i1!=((little_t *)buf)[u].i1) {
printf("Error, line #%d: buf_orig[%u].i1=%d, buf[%u].i1=%d\n",__LINE__,(unsigned)u,((big_t *)buf_orig)[u].i1,(unsigned)u,((little_t *)buf)[u].i1);
TEST_ERROR
} /* end if */
if(((big_t *)buf_orig)[u].s1==NULL || ((little_t *)buf)[u].s1==NULL) {
printf("Error, line #%d: buf_orig[%u].s1=%p, buf[%u].s1=%p\n",__LINE__,(unsigned)u,((big_t *)buf_orig)[u].s1,(unsigned)u,((little_t *)buf)[u].s1);
TEST_ERROR
} /* end if */
else if(HDstrcmp(((big_t *)buf_orig)[u].s1,((little_t *)buf)[u].s1)) {
printf("Error, line #%d: buf_orig[%u].s1=%s, buf[%u].s1=%s\n",__LINE__,(unsigned)u,((big_t *)buf_orig)[u].s1,(unsigned)u,((little_t *)buf)[u].s1);
TEST_ERROR
} /* end if */
HDfree(((little_t *)buf)[u].s1);
} /* end for */
/* Unregister the conversion routine */
if(H5Tunregister(H5T_PERS_HARD, "opaq_test", opaq_src_tid, opaq_dst_tid, convert_opaque)<0) TEST_ERROR
/* Recover the original buffer information */
HDmemcpy(buf,buf_orig,sizeof(big_t)*NTESTELEM);
/* Convert buffer from 'big' to 'little' struct */
if(H5Tconvert(big_tid,little_tid,NTESTELEM,buf,bkg,H5P_DEFAULT)<0) TEST_ERROR
/* Verify converted buffer is correct */
for(u=0; u<NTESTELEM; u++) {
if(((big_t *)buf_orig)[u].d1!=((little_t *)buf)[u].d1) {
printf("Error, line #%d: buf_orig[%u].d1=%f, buf[%u].d1=%f\n",__LINE__,(unsigned)u,((big_t *)buf_orig)[u].d1,(unsigned)u,((little_t *)buf)[u].d1);
TEST_ERROR
} /* end if */
if(((big_t *)buf_orig)[u].i1!=((little_t *)buf)[u].i1) {
printf("Error, line #%d: buf_orig[%u].i1=%d, buf[%u].i1=%d\n",__LINE__,(unsigned)u,((big_t *)buf_orig)[u].i1,(unsigned)u,((little_t *)buf)[u].i1);
TEST_ERROR
} /* end if */
if(((big_t *)buf_orig)[u].s1==NULL || ((little_t *)buf)[u].s1==NULL) {
printf("Error, line #%d: buf_orig[%u].s1=%p, buf[%u].s1=%p\n",__LINE__,(unsigned)u,((big_t *)buf_orig)[u].s1,(unsigned)u,((little_t *)buf)[u].s1);
TEST_ERROR
} /* end if */
else if(HDstrcmp(((big_t *)buf_orig)[u].s1,((little_t *)buf)[u].s1)) {
printf("Error, line #%d: buf_orig[%u].s1=%s, buf[%u].s1=%s\n",__LINE__,(unsigned)u,((big_t *)buf_orig)[u].s1,(unsigned)u,((little_t *)buf)[u].s1);
TEST_ERROR
} /* end if */
HDfree(((little_t *)buf)[u].s1);
} /* end for */
/* Free everything */
for(u=0; u<NTESTELEM; u++)
HDfree(((big_t *)buf_orig)[u].s1);
if(H5Tclose(opaq_dst_tid)<0) TEST_ERROR
if(H5Tclose(opaq_src_tid)<0) TEST_ERROR
if(H5Tclose(little_tid2)<0) TEST_ERROR
if(H5Tclose(big_tid2)<0) TEST_ERROR
HDfree(bkg);
HDfree(buf_orig);
HDfree(buf);
if(H5Tclose(little_tid)<0) TEST_ERROR
if(H5Tclose(big_tid)<0) TEST_ERROR
if(H5Tclose(var_string_tid)<0) TEST_ERROR
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_12
*
* Purpose: Tests size adjustment of compound data types. Start with
* no member and 0 size, increase the size as inserting
* members.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Wednesday, September 29, 2004
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_12(void)
{
hid_t complex_id;
size_t size = 0;
size_t offset, new_size, tmp_size;
herr_t ret;
TESTING("adjust size of compound data types");
/* Create a compound type of minimal size */
if ((complex_id = H5Tcreate(H5T_COMPOUND, 1))<0) goto error;
/* Verify the size */
if((new_size=H5Tget_size(complex_id))==0) goto error;
if(new_size!=1) goto error;
/* Add a couple fields and adjust the size */
offset = size;
if((tmp_size=H5Tget_size(H5T_NATIVE_DOUBLE))==0) goto error;
size+=tmp_size;
if (H5Tset_size(complex_id, size)<0) goto error;
if (H5Tinsert(complex_id, "real", offset,
H5T_NATIVE_DOUBLE)<0) goto error;
offset = size;
if((tmp_size=H5Tget_size(H5T_NATIVE_DOUBLE))==0) goto error;
size+=tmp_size;
if (H5Tset_size(complex_id, size)<0) goto error;
if (H5Tinsert(complex_id, "imaginary", offset,
H5T_NATIVE_DOUBLE)<0) goto error;
/* Increase and decrease the size. */
if((tmp_size=H5Tget_size(H5T_NATIVE_DOUBLE))==0) goto error;
size+=tmp_size;
if (H5Tset_size(complex_id, size)<0) goto error;
if((tmp_size=H5Tget_size(H5T_NATIVE_DOUBLE))==0) goto error;
size-=tmp_size;
if (H5Tset_size(complex_id, size)<0) goto error;
/* Verify the size */
if((new_size=H5Tget_size(complex_id))==0) goto error;
if(new_size!=size) goto error;
/* Tries to cut last member. Supposed to fail. */
size--;
H5E_BEGIN_TRY {
ret = H5Tset_size(complex_id, size);
} H5E_END_TRY;
if(ret>=0) {
H5_FAILED();
puts(" Tries to cut off the last member. Should have failed.");
goto error;
}
if (H5Tclose (complex_id)<0) goto error;
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_query
*
* Purpose: Tests query functions of compound and enumeration types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Thursday, April 4, 2002
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_query(void)
{
struct s1 {
int a;
float b;
long c;
double d;
};
hid_t file=-1, tid1=-1, tid2=-1;
char filename[1024];
char compnd_type[]="Compound_type", enum_type[]="Enum_type";
short enum_val;
TESTING("query functions of compound and enumeration types");
/* Create File */
h5_fixname(FILENAME[2], H5P_DEFAULT, filename, sizeof filename);
if((file=H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT))<0)
goto error;
/* Create a compound datatype */
if((tid1=H5Tcreate(H5T_COMPOUND, sizeof(struct s1)))<0) {
H5_FAILED();
printf("Can't create datatype!\n");
goto error;
} /* end if */
if(H5Tinsert(tid1, "a", HOFFSET(struct s1, a), H5T_NATIVE_INT)<0) {
H5_FAILED();
printf("Can't insert field 'a'\n");
goto error;
} /* end if */
if(H5Tinsert(tid1, "b", HOFFSET(struct s1, b), H5T_NATIVE_FLOAT)<0) {
H5_FAILED();
printf("Can't insert field 'b'\n");
goto error;
} /* end if */
if(H5Tinsert(tid1, "c", HOFFSET(struct s1, c), H5T_NATIVE_LONG)<0) {
H5_FAILED();
printf("Can't insert field 'c'\n");
goto error;
} /* end if */
if(H5Tinsert(tid1, "d", HOFFSET(struct s1, d), H5T_NATIVE_DOUBLE)<0) {
H5_FAILED();
printf("Can't insert field 'd'\n");
goto error;
} /* end if */
/* Create a enumerate datatype */
if((tid2=H5Tcreate(H5T_ENUM, sizeof(short)))<0) {
H5_FAILED();
printf("Can't create enumerate type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "RED", (enum_val=0,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "GREEN", (enum_val=1,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "BLUE", (enum_val=2,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "ORANGE", (enum_val=3,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "YELLOW", (enum_val=4,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
/* Query member number and member index by name, for compound type. */
if(H5Tget_nmembers(tid1)!=4) {
H5_FAILED();
printf("Can't get member number\n");
goto error;
} /* end if */
if(H5Tget_member_index(tid1, "c")!=2) {
H5_FAILED();
printf("Can't get correct index number\n");
goto error;
} /* end if */
/* Query member number and member index by name, for enumeration type. */
if(H5Tget_nmembers(tid2)!=5) {
H5_FAILED();
printf("Can't get member number\n");
goto error;
} /* end if */
if(H5Tget_member_index(tid2, "ORANGE")!=3) {
H5_FAILED();
printf("Can't get correct index number\n");
goto error;
} /* end if */
/* Commit compound datatype and close it */
if(H5Tcommit(file, compnd_type, tid1)<0) {
H5_FAILED();
printf("Can't commit compound datatype\n");
goto error;
} /* end if */
if(H5Tclose(tid1)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
/* Commit enumeration datatype and close it */
if(H5Tcommit(file, enum_type, tid2)<0) {
H5_FAILED();
printf("Can't commit compound datatype\n");
goto error;
} /* end if */
if(H5Tclose(tid2)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
/* Open the dataytpe for query */
if((tid1=H5Topen(file, compnd_type))<0) {
H5_FAILED();
printf("Can't open datatype\n");
goto error;
} /* end if */
if((tid2=H5Topen(file, enum_type))<0) {
H5_FAILED();
printf("Can't open datatype\n");
goto error;
} /* end if */
/* Query member number and member index by name, for compound type */
if(H5Tget_nmembers(tid1)!=4) {
H5_FAILED();
printf("Can't get member number\n");
goto error;
} /* end if */
if(H5Tget_member_index(tid1, "c")!=2) {
H5_FAILED();
printf("Can't get correct index number\n");
goto error;
} /* end if */
/* Query member number and member index by name, for enumeration type */
if(H5Tget_nmembers(tid2)!=5) {
H5_FAILED();
printf("Can't get member number\n");
goto error;
} /* end if */
if(H5Tget_member_index(tid2, "ORANGE")!=3) {
H5_FAILED();
printf("Can't get correct index number\n");
goto error;
} /* end if */
/* Close data type and file */
if(H5Tclose(tid1)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
if(H5Tclose(tid2)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
if(H5Fclose(file)<0) {
H5_FAILED();
printf("Can't close file\n");
goto error;
} /* end if */
PASSED();
return 0;
error:
H5E_BEGIN_TRY {
H5Tclose (tid1);
H5Tclose (tid2);
H5Fclose (file);
} H5E_END_TRY;
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_derived_flt
*
* Purpose: Tests user-define and query functions of floating-point types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Thursday, Jan 6, 2005
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_derived_flt(void)
{
hid_t file=-1, tid1=-1, tid2=-1;
hid_t dxpl_id=-1;
char filename[1024];
size_t precision, spos, epos, esize, mpos, msize, size, ebias;
int offset;
size_t src_size, dst_size;
unsigned char *buf=NULL, *saved_buf=NULL;
int *aligned=NULL;
int endian; /*endianess */
size_t nelmts = NTESTELEM;
unsigned int fails_this_test = 0;
const size_t max_fails=40; /*max number of failures*/
char str[256]; /*message string */
unsigned int i, j;
TESTING("user-define and query functions of floating-point types");
/* Create File */
h5_fixname(FILENAME[6], H5P_DEFAULT, filename, sizeof filename);
if((file=H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT))<0) {
H5_FAILED();
printf("Can't create file\n");
goto error;
}
if((dxpl_id = H5Pcreate(H5P_DATASET_XFER))<0) {
H5_FAILED();
printf("Can't create data transfer property list\n");
goto error;
}
if((tid1 = H5Tcopy(H5T_IEEE_F64LE))<0) {
H5_FAILED();
printf("Can't copy data type\n");
goto error;
}
if((tid2 = H5Tcopy(H5T_IEEE_F32LE))<0) {
H5_FAILED();
printf("Can't copy data type\n");
goto error;
}
/*------------------------------------------------------------------------
* 1st floating-point type
* size=7 byte, precision=42 bits, offset=3 bits, mantissa size=31 bits,
* mantissa position=3, exponent size=10 bits, exponent position=34,
* exponent bias=511. It can be illustrated in little-endian order as
*
* 6 5 4 3 2 1 0
* ???????? ???SEEEE EEEEEEMM MMMMMMMM MMMMMMMM MMMMMMMM MMMMM???
*
* To create a new floating-point type, the following properties must be
* set in the order of
* set fields -> set offset -> set precision -> set size.
* All these properties must be set before the type can function. Other
* properties can be set anytime. Derived type size cannot be expanded
* bigger than original size but can be decreased. There should be no
* holes among the significant bits. Exponent bias usually is set
* 2^(n-1)-1, where n is the exponent size.
*-----------------------------------------------------------------------*/
if(H5Tset_fields(tid1, 44, 34, 10, 3, 31)<0) {
H5_FAILED();
printf("Can't set fields\n");
goto error;
}
if(H5Tset_offset(tid1, 3)<0) {
H5_FAILED();
printf("Can't set offset\n");
goto error;
}
if(H5Tset_precision(tid1, 42)<0) {
H5_FAILED();
printf("Can't set precision 1\n");
goto error;
}
if(H5Tset_size(tid1, 7)<0) {
H5_FAILED();
printf("Can't set size\n");
goto error;
}
if(H5Tset_ebias(tid1, 511)<0) {
H5_FAILED();
printf("Can't set exponent bias\n");
goto error;
}
if(H5Tset_pad(tid1, H5T_PAD_ZERO, H5T_PAD_ZERO)<0) {
H5_FAILED();
printf("Can't set padding\n");
goto error;
}
if(H5Tcommit(file, "new float type 1", tid1)<0) {
H5_FAILED();
printf("Can't set inpad\n");
goto error;
}
if(H5Tclose(tid1)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if((tid1 = H5Topen(file, "new float type 1"))<0) {
H5_FAILED();
printf("Can't open datatype\n");
goto error;
}
if(H5Tget_fields(tid1, &spos, &epos, &esize, &mpos, &msize)<0) {
H5_FAILED();
printf("Can't get fields\n");
goto error;
}
if(spos!=44 || epos!=34 || esize!=10 || mpos!=3 || msize!=31) {
H5_FAILED();
printf("Wrong field values\n");
goto error;
}
if((precision = H5Tget_precision(tid1))!=42) {
H5_FAILED();
printf("Can't get precision or wrong precision\n");
goto error;
}
if((offset = H5Tget_offset(tid1))!=3) {
H5_FAILED();
printf("Can't get offset or wrong offset\n");
goto error;
}
if((size = H5Tget_size(tid1))!=7) {
H5_FAILED();
printf("Can't get size or wrong size\n");
goto error;
}
if((ebias = H5Tget_ebias(tid1))!=511) {
H5_FAILED();
printf("Can't get exponent bias or wrong bias\n");
goto error;
}
/* Convert data from native integer to the 1st derived floating-point type.
* Then convert data from the floating-point type back to native integer.
* Compare the final data with the original data.
*/
src_size = H5Tget_size(H5T_NATIVE_INT);
endian = H5Tget_order(H5T_NATIVE_INT);
buf = (unsigned char*)malloc(nelmts*(MAX(src_size, size)));
saved_buf = (unsigned char*)malloc(nelmts*src_size);
aligned = (int*)malloc(src_size);
for(i=0; i<nelmts*src_size; i++)
buf[i] = saved_buf[i] = HDrand();
/* Convert data from native integer to derived floating-point type.
* The mantissa is big enough to retain the integer's precision. */
if(H5Tconvert(H5T_NATIVE_INT, tid1, nelmts, buf, NULL, dxpl_id)<0) {
H5_FAILED();
printf("Can't convert data\n");
goto error;
}
/* Convert data from the derived floating-point type back to native integer. */
if(H5Tconvert(tid1, H5T_NATIVE_INT, nelmts, buf, NULL, dxpl_id)<0) {
H5_FAILED();
printf("Can't convert data\n");
goto error;
}
/* Are the values still the same?*/
for(i=0; i<nelmts; i++) {
for(j=0; j<src_size; j++)
if(buf[i*src_size+j]!=saved_buf[i*src_size+j])
break;
if(j==src_size)
continue; /*no error*/
/* Print errors */
if (0==fails_this_test++) {
sprintf(str, "\nTesting random sw int -> derived floating-point conversions");
printf("%-70s", str);
HDfflush(stdout);
H5_FAILED();
}
printf(" test %u elmt %u: \n", 1, (unsigned)i);
printf(" src = ");
for (j=0; j<src_size; j++)
printf(" %02x", saved_buf[i*src_size+ENDIAN(src_size, j)]);
HDmemcpy(aligned, saved_buf+i*sizeof(int), sizeof(int));
printf(" %29d\n", *aligned);
printf(" dst = ");
for (j=0; j<src_size; j++)
printf(" %02x", buf[i*src_size+ENDIAN(src_size, j)]);
HDmemcpy(aligned, buf+i*sizeof(int), sizeof(int));
printf(" %29d\n", *aligned);
if (fails_this_test>=max_fails) {
HDputs(" maximum failures reached, aborting test...");
goto error;
}
}
fails_this_test = 0;
if(buf) free(buf);
if(saved_buf) free(saved_buf);
if(aligned) free(aligned);
buf = NULL;
saved_buf = NULL;
aligned = NULL;
/*--------------------------------------------------------------------------
* 2nd floating-point type
* size=3 byte, precision=24 bits, offset=0 bits, mantissa size=16 bits,
* mantissa position=0, exponent size=7 bits, exponent position=16, exponent
* bias=63. It can be illustrated in little-endian order as
*
* 2 1 0
* SEEEEEEE MMMMMMMM MMMMMMMM
*--------------------------------------------------------------------------*/
if(H5Tset_fields(tid2, 23, 16, 7, 0, 16)<0) {
H5_FAILED();
printf("Can't set fields\n");
goto error;
}
if(H5Tset_offset(tid2, 0)<0) {
H5_FAILED();
printf("Can't set offset\n");
goto error;
}
if(H5Tset_precision(tid2, 24)<0) {
H5_FAILED();
printf("Can't set precision 2\n");
goto error;
}
if(H5Tset_size(tid2, 3)<0) {
H5_FAILED();
printf("Can't set size\n");
goto error;
}
if(H5Tset_ebias(tid2, 63)<0) {
H5_FAILED();
printf("Can't set size\n");
goto error;
}
if(H5Tset_pad(tid2, H5T_PAD_ZERO, H5T_PAD_ZERO)<0) {
H5_FAILED();
printf("Can't set padding\n");
goto error;
}
if(H5Tcommit(file, "new float type 2", tid2)<0) {
H5_FAILED();
printf("Can't set inpad\n");
goto error;
}
if(H5Tclose(tid2)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if((tid2 = H5Topen(file, "new float type 2"))<0) {
H5_FAILED();
printf("Can't open datatype\n");
goto error;
}
if(H5Tget_fields(tid2, &spos, &epos, &esize, &mpos, &msize)<0) {
H5_FAILED();
printf("Can't get fields\n");
goto error;
}
if(spos!=23 || epos!=16 || esize!=7 || mpos!=0 || msize!=16) {
H5_FAILED();
printf("Wrong field values\n");
goto error;
}
if((precision = H5Tget_precision(tid2))!=24) {
H5_FAILED();
printf("Can't get precision or wrong precision\n");
goto error;
}
if((offset = H5Tget_offset(tid2))!=0) {
H5_FAILED();
printf("Can't get offset or wrong offset\n");
goto error;
}
if((size = H5Tget_size(tid2))!=3) {
H5_FAILED();
printf("Can't get size or wrong size\n");
goto error;
}
if((ebias = H5Tget_ebias(tid2))!=63) {
H5_FAILED();
printf("Can't get exponent bias or wrong bias\n");
goto error;
}
/* Convert data from the 2nd to the 1st derived floating-point type.
