hdf5/test/dtypes.c
Raymond Lu 67449f5c65 [svn-r7021] Purpose: bug fix
Description: H5Tget_native_type fails for multiple kinds of datatype on Cray; it fails
             fix-length string type, too.


Platforms tested: Cray, h5committest
2003-06-10 16:04:58 -05:00

4283 lines
126 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the files COPYING and Copyright.html. COPYING can be found at the root *
* of the source code distribution tree; Copyright.html can be found at the *
* root level of an installed copy of the electronic HDF5 document set and *
* is linked from the top-level documents page. It can also be found at *
* http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html. If you do not have *
* access to either file, you may request a copy from hdfhelp@ncsa.uiuc.edu. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Programmer: Robb Matzke <matzke@llnl.gov>
* Tuesday, December 9, 1997
*
* Purpose: Tests the data type interface (H5T)
*/
#include <time.h>
#include "h5test.h"
/* Number of times to run each test */
#define NTESTS 1
/* Number of elements in each test */
#define NTESTELEM 100000
/* Define if you want to see a count of overflows */
#undef SHOW_OVERFLOWS
/*
* Offset from alinged memory returned by malloc(). This can be used to test
* that type conversions handle non-aligned buffers correctly.
*/
#define ALIGNMENT 1
/*
* Define if you want to test alignment code on a machine that doesn't
* normally require alignment. When set, all native data types must be aligned
* on a byte boundary equal to the data size.
*/
#define TEST_ALIGNMENT
/* Alignment test stuff */
#ifdef TEST_ALIGNMENT
#define H5T_PACKAGE
#include "H5Tpkg.h"
#endif
#define SET_ALIGNMENT(TYPE,VAL) \
H5T_NATIVE_##TYPE##_ALIGN_g=MAX(H5T_NATIVE_##TYPE##_ALIGN_g, VAL)
const char *FILENAME[] = {
"dtypes1",
"dtypes2",
"dtypes3",
NULL
};
typedef struct complex_t {
double re;
double im;
} complex_t;
/*
* Count up or down depending on whether the machine is big endian or little
* endian. If local variable `endian' is H5T_ORDER_BE then the result will
* be I, otherwise the result will be Z-(I+1).
*/
#define ENDIAN(Z,I) (H5T_ORDER_BE==endian?(I):(Z)-((I)+1))
typedef enum flt_t {
FLT_FLOAT, FLT_DOUBLE, FLT_LDOUBLE, FLT_OTHER
} flt_t;
typedef enum int_t {
INT_CHAR, INT_UCHAR, INT_SHORT, INT_USHORT, INT_INT, INT_UINT,
INT_LONG, INT_ULONG, INT_LLONG, INT_ULLONG, INT_OTHER
} int_t;
/* Count the number of overflows */
#ifdef SHOW_OVERFLOWS
static int noverflows_g = 0;
#endif
/* Skip overflow tests if non-zero */
static int skip_overflow_tests_g = 0;
/* Don't use hardware conversions if set */
static int without_hardware_g = 0;
/* Count opaque conversions */
static int num_opaque_conversions_g = 0;
/*
* Although we check whether a floating point overflow generates a SIGFPE and
* turn off overflow tests in that case, it might still be possible for an
* overflow condition to occur. Once a SIGFPE is raised the program cannot
* be allowed to continue (cf. Posix signals) so in order to recover from a
* SIGFPE we run tests that might generate one in a child process.
*/
#if defined(H5_HAVE_FORK) && defined(H5_HAVE_WAITPID)
# define HANDLE_SIGFPE
#endif
/* Allocates memory aligned on a certain boundary. */
#define aligned_malloc(Z) ((void*)((char*)malloc(ALIGNMENT+Z)+ALIGNMENT))
#define aligned_free(M) free((char*)(M)-ALIGNMENT)
void some_dummy_func(float x);
/*-------------------------------------------------------------------------
* Function: fpe_handler
*
* Purpose: Exit with 255
*
* Return: void
*
* Programmer: Robb Matzke
* Monday, July 6, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
fpe_handler(int UNUSED signo)
{
SKIPPED();
puts(" Test skipped due to SIGFPE.");
#ifndef HANDLE_SIGFPE
puts(" Remaining tests could not be run.");
puts(" Please turn off SIGFPE on overflows and try again.");
#endif
exit(255);
}
/*-------------------------------------------------------------------------
* Function: overflow_handler
*
* Purpose: Gets called for all data type conversion overflows.
*
* Return: Success: 0
*
* Failure: -1
*
* Programmer: Robb Matzke
* Tuesday, July 7, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
#ifdef SHOW_OVERFLOWS
static herr_t
overflow_handler(hid_t UNUSED src_id, hid_t UNUSED dst_id,
void UNUSED *src_buf, void UNUSED *dst_buf)
{
noverflows_g++;
return -1;
}
#endif
/*-------------------------------------------------------------------------
* Function: some_dummy_func
*
* Purpose: A dummy function to help check for overflow.
*
* Note: DO NOT DECLARE THIS FUNCTION STATIC OR THE COMPILER MIGHT
* PROMOTE ARGUMENT `x' TO DOUBLE AND DEFEAT THE OVERFLOW
* CHECKING.
*
* Return: void
*
* Programmer: Robb Matzke
* Tuesday, July 21, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
some_dummy_func(float x)
{
char s[128];
sprintf(s, "%g", x);
}
/*-------------------------------------------------------------------------
* Function: generates_sigfpe
*
* Purpose: Determines if SIGFPE is generated from overflows. We must be
* able to fork() and waitpid() in order for this test to work
* properly. Sets skip_overflow_tests_g to non-zero if they
* would generate SIGBUS, zero otherwise.
*
* Programmer: Robb Matzke
* Tuesday, July 21, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
generates_sigfpe(void)
{
#if defined(H5_HAVE_FORK) && defined(H5_HAVE_WAITPID)
pid_t pid;
int status;
size_t i, j;
double d;
unsigned char *dp = (unsigned char*)&d;
float f;
fflush(stdout);
fflush(stderr);
if ((pid=fork())<0) {
perror("fork");
exit(1);
} else if (0==pid) {
for (i=0; i<2000; i++) {
for (j=0; j<sizeof(double); j++) dp[j] = rand();
f = (float)d;
some_dummy_func((float)f);
}
exit(0);
}
while (pid!=waitpid(pid, &status, 0)) /*void*/;
if (WIFEXITED(status) && 0==WEXITSTATUS(status)) {
puts("Floating-point overflow cases will be tested.");
skip_overflow_tests_g = FALSE;
} else if (WIFSIGNALED(status) && SIGFPE==WTERMSIG(status)) {
puts("Floating-point overflow cases cannot be safely tested.");
skip_overflow_tests_g = TRUE;
/* delete the core dump file that SIGFPE may have created */
unlink("core");
}
#else
puts("Cannot determine if floating-point overflows generate a SIGFPE;");
puts("assuming yes.");
puts("Overflow cases will not be tested.");
skip_overflow_tests_g = TRUE;
#endif
}
/*-------------------------------------------------------------------------
* Function: reset_hdf5
*
* Purpose: Reset the hdf5 library. This causes statistics to be printed
* and counters to be reset.