* Then convert data from the 1st type back to the 2nd type.
* Compare the final data with the original data.
*/
src_size = H5Tget_size(tid2);
dst_size = H5Tget_size(tid1);
endian = H5Tget_order(tid2);
buf = (unsigned char*)malloc(nelmts*(MAX(src_size, dst_size)));
saved_buf = (unsigned char*)malloc(nelmts*src_size);
for(i=0; i<nelmts*src_size; i++)
buf[i] = saved_buf[i] = HDrand();
/* Convert data from the 2nd to the 1st derived floating-point type.
* The mantissa and exponent of the 2nd type are big enough to retain
* the precision and exponent power. */
if(H5Tconvert(tid2, tid1, nelmts, buf, NULL, dxpl_id)<0) {
H5_FAILED();
printf("Can't convert data\n");
goto error;
}
/* Convert data from the 1st back to the 2nd derived floating-point type. */
if(H5Tconvert(tid1, tid2, nelmts, buf, NULL, dxpl_id)<0) {
H5_FAILED();
printf("Can't convert data\n");
goto error;
}
/* Are the values still the same?*/
for(i=0; i<nelmts; i++) {
for(j=0; j<src_size; j++)
if(buf[i*src_size+j]!=saved_buf[i*src_size+j])
break;
if(j==src_size)
continue; /*no error*/
/* If original value is NaN(exponent bits are all ones, 11..11),
* the library simply sets all mantissa bits to ones. So don't
* compare values in this case.
*/
if((buf[i*src_size+2]==0x7f && saved_buf[i*src_size+2]==0x7f) ||
(buf[i*src_size+2]==0xff && saved_buf[i*src_size+2]==0xff))
continue;
/* Print errors */
if (0==fails_this_test++) {
sprintf(str, "\nTesting random sw derived floating-point -> derived floating-point conversions");
printf("%-70s", str);
HDfflush(stdout);
H5_FAILED();
}
printf(" test %u elmt %u: \n", 1, (unsigned)i);
printf(" src = ");
for (j=0; j<src_size; j++)
printf(" %02x", saved_buf[i*src_size+ENDIAN(src_size, j)]);
printf("\n");
printf(" dst = ");
for (j=0; j<src_size; j++)
printf(" %02x", buf[i*src_size+ENDIAN(src_size, j)]);
printf("\n");
if (fails_this_test>=max_fails) {
HDputs(" maximum failures reached, aborting test...");
goto error;
}
}
if (buf) free(buf);
if (saved_buf) free(saved_buf);
if(H5Tclose(tid1)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if(H5Tclose(tid2)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if(H5Pclose(dxpl_id)<0) {
H5_FAILED();
printf("Can't close property list\n");
goto error;
}
if(H5Fclose(file)<0) {
H5_FAILED();
printf("Can't close file\n");
goto error;
} /* end if */
PASSED();
reset_hdf5(); /*print statistics*/
return 0;
error:
if (buf) free(buf);
if (saved_buf) free(saved_buf);
if (aligned) free(aligned);
HDfflush(stdout);
H5E_BEGIN_TRY {
H5Tclose (tid1);
H5Tclose (tid2);
H5Pclose (dxpl_id);
H5Fclose (file);
} H5E_END_TRY;
reset_hdf5(); /*print statistics*/
return MAX((int)fails_this_test, 1);
}
/*-------------------------------------------------------------------------
* Function: test_derived_integer
*
* Purpose: Tests user-define and query functions of integer types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Saturday, Jan 29, 2005
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_derived_integer(void)
{
hid_t file=-1, tid1=-1, tid2=-1;
hid_t dxpl_id=-1;
char filename[1024];
size_t precision, spos, epos, esize, mpos, msize, size, ebias;
int offset;
H5T_order_t order;
H5T_sign_t sign;
size_t src_size, dst_size;
unsigned char *buf=NULL, *saved_buf=NULL;
int *aligned=NULL;
int endian; /*endianess */
size_t nelmts = NTESTELEM;
unsigned int fails_this_test = 0;
const size_t max_fails=40; /*max number of failures*/
char str[256]; /*message string */
unsigned int i, j;
TESTING("user-define and query functions of integer types");
/* Create File */
h5_fixname(FILENAME[7], H5P_DEFAULT, filename, sizeof filename);
if((file=H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT))<0) {
H5_FAILED();
printf("Can't create file\n");
goto error;
}
if((dxpl_id = H5Pcreate(H5P_DATASET_XFER))<0) {
H5_FAILED();
printf("Can't create data transfer property list\n");
goto error;
}
if((tid1 = H5Tcopy(H5T_STD_I32LE))<0) {
H5_FAILED();
printf("Can't copy data type\n");
goto error;
}
if((tid2 = H5Tcopy(H5T_STD_U64LE))<0) {
H5_FAILED();
printf("Can't copy data type\n");
goto error;
}
/*--------------------------------------------------------------------------
* 1st integer type
* size=3 byte, precision=24 bits, offset=0 bits, order=big endian.
* It can be illustrated in big-endian order as
*
* 0 1 2
* SIIIIIII IIIIIIII IIIIIIII
*--------------------------------------------------------------------------*/
if(H5Tset_precision(tid1,24)<0) {
H5_FAILED();
printf("Can't set precision\n");
goto error;
}
if(H5Tset_offset(tid1,0)<0) {
H5_FAILED();
printf("Can't set offset\n");
goto error;
}
if(H5Tset_size(tid1, 3)<0) {
H5_FAILED();
printf("Can't set size\n");
goto error;
}
if(H5Tset_order(tid1, H5T_ORDER_BE)<0) {
H5_FAILED();
printf("Can't set order\n");
goto error;
}
if(H5Tcommit(file, "new integer type 1", tid1)<0) {
H5_FAILED();
printf("Can't commit data type\n");
goto error;
}
if(H5Tclose(tid1)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if((tid1 = H5Topen(file, "new integer type 1"))<0) {
H5_FAILED();
printf("Can't open datatype\n");
goto error;
}
if((precision = H5Tget_precision(tid1))!=24) {
H5_FAILED();
printf("Can't get precision or wrong precision\n");
goto error;
}
if((offset = H5Tget_offset(tid1))!=0) {
H5_FAILED();
printf("Can't get offset or wrong offset\n");
goto error;
}
if((size = H5Tget_size(tid1))!=3) {
H5_FAILED();
printf("Can't get size or wrong size\n");
goto error;
}
if((order = H5Tget_order(tid1))!=H5T_ORDER_BE) {
H5_FAILED();
printf("Can't get order or wrong order\n");
goto error;
}
/*--------------------------------------------------------------------------
* 2nd integer type
* size=8 byte, precision=48 bits, offset=10 bits, order=little endian.
* It can be illustrated in little-endian order as
*
* 7 6 5 4 3 2 1 0
* ??????SI IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIII?? ????????
*--------------------------------------------------------------------------*/
if(H5Tset_precision(tid2,48)<0) {
H5_FAILED();
printf("Can't set precision\n");
goto error;
}
if(H5Tset_offset(tid2,10)<0) {
H5_FAILED();
printf("Can't set offset\n");
goto error;
}
if(H5Tset_sign(tid2,H5T_SGN_2)<0) {
H5_FAILED();
printf("Can't set offset\n");
goto error;
}
if(H5Tcommit(file, "new integer type 2", tid2)<0) {
H5_FAILED();
printf("Can't commit data type\n");
goto error;
}
if(H5Tclose(tid2)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if((tid2 = H5Topen(file, "new integer type 2"))<0) {
H5_FAILED();
printf("Can't open datatype\n");
goto error;
}
if((precision = H5Tget_precision(tid2))!=48) {
H5_FAILED();
printf("Can't get precision or wrong precision\n");
goto error;
}
if((offset = H5Tget_offset(tid2))!=10) {
H5_FAILED();
printf("Can't get offset or wrong offset\n");
goto error;
}
if((size = H5Tget_size(tid2))!=8) {
H5_FAILED();
printf("Can't get size or wrong size\n");
goto error;
}
if((sign = H5Tget_sign(tid2))!=H5T_SGN_2) {
H5_FAILED();
printf("Can't get sign or wrong sign\n");
goto error;
}
/* Convert data from the 1st to the 2nd derived integer type.
* Then convert data from the 2nd type back to the 1st type.
* Compare the final data with the original data.
*/
src_size = H5Tget_size(tid1);
dst_size = H5Tget_size(tid2);
endian = H5Tget_order(tid1);
buf = (unsigned char*)malloc(nelmts*(MAX(src_size, dst_size)));
saved_buf = (unsigned char*)malloc(nelmts*src_size);
for(i=0; i<nelmts*src_size; i++)
buf[i] = saved_buf[i] = HDrand();
/* Convert data from the 1st to the 2nd derived integer type.
* The precision of the 2nd type are big enough to retain
* the 1st type's precision. */
if(H5Tconvert(tid1, tid2, nelmts, buf, NULL, dxpl_id)<0) {
H5_FAILED();
printf("Can't convert data\n");
goto error;
}
/* Convert data from the 2nd back to the 1st derived integer type. */
if(H5Tconvert(tid2, tid1, nelmts, buf, NULL, dxpl_id)<0) {
H5_FAILED();
printf("Can't convert data\n");
goto error;
}
/* Are the values still the same?*/
for(i=0; i<nelmts; i++) {
for(j=0; j<src_size; j++)
if(buf[i*src_size+j]!=saved_buf[i*src_size+j])
break;
if(j==src_size)
continue; /*no error*/
/* Print errors */
if (0==fails_this_test++) {
sprintf(str, "\nTesting random sw derived integer -> derived integer conversions");
printf("%-70s", str);
HDfflush(stdout);
H5_FAILED();
}
printf(" test %u elmt %u: \n", 1, (unsigned)i);
printf(" src = ");
for (j=0; j<src_size; j++)
printf(" %02x", saved_buf[i*src_size+ENDIAN(src_size, j)]);
printf("\n");
printf(" dst = ");
for (j=0; j<src_size; j++)
printf(" %02x", buf[i*src_size+ENDIAN(src_size, j)]);
printf("\n");
if (fails_this_test>=max_fails) {
HDputs(" maximum failures reached, aborting test...");
goto error;
}
}
if(H5Tclose(tid1)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if(H5Tclose(tid2)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if(H5Pclose(dxpl_id)<0) {
H5_FAILED();
printf("Can't close property list\n");
goto error;
}
if(H5Fclose(file)<0) {
H5_FAILED();
printf("Can't close file\n");
goto error;
} /* end if */
PASSED();
reset_hdf5(); /*print statistics*/
return 0;
error:
if (buf) free(buf);
if (saved_buf) free(saved_buf);
if (aligned) free(aligned);
HDfflush(stdout);
H5E_BEGIN_TRY {
H5Tclose (tid1);
H5Tclose (tid2);
H5Pclose (dxpl_id);
H5Fclose (file);
} H5E_END_TRY;
reset_hdf5(); /*print statistics*/
return MAX((int)fails_this_test, 1);
}
/*-------------------------------------------------------------------------
* Function: test_transient
*
* Purpose: Tests transient data types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, June 4, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_transient (hid_t fapl)
{
static hsize_t ds_size[2] = {10, 20};
hid_t file=-1, type=-1, space=-1, dset=-1, t2=-1;
char filename[1024];
herr_t status;
TESTING("transient data types");
h5_fixname(FILENAME[0], fapl, filename, sizeof filename);
if ((file=H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl))<0) {
goto error;
}
if ((space = H5Screate_simple (2, ds_size, ds_size))<0) goto error;
/* Predefined types cannot be modified or closed */
H5E_BEGIN_TRY {
status = H5Tset_precision (H5T_NATIVE_INT, 256);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
HDputs (" Predefined types should not be modifiable!");
goto error;
}
H5E_BEGIN_TRY {
status = H5Tclose (H5T_NATIVE_INT);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
HDputs (" Predefined types should not be closable!");
goto error;
}
/* Copying a predefined type results in a modifiable copy */
if ((type=H5Tcopy (H5T_NATIVE_INT))<0) goto error;
if (H5Tset_precision (type, 256)<0) goto error;
/* It should not be possible to create an attribute for a transient type */
H5E_BEGIN_TRY {
status = H5Acreate (type, "attr1", H5T_NATIVE_INT, space, H5P_DEFAULT);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
HDputs (" Attributes should not be allowed for transient types!");
goto error;
}
/* Create a dataset from a transient data type */
if (H5Tclose (type)<0) goto error;
if ((type = H5Tcopy (H5T_NATIVE_INT))<0) goto error;
if ((dset=H5Dcreate (file, "dset1", type, space, H5P_DEFAULT))<0)
goto error;
/* The type returned from a dataset should not be modifiable */
if ((t2 = H5Dget_type (dset))<0) goto error;
H5E_BEGIN_TRY {
status = H5Tset_precision (t2, 256);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
HDputs (" Dataset data types should not be modifiable!");
goto error;
}
if (H5Tclose (t2)<0) goto error;
/*
* Close the dataset and reopen it, testing that it's type is still
* read-only.
*/
if (H5Dclose (dset)<0) goto error;
if ((dset=H5Dopen (file, "dset1"))<0) goto error;
if ((t2 = H5Dget_type (dset))<0) goto error;
H5E_BEGIN_TRY {
status = H5Tset_precision (t2, 256);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
HDputs (" Dataset data types should not be modifiable!");
goto error;
}
if (H5Tclose (t2)<0) goto error;
/*
* Get the dataset data type by applying H5Tcopy() to the dataset. The
* result should be modifiable.
*/
if ((t2=H5Tcopy (dset))<0) goto error;
if (H5Tset_precision (t2, 256)<0) goto error;
if (H5Tclose (t2)<0) goto error;
H5Dclose (dset);
H5Fclose (file);
H5Tclose (type);
H5Sclose (space);
PASSED();
return 0;
error:
H5E_BEGIN_TRY {
H5Tclose (t2);
H5Tclose (type);
H5Sclose (space);
H5Dclose (dset);
H5Fclose (file);
} H5E_END_TRY;
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_named
*
* Purpose: Tests named data types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Monday, June 1, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_named (hid_t fapl)
{
hid_t file=-1, type=-1, space=-1, dset=-1, t2=-1, attr1=-1;
herr_t status;
static hsize_t ds_size[2] = {10, 20};
hsize_t i,j;
unsigned attr_data[10][20];
char filename[1024];
TESTING("named data types");
h5_fixname(FILENAME[1], fapl, filename, sizeof filename);
if ((file=H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl))<0) {
goto error;
}
if ((space = H5Screate_simple (2, ds_size, ds_size))<0) goto error;
/* Predefined types cannot be committed */
H5E_BEGIN_TRY {
status = H5Tcommit (file, "test_named_1 (should not exist)",
H5T_NATIVE_INT);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
HDputs (" Predefined types should not be committable!");
goto error;
}
/* Copy a predefined data type and commit the copy */
if ((type = H5Tcopy (H5T_NATIVE_INT))<0) goto error;
if (H5Tcommit (file, "native-int", type)<0) goto error;
if ((status=H5Tcommitted (type))<0) goto error;
if (0==status) {
H5_FAILED();
HDputs (" H5Tcommitted() returned false!");
goto error;
}
/* We should not be able to modify a type after it has been committed. */
H5E_BEGIN_TRY {
status = H5Tset_precision (type, 256);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
HDputs (" Committed type is not constant!");
goto error;
}
/* We should not be able to re-commit a committed type */
H5E_BEGIN_TRY {
status = H5Tcommit(file, "test_named_2 (should not exist)", type);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
HDputs (" Committed types should not be recommitted!");
goto error;
}
/* It should be possible to define an attribute for the named type */
if ((attr1=H5Acreate (type, "attr1", H5T_NATIVE_UCHAR, space,
H5P_DEFAULT))<0) goto error;
for (i=0; i<ds_size[0]; i++)
for (j=0; j<ds_size[1]; j++)
attr_data[i][j] = (int)(i*ds_size[1]+j);
if (H5Awrite(attr1, H5T_NATIVE_UINT, attr_data)<0) goto error;
if (H5Aclose (attr1)<0) goto error;
/*
* Copying a committed type should result in a transient type which is
* not locked.
*/
if ((t2 = H5Tcopy (type))<0) goto error;
if ((status=H5Tcommitted (t2))<0) goto error;
if (status) {
H5_FAILED();
HDputs (" Copying a named type should result in a transient type!");
goto error;
}
if (H5Tset_precision (t2, 256)<0) goto error;
if (H5Tclose (t2)<0) goto error;
/*
* Close the committed type and reopen it. It should return a named type.
*/
if (H5Tclose (type)<0) goto error;
if ((type=H5Topen (file, "native-int"))<0) goto error;
if ((status=H5Tcommitted (type))<0) goto error;
if (!status) {
H5_FAILED();
HDputs (" Opened named types should be named types!");
goto error;
}
/* Create a dataset that uses the named type */
if ((dset = H5Dcreate (file, "dset1", type, space, H5P_DEFAULT))<0) {
goto error;
}
/* Get the dataset's data type and make sure it's a named type */
if ((t2 = H5Dget_type (dset))<0) goto error;
if ((status=H5Tcommitted (t2))<0) goto error;
if (!status) {
H5_FAILED();
HDputs (" Dataset type should be a named type!");
goto error;
}
/* Close the dataset, then close its type, then reopen the dataset */
if (H5Dclose (dset)<0) goto error;
if (H5Tclose (t2)<0) goto error;
if ((dset = H5Dopen (file, "dset1"))<0) goto error;
/* Get the dataset's type and make sure it's named */
if ((t2 = H5Dget_type (dset))<0) goto error;
if ((status=H5Tcommitted (t2))<0) goto error;
if (!status) {
H5_FAILED();
HDputs (" Dataset type should be a named type!");
goto error;
}
/*
* Close the dataset and create another with the type returned from the
* first dataset.
*/
if (H5Dclose (dset)<0) goto error;
if ((dset=H5Dcreate (file, "dset2", t2, space, H5P_DEFAULT))<0) {
goto error;
}
/* Reopen the second dataset and make sure the type is shared */
if (H5Tclose (t2)<0) goto error;
if (H5Dclose (dset)<0) goto error;
if ((dset = H5Dopen (file, "dset2"))<0) goto error;
if ((t2 = H5Dget_type (dset))<0) goto error;
if ((status=H5Tcommitted (t2))<0) goto error;
if (!status) {
H5_FAILED();
HDputs (" Dataset type should be a named type!");
goto error;
}
if (H5Tclose (t2)<0) goto error;
/*
* Get the dataset data type by applying H5Tcopy() to the dataset. The
* result should be modifiable.
*/
if ((t2=H5Tcopy (dset))<0) goto error;
if (H5Tset_precision (t2, 256)<0) goto error;
if (H5Tclose (t2)<0) goto error;
/* Clean up */
if (H5Dclose (dset)<0) goto error;
if (H5Tclose (type)<0) goto error;
if (H5Sclose (space)<0) goto error;
if (H5Fclose (file)<0) goto error;
PASSED();
return 0;
error:
H5E_BEGIN_TRY {
H5Tclose (t2);
H5Tclose (type);
H5Sclose (space);
H5Dclose (dset);
H5Fclose (file);
} H5E_END_TRY;
return 1;
}
/*-------------------------------------------------------------------------
* Function: mkstr
*
* Purpose: Create a new string data type
*
* Return: Success: New type
*
* Failure: -1
*
* Programmer: Robb Matzke
* Monday, August 10, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static hid_t
mkstr(size_t len, H5T_str_t strpad)
{
hid_t t;
if ((t=H5Tcopy(H5T_C_S1))<0) return -1;
if (H5Tset_size(t, len)<0) return -1;
if (H5Tset_strpad(t, strpad)<0) return -1;
return t;
}
/*-------------------------------------------------------------------------
* Function: test_conv_str_1
*
* Purpose: Test string conversions
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Monday, August 10, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_str_1(void)
{
char *buf=NULL;
hid_t src_type, dst_type;
TESTING("string conversions");
/*
* Convert a null-terminated string to a shorter and longer null
* terminated string.
*/
src_type = mkstr(10, H5T_STR_NULLTERM);
dst_type = mkstr(5, H5T_STR_NULLTERM);
buf = (char*)HDcalloc(2, 10);
HDmemcpy(buf, "abcdefghi\0abcdefghi\0", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcd\0abcd\0abcdefghi\0", 20)) {
H5_FAILED();
HDputs(" Truncated C-string test failed");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcd\0\0\0\0\0\0abcd\0\0\0\0\0\0", 20)) {
H5_FAILED();
HDputs(" Extended C-string test failed");
goto error;
}
HDfree(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* Convert a null padded string to a shorter and then longer string.
*/
src_type = mkstr(10, H5T_STR_NULLPAD);
dst_type = mkstr(5, H5T_STR_NULLPAD);
buf = (char*)HDcalloc(2, 10);
HDmemcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcdeabcdeabcdefghij", 20)) {
H5_FAILED();
HDputs(" Truncated C buffer test failed");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
H5_FAILED();
HDputs(" Extended C buffer test failed");
goto error;
}
HDfree(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* Convert a space-padded string to a shorter and then longer string.
*/
src_type = mkstr(10, H5T_STR_SPACEPAD);
dst_type = mkstr(5, H5T_STR_SPACEPAD);
buf = (char*)HDcalloc(2, 10);
HDmemcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcdeabcdeabcdefghij", 20)) {
H5_FAILED();
HDputs(" Truncated Fortran-string test failed");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcde abcde ", 20)) {
H5_FAILED();
HDputs(" Extended Fortran-string test failed");
goto error;
}
HDfree(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* What happens if a null-terminated string is not null terminated? If
* the conversion is to an identical string then nothing happens but if
* the destination is a different size or type of string then the right
* thing should happen.
*/
src_type = mkstr(10, H5T_STR_NULLTERM);
dst_type = mkstr(10, H5T_STR_NULLTERM);
buf = (char*)HDcalloc(2, 10);
HDmemcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcdefghijabcdefghij", 20)) {
H5_FAILED();
HDputs(" Non-terminated string test 1");
goto error;
}
H5Tclose(dst_type);
dst_type = mkstr(5, H5T_STR_NULLTERM);
HDmemcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcd\0abcd\0abcdefghij", 20)) {
H5_FAILED();
HDputs(" Non-terminated string test 2");
goto error;
}
HDmemcpy(buf, "abcdeabcdexxxxxxxxxx", 20);
if (H5Tconvert(dst_type, src_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
H5_FAILED();
HDputs(" Non-terminated string test 2");
goto error;
}
HDfree(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* Test C string to Fortran and vice versa.
*/
src_type = mkstr(10, H5T_STR_NULLTERM);
dst_type = mkstr(10, H5T_STR_SPACEPAD);
buf = (char*)HDcalloc(2, 10);
HDmemcpy(buf, "abcdefghi\0abcdefghi\0", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcdefghi abcdefghi ", 20)) {
H5_FAILED();
HDputs(" C string to Fortran test 1");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcdefghi\0abcdefghi\0", 20)) {
H5_FAILED();
HDputs(" Fortran to C string test 1");
goto error;
}
if (H5Tclose(dst_type)<0) goto error;
dst_type = mkstr(5, H5T_STR_SPACEPAD);
HDmemcpy(buf, "abcdefgh\0\0abcdefgh\0\0", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcdeabcdeabcdefgh\0\0", 20)) {
H5_FAILED();
HDputs(" C string to Fortran test 2");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
H5_FAILED();
HDputs(" Fortran to C string test 2");
goto error;
}
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
src_type = mkstr(5, H5T_STR_NULLTERM);
dst_type = mkstr(10, H5T_STR_SPACEPAD);
HDmemcpy(buf, "abcd\0abcd\0xxxxxxxxxx", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcd abcd ", 20)) {
H5_FAILED();
HDputs(" C string to Fortran test 3");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcd\0abcd\0abcd ", 20)) {
H5_FAILED();
HDputs(" Fortran to C string test 3");
goto error;
}
HDfree(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* Test C buffer to Fortran and vice versa.
*/
src_type = mkstr(10, H5T_STR_NULLPAD);
dst_type = mkstr(10, H5T_STR_SPACEPAD);
buf = (char*)HDcalloc(2, 10);
HDmemcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcdefghijabcdefghij", 20)) {
H5_FAILED();
HDputs(" C buffer to Fortran test 1");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcdefghijabcdefghij", 20)) {
H5_FAILED();
HDputs(" Fortran to C buffer test 1");
goto error;
}
if (H5Tclose(dst_type)<0) goto error;
dst_type = mkstr(5, H5T_STR_SPACEPAD);
HDmemcpy(buf, "abcdefgh\0\0abcdefgh\0\0", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcdeabcdeabcdefgh\0\0", 20)) {
H5_FAILED();
HDputs(" C buffer to Fortran test 2");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
H5_FAILED();
HDputs(" Fortran to C buffer test 2");
goto error;
}
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
src_type = mkstr(5, H5T_STR_NULLPAD);
dst_type = mkstr(10, H5T_STR_SPACEPAD);
HDmemcpy(buf, "abcd\0abcd\0xxxxxxxxxx", 20);
if (H5Tconvert(src_type, dst_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcd abcd ", 20)) {
H5_FAILED();
HDputs(" C buffer to Fortran test 3");
goto error;
}
if (H5Tconvert(dst_type, src_type, 2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (HDmemcmp(buf, "abcd\0abcd\0abcd ", 20)) {
H5_FAILED();
HDputs(" Fortran to C buffer test 3");
goto error;
}
HDfree(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
PASSED();
reset_hdf5();
return 0;
error:
reset_hdf5();
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_conv_str_2
*
* Purpose: Tests C-to-Fortran and Fortran-to-C string conversion speed.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Monday, August 10, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_str_2(void)
{
char *buf=NULL, s[80];
hid_t c_type, f_type;
const size_t nelmts = NTESTELEM, ntests=NTESTS;
size_t i, j, nchars;
int ret_value = 1;
/*
* Initialize types and buffer.
*/
c_type = mkstr(8, H5T_STR_NULLPAD);
f_type = mkstr(8, H5T_STR_SPACEPAD);
buf = (char*)HDcalloc(nelmts, 8);
for (i=0; i<nelmts; i++) {
nchars = HDrand() % 8;
for (j=0; j<nchars; j++)
buf[i*8+j] = 'a' + HDrand()%26;
while (j<nchars)
buf[i*8+j++] = '\0';
}
/* Do the conversions */
for (i=0; i<ntests; i++) {
if (ntests>1) {
sprintf(s, "Testing random string conversion speed (test %d/%d)",
(int)(i+1), (int)ntests);
} else {
sprintf(s, "Testing random string conversion speed");
}
printf("%-70s", s);
HDfflush(stdout);
if (H5Tconvert(c_type, f_type, nelmts, buf, NULL, H5P_DEFAULT)<0)
goto error;
if (H5Tconvert(f_type, c_type, nelmts, buf, NULL, H5P_DEFAULT)<0)
goto error;
PASSED();
}
ret_value = 0;
error:
if (buf) HDfree(buf);
reset_hdf5();
return ret_value;
}
/*-------------------------------------------------------------------------
* Function: test_conv_enum_1
*
* Purpose: Test conversion speed for enum data types
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Tuesday, January 5, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_enum_1(void)
{
const size_t nelmts=NTESTELEM;
const int ntests=NTESTS;
int i, val, *buf=NULL;
hid_t t1, t2;
char s[80];
int ret_value = 1;
/* Build the data types */
t1 = H5Tcreate(H5T_ENUM, sizeof(int));
t2 = H5Tenum_create(H5T_NATIVE_INT);
s[1] = '\0';
for (i=0; i<26; i++) {
s[0] = 'A'+i;
H5Tenum_insert(t1, s, &i);
H5Tenum_insert(t2, s, (val=i*1000+i, &val));
}
/* Initialize the buffer */
buf = (int*)HDmalloc(nelmts*MAX(H5Tget_size(t1), H5Tget_size(t2)));
for (i=0; i<(int)nelmts; i++)
buf[i] = HDrand() % 26;
/* Conversions */
for (i=0; i<ntests; i++) {
if (ntests>1) {
sprintf(s, "Testing random enum conversion O(N) (test %d/%d)",
i+1, ntests);
} else {
sprintf(s, "Testing random enum conversion O(N)");
}
printf("%-70s", s);
HDfflush(stdout);
if (H5Tconvert(t1, t2, nelmts, buf, NULL, H5P_DEFAULT)<0) goto error;
PASSED();
}
for (i=0; i<ntests; i++) {
if (ntests>1) {
sprintf(s, "Testing random enum conversion O(N log N) "
"(test %d/%d)", i+1, ntests);
} else {
sprintf(s, "Testing random enum conversion O(N log N)");
}
printf("%-70s", s);
HDfflush(stdout);
if (H5Tconvert(t2, t1, nelmts, buf, NULL, H5P_DEFAULT)<0) goto error;
PASSED();
}
ret_value = 0;
error:
H5Tclose(t1);
H5Tclose(t2);
if (buf) HDfree(buf);
reset_hdf5();
return ret_value;
}
/*-------------------------------------------------------------------------
* Function: test_conv_enum_2
*
* Purpose: Tests enumeration conversions where source isn't a native type.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke, LLNL, 2003-06-09
*
* Modifications:
*-------------------------------------------------------------------------
*/
static int
test_conv_enum_2(void)
{
hid_t srctype=-1, dsttype=-1, oddsize=-1;
int *data=NULL, i, nerrors=0;
const char *mname[] = { "RED",
"GREEN",
"BLUE",
"YELLOW",
"PINK",
"PURPLE",
"ORANGE",
"WHITE" };
TESTING("non-native enumeration type conversion");
/* Source enum type */
oddsize = H5Tcopy(H5T_STD_I32BE);
H5Tset_size(oddsize, 3); /*reduce to 24 bits, not corresponding to any native size*/
srctype = H5Tenum_create(oddsize);
for (i=7; i>=0; --i) {
char pattern[3];
pattern[2] = i;
pattern[0] = pattern[1] = 0;
H5Tenum_insert(srctype, mname[i], pattern);
}
/* Destination enum type */
dsttype = H5Tenum_create(H5T_NATIVE_INT);
assert(H5Tget_size(dsttype)>H5Tget_size(srctype));
for (i=0; i<8; i++)
H5Tenum_insert(dsttype, mname[i], &i);
/* Source data */
data = (int*)malloc(NTESTELEM*sizeof(int));
for (i=0; i<NTESTELEM; i++) {
((char*)data)[i*3+2] = i % 8;
((char*)data)[i*3+0] = 0;
((char*)data)[i*3+1] = 0;
}
/* Convert to destination type */
H5Tconvert(srctype, dsttype, NTESTELEM, data, NULL, H5P_DEFAULT);
/* Check results */
for (i=0; i<NTESTELEM; i++) {
if (data[i] != i%8) {
if (!nerrors++) {
H5_FAILED();
printf("element %d is %d but should have been %d\n",
i, data[i], i%8);
}
}
}
/* Cleanup */
free(data);
H5Tclose(srctype);
H5Tclose(dsttype);
H5Tclose(oddsize);
/* Failure */
if (nerrors) {
printf("total of %d conversion errors out of %d elements for enums\n",
nerrors, NTESTELEM);
return 1;
}
PASSED();
return 0;
}
/*-------------------------------------------------------------------------
* Function: test_conv_bitfield
*
* Purpose: Test bitfield conversions.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, May 20, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_bitfield(void)
{
unsigned char buf[4];
hid_t st=-1, dt=-1;
TESTING("bitfield conversions");
/*
* First test a simple bitfield conversion:
* 1010101010101010
* ________________1010101010101010
*/
st = H5Tcopy(H5T_STD_B16LE);
dt = H5Tcopy(H5T_STD_B32LE);
buf[0] = buf[1] = 0xAA;
buf[2] = buf[3] = 0x55; /*irrelevant*/
if (H5Tconvert(st, dt, 1, buf, NULL, H5P_DEFAULT)<0) goto error;
if (buf[0]!=0xAA || buf[1]!=0xAA || buf[2]!=0 || buf[3]!=0) {
H5_FAILED();
printf(" s=0xaaaa, d=0x%02x%02x%02x%02x (test 1)\n",
buf[3], buf[2], buf[1], buf[0]);
goto error;
}
/*
* Test2: Offset a 12-byte value in the middle of a 16 and 32 byte
* field.
* __10 1010 1010 10__
* ____ ____ __10 1010 1010 10__ ____ ____
*/
H5Tset_precision(st, 12);
H5Tset_offset(st, 2);
H5Tset_precision(dt, 12);
H5Tset_offset(dt, 10);
buf[0] = 0xA8; buf[1] = 0x2A; buf[2] = buf[3] = 0;
if (H5Tconvert(st, dt, 1, buf, NULL, H5P_DEFAULT)<0) goto error;
if (buf[0]!=0 || buf[1]!=0xA8 || buf[2]!=0x2A || buf[3]!=0) {
H5_FAILED();
printf(" s=0x2AA8 d=0x%02x%02x%02x%02x (test 2)\n",
buf[3], buf[2], buf[1], buf[0]);
goto error;
}
/*
* Same as previous test except unused bits of the destination will
* be filled with ones.
*/
H5Tset_pad(dt, H5T_PAD_ONE, H5T_PAD_ONE);
buf[0] = 0xA8; buf[1] = 0x2A; buf[2] = buf[3] = 0;
if (H5Tconvert(st, dt, 1, buf, NULL, H5P_DEFAULT)<0) goto error;
if (buf[0]!=0xff || buf[1]!=0xAB || buf[2]!=0xEA || buf[3]!=0xff) {
H5_FAILED();
printf(" s=0x2AA8 d=0x%02x%02x%02x%02x (test 3)\n",
buf[3], buf[2], buf[1], buf[0]);
goto error;
}
H5Tclose(st);
H5Tclose(dt);
PASSED();
reset_hdf5();
return 0;
error:
H5Tclose(st);
H5Tclose(dt);
reset_hdf5();
return 1;
}
/*-------------------------------------------------------------------------
* Function: convert_opaque
*
* Purpose: A fake opaque conversion functions
*
* Return: Success: 0
*
* Failure: -1
*
* Programmer: Robb Matzke
* Friday, June 4, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
convert_opaque(hid_t UNUSED st, hid_t UNUSED dt, H5T_cdata_t *cdata,
size_t UNUSED nelmts, size_t UNUSED buf_stride,
size_t UNUSED bkg_stride, void UNUSED *_buf,
void UNUSED *bkg, hid_t UNUSED dset_xfer_plid)
{
if (H5T_CONV_CONV==cdata->command) num_opaque_conversions_g++;
return 0;
}
/*-------------------------------------------------------------------------
* Function: test_opaque
*
* Purpose: Driver function to test opaque datatypes
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* June 2, 2004
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_opaque(void)
{
int num_errors = 0;
TESTING("opaque datatypes");
/* Test opaque types with tags */
num_errors += opaque_check(0);
/* Test opaque types without tag */
num_errors += opaque_check(1);
if(num_errors)
goto error;
PASSED();
return 0;
error:
H5_FAILED();
return num_errors;
}
/*-------------------------------------------------------------------------
* Function: opaque_check
*
* Purpose: Test opaque datatypes
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, May 20, 1999
*
* Modifications:
* Raymond Lu
* June 2, 2004
* Made tag for one opaque type optional.