*
* Return: void
*
* Programmer: Robb Matzke
* Monday, November 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
reset_hdf5(void)
{
h5_reset();
#ifdef SHOW_OVERFLOWS
H5Tset_overflow(overflow_handler);
#endif
if (without_hardware_g) h5_no_hwconv();
#ifdef TEST_ALIGNMENT
SET_ALIGNMENT(SCHAR, H5_SIZEOF_CHAR);
SET_ALIGNMENT(UCHAR, H5_SIZEOF_CHAR);
SET_ALIGNMENT(SHORT, H5_SIZEOF_SHORT);
SET_ALIGNMENT(USHORT, H5_SIZEOF_SHORT);
SET_ALIGNMENT(INT, H5_SIZEOF_INT);
SET_ALIGNMENT(UINT, H5_SIZEOF_INT);
SET_ALIGNMENT(LONG, H5_SIZEOF_LONG);
SET_ALIGNMENT(ULONG, H5_SIZEOF_LONG);
SET_ALIGNMENT(LLONG, H5_SIZEOF_LONG_LONG);
SET_ALIGNMENT(ULLONG, H5_SIZEOF_LONG_LONG);
SET_ALIGNMENT(FLOAT, H5_SIZEOF_FLOAT);
SET_ALIGNMENT(DOUBLE, H5_SIZEOF_DOUBLE);
SET_ALIGNMENT(LDOUBLE, H5_SIZEOF_LONG_DOUBLE);
#endif
}
/*-------------------------------------------------------------------------
* Function: test_classes
*
* Purpose: Test type classes
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Tuesday, December 9, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_classes(void)
{
H5T_class_t tcls;
TESTING("H5Tget_class()");
if ((tcls=H5Tget_class(H5T_NATIVE_INT))<0) goto error;
if (H5T_INTEGER!=tcls) {
H5_FAILED();
puts(" Invalid type class for H5T_NATIVE_INT");
goto error;
}
if ((tcls=H5Tget_class(H5T_NATIVE_DOUBLE))<0) goto error;
if (H5T_FLOAT!=tcls) {
H5_FAILED();
puts(" Invalid type class for H5T_NATIVE_DOUBLE");
goto error;
}
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_copy
*
* Purpose: Are we able to copy a data type?
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Tuesday, December 9, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_copy(void)
{
hid_t a_copy;
herr_t status;
TESTING("H5Tcopy()");
if ((a_copy = H5Tcopy(H5T_NATIVE_SHORT)) < 0) goto error;
if (H5Tclose(a_copy) < 0) goto error;
/* We should not be able to close a built-in byte */
H5E_BEGIN_TRY {
status = H5Tclose (H5T_NATIVE_SCHAR);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
puts (" Should not be able to close a predefined type!");
goto error;
}
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_1
*
* Purpose: Tests various things about compound data types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Wednesday, January 7, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_1(void)
{
complex_t tmp;
hid_t complex_id;
herr_t ret;
TESTING("compound data types");
/* Create the empty type */
if ((complex_id = H5Tcreate(H5T_COMPOUND, sizeof tmp))<0) goto error;
/* Attempt to add the new compound datatype as a field within itself */
H5E_BEGIN_TRY {
ret=H5Tinsert(complex_id, "compound", 0, complex_id);
} H5E_END_TRY;
if (ret>=0) {
H5_FAILED();
printf("Inserted compound datatype into itself?\n");
goto error;
} /* end if */
/* Add a couple fields */
if (H5Tinsert(complex_id, "real", HOFFSET(complex_t, re),
H5T_NATIVE_DOUBLE)<0) goto error;
if (H5Tinsert(complex_id, "imaginary", HOFFSET(complex_t, im),
H5T_NATIVE_DOUBLE)<0) goto error;
if (H5Tclose (complex_id)<0) goto error;
PASSED();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_2
*
* Purpose: Tests a compound type conversion where the source and
* destination are the same except for the order of the
* elements.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, June 17, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_2(void)
{
struct st {
int a, b, c[4], d, e;
} *s_ptr;
struct dt {
int e, d, c[4], b, a;
} *d_ptr;
const int nelmts = NTESTELEM;
const hsize_t four = 4;
unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
hid_t st=-1, dt=-1;
hid_t array_dt;
int i;
TESTING("compound element reordering");
/* Sizes should be the same, but be careful just in case */
buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
bkg = malloc(nelmts * sizeof(struct dt));
orig = malloc(nelmts * sizeof(struct st));
for (i=0; i<nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
s_ptr->a = i*8+0;
s_ptr->b = i*8+1;
s_ptr->c[0] = i*8+2;
s_ptr->c[1] = i*8+3;
s_ptr->c[2] = i*8+4;
s_ptr->c[3] = i*8+5;
s_ptr->d = i*8+6;
s_ptr->e = i*8+7;
}
memcpy(buf, orig, nelmts*sizeof(struct st));
/* Build hdf5 datatypes */
array_dt=H5Tarray_create(H5T_NATIVE_INT,1, &four, NULL);
if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
H5Tinsert(st, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "c", HOFFSET(struct st, c), array_dt)<0 ||
H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0)
goto error;
H5Tclose(array_dt);
array_dt=H5Tarray_create(H5T_NATIVE_INT,1, &four, NULL);
if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
H5Tinsert(dt, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(dt, "b", HOFFSET(struct dt, b), H5T_NATIVE_INT)<0 ||
H5Tinsert(dt, "c", HOFFSET(struct dt, c), array_dt)<0 ||
H5Tinsert(dt, "d", HOFFSET(struct dt, d), H5T_NATIVE_INT)<0 ||
H5Tinsert(dt, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0)
goto error;
H5Tclose(array_dt);
/* Perform the conversion */
if (H5Tconvert(st, dt, (hsize_t)nelmts, buf, bkg, H5P_DEFAULT)<0) goto error;
/* Compare results */
for (i=0; i<nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
d_ptr = ((struct dt*)buf) + i;
if (s_ptr->a != d_ptr->a ||
s_ptr->b != d_ptr->b ||
s_ptr->c[0] != d_ptr->c[0] ||
s_ptr->c[1] != d_ptr->c[1] ||
s_ptr->c[2] != d_ptr->c[2] ||
s_ptr->c[3] != d_ptr->c[3] ||
s_ptr->d != d_ptr->d ||
s_ptr->e != d_ptr->e) {
H5_FAILED();
printf(" i=%d\n", i);
printf(" src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2],
s_ptr->c[3], s_ptr->d, s_ptr->e);
printf(" dst={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
d_ptr->a, d_ptr->b, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2],
d_ptr->c[3], d_ptr->d, d_ptr->e);
goto error;
}
}
/* Release resources */
free(buf);
free(bkg);
free(orig);
if (H5Tclose(st)<0 || H5Tclose(dt)<0) goto error;
PASSED();
reset_hdf5();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_3
*
* Purpose: Tests compound conversions where the source and destination
* are the same except the destination is missing a couple
* members which appear in the source.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, June 17, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_3(void)
{
struct st {
int a, b, c[4], d, e;
} *s_ptr;
struct dt {
int a, c[4], e;