*
*-------------------------------------------------------------------------
*/
static int
opaque_check(int tag_it)
{
#define OPAQUE_NELMTS 1000
hid_t st=-1, dt=-1;
herr_t status;
char buf[1]; /*not really used*/
int saved;
saved = num_opaque_conversions_g = 0;
/* Build source and destination types */
if ((st=H5Tcreate(H5T_OPAQUE, 4))<0) goto error;
if (H5Tset_tag(st, "opaque source type")<0) goto error;
if ((dt=H5Tcreate(H5T_OPAQUE, 4))<0) goto error;
if (tag_it) {
if (H5Tset_tag(dt, "opaque destination type")<0)
goto error;
}
/* Make sure that we can't convert between the types yet */
H5E_BEGIN_TRY {
status = H5Tconvert(st, dt, OPAQUE_NELMTS, buf, NULL, H5P_DEFAULT);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
printf(" opaque conversion should have failed but succeeded\n");
goto error;
}
/* Register a conversion function */
if (H5Tregister(H5T_PERS_HARD, "o_test", st, dt, convert_opaque)<0)
goto error;
/* Try the conversion again, this time it should work */
if (H5Tconvert(st, dt, OPAQUE_NELMTS, buf, NULL, H5P_DEFAULT)<0) goto error;
if (saved+1 != num_opaque_conversions_g) {
H5_FAILED();
printf(" unexpected number of opaque conversions\n");
goto error;
}
/* Unregister conversion function */
if (H5Tunregister(H5T_PERS_HARD, "o_test", st, dt, convert_opaque)<0)
goto error;
H5Tclose(st);
H5Tclose(dt);
return 0;
error:
if (st>0) H5Tclose(st);
if (dt>0) H5Tclose(dt);
H5_FAILED();
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_conv_int
*
* Purpose: Test atomic number conversions.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Wednesday, June 10, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int (void)
{
unsigned char byte[4];
/*---------------------------------------------------------------------
* Test some specific overflow/underflow cases.
*---------------------------------------------------------------------
*/
TESTING("integer overflow conversions");
/* (unsigned)0x80000000 -> (unsigned)0xffff */
byte[0] = byte[1] = byte[2] = 0;
byte[3] = 0x80;
if (H5Tconvert (H5T_STD_U32LE, H5T_STD_U16LE, 1, byte, NULL, H5P_DEFAULT)<0) {
goto error;
}
if (byte[0]!=0xff || byte[1]!=0xff) {
H5_FAILED();
printf(" src: 0x80000000 unsigned\n");
printf(" dst: 0x%02x%02x unsigned\n", byte[1], byte[0]);
printf(" ans: 0xffff unsigned\n");
goto error;
}
/* (unsigned)0xffffffff -> (signed)0x7fff */
byte[0] = byte[1] = byte[2] = byte[3] = 0xff;
if (H5Tconvert (H5T_STD_U32LE, H5T_STD_I16LE, 1, byte, NULL, H5P_DEFAULT)<0) {
goto error;
}
if (byte[0]!=0xff || byte[1]!=0x7f) {
H5_FAILED();
printf(" src: 0xffffffff unsigned\n");
printf(" dst: 0x%02x%02x signed\n", byte[1], byte[0]);
printf(" ans: 0x7fff signed\n");
goto error;
}
/* (signed)0xffffffff -> (unsigned)0x0000 */
byte[0] = byte[1] = byte[2] = byte[3] = 0xff;
if (H5Tconvert (H5T_STD_I32LE, H5T_STD_U16LE, 1, byte, NULL, H5P_DEFAULT)<0) {
goto error;
}
if (byte[0]!=0x00 || byte[1]!=0x00) {
H5_FAILED();
printf(" src: 0xffffffff signed\n");
printf(" dst: 0x%02x%02x unsigned\n", byte[1], byte[0]);
printf(" ans: 0x0000 unsigned\n");
goto error;
}
/* (signed)0x7fffffff -> (unsigned)0xffff */
byte[0] = byte[1] = byte[2] = 0xff;
byte[3] = 0x7f;
if (H5Tconvert (H5T_STD_I32LE, H5T_STD_U16LE, 1, byte, NULL, H5P_DEFAULT)<0) {
goto error;
}
if (byte[0]!=0xff || byte[1]!=0xff) {
H5_FAILED();
printf(" src: 0x7fffffff signed\n");
printf(" dst: 0x%02x%02x unsigned\n", byte[1], byte[0]);
printf(" ans: 0xffff unsigned\n");
goto error;
}
/* (signed)0x7fffffff -> (signed)0x7fff */
byte[0] = byte[1] = byte[2] = 0xff;
byte[3] = 0x7f;
if (H5Tconvert (H5T_STD_I32LE, H5T_STD_I16LE, 1, byte, NULL, H5P_DEFAULT)<0) {
goto error;
}
if (byte[0]!=0xff || byte[1]!=0x7f) {
H5_FAILED();
printf(" src: 0x7fffffff signed\n");
printf(" dst: 0x%02x%02x signed\n", byte[1], byte[0]);
printf(" ans: 0x7fff signed\n");
goto error;
}
/* (signed)0xbfffffff -> (signed)0x8000 */
byte[0] = byte[1] = byte[2] = 0xff;
byte[3] = 0xbf;
if (H5Tconvert (H5T_STD_I32LE, H5T_STD_I16LE, 1, byte, NULL, H5P_DEFAULT)<0) {
goto error;
}
if (byte[0]!=0x00 || byte[1]!=0x80) {
H5_FAILED();
printf(" src: 0xbfffffff signed\n");
printf(" dst: 0x%02x%02x signed\n", byte[1], byte[0]);
printf(" ans: 0x8000 signed\n");
goto error;
}
PASSED();
reset_hdf5();
return 0;
error:
reset_hdf5();
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_conv_int_1
*
* Purpose: Test conversion of random integer values from SRC to DST.
* These types should be any combination of:
*
* H5T_NATIVE_SCHAR H5T_NATIVE_UCHAR
* H5T_NATIVE_SHORT H5T_NATIVE_USHORT
* H5T_NATIVE_INT H5T_NATIVE_UINT
* H5T_NATIVE_LONG H5T_NATIVE_ULONG
* H5T_NATIVE_LLONG H5T_NATIVE_ULLONG
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Monday, November 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int_1(const char *name, hid_t src, hid_t dst)
{
const size_t ntests=NTESTS; /*number of tests */
const size_t nelmts=NTESTELEM; /*num values per test */
const size_t max_fails=8; /*max number of failures*/
size_t fails_all_tests=0; /*number of failures */
size_t fails_this_test; /*fails for this test */
char str[256]; /*hello string */
dtype_t src_type, dst_type; /*data types */
const char *src_type_name=NULL; /*source type name */
const char *dst_type_name=NULL; /*destination type name */
int endian; /*machine endianess */
size_t src_size, dst_size; /*type sizes */
unsigned char *buf=NULL; /*buffer for conversion */
unsigned char *saved=NULL; /*original values */
size_t i, j, k; /*counters */
unsigned char *hw=NULL; /*hardware conv result */
unsigned char src_bits[32]; /*src value in LE order */
unsigned char dst_bits[32]; /*dest value in LE order*/
size_t src_nbits; /*source length in bits */
size_t dst_nbits; /*dst length in bits */
H5T_sign_t src_sign; /*source sign type */
H5T_sign_t dst_sign; /*dst sign type */
void *aligned=NULL; /*aligned temp buffer */
signed char hw_char;
unsigned char hw_uchar;
short hw_short;
unsigned short hw_ushort;
int hw_int;
unsigned hw_uint;
long hw_long;
unsigned long hw_ulong;
long_long hw_llong;
unsigned long_long hw_ullong;
/* What are the names of the source and destination types */
if (H5Tequal(src, H5T_NATIVE_SCHAR)) {
src_type_name = "signed char";
src_type = INT_SCHAR;
} else if (H5Tequal(src, H5T_NATIVE_UCHAR)) {
src_type_name = "unsigned char";
src_type = INT_UCHAR;
} else if (H5Tequal(src, H5T_NATIVE_SHORT)) {
src_type_name = "short";
src_type = INT_SHORT;
} else if (H5Tequal(src, H5T_NATIVE_USHORT)) {
src_type_name = "unsigned short";
src_type = INT_USHORT;
} else if (H5Tequal(src, H5T_NATIVE_INT)) {
src_type_name = "int";
src_type = INT_INT;
} else if (H5Tequal(src, H5T_NATIVE_UINT)) {
src_type_name = "unsigned int";
src_type = INT_UINT;
} else if (H5Tequal(src, H5T_NATIVE_LONG)) {
src_type_name = "long";
src_type = INT_LONG;
} else if (H5Tequal(src, H5T_NATIVE_ULONG)) {
src_type_name = "unsigned long";
src_type = INT_ULONG;
} else if (H5Tequal(src, H5T_NATIVE_LLONG)) {
src_type_name = "long long";
src_type = INT_LLONG;
} else if (H5Tequal(src, H5T_NATIVE_ULLONG)) {
src_type_name = "unsigned long long";
src_type = INT_ULLONG;
} else {
src_type_name = "UNKNOWN";
src_type = OTHER;
}
if (H5Tequal(dst, H5T_NATIVE_SCHAR)) {
dst_type_name = "signed char";
dst_type = INT_SCHAR;
} else if (H5Tequal(dst, H5T_NATIVE_UCHAR)) {
dst_type_name = "unsigned char";
dst_type = INT_UCHAR;
} else if (H5Tequal(dst, H5T_NATIVE_SHORT)) {
dst_type_name = "short";
dst_type = INT_SHORT;
} else if (H5Tequal(dst, H5T_NATIVE_USHORT)) {
dst_type_name = "unsigned short";
dst_type = INT_USHORT;
} else if (H5Tequal(dst, H5T_NATIVE_INT)) {
dst_type_name = "int";
dst_type = INT_INT;
} else if (H5Tequal(dst, H5T_NATIVE_UINT)) {
dst_type_name = "unsigned int";
dst_type = INT_UINT;
} else if (H5Tequal(dst, H5T_NATIVE_LONG)) {
dst_type_name = "long";
dst_type = INT_LONG;
} else if (H5Tequal(dst, H5T_NATIVE_ULONG)) {
dst_type_name = "unsigned long";
dst_type = INT_ULONG;
} else if (H5Tequal(dst, H5T_NATIVE_LLONG)) {
dst_type_name = "long long";
dst_type = INT_LLONG;
} else if (H5Tequal(dst, H5T_NATIVE_ULLONG)) {
dst_type_name = "unsigned long long";
dst_type = INT_ULLONG;
} else {
dst_type_name = "UNKNOWN";
dst_type = OTHER;
}
/* Sanity checks */
if (OTHER==src_type || OTHER==dst_type) {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
H5_FAILED();
HDputs(" Unknown data type.");
goto error;
}
/* Allocate buffers */
endian = H5Tget_order(H5T_NATIVE_INT);
src_size = H5Tget_size(src);
dst_size = H5Tget_size(dst);
src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */
dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */
src_sign = H5Tget_sign(src);
dst_sign = H5Tget_sign(dst);
buf = (unsigned char*)aligned_malloc(nelmts*MAX(src_size, dst_size));
saved = (unsigned char*)aligned_malloc(nelmts*MAX(src_size, dst_size));
aligned = HDmalloc(sizeof(long_long));
#ifdef SHOW_OVERFLOWS
noverflows_g = 0;
#endif
/* The tests */
for (i=0; i<ntests; i++) {
if (ntests>1) {
sprintf(str, "Testing random %s %s -> %s conversions (test %d/%d)",
name, src_type_name, dst_type_name, (int)i+1, (int)ntests);
} else {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
}
printf("%-70s", str);
HDfflush(stdout);
fails_this_test=0;
/*
* Initialize the source buffers to random bits. The `buf' buffer
* will be used for the conversion while the `saved' buffer will be
* sed for the comparison later.
*/
for (j=0; j<nelmts*src_size; j++)
buf[j] = saved[j] = HDrand();
/* Perform the conversion */
if (H5Tconvert(src, dst, nelmts, buf, NULL, H5P_DEFAULT)<0)
goto error;
/* Check the results from the library against hardware */
for (j=0; j<nelmts; j++) {
if (INT_SCHAR==dst_type) {
hw = (unsigned char*)&hw_char;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_char = (char)(*((char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_char = (char)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_char = (char)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_char = (char)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_char = (char)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_char = (char)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_char = (char)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_char = (char)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_char = (char)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_char = (char)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_UCHAR==dst_type) {
hw = (unsigned char*)&hw_uchar;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_uchar = (unsigned char)(*((char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_uchar = (unsigned char)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_uchar = (unsigned char)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_uchar = (unsigned char)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_uchar = (unsigned char)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_uchar = (unsigned char)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_uchar = (unsigned char)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_uchar = (unsigned char)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_uchar = (unsigned char)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_uchar = (unsigned char)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_SHORT==dst_type) {
hw = (unsigned char*)&hw_short;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_short = (short)(*((char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_short = (short)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_short = (short)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_short = (short)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_short = (short)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_short = (short)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_short = (short)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_short = (short)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_short = (short)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_short = (short)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_USHORT==dst_type) {
hw = (unsigned char*)&hw_ushort;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_ushort = (unsigned short)(*((char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_ushort = (unsigned short)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_ushort = (unsigned short)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_ushort = (unsigned short)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_ushort = (unsigned short)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_ushort = (unsigned short)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_ushort = (unsigned short)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_ushort = (unsigned short)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_ushort = (unsigned short)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_ushort = (unsigned short)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_INT==dst_type) {
hw = (unsigned char*)&hw_int;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_int = (int)(*((char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_int = (int)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_int = (int)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_int = (int)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_int = (int)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_int = (int)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_int = (int)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_int = (int)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_int = (int)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_int = (int)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_UINT==dst_type) {
hw = (unsigned char*)&hw_uint;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_uint = (unsigned int)(*((char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_uint = (unsigned int)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_uint = (unsigned int)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_uint = (unsigned int)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_uint = (unsigned int)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_uint = (unsigned int)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_uint = (unsigned int)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_uint = (unsigned int)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_uint = (unsigned int)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_uint = (unsigned int)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_LONG==dst_type) {
hw = (unsigned char*)&hw_long;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_long = (long int)(*((char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_long = (long int)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_long = (long int)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_long = (long int)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_long = (long int)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_long = (long int)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_long = (long int)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_long = (long int)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_long = (long int)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_long = (long int)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_ULONG==dst_type) {
hw = (unsigned char*)&hw_ulong;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_ulong = (unsigned long)(*((char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_ulong = (unsigned long)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_ulong = (unsigned long)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_ulong = (unsigned long)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_ulong = (unsigned long)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_ulong = (unsigned long)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_ulong = (unsigned long)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_ulong = (unsigned long)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_ulong = (unsigned long)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_ulong = (unsigned long)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_LLONG==dst_type) {
hw = (unsigned char*)&hw_llong;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_llong = (long_long)(*((char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_llong = (long_long)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_llong = (long_long)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_llong = (long_long)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_llong = (long_long)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_llong = (long_long)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_llong = (long_long)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_llong = (long_long)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_llong = (long_long)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_llong = (long_long)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_ULLONG==dst_type) {
hw = (unsigned char*)&hw_ullong;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_ullong = (unsigned long_long)(*((char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_ullong = (unsigned long_long)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_ullong = (unsigned long_long)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_ullong = (unsigned long_long)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_ullong = (unsigned long_long)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_ullong = (unsigned long_long)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_ullong = (unsigned long_long)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_ullong = (unsigned long_long)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_ullong = (unsigned long_long)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_ullong = (unsigned long_long)(*((unsigned long_long*)aligned));
break;
default:
break;
}
}
/* Make certain that there isn't some weird number of destination bits */
assert(dst_nbits%8==0);
/* Are the two results the same? */
for (k=(dst_size-(dst_nbits/8)); k<dst_size; k++)
if (buf[j*dst_size+k]!=hw[k])
break;
if (k==dst_size)
continue; /*no error*/
/*
* Convert the source and destination values to little endian
* order so we can use the HDF5 bit vector operations to test
* certain things. These routines have already been tested by
* the `bittests' program.
*/
for (k=0; k<src_size; k++)
src_bits[src_size-(k+1)] = saved[j*src_size+ENDIAN(src_size, k)];
for (k=0; k<dst_size; k++)
dst_bits[dst_size-(k+1)] = buf[j*dst_size+ENDIAN(dst_size, k)];
/*
* Hardware usually doesn't handle overflows too gracefully. The
* hardware conversion result during overflows is usually garbage
* so we must handle those cases differetly when checking results.
*/
if (H5T_SGN_2==src_sign && H5T_SGN_2==dst_sign) {
if (src_nbits>dst_nbits) {
if(0==H5T_bit_get_d(src_bits, src_nbits-1, 1) &&
H5T_bit_find(src_bits, dst_nbits-1, (src_nbits-dst_nbits),
H5T_BIT_MSB, 1)>=0) {
/*
* Source is positive and the magnitude is too large for
* the destination. The destination should be set to the
* maximum possible value: 0x7f...f
*/
if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 0)<0)
continue; /*no error*/
} else if (1==H5T_bit_get_d(src_bits, src_nbits-1, 1) &&
H5T_bit_find(src_bits, 0, src_nbits-1, H5T_BIT_MSB,
0)+1>=(ssize_t)dst_nbits) {
/*
* Source is negative but the magnitude is too large for
* the destination. The destination should be set to the
* smallest possible value: 0x80...0
*/
if (1==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 1)<0)
continue; /*no error*/
}
} else if(src_nbits<dst_nbits) {
/* Source is smaller than the destination */
if(0==H5T_bit_get_d(src_bits, src_nbits-1, 1)) {
/*
* Source is positive, so the excess bits in the
* destination should be set to 0's.
*/
if (0==H5T_bit_get_d(dst_bits, src_nbits-1, 1) &&
H5T_bit_find(dst_bits, src_nbits, dst_nbits-src_nbits, H5T_BIT_LSB, 1)<0)
continue; /*no error*/
} else {
/*
* Source is negative, so the excess bits in the
* destination should be set to 1's.
*/
if (1==H5T_bit_get_d(dst_bits, src_nbits-1, 1) &&
H5T_bit_find(dst_bits, src_nbits, dst_nbits-src_nbits, H5T_BIT_LSB, 0)<0)
continue; /*no error*/
}
}
} else if (H5T_SGN_2==src_sign && H5T_SGN_NONE==dst_sign) {
if (H5T_bit_get_d(src_bits, src_nbits-1, 1)) {
/*
* The source is negative so the result should be zero.
* The source is negative if the most significant bit is
* set. The destination is zero if all bits are zero.
*/
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 1)<0)
continue; /*no error*/
} else if (src_nbits>dst_nbits &&
H5T_bit_find(src_bits, dst_nbits-1,
src_nbits-dst_nbits, H5T_BIT_LSB, 1)>=0) {
/*
* The source is a value with a magnitude too large for
* the destination. The destination should be the
* largest possible value: 0xff...f
*/
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0)
continue; /*no error*/
}
} else if (H5T_SGN_NONE==src_sign && H5T_SGN_2==dst_sign) {
if (src_nbits>=dst_nbits &&
H5T_bit_find(src_bits, dst_nbits-1, (src_nbits-dst_nbits)+1,
H5T_BIT_LSB, 1)>=0) {
/*
* The source value has a magnitude that is larger than
* the destination can handle. The destination should be
* set to the largest possible positive value: 0x7f...f
*/
if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 0)<0)
continue; /*no error*/
}
} else {
if (src_nbits>dst_nbits &&
H5T_bit_find(src_bits, dst_nbits, src_nbits-dst_nbits,
H5T_BIT_LSB, 1)>=0) {
/*
* The unsigned source has a value which is too large for
* the unsigned destination. The destination should be
* set to the largest possible value: 0xff...f
*/
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0)
continue; /*no error*/
}
}
/* Print errors */
if (0==fails_this_test++)
H5_FAILED();
printf(" test %u elmt %u\n", (unsigned)i+1, (unsigned)j);
printf(" src = ");
for (k=0; k<src_size; k++)
printf(" %02x", saved[j*src_size+ENDIAN(src_size, k)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)), "");
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
printf(" %29d\n", (int)*((char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
printf(" %29u\n", (unsigned)*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
printf(" %29hd\n", *((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
printf(" %29hu\n", *((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
printf(" %29d\n", *((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
printf(" %29u\n", *((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
printf(" %29ld\n", *((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
printf(" %29lu\n", *((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)aligned));
break;
default:
break;
}
printf(" dst = ");
for (k=0; k<dst_size; k++)
printf(" %02x", buf[j*dst_size+ENDIAN(dst_size, k)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), "");
switch (dst_type) {
case INT_SCHAR:
HDmemcpy(aligned, buf+j*sizeof(char), sizeof(char));
printf(" %29d\n", (int)*((char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, buf+j*sizeof(unsigned char), sizeof(unsigned char));
printf(" %29u\n", (unsigned)*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, buf+j*sizeof(short), sizeof(short));
printf(" %29hd\n", *((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, buf+j*sizeof(unsigned short), sizeof(unsigned short));
printf(" %29hu\n", *((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, buf+j*sizeof(int), sizeof(int));
printf(" %29d\n", *((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, buf+j*sizeof(unsigned), sizeof(unsigned));
printf(" %29u\n", *((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, buf+j*sizeof(long), sizeof(long));
printf(" %29ld\n", *((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, buf+j*sizeof(unsigned long), sizeof(unsigned long));
printf(" %29lu\n", *((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, buf+j*sizeof(long_long), sizeof(long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, buf+j*sizeof(long_long), sizeof(unsigned long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)aligned));
break;
default:
break;
}
printf(" ans = ");
for (k=0; k<dst_size; k++)
printf(" %02x", hw[ENDIAN(dst_size, k)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), "");
switch (dst_type) {
case INT_SCHAR:
printf(" %29d\n", (int)*((signed char*)hw));
break;
case INT_UCHAR:
printf(" %29u\n", (unsigned)*((unsigned char*)hw));
break;
case INT_SHORT:
printf(" %29hd\n", *((short*)hw));
break;
case INT_USHORT:
printf(" %29hu\n", *((unsigned short*)hw));
break;
case INT_INT:
printf(" %29d\n", *((int*)hw));
break;
case INT_UINT:
printf(" %29u\n", *((unsigned*)hw));
break;
case INT_LONG:
printf(" %29ld\n", *((long*)hw));
break;
case INT_ULONG:
printf(" %29lu\n", *((unsigned long*)hw));
break;
case INT_LLONG:
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)hw));
break;
case INT_ULLONG:
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)hw));
break;
default:
break;
}
if (++fails_all_tests>=max_fails) {
HDputs(" maximum failures reached, aborting test...");
goto done;
}
}
PASSED();
}
#ifdef SHOW_OVERFLOWS
if (noverflows_g>0) {
printf(" %d overflow%s in previous test\n",
noverflows_g, 1==noverflows_g?"":"s");
}
#endif
done:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) HDfree(aligned);
HDfflush(stdout);
reset_hdf5(); /*print statistics*/
return (int)fails_all_tests;
error:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) HDfree(aligned);
HDfflush(stdout);
reset_hdf5(); /*print statistics*/
return MAX((int)fails_all_tests, 1);
}
/*-------------------------------------------------------------------------
* Function: test_conv_int_2
*
* Purpose: Tests overlap calculates in H5T_conv_i_i(), which should be
* the same as for H5T_conv_f_f() and H5T_conv_s_s().
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Friday, April 30, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int_2(void)
{
int i, j;
hid_t src_type, dst_type;
char buf[32*100];
printf("%-70s", "Testing overlap calculations");
HDfflush(stdout);
HDmemset(buf, 0, sizeof buf);
for (i=1; i<=32; i++) {
for (j=1; j<=32; j++) {
/* Source type */
src_type = H5Tcopy(H5T_NATIVE_CHAR);
H5Tset_size(src_type, (size_t)i);
/* Destination type */
dst_type = H5Tcopy(H5T_NATIVE_CHAR);
H5Tset_size(dst_type, (size_t)j);
/*
* Conversion. If overlap calculations aren't right then an
* assertion will fail in H5T_conv_i_i()
*/
H5Tconvert(src_type, dst_type, 100, buf, NULL, H5P_DEFAULT);
H5Tclose(src_type);
H5Tclose(dst_type);
}
}
PASSED();
return 0;
}
/*-------------------------------------------------------------------------
* Function: my_isnan
*
* Purpose: Determines whether VAL points to NaN.
*
* Return: TRUE or FALSE
*
* Programmer: Robb Matzke
* Monday, July 6, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
my_isnan(dtype_t type, void *val)
{
int retval;
char s[256];
if (FLT_FLOAT==type) {
float x;
HDmemcpy(&x, val, sizeof(float));
retval = (x!=x);
} else if (FLT_DOUBLE==type) {
double x;
HDmemcpy(&x, val, sizeof(double));
retval = (x!=x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else if (FLT_LDOUBLE==type) {
long double x;
HDmemcpy(&x, val, sizeof(long double));
retval = (x!=x);
#endif
} else {
return 0;
}
/*
* Sometimes NaN==NaN (e.g., DEC Alpha) so we try to print it and see if
* the result contains a NaN string.
*/
if (!retval) {
if (FLT_FLOAT==type) {
float x;
HDmemcpy(&x, val, sizeof(float));
sprintf(s, "%g", x);
} else if (FLT_DOUBLE==type) {
double x;
HDmemcpy(&x, val, sizeof(double));
sprintf(s, "%g", x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else if (FLT_LDOUBLE==type) {
long double x;
HDmemcpy(&x, val, sizeof(long double));
sprintf(s, "%LLg", x);
#endif
} else {
return 0;
}
if (HDstrstr(s, "NaN") || HDstrstr(s, "NAN") || HDstrstr(s, "nan"))
retval = 1;
}
return retval;
}
/*-------------------------------------------------------------------------
* Function: test_conv_flt_1
*
* Purpose: Test conversion of random floating point values from SRC to
* DST. These types should be H5T_NATIVE_FLOAT,
* H5T_NATIVE_DOUBLE, or H5T_NATIVE_LDOUBLE.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Tuesday, June 23, 1998
*
* Modifications:
* Albert Cheng, Apr 16, 2004
* Check for underflow condition. If the src number is
* smaller than the dst MIN float number, consider it okay
* if the converted sw and hw dst are both less than or
* equal to the dst MIN float number.
*
*-------------------------------------------------------------------------
*/
static int
test_conv_flt_1 (const char *name, hid_t src, hid_t dst)
{
dtype_t src_type, dst_type; /*data types */
const size_t ntests=NTESTS; /*number of tests */
const size_t nelmts=NTESTELEM; /*num values per test */
const size_t max_fails=8; /*max number of failures*/
size_t fails_all_tests=0; /*number of failures */
size_t fails_this_test; /*fails for this test */
const char *src_type_name = NULL; /*source type name */
const char *dst_type_name = NULL; /*destination type name */
size_t src_size, dst_size; /*type sizes */
unsigned char *buf = NULL; /*buffer for conversion */
unsigned char *saved = NULL; /*original values */
char str[256]; /*hello string */
float hw_f; /*hardware-converted */
double hw_d; /*hardware-converted */
void *aligned=NULL; /*aligned buffer */
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
long double hw_ld; /*hardware-converted */
#endif
unsigned char *hw=NULL; /*ptr to hardware-conv'd*/
int underflow; /*underflow occurred */
int uflow=0; /*underflow debug counters*/
size_t i, j, k; /*counters */
int endian; /*machine endianess */
size_t dst_ebias; /* Destination type's exponent bias */
size_t src_epos; /* Source type's exponent position */
size_t src_esize; /* Source type's exponent size */
size_t dst_epos; /* Destination type's exponent position */
size_t dst_esize; /* Destination type's exponent size */
size_t dst_msize; /* Destination type's mantissa size */
#ifdef HANDLE_SIGFPE
pid_t child_pid; /*process ID of child */
int status; /*child exit status */
/*
* Some systems generage SIGFPE during floating point overflow and we
* cannot assume that we can continue from such a signal. Therefore, we
* fork here and let the child run the test and return the number of
* failures with the exit status.
*/
HDfflush(stdout);
HDfflush(stderr);
if ((child_pid=fork())<0) {
HDperror("fork");
return 1;
} else if (child_pid>0) {
while (child_pid!=waitpid(child_pid, &status, 0)) /*void*/;
if (WIFEXITED(status) && 255==WEXITSTATUS(status)) {
return 0; /*child exit after catching SIGFPE*/
} else if (WIFEXITED(status)) {
return WEXITSTATUS(status);
} else {
HDputs(" Child didn't exit normally.");
return 1;
}
}
#endif
/*
* The remainder of this function is executed only by the child if
* HANDLE_SIGFPE is defined.
*/
HDsignal(SIGFPE,fpe_handler);
/* What are the names of the source and destination types */
if (H5Tequal(src, H5T_NATIVE_FLOAT)) {
src_type_name = "float";
src_type = FLT_FLOAT;
} else if (H5Tequal(src, H5T_NATIVE_DOUBLE)) {
src_type_name = "double";
src_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else if (H5Tequal(src, H5T_NATIVE_LDOUBLE)) {
src_type_name = "long double";
src_type = FLT_LDOUBLE;
#endif
} else {
src_type_name = "UNKNOWN";
src_type = OTHER;
}
if (H5Tequal(dst, H5T_NATIVE_FLOAT)) {
dst_type_name = "float";
dst_type = FLT_FLOAT;
} else if (H5Tequal(dst, H5T_NATIVE_DOUBLE)) {
dst_type_name = "double";
dst_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else if (H5Tequal(dst, H5T_NATIVE_LDOUBLE)) {
dst_type_name = "long double";
dst_type = FLT_LDOUBLE;
#endif
} else {
dst_type_name = "UNKNOWN";
dst_type = OTHER;
}
/* Sanity checks */
if(sizeof(float)==sizeof(double))
HDputs("Sizeof(float)==sizeof(double) - some tests may not be sensible.");
if (OTHER==src_type || OTHER==dst_type) {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
H5_FAILED();
HDputs(" Unknown data type.");
goto error;
}
/* Get "interesting" values */
src_size = H5Tget_size(src);
dst_size = H5Tget_size(dst);
dst_ebias=H5Tget_ebias(dst);
H5Tget_fields(src,NULL,&src_epos,&src_esize,NULL,NULL);
H5Tget_fields(dst,NULL,&dst_epos,&dst_esize,NULL,&dst_msize);
/* Allocate buffers */
endian = H5Tget_order(H5T_NATIVE_FLOAT);
buf = (unsigned char*)aligned_malloc(nelmts*MAX(src_size, dst_size));
saved = (unsigned char*)aligned_malloc(nelmts*MAX(src_size, dst_size));
aligned = HDmalloc(32); /*should be big enough for any type*/
#ifdef SHOW_OVERFLOWS
noverflows_g = 0;
#endif
for (i=0; i<ntests; i++) {
/*
* If it looks like it might take a long time then print a progress
* report between each test.
*/
if (ntests>1) {
sprintf(str, "Testing random %s %s -> %s conversions (test %d/%d)",
name, src_type_name, dst_type_name, (int)i+1, (int)ntests);
} else {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
}
printf("%-70s", str);
HDfflush(stdout);
fails_this_test = 0;
/*
* Initialize the source buffers to random bits. The `buf' buffer
* will be used for the conversion while the `saved' buffer will be
* used for the comparison later.
*/
if (!skip_overflow_tests_g) {
for (j=0; j<nelmts*src_size; j++)
buf[j] = saved[j] = HDrand();
} else {
for (j=0; j<nelmts; j++) {
/* Do it this way for alignment reasons */
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
long double temp[1];
#else
double temp[1];
#endif
if (src_size<=dst_size) {
for (k=0; k<dst_size; k++) buf[j*src_size+k] = HDrand();
} else {
for (k=0; k<dst_size; k++)
((unsigned char*)temp)[k] = HDrand();
if (FLT_DOUBLE==src_type && FLT_FLOAT==dst_type) {
hw_d = *((float*)temp);
HDmemcpy(buf+j*src_size, &hw_d, src_size);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else if (FLT_LDOUBLE==src_type && FLT_FLOAT==dst_type) {
hw_ld = *((float*)temp);
HDmemcpy(buf+j*src_size, &hw_ld, src_size);
} else if (FLT_LDOUBLE==src_type && FLT_DOUBLE==dst_type) {
hw_ld = *((double*)temp);
HDmemcpy(buf+j*src_size, &hw_ld, src_size);
#endif
}
}
HDmemcpy(saved+j*src_size, buf+j*src_size, src_size);
}
}
/* Perform the conversion in software */
if (H5Tconvert(src, dst, nelmts, buf, NULL, H5P_DEFAULT)<0)
goto error;
/* Check the software results against the hardware */
for (j=0; j<nelmts; j++) {
underflow = 0;
hw_f = 911.0;
hw_d = 911.0;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
hw_ld = 911.0;
#endif
/* The hardware conversion */
/* Check for underflow when src is a "larger" float than dst.*/
if (FLT_FLOAT==src_type) {
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
if (FLT_FLOAT==dst_type) {
hw_f = *((float*)aligned);
hw = (unsigned char*)&hw_f;
} else if (FLT_DOUBLE==dst_type) {
hw_d = *((float*)aligned);
hw = (unsigned char*)&hw_d;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
hw_ld = *((float*)aligned);
hw = (unsigned char*)&hw_ld;
#endif
}
} else if (FLT_DOUBLE==src_type) {
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
if (FLT_FLOAT==dst_type) {
hw_f = (float)(*((double*)aligned));
hw = (unsigned char*)&hw_f;
underflow = HDfabs(*((double*)aligned)) < FLT_MIN;
} else if (FLT_DOUBLE==dst_type) {
hw_d = *((double*)aligned);
hw = (unsigned char*)&hw_d;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
hw_ld = *((double*)aligned);
hw = (unsigned char*)&hw_ld;
#endif
}
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
if (FLT_FLOAT==dst_type) {
hw_f = *((long double*)aligned);
hw = (unsigned char*)&hw_f;
underflow = HDfabsl(*((long double*)aligned)) < FLT_MIN;
} else if (FLT_DOUBLE==dst_type) {
hw_d = *((long double*)aligned);
hw = (unsigned char*)&hw_d;
underflow = HDfabsl(*((long double*)aligned)) < DBL_MIN;
} else {
hw_ld = *((long double*)aligned);
hw = (unsigned char*)&hw_ld;
}
#endif
}
if (underflow){
uflow++;
}
/* Are the two results the same? */
for (k=0; k<dst_size; k++)
if (buf[j*dst_size+k]!=hw[k])
break;
if (k==dst_size)
continue; /*no error*/
/*
* Assume same if both results are NaN. There are many NaN bit
* patterns and the software doesn't attemt to emulate the
* hardware in this regard. Instead, software uses a single bit
* pattern for NaN by setting the significand to all ones.
*/
if (FLT_FLOAT==dst_type &&
my_isnan(dst_type, buf+j*sizeof(float)) &&
my_isnan(dst_type, hw)) {
continue;
} else if (FLT_DOUBLE==dst_type &&
my_isnan(dst_type, buf+j*sizeof(double)) &&
my_isnan(dst_type, hw)) {
continue;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else if (FLT_LDOUBLE==dst_type &&
my_isnan(dst_type, buf+j*sizeof(long double)) &&
my_isnan(dst_type, hw)) {
continue;
#endif
}
/*
* Assume same if hardware result is NaN. This is because the
* hardware conversions on some machines return NaN instead of
* overflowing to +Inf or -Inf or underflowing to +0 or -0.
*/
if (my_isnan(dst_type, hw))
continue;
/*
* Instead of matching down to the bit, just make sure the
* exponents are the same and the mantissa is the same to a
* certain precision. This is needed on machines that don't
* round as expected.
* If the src number is smaller than the dst MIN float number,
* consider it okay if the converted sw and hw dst are both
* less than or equal to the dst MIN float number.