} *d_ptr;
const int nelmts = NTESTELEM;
const hsize_t four = 4;
unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
hid_t st=-1, dt=-1;
hid_t array_dt;
int i;
TESTING("compound subset conversions");
/* Initialize */
buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
bkg = malloc(nelmts * sizeof(struct dt));
orig = malloc(nelmts * sizeof(struct st));
for (i=0; i<nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
s_ptr->a = i*8+0;
s_ptr->b = i*8+1;
s_ptr->c[0] = i*8+2;
s_ptr->c[1] = i*8+3;
s_ptr->c[2] = i*8+4;
s_ptr->c[3] = i*8+5;
s_ptr->d = i*8+6;
s_ptr->e = i*8+7;
}
memcpy(buf, orig, nelmts*sizeof(struct st));
/* Build hdf5 datatypes */
array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL);
if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
H5Tinsert(st, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "c", HOFFSET(struct st, c), array_dt)<0 ||
H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0)
goto error;
H5Tclose(array_dt);
array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL);
if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
H5Tinsert(dt, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(dt, "c", HOFFSET(struct dt, c), array_dt)<0 ||
H5Tinsert(dt, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0)
goto error;
H5Tclose(array_dt);
/* Perform the conversion */
if (H5Tconvert(st, dt, (hsize_t)nelmts, buf, bkg, H5P_DEFAULT)<0)
goto error;
/* Compare results */
for (i=0; i<nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
d_ptr = ((struct dt*)buf) + i;
if (s_ptr->a != d_ptr->a ||
s_ptr->c[0] != d_ptr->c[0] ||
s_ptr->c[1] != d_ptr->c[1] ||
s_ptr->c[2] != d_ptr->c[2] ||
s_ptr->c[3] != d_ptr->c[3] ||
s_ptr->e != d_ptr->e) {
H5_FAILED();
printf(" i=%d\n", i);
printf(" src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2],
s_ptr->c[3], s_ptr->d, s_ptr->e);
printf(" dst={a=%d, c=[%d,%d,%d,%d], e=%d\n",
d_ptr->a, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2],
d_ptr->c[3], d_ptr->e);
goto error;
}
}
/* Release resources */
free(buf);
free(bkg);
free(orig);
if (H5Tclose(st)<0 || H5Tclose(dt)<0) goto error;
PASSED();
reset_hdf5();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_4
*
* Purpose: Tests compound conversions when the destination has the same
* fields as the source but one or more of the fields are
* smaller.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, June 17, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_4(void)
{
struct st {
int a, b, c[4], d, e;
} *s_ptr;
struct dt {
short b;
int a, c[4];
short d;
int e;
} *d_ptr;
const int nelmts = NTESTELEM;
const hsize_t four = 4;
unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
hid_t st=-1, dt=-1;
hid_t array_dt;
int i;
TESTING("compound element shrinking & reordering");
/* Sizes should be the same, but be careful just in case */
buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
bkg = malloc(nelmts * sizeof(struct dt));
orig = malloc(nelmts * sizeof(struct st));
for (i=0; i<nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
s_ptr->a = i*8+0;
s_ptr->b = (i*8+1) & 0x7fff;
s_ptr->c[0] = i*8+2;
s_ptr->c[1] = i*8+3;
s_ptr->c[2] = i*8+4;
s_ptr->c[3] = i*8+5;
s_ptr->d = (i*8+6) & 0x7fff;
s_ptr->e = i*8+7;
}
memcpy(buf, orig, nelmts*sizeof(struct st));
/* Build hdf5 datatypes */
array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL);
if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
H5Tinsert(st, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "c", HOFFSET(struct st, c), array_dt)<0 ||
H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 ||
H5Tinsert(st, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0)
goto error;
H5Tclose(array_dt);
array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL);
if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
H5Tinsert(dt, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 ||
H5Tinsert(dt, "b", HOFFSET(struct dt, b), H5T_NATIVE_SHORT)<0 ||
H5Tinsert(dt, "c", HOFFSET(struct dt, c), array_dt)<0 ||
H5Tinsert(dt, "d", HOFFSET(struct dt, d), H5T_NATIVE_SHORT)<0 ||
H5Tinsert(dt, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0)
goto error;
H5Tclose(array_dt);
/* Perform the conversion */
if (H5Tconvert(st, dt, (hsize_t)nelmts, buf, bkg, H5P_DEFAULT)<0)
goto error;
/* Compare results */
for (i=0; i<nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
d_ptr = ((struct dt*)buf) + i;
if (s_ptr->a != d_ptr->a ||
s_ptr->b != d_ptr->b ||
s_ptr->c[0] != d_ptr->c[0] ||
s_ptr->c[1] != d_ptr->c[1] ||
s_ptr->c[2] != d_ptr->c[2] ||
s_ptr->c[3] != d_ptr->c[3] ||
s_ptr->d != d_ptr->d ||
s_ptr->e != d_ptr->e) {
H5_FAILED();
printf(" i=%d\n", i);
printf(" src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2],
s_ptr->c[3], s_ptr->d, s_ptr->e);
printf(" dst={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
d_ptr->a, d_ptr->b, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2],
d_ptr->c[3], d_ptr->d, d_ptr->e);
goto error;
}
}
/* Release resources */
free(buf);
free(bkg);
free(orig);
if (H5Tclose(st)<0 || H5Tclose(dt)<0) goto error;
PASSED();
reset_hdf5();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_5
*
* Purpose: Many versions of HDF5 have a bug in the optimized compound
* datatype conversion function, H5T_conv_struct_opt(), which
* is triggered when the top-level type contains a struct
* which must undergo a conversion.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, June 17, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_5(void)
{
typedef struct {
char name[16];
short tdim;
short coll_ids[4];
} src_type_t;
typedef struct {
char name[16];
short tdim;
int coll_ids[4];
} dst_type_t;
hsize_t dims[1] = {4};
hid_t src_type, dst_type, short_array, int_array, string;
hid_t array_dt;
src_type_t src[2] = {{"one", 102, {104, 105, 106, 107}},
{"two", 202, {204, 205, 206, 207}}};
dst_type_t *dst;
void *buf = calloc(2, sizeof(dst_type_t));
void *bkg = calloc(2, sizeof(dst_type_t));
#if 1
TESTING("optimized struct converter");
#else
/* Turn off optimized compound conversion function to work around
* the problem. */
TESTING("optimized struct converter bug workaround");
H5Tunregister(H5T_PERS_DONTCARE, "struct(opt)", -1, -1, NULL);
#endif
/* Build datatypes */