*/
{
double check_mant[2];
int check_expo[2];
if (FLT_FLOAT==dst_type) {
float x;
HDmemcpy(&x, &buf[j*dst_size], sizeof(float));
if (underflow &&
HDfabsf(x) <= FLT_MIN && HDfabsf(hw_f) <= FLT_MIN)
continue; /* all underflowed, no error */
check_mant[0] = HDfrexpf(x, check_expo+0);
check_mant[1] = HDfrexpf(hw_f, check_expo+1);
} else if (FLT_DOUBLE==dst_type) {
double x;
HDmemcpy(&x, &buf[j*dst_size], sizeof(double));
if (underflow &&
HDfabs(x) <= DBL_MIN && HDfabs(hw_d) <= DBL_MIN)
continue; /* all underflowed, no error */
check_mant[0] = HDfrexp(x, check_expo+0);
check_mant[1] = HDfrexp(hw_d, check_expo+1);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
long double x;
HDmemcpy(&x, &buf[j*dst_size], sizeof(long double));
/* dst is largest float, no need to check underflow. */
check_mant[0] = HDfrexpl(x, check_expo+0);
check_mant[1] = HDfrexpl(hw_ld, check_expo+1);
#endif
}
#ifdef H5_CONVERT_DENORMAL_FLOAT
/* Special check for denormalized values */
if(check_expo[0]<(-(int)dst_ebias) || check_expo[1]<(-(int)dst_ebias)) {
int expo_diff=check_expo[0]-check_expo[1];
int valid_bits=(int)((dst_ebias+dst_msize)+MIN(check_expo[0],check_expo[1]))-1;
double epsilon=1.0;
/* Re-scale the mantissas based on any exponent difference */
if(expo_diff!=0)
check_mant[0] = HDldexp(check_mant[0],expo_diff);
/* Compute the proper epsilon */
epsilon=HDldexp(epsilon,-valid_bits);
/* Check for "close enough" fit with scaled epsilon value */
if (HDfabs(check_mant[0]-check_mant[1])<=epsilon)
continue;
} /* end if */
else {
if (check_expo[0]==check_expo[1] &&
HDfabs(check_mant[0]-check_mant[1])<FP_EPSILON)
continue;
} /* end else */
#else /* H5_CONVERT_DENORMAL_FLOAT */
{
hssize_t expo; /*exponent */
uint8_t tmp[32];
assert(src_size<=sizeof(tmp));
if(endian==H5T_ORDER_LE)
HDmemcpy(tmp,&saved[j*src_size],src_size);
else
for (k=0; k<src_size; k++)
tmp[k]=saved[j*src_size+(src_size-(k+1))];
expo = H5T_bit_get_d(tmp, src_epos, src_esize);
if(expo==0)
continue; /* Denormalized floating-point value detected */
else {
assert(dst_size<=sizeof(tmp));
if(endian==H5T_ORDER_LE)
HDmemcpy(tmp,&buf[j*dst_size],dst_size);
else
for (k=0; k<dst_size; k++)
tmp[k]=buf[j*dst_size+(dst_size-(k+1))];
expo = H5T_bit_get_d(tmp, dst_epos, dst_esize);
if(expo==0)
continue; /* Denormalized floating-point value detected */
else {
if (check_expo[0]==check_expo[1] &&
HDfabs(check_mant[0]-check_mant[1])<FP_EPSILON)
continue;
} /* end else */
} /* end else */
}
#endif /* H5_CONVERT_DENORMAL_FLOAT */
}
if (0==fails_this_test++)
H5_FAILED();
printf(" test %u, elmt %u\n", (unsigned)i+1, (unsigned)j);
printf(" src =");
for (k=0; k<src_size; k++)
printf(" %02x", saved[j*src_size+ENDIAN(src_size,k)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)), "");
if (FLT_FLOAT==src_type) {
float x;
HDmemcpy(&x, &saved[j*dst_size], sizeof(float));
printf(" %29.20e\n", x);
} else if (FLT_DOUBLE==src_type) {
double x;
HDmemcpy(&x, &saved[j*dst_size], sizeof(double));
printf(" %29.20e\n", x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
long double x;
HDmemcpy(&x, &saved[j*src_size], sizeof(long double));
HDfprintf(stdout," %29.20Le\n", x);
#endif
}
printf(" dst =");
for (k=0; k<dst_size; k++)
printf(" %02x", buf[j*dst_size+ENDIAN(dst_size,k)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), "");
if (FLT_FLOAT==dst_type) {
float x;
HDmemcpy(&x, &buf[j*dst_size], sizeof(float));
printf(" %29.20e\n", x);
} else if (FLT_DOUBLE==dst_type) {
double x;
HDmemcpy(&x, &buf[j*dst_size], sizeof(double));
printf(" %29.20e\n", x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
long double x;
HDmemcpy(&x, &buf[j*dst_size], sizeof(long double));
HDfprintf(stdout," %29.20Le\n", x);
#endif
}
printf(" ans =");
for (k=0; k<dst_size; k++)
printf(" %02x", hw[ENDIAN(dst_size,k)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), "");
if (FLT_FLOAT==dst_type)
printf(" %29.20e\n", hw_f);
else if (FLT_DOUBLE==dst_type)
printf(" %29.20e\n", hw_d);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
else
HDfprintf(stdout," %29.20Le\n", hw_ld);
#endif
if (++fails_all_tests>=max_fails) {
HDputs(" maximum failures reached, aborting test...");
goto done;
}
}
PASSED();
}
#ifdef SHOW_OVERFLOWS
if (noverflows_g>0)
printf(" %d overflow%s in previous test\n",
noverflows_g, 1==noverflows_g?"":"s");
#endif
done:
#ifdef AKCDEBUG
printf("uflow=%d, fails_all_tests=%d\n", uflow, fails_all_tests);
#endif
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) HDfree(aligned);
HDfflush(stdout);
#ifdef HANDLE_SIGFPE
HDexit(MIN((int)fails_all_tests, 254));
#else
reset_hdf5();
return (int)fails_all_tests;
#endif
error:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) HDfree(aligned);
HDfflush(stdout);
#ifdef HANDLE_SIGFPE
HDexit(MIN(MAX((int)fails_all_tests, 1), 254));
#else
reset_hdf5();
return MAX((int)fails_all_tests, 1);
#endif
}
/*-------------------------------------------------------------------------
* Function: test_conv_int_float
*
* Purpose: Test conversion between random integer and float values
* from SRC to DST. These types should be any combination of:
*
* H5T_NATIVE_SCHAR H5T_NATIVE_FLOAT
* H5T_NATIVE_SHORT H5T_NATIVE_DOUBLE
* H5T_NATIVE_INT H5T_NATIVE_LDOUBLE
* H5T_NATIVE_LONG
* H5T_NATIVE_LLONG
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Thursday, November 6, 2003
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int_float(const char *name, hid_t src, hid_t dst)
{
hid_t dxpl_id; /*dataset transfer property list*/
int fill_value=9; /*fill value for conversion exception*/
H5T_conv_except_func_t op; /*returned callback function for conversion exception*/
void *user_data; /*returned pointer to user data passed in to the callback*/
hbool_t except_set = FALSE; /*whether user's exception handling is set*/
const size_t ntests=NTESTS; /*number of tests */
size_t nelmts; /*num values per test */
const size_t max_fails=40; /*max number of failures*/
size_t fails_all_tests=0; /*number of failures */
size_t fails_this_test; /*fails for this test */
char str[256]; /*hello string */
dtype_t src_type; /*data types */
dtype_t dst_type; /*data types */
const char *src_type_name=NULL; /*source type name */
const char *dst_type_name=NULL; /*destination type name */
int endian; /*machine endianess */
size_t src_size, dst_size; /*type sizes */
unsigned char *buf=NULL; /*buffer for conversion */
unsigned char *saved=NULL; /*original values */
size_t i, j, k; /*counters */
unsigned char *hw=NULL; /*hardware conv result */
unsigned char src_bits[32]; /*src value in LE order */
unsigned char dst_bits[32]; /*dest value in LE order*/
size_t src_nbits; /*source length in bits */
size_t dst_nbits; /*dst length in bits */
void *aligned=NULL; /*aligned temp buffer */
float hw_float=0;
double hw_double=0;
long double hw_ldouble=0;
signed char hw_schar=0;
unsigned char hw_uchar=0;
short hw_short=0;
unsigned short hw_ushort=0;
int hw_int=0;
unsigned hw_uint=0;
long hw_long=0;
unsigned long hw_ulong=0;
long_long hw_llong=0;
unsigned long_long hw_ullong=0;
/* What is the name of the source type */
if (H5Tequal(src, H5T_NATIVE_SCHAR)) {
src_type_name = "signed char";
src_type = INT_SCHAR;
} else if (H5Tequal(src, H5T_NATIVE_UCHAR)) {
src_type_name = "unsigned char";
src_type = INT_UCHAR;
} else if (H5Tequal(src, H5T_NATIVE_SHORT)) {
src_type_name = "short";
src_type = INT_SHORT;
} else if (H5Tequal(src, H5T_NATIVE_USHORT)) {
src_type_name = "unsigned short";
src_type = INT_USHORT;
} else if (H5Tequal(src, H5T_NATIVE_INT)) {
src_type_name = "int";
src_type = INT_INT;
} else if (H5Tequal(src, H5T_NATIVE_UINT)) {
src_type_name = "unsigned int";
src_type = INT_UINT;
} else if (H5Tequal(src, H5T_NATIVE_LONG)) {
src_type_name = "long";
src_type = INT_LONG;
} else if (H5Tequal(src, H5T_NATIVE_ULONG)) {
src_type_name = "unsigned long";
src_type = INT_ULONG;
} else if (H5Tequal(src, H5T_NATIVE_LLONG)) {
src_type_name = "long long";
src_type = INT_LLONG;
} else if (H5Tequal(src, H5T_NATIVE_ULLONG)) {
src_type_name = "unsigned long long";
src_type = INT_ULLONG;
} else if (H5Tequal(src, H5T_NATIVE_FLOAT)) {
src_type_name = "float";
src_type = FLT_FLOAT;
} else if (H5Tequal(src, H5T_NATIVE_DOUBLE)) {
src_type_name = "double";
src_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else if (H5Tequal(src, H5T_NATIVE_LDOUBLE)) {
src_type_name = "long double";
src_type = FLT_LDOUBLE;
#endif
} else {
src_type_name = "UNKNOWN";
src_type = OTHER;
}
/* What is the name of the destination type */
if (H5Tequal(dst, H5T_NATIVE_SCHAR)) {
dst_type_name = "signed char";
dst_type = INT_SCHAR;
} else if (H5Tequal(dst, H5T_NATIVE_UCHAR)) {
dst_type_name = "unsigned char";
dst_type = INT_UCHAR;
} else if (H5Tequal(dst, H5T_NATIVE_SHORT)) {
dst_type_name = "short";
dst_type = INT_SHORT;
} else if (H5Tequal(dst, H5T_NATIVE_USHORT)) {
dst_type_name = "unsigned short";
dst_type = INT_USHORT;
} else if (H5Tequal(dst, H5T_NATIVE_INT)) {
dst_type_name = "int";
dst_type = INT_INT;
} else if (H5Tequal(dst, H5T_NATIVE_UINT)) {
dst_type_name = "unsigned int";
dst_type = INT_UINT;
} else if (H5Tequal(dst, H5T_NATIVE_LONG)) {
dst_type_name = "long";
dst_type = INT_LONG;
} else if (H5Tequal(dst, H5T_NATIVE_ULONG)) {
dst_type_name = "unsigned long";
dst_type = INT_ULONG;
} else if (H5Tequal(dst, H5T_NATIVE_LLONG)) {
dst_type_name = "long long";
dst_type = INT_LLONG;
} else if (H5Tequal(dst, H5T_NATIVE_ULLONG)) {
dst_type_name = "unsigned long long";
dst_type = INT_ULLONG;
} else if (H5Tequal(dst, H5T_NATIVE_FLOAT)) {
dst_type_name = "float";
dst_type = FLT_FLOAT;
} else if (H5Tequal(dst, H5T_NATIVE_DOUBLE)) {
dst_type_name = "double";
dst_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else if (H5Tequal(dst, H5T_NATIVE_LDOUBLE)) {
dst_type_name = "long double";
dst_type = FLT_LDOUBLE;
#endif
} else {
dst_type_name = "UNKNOWN";
dst_type = OTHER;
}
/* Sanity checks */
if (OTHER==src_type || OTHER==dst_type) {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
H5_FAILED();
HDputs(" Unknown data type.");
goto error;
}
if ((INT_SCHAR==src_type || INT_UCHAR==src_type || INT_SHORT==src_type ||
INT_USHORT==src_type || INT_INT==src_type || INT_UINT==src_type ||
INT_LONG==src_type || INT_ULONG==src_type || INT_LLONG==src_type ||
INT_ULLONG==src_type) &&
(FLT_FLOAT!=dst_type && FLT_DOUBLE!=dst_type && FLT_LDOUBLE!=dst_type)) {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
H5_FAILED();
HDputs(" 1. Not an integer-float conversion.");
goto error;
}
if ((FLT_FLOAT==src_type || FLT_DOUBLE==src_type || FLT_LDOUBLE==src_type)
&& (INT_SCHAR!=dst_type && INT_UCHAR!=dst_type && INT_SHORT!=dst_type
&& INT_USHORT!=dst_type && INT_INT!=dst_type && INT_UINT!=dst_type
&& INT_LONG!=dst_type && INT_ULONG!=dst_type && INT_LLONG!=dst_type
&& INT_ULLONG!=dst_type)) {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
H5_FAILED();
HDputs(" 2. Not a float-integer conversion.");
goto error;
}
/* Reduce the number of elements if the source is "long double"
* because it takes too long.
*/
if(src_type == FLT_LDOUBLE)
nelmts = NTESTELEM / 10;
else
nelmts = NTESTELEM;
/* Allocate buffers */
endian = H5Tget_order(H5T_NATIVE_INT);
src_size = H5Tget_size(src);
dst_size = H5Tget_size(dst);
src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */
dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */
buf = (unsigned char*)aligned_malloc(nelmts*MAX(src_size, dst_size));
saved = (unsigned char*)aligned_malloc(nelmts*MAX(src_size, dst_size));
aligned = HDmalloc(MAX(sizeof(long double), sizeof(long_long)));
#ifdef SHOW_OVERFLOWS
noverflows_g = 0;
#endif
/* This is for some Linux systems where long double has the size
* 12 bytes but precision is 10 bytes. The 2 unused bytes may
* have garbage causing wrong value comparison.
*/
HDmemset(&hw_ldouble, 0, sizeof(long double));
/* Create a dataset transfer property list and datatype conversion
* exception handler function and pass in fill value. This is mainly
* for NetCDF compatibility, which requests fill in fill value when
* conversion exception happens. We only test (unsigned) int - float
* and float - (unsigned) int conversions, which should cover more cases.
*/
if((dxpl_id = H5Pcreate(H5P_DATASET_XFER))<0)
goto error;
if((src_type == INT_INT && dst_type == FLT_FLOAT) ||
(src_type == INT_UINT && dst_type == FLT_FLOAT) ||
(src_type == FLT_FLOAT && dst_type == INT_UINT) ||
(src_type == FLT_FLOAT && dst_type == INT_INT)) {
if(H5Pset_type_conv_cb(dxpl_id, except_func, &fill_value)<0)
goto error;
else
except_set = TRUE;
if(H5Pget_type_conv_cb(dxpl_id, &op, &user_data)<0)
goto error;
if(op != except_func || *(int*)user_data != fill_value)
goto error;
}
/* The tests */
for (i=0; i<ntests; i++) {
if (ntests>1) {
sprintf(str, "Testing random %s %s -> %s conversions (test %d/%d)",
name, src_type_name, dst_type_name, (int)i+1, (int)ntests);
} else {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
}
printf("%-70s", str);
HDfflush(stdout);
fails_this_test=0;
/*
* Initialize the source buffers to random bits. The `buf' buffer
* will be used for the conversion while the `saved' buffer will be
* used for the comparison later.
*/
for (j=0; j<nelmts*src_size; j++) {
buf[j] = saved[j] = HDrand();
/* For Intel machines, the size of "long double" is 12 byte, precision
* is 80 bits, mantissa size is 64 bits, and no normalization. So the
* most significant bit of mantissa is always 1 unless the floating number
* has special value. This step tries to compensate this case by turning
* on the most significant bit of mantissa if the mantissa bits aren't
* all 0s. */
if(endian==H5T_ORDER_LE && src_type==FLT_LDOUBLE && src_size==12) {
if(j%12==7) {
buf[j] |= 0x80;
saved[j] |= 0x80;
}
}
}
/* Perform the conversion */
if (H5Tconvert(src, dst, nelmts, buf, NULL, dxpl_id)<0)
goto error;
/* Check the results from the library against hardware */
for (j=0; j<nelmts; j++) {
if(FLT_FLOAT==src_type || FLT_DOUBLE==src_type || FLT_LDOUBLE==src_type)
if(my_isnan(src_type, saved+j*src_size))
continue;
if (FLT_FLOAT==dst_type) {
hw = (unsigned char*)&hw_float;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
hw_float = (float)(*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_float = (float)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_float = (float)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_float = (float)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_float = (float)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_float = (float)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_float = (float)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_float = (float)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_float = (float)(*((long_long*)aligned));
break;
#ifdef H5_ULLONG_TO_FP_CAST_WORKS
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_float = (float)(*((unsigned long_long*)aligned));
break;
#endif /* H5_ULLONG_TO_FP_CAST_WORKS */
default:
break;
}
} else if (FLT_DOUBLE==dst_type) {
hw = (unsigned char*)&hw_double;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
hw_double = (double)(*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_double = (double)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_double = (double)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_double = (double)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_double = (double)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_double = (double)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_double = (double)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_double = (double)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_double = (double)(*((long_long*)aligned));
break;
#ifdef H5_ULLONG_TO_FP_CAST_WORKS
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_double = (double)(*((unsigned long_long*)aligned));
break;
#endif /* H5_ULLONG_TO_FP_CAST_WORKS */
default:
break;
}
} else if (FLT_LDOUBLE==dst_type) {
hw = (unsigned char*)&hw_ldouble;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
hw_ldouble = (long double)(*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_ldouble = (long double)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_ldouble = (long double)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_ldouble = (long double)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_ldouble = (long double)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_ldouble = (long double)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_ldouble = (long double)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_ldouble = (long double)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_ldouble = (long double)(*((long_long*)aligned));
break;
#ifdef H5_ULLONG_TO_FP_CAST_WORKS
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_ldouble = (long double)(*((unsigned long_long*)aligned));
break;
#endif /* H5_ULLONG_TO_FP_CAST_WORKS */
default:
break;
}
} else if (INT_SCHAR==dst_type) {
hw = (unsigned char*)&hw_schar;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_schar = (signed char)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_schar = (signed char)(*((double*)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_schar = (signed char)(*((long double*)aligned));
break;
default:
break;
}
} else if (INT_UCHAR==dst_type) {
hw = (unsigned char*)&hw_uchar;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_uchar = (unsigned char)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_uchar = (unsigned char)(*((double*)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_uchar = (unsigned char)(*((long double*)aligned));
break;
default:
break;
}
} else if (INT_SHORT==dst_type) {
hw = (unsigned char*)&hw_short;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_short = (short)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_short = (short)(*((double*)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_short = (short)(*((long double*)aligned));
break;
default:
break;
}
} else if (INT_USHORT==dst_type) {
hw = (unsigned char*)&hw_ushort;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_ushort = (unsigned short)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_ushort = (unsigned short)(*((double*)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_ushort = (unsigned short)(*((long double*)aligned));
break;
default:
break;
}
} else if (INT_INT==dst_type) {
hw = (unsigned char*)&hw_int;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_int = (int)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_int = (int)(*((double*)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_int = (int)(*((long double*)aligned));
break;
default:
break;
}
} else if (INT_UINT==dst_type) {
hw = (unsigned char*)&hw_uint;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_uint = (unsigned int)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_uint = (unsigned int)(*((double*)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_uint = (unsigned int)(*((long double*)aligned));
break;
default:
break;
}
} else if (INT_LONG==dst_type) {
hw = (unsigned char*)&hw_long;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_long = (long)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_long = (long)(*((double*)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_long = (long)(*((long double*)aligned));
break;
default:
break;
}
} else if (INT_ULONG==dst_type) {
hw = (unsigned char*)&hw_ulong;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_ulong = (unsigned long)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_ulong = (unsigned long)(*((double*)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_ulong = (unsigned long)(*((long double*)aligned));
break;
default:
break;
}
} else if (INT_LLONG==dst_type) {
hw = (unsigned char*)&hw_llong;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_llong = (long_long)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_llong = (long_long)(*((double*)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_llong = (long_long)(*((long double*)aligned));
break;
default:
break;
}
} else if (INT_ULLONG==dst_type) {
hw = (unsigned char*)&hw_ullong;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_ullong = (unsigned long_long)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_ullong = (unsigned long_long)(*((double*)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_ullong = (unsigned long_long)(*((long double*)aligned));
break;
default:
break;
}
}
/* Make certain that there isn't some weird number of destination bits */
assert(dst_nbits%8==0);
/* Are the two results the same? */
for (k=(dst_size-(dst_nbits/8)); k<dst_size; k++)
if (buf[j*dst_size+k]!=hw[k])
break;
if (k==dst_size)
continue; /*no error*/
/*
* Convert the source and destination values to little endian
* order so we can use the HDF5 bit vector operations to test
* certain things. These routines have already been tested by
* the `bittests' program.
*/
for (k=0; k<src_size; k++)
src_bits[src_size-(k+1)] = saved[j*src_size+ENDIAN(src_size, k)];
for (k=0; k<dst_size; k++)
dst_bits[dst_size-(k+1)] = buf[j*dst_size+ENDIAN(dst_size, k)];
/* Test library's default overflow handling:
* Hardware usually doesn't handle overflows too gracefully. The
* hardware conversion result during overflows is usually garbage
* so we must handle those cases differetly when checking results.
*
* Test user's exception handler when overflows:
* Try to follow the except_func callback function to check if the
* desired value was set.
*/
if ((FLT_FLOAT==src_type || FLT_DOUBLE==src_type || FLT_LDOUBLE==src_type)
&& (INT_SCHAR==dst_type || INT_SHORT==dst_type || INT_INT==dst_type
|| INT_LONG==dst_type || INT_LLONG==dst_type)) {
if(0==H5T_bit_get_d(src_bits, src_nbits-1, 1) &&
overflows(src_bits, src, dst_nbits-1)) {
/*
* Source is positive and the magnitude is too large for
* the destination. The destination should be set to the
* maximum possible value: 0x7f...f
*/
if(!except_set) {
if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 0)<0)
continue; /*no error*/
} else {
/* fill_value is small so we know only the 1st byte is set */
if (dst_bits[0] == fill_value)
continue; /*no error*/
}
} else if (1==H5T_bit_get_d(src_bits, src_nbits-1, 1) &&
overflows(src_bits, src, dst_nbits-1)) {
/*
* Source is negative but the magnitude is too large for
* the destination. The destination should be set to the
* smallest possible value: 0x80...0
*/
if(!except_set) {
if (1==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 1)<0)
continue; /*no error*/
} else {
if (dst_bits[0] == fill_value)
continue; /*no error*/
}
}
}
if ((FLT_FLOAT==src_type || FLT_DOUBLE==src_type || FLT_LDOUBLE==src_type)
&& (INT_UCHAR==dst_type || INT_USHORT==dst_type || INT_UINT==dst_type
|| INT_ULONG==dst_type || INT_ULLONG==dst_type)) {
if (H5T_bit_get_d(src_bits, src_nbits-1, 1)) {
/*
* The source is negative so the result should be zero.
* The source is negative if the most significant bit is
* set. The destination is zero if all bits are zero.
*/
if(!except_set) {
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 1)<0)
continue; /*no error*/
} else {
if (dst_bits[0] == fill_value)
continue; /*no error*/
}
} else if (overflows(src_bits, src, dst_nbits)) {
/*
* The source is a value with a magnitude too large for
* the destination. The destination should be the
* largest possible value: 0xff...f
*/
if(!except_set) {
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0)
continue; /*no error*/
} else {
if (dst_bits[0] == fill_value)
continue; /*no error*/
}
}
}
/* On some machines (notably the SGI and Solaris 64-bit machines) unsigned long
* values are not converted to float or double values correctly, they are
* consistently off by the lowest bit being rounded oppositely to our
* software conversion routines output. So, on those machines, we allow
* the converted value to be +/- 1 from the machine's value. -QAK
*/
#ifndef H5_SW_ULONG_TO_FP_BOTTOM_BIT_WORKS
if(dst_size==sizeof(unsigned)) {
unsigned tmp_s, tmp_h;
HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(unsigned));
HDmemcpy(&tmp_h,&hw[0],sizeof(unsigned));
if((tmp_s+1)==tmp_h || (tmp_s-1)==tmp_h)
continue; /*no error*/
} /* end if */
else if (dst_size==sizeof(unsigned long)) {
unsigned long tmp_s, tmp_h;
HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(unsigned long));
HDmemcpy(&tmp_h,&hw[0],sizeof(unsigned long));
if((tmp_s+1)==tmp_h || (tmp_s-1)==tmp_h)
continue; /*no error*/
} /* end if */
else if (dst_size==sizeof(unsigned long_long)) {
unsigned long_long tmp_s, tmp_h;
HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(unsigned long_long));
HDmemcpy(&tmp_h,&hw[0],sizeof(unsigned long_long));
if((tmp_s+1)==tmp_h || (tmp_s-1)==tmp_h)
continue; /*no error*/
} /* end if */
#endif /* end H5_ULONG_FP_BOTTOM_BIT_WORKS */
/* For PGI compiler on Linux, during conversion from 'float' or 'double' to
* 'unsigned long long', round-up happens when the fraction of float-point
* value is greater than 0.5. So we allow the converted value to be off by 1.
*/
#ifndef H5_FP_TO_ULLONG_BOTTOM_BIT_WORKS
if((src_type==FLT_FLOAT || src_type==FLT_DOUBLE) && dst_type==INT_ULLONG) {
unsigned long_long tmp_s, tmp_h;
HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(unsigned long_long));
HDmemcpy(&tmp_h,&hw[0],sizeof(unsigned long_long));
if((tmp_s+1)==tmp_h)
continue; /*no error*/
}
#endif /*end H5_FP_TO_ULLONG_BOTTOM_BIT_WORKS*/
/* For GNU compilers on FreeBSD(sleipnir), during conversion from 'unsigned long long'
* to 'long double', the last 2 bytes of mantissa are lost. But this loss seems
* acceptable. We allow it to go through instead of fail it. Sometimes, there's roundup
* to the 3rd last byte of mantissa. So we only try to compare all but the last 3 bytes.
*/
#ifndef H5_ULLONG_TO_LDOUBLE_PRECISION_WORKS
if(src_type==INT_ULLONG && dst_type==FLT_LDOUBLE) {
long double tmp_s, tmp_h;
HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(long double));
HDmemcpy(&tmp_h,&hw[0],sizeof(long double));
/*Don't compare the last 3 bytes of mantissa*/
if(!HDmemcmp(&tmp_s+4, &tmp_h+4, sizeof(long double)-4))
continue; /*no error*/
}
#endif /*end H5_ULLONG_TO_LDOUBLE_PRECISION_WORKS*/
/* Print errors */
if (0==fails_this_test++)
H5_FAILED();
printf(" test %u elmt %u: \n", (unsigned)i+1, (unsigned)j);
printf(" src = ");
for (k=0; k<src_size; k++)
printf(" %02x", saved[j*src_size+ENDIAN(src_size, k)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)), "");
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
printf(" %29d\n", (int)*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
printf(" %29u\n", (unsigned)*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
printf(" %29hd\n", *((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
printf(" %29hu\n", *((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
printf(" %29d\n", *((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
printf(" %29u\n", *((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
printf(" %29ld\n", *((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
printf(" %29lu\n", *((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)aligned));
break;
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
printf(" %29f\n", *((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
printf(" %29f\n", *((double*)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
printf(" %29Lf\n", *((long double*)aligned));
break;
case OTHER:
break;
}
printf(" dst = ");
for (k=0; k<dst_size; k++)
printf(" %02x", buf[j*dst_size+ENDIAN(dst_size, k)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), "");
switch (dst_type) {
case INT_SCHAR:
HDmemcpy(aligned, buf+j*sizeof(signed char), sizeof(signed char));
printf(" %29d\n", (int)*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, buf+j*sizeof(unsigned char), sizeof(unsigned char));
printf(" %29u\n", (unsigned)*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, buf+j*sizeof(short), sizeof(short));
printf(" %29hd\n", *((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, buf+j*sizeof(unsigned short), sizeof(unsigned short));
printf(" %29hu\n", *((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, buf+j*sizeof(int), sizeof(int));
printf(" %29d\n", *((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, buf+j*sizeof(unsigned), sizeof(unsigned));
printf(" %29u\n", *((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, buf+j*sizeof(long), sizeof(long));
printf(" %29ld\n", *((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, buf+j*sizeof(unsigned long), sizeof(unsigned long));
printf(" %29lu\n", *((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, buf+j*sizeof(long_long), sizeof(long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, buf+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)aligned));
break;
case FLT_FLOAT:
HDmemcpy(aligned, buf+j*sizeof(float), sizeof(float));
printf(" %29f\n", *((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, buf+j*sizeof(double), sizeof(double));
printf(" %29f\n", *((double*)aligned));
break;
case FLT_LDOUBLE:
HDmemcpy(aligned, buf+j*sizeof(long double), sizeof(long double));
printf(" %29Lf\n", *((long double*)aligned));
break;
case OTHER:
break;
}
printf(" ans = ");
for (k=0; k<dst_size; k++)
printf(" %02x", hw[ENDIAN(dst_size, k)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), "");
switch (dst_type) {
case INT_SCHAR:
printf(" %29d\n", (int)*((signed char*)hw));
break;
case INT_UCHAR:
printf(" %29u\n", (unsigned)*((unsigned char*)hw));
break;
case INT_SHORT:
printf(" %29hd\n", *((short*)hw));
break;
case INT_USHORT:
printf(" %29hu\n", *((unsigned short*)hw));
break;
case INT_INT:
printf(" %29d\n", *((int*)hw));
break;
case INT_UINT:
printf(" %29u\n", *((unsigned int*)hw));
break;
case INT_LONG:
printf(" %29ld\n", *((long*)hw));
break;
case INT_ULONG:
printf(" %29lu\n", *((unsigned long*)hw));
break;
case INT_LLONG:
printf(" %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)hw));
break;
case INT_ULLONG:
printf(" %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)hw));
break;
case FLT_FLOAT:
printf(" %29f\n", *((float*)hw));
break;
case FLT_DOUBLE:
printf(" %29f\n", *((double*)hw));
break;
case FLT_LDOUBLE:
printf(" %29Lf\n", *((long double*)hw));
break;
case OTHER:
break;
}
if (++fails_all_tests>=max_fails) {
HDputs(" maximum failures reached, aborting test...");
goto done;
}
}
PASSED();
}
#ifdef SHOW_OVERFLOWS
if (noverflows_g>0) {
printf(" %d overflow%s in previous test\n",
noverflows_g, 1==noverflows_g?"":"s");
}
#endif
done:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) HDfree(aligned);
HDfflush(stdout);
reset_hdf5(); /*print statistics*/
return (int)fails_all_tests;
error:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) HDfree(aligned);
HDfflush(stdout);
reset_hdf5(); /*print statistics*/
return MAX((int)fails_all_tests, 1);
}
/*-------------------------------------------------------------------------
* Function: overflows
*
* Purpose: When convert from float or double to any integer type,
* check if overflow occurs.
*
*
* Return: TRUE: overflow happens
*
* FALSE: no overflow
*
* Programmer: Raymond Lu
* Monday, Nov 17, 2003
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static hbool_t
overflows(unsigned char *origin_bits, hid_t src_id, size_t dst_num_bits)
{
hbool_t ret_value=FALSE;
hsize_t expt;
size_t mant_digits=0, expt_digits=0, bias=0;
size_t src_prec=0; /*source type precision in bits*/
H5T_norm_t norm;
ssize_t indx;
unsigned char bits[32], mant_bits[32];
HDmemset(bits, 0, 32);
HDmemset(mant_bits, 0, 32);
/*
* Sometimes, type size isn't equal to the precision like Linux's "long
* double", where size is 96 bits and precision is 80 bits.
*/
src_prec = H5Tget_precision(src_id);
H5Tget_fields(src_id, NULL, NULL, &expt_digits, NULL, &mant_digits);
bias = H5Tget_ebias(src_id);
norm = H5Tget_norm(src_id);
HDmemcpy(bits, origin_bits, src_prec/8+1);
/* get exponent */
expt = H5T_bit_get_d(bits, mant_digits, expt_digits) - bias;
if(expt>=(dst_num_bits-1)) {
ret_value=TRUE;
goto done;
}
/* get significand */
H5T_bit_copy (mant_bits, 0, bits, 0, mant_digits);
/* restore implicit bit if normalization is implied*/
if(norm == H5T_NORM_IMPLIED) {
H5T_bit_inc(mant_bits, mant_digits, 1);
mant_digits++;
}
/* shift significand */
H5T_bit_shift (mant_bits, (expt-expt_digits), 0, 32*8);
indx = H5T_bit_find(mant_bits, 0, 32*8, H5T_BIT_MSB, 1);
if((size_t)indx>=dst_num_bits)
ret_value=TRUE;
done:
return ret_value;
}
/*-------------------------------------------------------------------------
* Function: run_integer_tests
*
* Purpose: Runs all integer tests.
*
* Return: Number of errors
*
* Programmer: Robb Matzke
* Tuesday, November 24, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
run_integer_tests(const char *name)
{
int nerrors = 0;
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_INT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULLONG);
#endif
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UINT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULONG);
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULLONG);
#endif
#endif
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UINT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LONG);
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_ULLONG);
#endif
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULLONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_ULONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LLONG);
#endif
return nerrors;
}
/*-------------------------------------------------------------------------
* Function: run_int_float_conv
*
* Purpose: Runs all integer-float tests.
*
* Return: Number of errors
*
* Programmer: Raymond Lu
* Monday, November 10, 2003
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
run_int_float_conv(const char *name)
{
int nerrors = 0;
nerrors += test_conv_int_float(name, H5T_NATIVE_SCHAR, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_float(name, H5T_NATIVE_SCHAR, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_float(name, H5T_NATIVE_UCHAR, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_float(name, H5T_NATIVE_UCHAR, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_float(name, H5T_NATIVE_SHORT, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_float(name, H5T_NATIVE_SHORT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_float(name, H5T_NATIVE_USHORT, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_float(name, H5T_NATIVE_USHORT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_float(name, H5T_NATIVE_INT, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_float(name, H5T_NATIVE_INT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_float(name, H5T_NATIVE_UINT, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_float(name, H5T_NATIVE_UINT, H5T_NATIVE_DOUBLE);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_float(name, H5T_NATIVE_LONG, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_float(name, H5T_NATIVE_LONG, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_float(name, H5T_NATIVE_ULONG, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_float(name, H5T_NATIVE_ULONG, H5T_NATIVE_DOUBLE);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_float(name, H5T_NATIVE_LLONG, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_float(name, H5T_NATIVE_LLONG, H5T_NATIVE_DOUBLE);
#ifdef H5_ULLONG_TO_FP_CAST_WORKS
nerrors += test_conv_int_float(name, H5T_NATIVE_ULLONG, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_float(name, H5T_NATIVE_ULLONG, H5T_NATIVE_DOUBLE);
#else /* H5_ULLONG_TO_FP_CAST_WORKS */
{
char str[256]; /*hello string */
sprintf(str, "Testing random %s %s -> %s conversions",
name, "unsigned long long", "float");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to compiler not handling conversion.");
sprintf(str, "Testing random %s %s -> %s conversions",
name, "unsigned long long", "double");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to compiler not handling conversion.");
}
#endif /* H5_ULLONG_TO_FP_CAST_WORKS */
#endif
if(!strcmp(name, "sw")) {
#if H5_SW_INTEGER_TO_LDOUBLE_WORKS
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
nerrors += test_conv_int_float(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_float(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_float(name, H5T_NATIVE_SHORT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_float(name, H5T_NATIVE_USHORT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_float(name, H5T_NATIVE_INT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_float(name, H5T_NATIVE_UINT, H5T_NATIVE_LDOUBLE);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_float(name, H5T_NATIVE_LONG, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_float(name, H5T_NATIVE_ULONG, H5T_NATIVE_LDOUBLE);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_float(name, H5T_NATIVE_LLONG, H5T_NATIVE_LDOUBLE);
#if H5_ULLONG_TO_FP_CAST_WORKS && H5_ULLONG_TO_LDOUBLE_PRECISION_WORKS
nerrors += test_conv_int_float(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LDOUBLE);
#else /* H5_ULLONG_TO_FP_CAST_WORKS && H5_ULLONG_TO_LDOUBLE_PRECISION_WORKS */
{
char str[256]; /*hello string */
sprintf(str, "Testing random %s %s -> %s conversions",
name, "unsigned long long", "long double");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to compiler not handling conversion.");
}
#endif /* H5_ULLONG_TO_FP_CAST_WORKS && H5_ULLONG_TO_LDOUBLE_PRECISION_WORKS */
#endif
#endif
#else /*H5_SW_INTEGER_TO_LDOUBLE_WORKS*/
{
char str[256]; /*string */
sprintf(str, "Testing random %s %s -> %s conversions",
name, "all integers", "long double");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to hardware conversion error.");
}
#endif /*H5_SW_INTEGER_TO_LDOUBLE_WORKS*/
}
return nerrors;
}
/*-------------------------------------------------------------------------
* Function: run_float_int_conv
*
* Purpose: Runs all float-integer tests.