short_array = H5Tcreate(H5T_COMPOUND, 4*sizeof(short));
array_dt=H5Tarray_create(H5T_NATIVE_SHORT, 1, dims, NULL);
H5Tinsert(short_array, "_", 0, array_dt);
H5Tclose(array_dt);
int_array = H5Tcreate(H5T_COMPOUND, 4*sizeof(int));
array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, dims, NULL);
H5Tinsert(int_array, "_", 0, array_dt);
H5Tclose(array_dt);
string = H5Tcopy(H5T_C_S1);
H5Tset_size(string, 16);
src_type = H5Tcreate(H5T_COMPOUND, sizeof(src_type_t));
H5Tinsert(src_type, "name", HOFFSET(src_type_t, name), string );
H5Tinsert(src_type, "tdim", HOFFSET(src_type_t, tdim), H5T_NATIVE_SHORT);
H5Tinsert(src_type, "coll_ids", HOFFSET(src_type_t, coll_ids), short_array );
dst_type = H5Tcreate(H5T_COMPOUND, sizeof(dst_type_t));
H5Tinsert(dst_type, "name", HOFFSET(dst_type_t, name), string );
H5Tinsert(dst_type, "tdim", HOFFSET(dst_type_t, tdim), H5T_NATIVE_SHORT);
H5Tinsert(dst_type, "coll_ids", HOFFSET(dst_type_t, coll_ids), int_array );
/* Convert data */
memcpy(buf, src, sizeof(src));
H5Tconvert(src_type, dst_type, (hsize_t)2, buf, bkg, H5P_DEFAULT);
dst = (dst_type_t*)buf;
/* Cleanup */
H5Tclose(src_type);
H5Tclose(dst_type);
H5Tclose(string);
H5Tclose(short_array);
H5Tclose(int_array);
/* Check results */
if (memcmp(src[1].name, dst[1].name, sizeof(src[1].name)) ||
src[1].tdim!=dst[1].tdim ||
src[1].coll_ids[0]!=dst[1].coll_ids[0] ||
src[1].coll_ids[1]!=dst[1].coll_ids[1] ||
src[1].coll_ids[2]!=dst[1].coll_ids[2] ||
src[1].coll_ids[3]!=dst[1].coll_ids[3]) {
H5_FAILED();
return 1;
}
/* Free memory buffers */
free(buf);
free(bkg);
PASSED();
return 0;
}
/*-------------------------------------------------------------------------
* Function: test_compound_6
*
* Purpose: Tests compound conversions when the destination has the same
* fields as the source but one or more of the fields are
* larger.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Quincey Koziol
* Wednesday, December 13, 2000
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_6(void)
{
struct st {
short b;
short d;
} *s_ptr;
struct dt {
long b;
long d;
} *d_ptr;
const int nelmts = NTESTELEM;
unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
hid_t st=-1, dt=-1;
int i;
TESTING("compound element growing");
/* Sizes should be the same, but be careful just in case */
buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
bkg = malloc(nelmts * sizeof(struct dt));
orig = malloc(nelmts * sizeof(struct st));
for (i=0; i<nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
s_ptr->b = (i*8+1) & 0x7fff;
s_ptr->d = (i*8+6) & 0x7fff;
}
memcpy(buf, orig, nelmts*sizeof(struct st));
/* Build hdf5 datatypes */
if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_SHORT)<0 ||
H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_SHORT)<0) {
H5_FAILED();
goto error;
}
if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
H5Tinsert(dt, "b", HOFFSET(struct dt, b), H5T_NATIVE_LONG)<0 ||
H5Tinsert(dt, "d", HOFFSET(struct dt, d), H5T_NATIVE_LONG)<0) {
H5_FAILED();
goto error;
}
/* Perform the conversion */
if (H5Tconvert(st, dt, (hsize_t)nelmts, buf, bkg, H5P_DEFAULT)<0) {
H5_FAILED();
goto error;
}
/* Compare results */
for (i=0; i<nelmts; i++) {
s_ptr = ((struct st*)orig) + i;
d_ptr = ((struct dt*)buf) + i;
if (s_ptr->b != d_ptr->b ||
s_ptr->d != d_ptr->d) {
H5_FAILED();
printf(" i=%d\n", i);
printf(" src={b=%d, d=%d\n",
(int)s_ptr->b, (int)s_ptr->d);
printf(" dst={b=%ld, d=%ld\n",
d_ptr->b, d_ptr->d);
goto error;
}
}
/* Release resources */
free(buf);
free(bkg);
free(orig);
if (H5Tclose(st)<0 || H5Tclose(dt)<0) {
H5_FAILED();
goto error;
}
PASSED();
reset_hdf5();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_compound_7
*
* Purpose: Tests inserting fields into compound datatypes when the field
* overlaps the end of the compound datatype.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Quincey Koziol
* Tuesday, December 18, 2001
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_compound_7(void)
{
struct s1 {
int a;
float b;
long c;
};
struct s2 {
int a;
float b;
long c;
double d;
};
hid_t tid1,tid2;
herr_t ret;
TESTING("compound element insertion");
if((tid1= H5Tcreate( H5T_COMPOUND, sizeof(struct s1)))<0) {
H5_FAILED();
printf("Can't create datatype!\n");
goto error;
} /* end if */
if(H5Tinsert(tid1,"a",HOFFSET(struct s1,a),H5T_NATIVE_INT)<0) {
H5_FAILED();
printf("Can't insert field 'a'\n");
goto error;
} /* end if */
if(H5Tinsert(tid1,"b",HOFFSET(struct s1,b),H5T_NATIVE_FLOAT)<0) {
H5_FAILED();
printf("Can't insert field 'b'\n");
goto error;
} /* end if */
if(H5Tinsert(tid1,"c",HOFFSET(struct s1,c),H5T_NATIVE_LONG)<0) {
H5_FAILED();
printf("Can't insert field 'c'\n");
goto error;
} /* end if */
if(H5Tget_size(tid1)!=sizeof(struct s1)) {
H5_FAILED();
printf("Incorrect size for struct 1\n");
goto error;
} /* end if */
if((tid2= H5Tcopy(tid1))<0) {
H5_FAILED();
printf("Can't copy datatype\n");
goto error;
} /* end if */
if(H5Tget_size(tid2)==sizeof(struct s2)) {
H5_FAILED();
printf("Incorrect size for struct 2\n");
goto error;
} /* end if */
/* Should not be able to insert field past end of compound datatype */
H5E_BEGIN_TRY {
ret=H5Tinsert(tid2,"d",HOFFSET(struct s2,d),H5T_NATIVE_DOUBLE);
} H5E_END_TRY;
if(ret>=0) {
H5_FAILED();
printf("Inserted field 'd'?\n");
goto error;
} /* end if */
/* Release resources */
if (H5Tclose(tid1)<0 || H5Tclose(tid2)<0) {
H5_FAILED();
printf("Can't close datatypes\n");
goto error;
} /* end if */
PASSED();
reset_hdf5();
return 0;
error:
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_query
*
* Purpose: Tests query functions of compound and enumeration types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Thursday, April 4, 2002
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_query(void)
{
struct s1 {
int a;
float b;
long c;
double d;
};
hid_t file=-1, tid1=-1, tid2=-1;
char filename[1024];
char compnd_type[]="Compound_type", enum_type[]="Enum_type";
short enum_val;
TESTING("query functions of compound and enumeration types");
/* Create File */
h5_fixname(FILENAME[2], H5P_DEFAULT, filename, sizeof filename);
if((file=H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT))<0)
goto error;
/* Create a compound datatype */
if((tid1=H5Tcreate(H5T_COMPOUND, sizeof(struct s1)))<0) {
H5_FAILED();
printf("Can't create datatype!\n");
goto error;
} /* end if */
if(H5Tinsert(tid1, "a", HOFFSET(struct s1, a), H5T_NATIVE_INT)<0) {
H5_FAILED();
printf("Can't insert field 'a'\n");
goto error;
} /* end if */
if(H5Tinsert(tid1, "b", HOFFSET(struct s1, b), H5T_NATIVE_FLOAT)<0) {
H5_FAILED();
printf("Can't insert field 'b'\n");
goto error;
} /* end if */
if(H5Tinsert(tid1, "c", HOFFSET(struct s1, c), H5T_NATIVE_LONG)<0) {
H5_FAILED();
printf("Can't insert field 'c'\n");
goto error;
} /* end if */
if(H5Tinsert(tid1, "d", HOFFSET(struct s1, d), H5T_NATIVE_DOUBLE)<0) {
H5_FAILED();
printf("Can't insert field 'd'\n");
goto error;
} /* end if */
/* Create a enumerate datatype */
if((tid2=H5Tcreate(H5T_ENUM, sizeof(short)))<0) {
H5_FAILED();
printf("Can't create enumerate type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "RED", (enum_val=0,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "GREEN", (enum_val=1,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "BLUE", (enum_val=2,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "ORANGE", (enum_val=3,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
if(H5Tenum_insert(tid2, "YELLOW", (enum_val=4,&enum_val))<0) {
H5_FAILED();
printf("Can't insert field into enumeration type\n");
goto error;
} /* end if */
/* Query member number and member index by name, for compound type. */
if(H5Tget_nmembers(tid1)!=4) {
H5_FAILED();
printf("Can't get member number\n");
goto error;
} /* end if */
if(H5Tget_member_index(tid1, "c")!=2) {
H5_FAILED();
printf("Can't get correct index number\n");
goto error;
} /* end if */
/* Query member number and member index by name, for enumeration type. */
if(H5Tget_nmembers(tid2)!=5) {
H5_FAILED();
printf("Can't get member number\n");
goto error;
} /* end if */
if(H5Tget_member_index(tid2, "ORANGE")!=3) {
H5_FAILED();
printf("Can't get correct index number\n");
goto error;
} /* end if */
/* Commit compound datatype and close it */
if(H5Tcommit(file, compnd_type, tid1)<0) {
H5_FAILED();
printf("Can't commit compound datatype\n");
goto error;
} /* end if */
if(H5Tclose(tid1)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
/* Commit enumeration datatype and close it */
if(H5Tcommit(file, enum_type, tid2)<0) {
H5_FAILED();
printf("Can't commit compound datatype\n");
goto error;
} /* end if */
if(H5Tclose(tid2)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
/* Open the dataytpe for query */
if((tid1=H5Topen(file, compnd_type))<0) {
H5_FAILED();
printf("Can't open datatype\n");
goto error;
} /* end if */
if((tid2=H5Topen(file, enum_type))<0) {
H5_FAILED();
printf("Can't open datatype\n");
goto error;
} /* end if */
/* Query member number and member index by name, for compound type */
if(H5Tget_nmembers(tid1)!=4) {
H5_FAILED();
printf("Can't get member number\n");
goto error;
} /* end if */
if(H5Tget_member_index(tid1, "c")!=2) {
H5_FAILED();
printf("Can't get correct index number\n");
goto error;
} /* end if */
/* Query member number and member index by name, for enumeration type */
if(H5Tget_nmembers(tid2)!=5) {
H5_FAILED();
printf("Can't get member number\n");
goto error;
} /* end if */
if(H5Tget_member_index(tid2, "ORANGE")!=3) {
H5_FAILED();
printf("Can't get correct index number\n");
goto error;
} /* end if */
/* Close data type and file */
if(H5Tclose(tid1)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
if(H5Tclose(tid2)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
} /* end if */
if(H5Fclose(file)<0) {
H5_FAILED();
printf("Can't close file\n");
goto error;
} /* end if */
PASSED();
return 0;
error:
H5E_BEGIN_TRY {
H5Tclose (tid1);
H5Tclose (tid2);
H5Fclose (file);
} H5E_END_TRY;
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_transient
*
* Purpose: Tests transient data types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, June 4, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_transient (hid_t fapl)
{
static hsize_t ds_size[2] = {10, 20};
hid_t file=-1, type=-1, space=-1, dset=-1, t2=-1;
char filename[1024];
herr_t status;
TESTING("transient data types");
h5_fixname(FILENAME[0], fapl, filename, sizeof filename);
if ((file=H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl))<0) {
goto error;
}
if ((space = H5Screate_simple (2, ds_size, ds_size))<0) goto error;
/* Predefined types cannot be modified or closed */
H5E_BEGIN_TRY {
status = H5Tset_precision (H5T_NATIVE_INT, 256);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
puts (" Predefined types should not be modifiable!");
goto error;
}
H5E_BEGIN_TRY {
status = H5Tclose (H5T_NATIVE_INT);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
puts (" Predefined types should not be closable!");
goto error;
}
/* Copying a predefined type results in a modifiable copy */
if ((type=H5Tcopy (H5T_NATIVE_INT))<0) goto error;
if (H5Tset_precision (type, 256)<0) goto error;
/* It should not be possible to create an attribute for a transient type */
H5E_BEGIN_TRY {
status = H5Acreate (type, "attr1", H5T_NATIVE_INT, space, H5P_DEFAULT);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
puts (" Attributes should not be allowed for transient types!");
goto error;
}
/* Create a dataset from a transient data type */
if (H5Tclose (type)<0) goto error;
if ((type = H5Tcopy (H5T_NATIVE_INT))<0) goto error;
if ((dset=H5Dcreate (file, "dset1", type, space, H5P_DEFAULT))<0)
goto error;
/* The type returned from a dataset should not be modifiable */
if ((t2 = H5Dget_type (dset))<0) goto error;
H5E_BEGIN_TRY {
status = H5Tset_precision (t2, 256);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
puts (" Dataset data types should not be modifiable!");
goto error;
}
if (H5Tclose (t2)<0) goto error;
/*
* Close the dataset and reopen it, testing that it's type is still
* read-only.
*/
if (H5Dclose (dset)<0) goto error;
if ((dset=H5Dopen (file, "dset1"))<0) goto error;
if ((t2 = H5Dget_type (dset))<0) goto error;
H5E_BEGIN_TRY {
status = H5Tset_precision (t2, 256);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
puts (" Dataset data types should not be modifiable!");
goto error;
}
if (H5Tclose (t2)<0) goto error;
/*
* Get the dataset data type by applying H5Tcopy() to the dataset. The
* result should be modifiable.