*
* Return: Number of errors
*
* Programmer: Raymond Lu
* Monday, November 10, 2003
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
run_float_int_conv(const char *name)
{
int nerrors = 0;
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_float(name, H5T_NATIVE_DOUBLE, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_float(name, H5T_NATIVE_DOUBLE, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_float(name, H5T_NATIVE_DOUBLE, H5T_NATIVE_SHORT);
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_float(name, H5T_NATIVE_DOUBLE, H5T_NATIVE_USHORT);
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_INT);
nerrors += test_conv_int_float(name, H5T_NATIVE_DOUBLE, H5T_NATIVE_INT);
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_UINT);
nerrors += test_conv_int_float(name, H5T_NATIVE_DOUBLE, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_LONG);
nerrors += test_conv_int_float(name, H5T_NATIVE_DOUBLE, H5T_NATIVE_LONG);
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_ULONG);
nerrors += test_conv_int_float(name, H5T_NATIVE_DOUBLE, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
if(!strcmp(name, "hw")) { /* Hardware conversion */
/* Windows .NET 2003 doesn't work for hardware conversion of this case.
* .NET should define this macro H5_HW_FLOAT_TO_LLONG_NOT_WORKS. */
#ifndef H5_HW_FLOAT_TO_LLONG_NOT_WORKS
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_float(name, H5T_NATIVE_DOUBLE, H5T_NATIVE_LLONG);
#endif /*H5_HW_FLOAT_TO_LLONG_NOT_WORKS*/
} else { /* Software conversion */
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_float(name, H5T_NATIVE_DOUBLE, H5T_NATIVE_LLONG);
}
#ifdef H5_FP_TO_ULLONG_RIGHT_MAXIMUM
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_ULLONG);
nerrors += test_conv_int_float(name, H5T_NATIVE_DOUBLE, H5T_NATIVE_ULLONG);
#else /*H5_FP_TO_ULLONG_RIGHT_MAXIMUM*/
{
char str[256]; /*hello string */
sprintf(str, "Testing random %s %s -> %s conversions",
name, "float", "unsigned long long");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to hardware conversion error.");
sprintf(str, "Testing random %s %s -> %s conversions",
name, "double", "unsigned long long");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to hardware conversion error.");
}
#endif /*H5_FP_TO_ULLONG_RIGHT_MAXIMUM*/
#endif
if(!strcmp(name, "sw")) {
#if H5_SW_LDOUBLE_TO_INTEGER_WORKS
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
nerrors += test_conv_int_float(name, H5T_NATIVE_LDOUBLE, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_float(name, H5T_NATIVE_LDOUBLE, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_float(name, H5T_NATIVE_LDOUBLE, H5T_NATIVE_SHORT);
nerrors += test_conv_int_float(name, H5T_NATIVE_LDOUBLE, H5T_NATIVE_USHORT);
nerrors += test_conv_int_float(name, H5T_NATIVE_LDOUBLE, H5T_NATIVE_INT);
#if H5_CV_LDOUBLE_TO_UINT_WORKS
nerrors += test_conv_int_float(name, H5T_NATIVE_LDOUBLE, H5T_NATIVE_UINT);
#else /*H5_CV_LDOUBLE_TO_UINT_WORKS*/
{
char str[256]; /*string */
sprintf(str, "Testing random %s %s -> %s conversions",
name, "long double", "unsigned int");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to hardware conversion error.");
}
#endif /*H5_CV_LDOUBLE_TO_UINT_WORKS*/
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_float(name, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LONG);
nerrors += test_conv_int_float(name, H5T_NATIVE_LDOUBLE, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_float(name, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LLONG);
#ifdef H5_FP_TO_ULLONG_RIGHT_MAXIMUM
nerrors += test_conv_int_float(name, H5T_NATIVE_LDOUBLE, H5T_NATIVE_ULLONG);
#else /*H5_FP_TO_ULLONG_RIGHT_MAXIMUM*/
{
char str[256]; /*string */
sprintf(str, "Testing random %s %s -> %s conversions",
name, "long double", "unsigned long long");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to hardware conversion error.");
}
#endif /*H5_FP_TO_ULLONG_RIGHT_MAXIMUM*/
#endif
#endif
#else /*H5_SW_LDOUBLE_TO_INTEGER_WORKS*/
{
char str[256]; /*hello string */
sprintf(str, "Testing random %s %s -> %s conversions",
name, "long double", "all integers");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to hardware conversion error.");
}
#endif /*H5_SW_LDOUBLE_TO_INTEGER_WORKS*/
}
return nerrors;
}
/*-------------------------------------------------------------------------
* Function: test_encode
*
* Purpose: Tests functions of encoding and decoding data type.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* July 14, 2004
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_encode(void)
{
struct s1 {
int a;
float b;
long c;
double d;
};
hid_t file=-1, tid1=-1, tid2=-1;
hid_t decoded_tid1=-1, decoded_tid2=-1;
char filename[1024];
char compnd_type[]="Compound_type", enum_type[]="Enum_type";
short enum_val;
size_t cmpd_buf_size = 0;
size_t enum_buf_size = 0;
unsigned char *cmpd_buf=NULL, *enum_buf=NULL;
herr_t ret;
TESTING("functions of encoding and decoding data types");
/* Create File */
h5_fixname(FILENAME[5], H5P_DEFAULT, filename, sizeof filename);
if((file=H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT))<0)
goto error;
/*-----------------------------------------------------------------------
* Create compound and enumerate data types
*-----------------------------------------------------------------------
*/
/* Create a compound datatype */
if((tid1=H5Tcreate(H5T_COMPOUND, sizeof(struct s1)))<0) {
H5_FAILED();
printf("Can't create datatype!\n");
goto error;
} /* end if */
if(H5Tinsert(tid1, "a", HOFFSET(struct s1, a), H5T_NATIVE_INT)<0) {
H5_FAILED();
printf("Can't insert field 'a'\n");
goto error;
} /* end if */
if(H5Tinsert(tid1, "b", HOFFSET(struct s1, b), H5T_NATIVE_FLOAT)<0) {
H5_FAILED();
printf("Can't insert field 'b'\n");
goto error;
} /* end if */
if(H5Tinsert(tid1, "c", HOFFSET(struct s1, c), H5T_NATIVE_LONG)<0) {
H5_FAILED();
printf("Can't insert field 'c'\n");
goto error;
} /* end if */
if(H5Tinsert(tid1, "d", HOFFSET(struct s1, d), H5T_NATIVE_DOUBLE)<0) {
H5_FAILED();
printf("Can't insert field 'd'\n");
goto error;
} /* end if */
/* Create a enumerate datatype */
if((tid2=H5Tcreate(H5T_ENUM, sizeof(short)))<0) {
H5_FAILED();
printf("Can't create enumerate type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "RED", (enum_val=0,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "GREEN", (enum_val=1,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "BLUE", (enum_val=2,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "ORANGE", (enum_val=3,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "YELLOW", (enum_val=4,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
/*-----------------------------------------------------------------------
* Test encoding and decoding compound and enumerate data types
*-----------------------------------------------------------------------
*/
/* Encode compound type in a buffer */
if(H5Tencode(tid1, NULL, &cmpd_buf_size)<0) {
H5_FAILED();
printf("Can't encode compound type\n");
goto error;
} /* end if */
if(cmpd_buf_size>0)
cmpd_buf = (unsigned char*)calloc(1, cmpd_buf_size);
/* Try decoding bogus buffer */
H5E_BEGIN_TRY {
ret = H5Tdecode(cmpd_buf);
} H5E_END_TRY;
if(ret!=FAIL) {
H5_FAILED();
printf("Decoded bogus buffer!\n");
goto error;
}
if(H5Tencode(tid1, cmpd_buf, &cmpd_buf_size)<0) {
H5_FAILED();
printf("Can't encode compound type\n");
goto error;
} /* end if */
/* Decode from the compound buffer and return an object handle */
if((decoded_tid1=H5Tdecode(cmpd_buf))<0) {
H5_FAILED();
printf("Can't decode compound type\n");
goto error;
} /* end if */
/* Verify that the datatype was copied exactly */
if(H5Tequal(decoded_tid1, tid1)<=0) {
H5_FAILED();
printf("Datatype wasn't encoded & decoded identically\n");
goto error;
} /* end if */
/* Query member number and member index by name, for compound type. */
if(H5Tget_nmembers(decoded_tid1)!=4) {
H5_FAILED();
printf("Can't get member number\n");
goto error;
} /* end if */
if(H5Tget_member_index(decoded_tid1, "c")!=2) {
H5_FAILED();
printf("Can't get correct index number\n");
goto error;
} /* end if */
/* Encode enumerate type in a buffer */
if(H5Tencode(tid2, NULL, &enum_buf_size)<0) {
H5_FAILED();
printf("Can't encode enumerate type\n");
goto error;
} /* end if */
if(enum_buf_size>0)
enum_buf = (unsigned char*)calloc(1, enum_buf_size);
if(H5Tencode(tid2, enum_buf, &enum_buf_size)<0) {
H5_FAILED();
printf("Can't encode enumerate type\n");
goto error;
} /* end if */
/* Decode from the enumerate buffer and return an object handle */
if((decoded_tid2=H5Tdecode(enum_buf))<0) {
H5_FAILED();
printf("Can't decode enumerate type\n");
goto error;
} /* end if */
/* Verify that the datatype was copied exactly */
if(H5Tequal(decoded_tid2, tid2)<=0) {
H5_FAILED();
printf("Datatype wasn't encoded & decoded identically\n");
goto error;
} /* end if */
/* Query member number and member index by name, for enumeration type. */
if(H5Tget_nmembers(decoded_tid2)!=5) {
H5_FAILED();
printf("Can't get member number\n");
goto error;
} /* end if */
if(H5Tget_member_index(decoded_tid2, "ORANGE")!=3) {
H5_FAILED();
printf("Can't get correct index number\n");
goto error;
} /* end if */
/*-----------------------------------------------------------------------
* Commit and reopen the compound and enumerate data types
*-----------------------------------------------------------------------
*/
/* Commit compound datatype and close it */
if(H5Tcommit(file, compnd_type, tid1)<0) {
H5_FAILED();
printf("Can't commit compound datatype\n");
goto error;
} /* end if */
if(H5Tclose(tid1)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
if(H5Tclose(decoded_tid1)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
free(cmpd_buf);
cmpd_buf_size = 0;
/* Commit enumeration datatype and close it */
if(H5Tcommit(file, enum_type, tid2)<0) {
H5_FAILED();
printf("Can't commit compound datatype\n");
goto error;
} /* end if */
if(H5Tclose(tid2)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
if(H5Tclose(decoded_tid2)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
free(enum_buf);
enum_buf_size = 0;
/* Open the dataytpe for query */
if((tid1=H5Topen(file, compnd_type))<0) {
H5_FAILED();
printf("Can't open datatype\n");
goto error;
} /* end if */
if((tid2=H5Topen(file, enum_type))<0) {
H5_FAILED();
printf("Can't open datatype\n");
goto error;
} /* end if */
/* Encode compound type in a buffer */
if(H5Tencode(tid1, NULL, &cmpd_buf_size)<0) {
H5_FAILED();
printf("Can't encode compound type\n");
goto error;
} /* end if */
if(cmpd_buf_size>0)
cmpd_buf = (unsigned char*)calloc(1, cmpd_buf_size);
if(H5Tencode(tid1, cmpd_buf, &cmpd_buf_size)<0) {
H5_FAILED();
printf("Can't encode compound type\n");
goto error;
} /* end if */
/* Decode from the compound buffer and return an object handle */
if((decoded_tid1=H5Tdecode(cmpd_buf))<0) {
H5_FAILED();
printf("Can't decode compound type\n");
goto error;
} /* end if */
/* Verify that the datatype was copied exactly */
if(H5Tequal(decoded_tid1, tid1)<=0) {
H5_FAILED();
printf("Datatype wasn't encoded & decoded identically\n");
goto error;
} /* end if */
/* Query member number and member index by name, for compound type. */
if(H5Tget_nmembers(decoded_tid1)!=4) {
H5_FAILED();
printf("Can't get member number\n");
goto error;
} /* end if */
if(H5Tget_member_index(decoded_tid1, "c")!=2) {
H5_FAILED();
printf("Can't get correct index number\n");
goto error;
} /* end if */
/*-----------------------------------------------------------------------
* Test encoding and decoding compound and enumerate data types
*-----------------------------------------------------------------------
*/
/* Encode enumerate type in a buffer */
if(H5Tencode(tid2, NULL, &enum_buf_size)<0) {
H5_FAILED();
printf("Can't encode enumerate type\n");
goto error;
} /* end if */
if(enum_buf_size>0)
enum_buf = (unsigned char*)calloc(1, enum_buf_size);
if(H5Tencode(tid2, enum_buf, &enum_buf_size)<0) {
H5_FAILED();
printf("Can't encode enumerate type\n");
goto error;
} /* end if */
/* Decode from the enumerate buffer and return an object handle */
if((decoded_tid2=H5Tdecode(enum_buf))<0) {
H5_FAILED();
printf("Can't decode enumerate type\n");
goto error;
} /* end if */
/* Verify that the datatype was copied exactly */
if(H5Tequal(decoded_tid2, tid2)<=0) {
H5_FAILED();
printf("Datatype wasn't encoded & decoded identically\n");
goto error;
} /* end if */
/* Query member number and member index by name, for enumeration type. */
if(H5Tget_nmembers(decoded_tid2)!=5) {
H5_FAILED();
printf("Can't get member number\n");
goto error;
} /* end if */
if(H5Tget_member_index(decoded_tid2, "ORANGE")!=3) {
H5_FAILED();
printf("Can't get correct index number\n");
goto error;
} /* end if */
/*-----------------------------------------------------------------------
* Close and release
*-----------------------------------------------------------------------
*/
/* Close data type and file */
if(H5Tclose(tid1)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
if(H5Tclose(tid2)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
if(H5Tclose(decoded_tid1)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
if(H5Tclose(decoded_tid2)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
if(H5Fclose(file)<0) {
H5_FAILED();
printf("Can't close file\n");
goto error;
} /* end if */
free(cmpd_buf);
free(enum_buf);
PASSED();
return 0;
error:
H5E_BEGIN_TRY {
H5Tclose (tid1);
H5Tclose (tid2);
H5Tclose (decoded_tid1);
H5Tclose (decoded_tid2);
H5Fclose (file);
} H5E_END_TRY;
return 1;
}
/*-------------------------------------------------------------------------
* Function: main
*
* Purpose: Test the data type interface.
*
* Return: Success:
*
* Failure:
*
* Programmer: Robb Matzke
* Tuesday, December 9, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
int
main(void)
{
unsigned long nerrors = 0;
hid_t fapl=-1;
/* Set the random # seed */
HDsrandom((unsigned long)HDtime(NULL));
reset_hdf5();
fapl = h5_fileaccess();
if (ALIGNMENT)
printf("Testing non-aligned conversions (ALIGNMENT=%d)....\n", ALIGNMENT);
/* Do the tests */
nerrors += test_classes();
nerrors += test_copy();
nerrors += test_detect();
nerrors += test_compound_1();
nerrors += test_query();
nerrors += test_transient (fapl);
nerrors += test_named (fapl);
nerrors += test_encode();
h5_cleanup(FILENAME, fapl); /*must happen before first reset*/
reset_hdf5();
nerrors += test_conv_str_1();
nerrors += test_conv_str_2();
nerrors += test_compound_2();
nerrors += test_compound_3();
nerrors += test_compound_4();
nerrors += test_compound_5();
nerrors += test_compound_6();
nerrors += test_compound_7();
nerrors += test_compound_8();
nerrors += test_compound_9();
nerrors += test_compound_10();
nerrors += test_compound_11();
nerrors += test_compound_12();
nerrors += test_conv_int ();
nerrors += test_conv_enum_1();
nerrors += test_conv_enum_2();
nerrors += test_conv_bitfield();
nerrors += test_opaque();
/* Test user-define, query functions and software conversion
* for user-defined floating-point types */
nerrors += test_derived_flt();
/* Test user-define, query functions and software conversion
* for user-defined integer types */
nerrors += test_derived_integer();
/* Does floating point overflow generate a SIGFPE? */
generates_sigfpe();
/* Test degenerate cases */
nerrors += test_conv_flt_1("noop", H5T_NATIVE_FLOAT, H5T_NATIVE_FLOAT);
nerrors += test_conv_flt_1("noop", H5T_NATIVE_DOUBLE, H5T_NATIVE_DOUBLE);
/* Test hardware integer conversion functions */
nerrors += run_integer_tests("hw");
/* Test hardware floating-point conversion functions */
nerrors += test_conv_flt_1("hw", H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_flt_1("hw", H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT);
/* Test hardware integer-float conversion functions */
nerrors += run_int_float_conv("hw");
/* Test hardware float-integer conversion functions */
nerrors += run_float_int_conv("hw");
/*----------------------------------------------------------------------
* Software tests
*----------------------------------------------------------------------
*/
without_hardware_g = TRUE;
reset_hdf5();
/* Test software integer conversion functions */
nerrors += test_conv_int_2();
nerrors += run_integer_tests("sw");
/* Test software floating-point conversion functions */
nerrors += test_conv_flt_1("sw", H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_flt_1("sw", H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
nerrors += test_conv_flt_1("sw", H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1("sw", H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1("sw", H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT);
nerrors += test_conv_flt_1("sw", H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE);
#endif
/* Test software float-integer conversion functions */
nerrors += run_float_int_conv("sw");
/* Test software integer-float conversion functions */
nerrors += run_int_float_conv("sw");
reset_hdf5();
if (nerrors) {
printf("***** %lu FAILURE%s! *****\n",
nerrors, 1==nerrors?"":"S");
HDexit(1);
}
printf("All data type tests passed.\n");
return 0;
}