*/
if ((t2=H5Tcopy (dset))<0) goto error;
if (H5Tset_precision (t2, 256)<0) goto error;
if (H5Tclose (t2)<0) goto error;
H5Dclose (dset);
H5Fclose (file);
H5Tclose (type);
H5Sclose (space);
PASSED();
return 0;
error:
H5E_BEGIN_TRY {
H5Tclose (t2);
H5Tclose (type);
H5Sclose (space);
H5Dclose (dset);
H5Fclose (file);
} H5E_END_TRY;
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_named
*
* Purpose: Tests named data types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Monday, June 1, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_named (hid_t fapl)
{
hid_t file=-1, type=-1, space=-1, dset=-1, t2=-1, attr1=-1;
herr_t status;
static hsize_t ds_size[2] = {10, 20};
hsize_t i;
unsigned attr_data[10][20];
char filename[1024];
TESTING("named data types");
h5_fixname(FILENAME[1], fapl, filename, sizeof filename);
if ((file=H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl))<0) {
goto error;
}
if ((space = H5Screate_simple (2, ds_size, ds_size))<0) goto error;
/* Predefined types cannot be committed */
H5E_BEGIN_TRY {
status = H5Tcommit (file, "test_named_1 (should not exist)",
H5T_NATIVE_INT);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
puts (" Predefined types should not be committable!");
goto error;
}
/* Copy a predefined data type and commit the copy */
if ((type = H5Tcopy (H5T_NATIVE_INT))<0) goto error;
if (H5Tcommit (file, "native-int", type)<0) goto error;
if ((status=H5Tcommitted (type))<0) goto error;
if (0==status) {
H5_FAILED();
puts (" H5Tcommitted() returned false!");
goto error;
}
/* We should not be able to modify a type after it has been committed. */
H5E_BEGIN_TRY {
status = H5Tset_precision (type, 256);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
puts (" Committed type is not constant!");
goto error;
}
/* We should not be able to re-commit a committed type */
H5E_BEGIN_TRY {
status = H5Tcommit(file, "test_named_2 (should not exist)", type);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
puts (" Committed types should not be recommitted!");
goto error;
}
/* It should be possible to define an attribute for the named type */
if ((attr1=H5Acreate (type, "attr1", H5T_NATIVE_UCHAR, space,
H5P_DEFAULT))<0) goto error;
for (i=0; i<ds_size[0]*ds_size[1]; i++) attr_data[0][i] = (int)i;/*tricky*/
if (H5Awrite(attr1, H5T_NATIVE_UINT, attr_data)<0) goto error;
if (H5Aclose (attr1)<0) goto error;
/*
* Copying a committed type should result in a transient type which is
* not locked.
*/
if ((t2 = H5Tcopy (type))<0) goto error;
if ((status=H5Tcommitted (t2))<0) goto error;
if (status) {
H5_FAILED();
puts (" Copying a named type should result in a transient type!");
goto error;
}
if (H5Tset_precision (t2, 256)<0) goto error;
if (H5Tclose (t2)<0) goto error;
/*
* Close the committed type and reopen it. It should return a named type.
*/
if (H5Tclose (type)<0) goto error;
if ((type=H5Topen (file, "native-int"))<0) goto error;
if ((status=H5Tcommitted (type))<0) goto error;
if (!status) {
H5_FAILED();
puts (" Opened named types should be named types!");
goto error;
}
/* Create a dataset that uses the named type */
if ((dset = H5Dcreate (file, "dset1", type, space, H5P_DEFAULT))<0) {
goto error;
}
/* Get the dataset's data type and make sure it's a named type */
if ((t2 = H5Dget_type (dset))<0) goto error;
if ((status=H5Tcommitted (t2))<0) goto error;
if (!status) {
H5_FAILED();
puts (" Dataset type should be a named type!");
goto error;
}
/* Close the dataset, then close its type, then reopen the dataset */
if (H5Dclose (dset)<0) goto error;
if (H5Tclose (t2)<0) goto error;
if ((dset = H5Dopen (file, "dset1"))<0) goto error;
/* Get the dataset's type and make sure it's named */
if ((t2 = H5Dget_type (dset))<0) goto error;
if ((status=H5Tcommitted (t2))<0) goto error;
if (!status) {
H5_FAILED();
puts (" Dataset type should be a named type!");
goto error;
}
/*
* Close the dataset and create another with the type returned from the
* first dataset.
*/
if (H5Dclose (dset)<0) goto error;
if ((dset=H5Dcreate (file, "dset2", t2, space, H5P_DEFAULT))<0) {
goto error;
}
/* Reopen the second dataset and make sure the type is shared */
if (H5Tclose (t2)<0) goto error;
if (H5Dclose (dset)<0) goto error;
if ((dset = H5Dopen (file, "dset2"))<0) goto error;
if ((t2 = H5Dget_type (dset))<0) goto error;
if ((status=H5Tcommitted (t2))<0) goto error;
if (!status) {
H5_FAILED();
puts (" Dataset type should be a named type!");
goto error;
}
if (H5Tclose (t2)<0) goto error;
/*
* Get the dataset data type by applying H5Tcopy() to the dataset. The
* result should be modifiable.
*/
if ((t2=H5Tcopy (dset))<0) goto error;
if (H5Tset_precision (t2, 256)<0) goto error;
if (H5Tclose (t2)<0) goto error;
/* Clean up */
if (H5Dclose (dset)<0) goto error;
if (H5Tclose (type)<0) goto error;
if (H5Sclose (space)<0) goto error;
if (H5Fclose (file)<0) goto error;
PASSED();
return 0;
error:
H5E_BEGIN_TRY {
H5Tclose (t2);
H5Tclose (type);
H5Sclose (space);
H5Dclose (dset);
H5Fclose (file);
} H5E_END_TRY;
return 1;
}
/*-------------------------------------------------------------------------
* Function: mkstr
*
* Purpose: Create a new string data type
*
* Return: Success: New type
*
* Failure: -1
*
* Programmer: Robb Matzke
* Monday, August 10, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static hid_t
mkstr(size_t len, H5T_str_t strpad)
{
hid_t t;
if ((t=H5Tcopy(H5T_C_S1))<0) return -1;
if (H5Tset_size(t, len)<0) return -1;
if (H5Tset_strpad(t, strpad)<0) return -1;
return t;
}
/*-------------------------------------------------------------------------
* Function: test_conv_str_1
*
* Purpose: Test string conversions
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Monday, August 10, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_str_1(void)
{
char *buf=NULL;
hid_t src_type, dst_type;
TESTING("string conversions");
/*
* Convert a null-terminated string to a shorter and longer null
* terminated string.
*/
src_type = mkstr(10, H5T_STR_NULLTERM);
dst_type = mkstr(5, H5T_STR_NULLTERM);
buf = calloc(2, 10);
memcpy(buf, "abcdefghi\0abcdefghi\0", 20);
if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcd\0abcd\0abcdefghi\0", 20)) {
H5_FAILED();
puts(" Truncated C-string test failed");
goto error;
}
if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcd\0\0\0\0\0\0abcd\0\0\0\0\0\0", 20)) {
H5_FAILED();
puts(" Extended C-string test failed");
goto error;
}
free(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* Convert a null padded string to a shorter and then longer string.
*/
src_type = mkstr(10, H5T_STR_NULLPAD);
dst_type = mkstr(5, H5T_STR_NULLPAD);
buf = calloc(2, 10);
memcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcdeabcdeabcdefghij", 20)) {
H5_FAILED();
puts(" Truncated C buffer test failed");
goto error;
}
if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
H5_FAILED();
puts(" Extended C buffer test failed");
goto error;
}
free(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* Convert a space-padded string to a shorter and then longer string.
*/
src_type = mkstr(10, H5T_STR_SPACEPAD);
dst_type = mkstr(5, H5T_STR_SPACEPAD);
buf = calloc(2, 10);
memcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcdeabcdeabcdefghij", 20)) {
H5_FAILED();
puts(" Truncated Fortran-string test failed");
goto error;
}
if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcde abcde ", 20)) {
H5_FAILED();
puts(" Extended Fortran-string test failed");
goto error;
}
free(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* What happens if a null-terminated string is not null terminated? If
* the conversion is to an identical string then nothing happens but if
* the destination is a different size or type of string then the right
* thing should happen.
*/
src_type = mkstr(10, H5T_STR_NULLTERM);
dst_type = mkstr(10, H5T_STR_NULLTERM);
buf = calloc(2, 10);
memcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcdefghijabcdefghij", 20)) {
H5_FAILED();
puts(" Non-terminated string test 1");
goto error;
}
H5Tclose(dst_type);
dst_type = mkstr(5, H5T_STR_NULLTERM);
memcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcd\0abcd\0abcdefghij", 20)) {
H5_FAILED();
puts(" Non-terminated string test 2");
goto error;
}
memcpy(buf, "abcdeabcdexxxxxxxxxx", 20);
if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
H5_FAILED();
puts(" Non-terminated string test 2");
goto error;
}
free(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* Test C string to Fortran and vice versa.
*/
src_type = mkstr(10, H5T_STR_NULLTERM);
dst_type = mkstr(10, H5T_STR_SPACEPAD);
buf = calloc(2, 10);
memcpy(buf, "abcdefghi\0abcdefghi\0", 20);
if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcdefghi abcdefghi ", 20)) {
H5_FAILED();
puts(" C string to Fortran test 1");
goto error;
}
if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcdefghi\0abcdefghi\0", 20)) {
H5_FAILED();
puts(" Fortran to C string test 1");
goto error;
}
if (H5Tclose(dst_type)<0) goto error;
dst_type = mkstr(5, H5T_STR_SPACEPAD);
memcpy(buf, "abcdefgh\0\0abcdefgh\0\0", 20);
if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcdeabcdeabcdefgh\0\0", 20)) {
H5_FAILED();
puts(" C string to Fortran test 2");
goto error;
}
if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
H5_FAILED();
puts(" Fortran to C string test 2");
goto error;
}
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
src_type = mkstr(5, H5T_STR_NULLTERM);
dst_type = mkstr(10, H5T_STR_SPACEPAD);
memcpy(buf, "abcd\0abcd\0xxxxxxxxxx", 20);
if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcd abcd ", 20)) {
H5_FAILED();
puts(" C string to Fortran test 3");
goto error;
}
if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcd\0abcd\0abcd ", 20)) {
H5_FAILED();
puts(" Fortran to C string test 3");
goto error;
}
free(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
/*
* Test C buffer to Fortran and vice versa.
*/
src_type = mkstr(10, H5T_STR_NULLPAD);
dst_type = mkstr(10, H5T_STR_SPACEPAD);
buf = calloc(2, 10);
memcpy(buf, "abcdefghijabcdefghij", 20);
if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcdefghijabcdefghij", 20)) {
H5_FAILED();
puts(" C buffer to Fortran test 1");
goto error;
}
if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcdefghijabcdefghij", 20)) {
H5_FAILED();
puts(" Fortran to C buffer test 1");
goto error;
}
if (H5Tclose(dst_type)<0) goto error;
dst_type = mkstr(5, H5T_STR_SPACEPAD);
memcpy(buf, "abcdefgh\0\0abcdefgh\0\0", 20);
if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcdeabcdeabcdefgh\0\0", 20)) {
H5_FAILED();
puts(" C buffer to Fortran test 2");
goto error;
}
if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
H5_FAILED();
puts(" Fortran to C buffer test 2");
goto error;
}
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
src_type = mkstr(5, H5T_STR_NULLPAD);
dst_type = mkstr(10, H5T_STR_SPACEPAD);
memcpy(buf, "abcd\0abcd\0xxxxxxxxxx", 20);
if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcd abcd ", 20)) {
H5_FAILED();
puts(" C buffer to Fortran test 3");
goto error;
}
if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
if (memcmp(buf, "abcd\0abcd\0abcd ", 20)) {
H5_FAILED();
puts(" Fortran to C buffer test 3");
goto error;
}
free(buf);
if (H5Tclose(src_type)<0) goto error;
if (H5Tclose(dst_type)<0) goto error;
PASSED();
reset_hdf5();
return 0;
error:
reset_hdf5();
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_conv_str_2
*
* Purpose: Tests C-to-Fortran and Fortran-to-C string conversion speed.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Monday, August 10, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_str_2(void)
{
char *buf=NULL, s[80];
hid_t c_type, f_type;
const size_t nelmts = NTESTELEM, ntests=NTESTS;
size_t i, j, nchars;
int ret_value = 1;
/*
* Initialize types and buffer.
*/
c_type = mkstr(8, H5T_STR_NULLPAD);
f_type = mkstr(8, H5T_STR_SPACEPAD);
buf = calloc(nelmts, 8);
for (i=0; i<nelmts; i++) {
nchars = rand() % 8;
for (j=0; j<nchars; j++) {
buf[i*8+j] = 'a' + rand()%26;
}
while (j<nchars) buf[i*8+j++] = '\0';
}
/* Do the conversions */
for (i=0; i<ntests; i++) {
if (ntests>1) {
sprintf(s, "Testing random string conversion speed (test %d/%d)",
(int)(i+1), (int)ntests);
} else {
sprintf(s, "Testing random string conversion speed");
}
printf("%-70s", s);
fflush(stdout);
if (H5Tconvert(c_type, f_type, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error;
if (H5Tconvert(f_type, c_type, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error;
PASSED();
}
ret_value = 0;
error:
if (buf) free(buf);
reset_hdf5();
return ret_value;
}
/*-------------------------------------------------------------------------
* Function: test_conv_enum_1
*
* Purpose: Test conversion speed for enum data types
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Tuesday, January 5, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_enum_1(void)
{
const int nelmts=NTESTELEM, ntests=NTESTS;
int i, val, *buf=NULL;
hid_t t1, t2;
char s[80];
int ret_value = 1;
/* Build the data types */
t1 = H5Tcreate(H5T_ENUM, sizeof(int));
t2 = H5Tenum_create(H5T_NATIVE_INT);
s[1] = '\0';
for (i=0; i<26; i++) {
s[0] = 'A'+i;
H5Tenum_insert(t1, s, &i);
H5Tenum_insert(t2, s, (val=i*1000+i, &val));
}
/* Initialize the buffer */
buf = malloc(nelmts*MAX(H5Tget_size(t1), H5Tget_size(t2)));
for (i=0; i<nelmts; i++) buf[i] = rand() % 26;
/* Conversions */
for (i=0; i<ntests; i++) {
if (ntests>1) {
sprintf(s, "Testing random enum conversion O(N) (test %d/%d)",
i+1, ntests);
} else {
sprintf(s, "Testing random enum conversion O(N)");
}
printf("%-70s", s);
fflush(stdout);
if (H5Tconvert(t1, t2, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error;
PASSED();
}
for (i=0; i<ntests; i++) {
if (ntests>1) {
sprintf(s, "Testing random enum conversion O(N log N) "
"(test %d/%d)", i+1, ntests);
} else {
sprintf(s, "Testing random enum conversion O(N log N)");
}
printf("%-70s", s);
fflush(stdout);
if (H5Tconvert(t2, t1, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error;
PASSED();
}
ret_value = 0;
error:
H5Tclose(t1);
H5Tclose(t2);
if (buf) free(buf);
reset_hdf5();
return ret_value;
}
/*-------------------------------------------------------------------------
* Function: test_conv_enum_2
*
* Purpose: Tests enumeration conversions where source isn't a native type.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke, LLNL, 2003-06-09
*
* Modifications:
*-------------------------------------------------------------------------
*/
static int
test_conv_enum_2(void)
{
hid_t srctype=-1, dsttype=-1, oddsize=-1;
int *data=NULL, i, nerrors=0;
const char *mname[] = { "RED",
"GREEN",
"BLUE",
"YELLOW",
"PINK",
"PURPLE",
"ORANGE",
"WHITE" };
TESTING("non-native enumeration type conversion");
/* Source enum type */
oddsize = H5Tcopy(H5T_STD_I32BE);
H5Tset_size(oddsize, 3); /*reduce to 24 bits, not corresponding to any native size*/
srctype = H5Tenum_create(oddsize);
for (i=7; i>=0; --i) {
char pattern[3];
pattern[2] = i;
pattern[0] = pattern[1] = 0;
H5Tenum_insert(srctype, mname[i], pattern);
}
/* Destination enum type */
dsttype = H5Tenum_create(H5T_NATIVE_INT);
assert(H5Tget_size(dsttype)>H5Tget_size(srctype));
for (i=0; i<8; i++)
H5Tenum_insert(dsttype, mname[i], &i);
/* Source data */
data = malloc(NTESTELEM*sizeof(int));
for (i=0; i<NTESTELEM; i++) {
((char*)data)[i*3+2] = i % 8;
((char*)data)[i*3+0] = 0;
((char*)data)[i*3+1] = 0;
}
/* Convert to destination type */
H5Tconvert(srctype, dsttype, (hsize_t)NTESTELEM, data, NULL, H5P_DEFAULT);
/* Check results */
for (i=0; i<NTESTELEM; i++) {
if (data[i] != i%8) {
if (!nerrors++) {
H5_FAILED();
printf("element %d is %d but should have been %d\n",
i, data[i], i%8);
}
}
}
/* Cleanup */
free(data);
H5Tclose(srctype);
H5Tclose(dsttype);
H5Tclose(oddsize);
/* Failure */
if (nerrors) {
printf("total of %d conversion errors out of %d elements for enums\n",
nerrors, NTESTELEM);
return 1;
}
PASSED();
return 0;
}
/*-------------------------------------------------------------------------
* Function: test_conv_bitfield
*
* Purpose: Test bitfield conversions.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, May 20, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_bitfield(void)
{
unsigned char buf[4];
hid_t st=-1, dt=-1;
TESTING("bitfield conversions");
/*
* First test a simple bitfield conversion:
* 1010101010101010
* ________________1010101010101010
*/
st = H5Tcopy(H5T_STD_B16LE);
dt = H5Tcopy(H5T_STD_B32LE);
buf[0] = buf[1] = 0xAA;
buf[2] = buf[3] = 0x55; /*irrelevant*/
if (H5Tconvert(st, dt, (hsize_t)1, buf, NULL, H5P_DEFAULT)<0) goto error;
if (buf[0]!=0xAA || buf[1]!=0xAA || buf[2]!=0 || buf[3]!=0) {
H5_FAILED();
printf(" s=0xaaaa, d=0x%02x%02x%02x%02x (test 1)\n",
buf[3], buf[2], buf[1], buf[0]);
goto error;
}
/*
* Test2: Offset a 12-byte value in the middle of a 16 and 32 byte
* field.
* __10 1010 1010 10__
* ____ ____ __10 1010 1010 10__ ____ ____
*/
H5Tset_precision(st, 12);
H5Tset_offset(st, 2);
H5Tset_precision(dt, 12);
H5Tset_offset(dt, 10);
buf[0] = 0xA8; buf[1] = 0x2A; buf[2] = buf[3] = 0;
if (H5Tconvert(st, dt, (hsize_t)1, buf, NULL, H5P_DEFAULT)<0) goto error;
if (buf[0]!=0 || buf[1]!=0xA8 || buf[2]!=0x2A || buf[3]!=0) {
H5_FAILED();
printf(" s=0x2AA8 d=0x%02x%02x%02x%02x (test 2)\n",
buf[3], buf[2], buf[1], buf[0]);
goto error;
}
/*
* Same as previous test except unused bits of the destination will
* be filled with ones.
*/
H5Tset_pad(dt, H5T_PAD_ONE, H5T_PAD_ONE);
buf[0] = 0xA8; buf[1] = 0x2A; buf[2] = buf[3] = 0;
if (H5Tconvert(st, dt, (hsize_t)1, buf, NULL, H5P_DEFAULT)<0) goto error;
if (buf[0]!=0xff || buf[1]!=0xAB || buf[2]!=0xEA || buf[3]!=0xff) {
H5_FAILED();
printf(" s=0x2AA8 d=0x%02x%02x%02x%02x (test 3)\n",
buf[3], buf[2], buf[1], buf[0]);
goto error;
}
H5Tclose(st);
H5Tclose(dt);
PASSED();
reset_hdf5();
return 0;
error:
H5Tclose(st);
H5Tclose(dt);
reset_hdf5();
return 1;
}
/*-------------------------------------------------------------------------
* Function: convert_opaque
*
* Purpose: A fake opaque conversion functions
*
* Return: Success: 0
*
* Failure: -1
*
* Programmer: Robb Matzke
* Friday, June 4, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
convert_opaque(hid_t UNUSED st, hid_t UNUSED dt, H5T_cdata_t *cdata,
hsize_t UNUSED nelmts, size_t UNUSED buf_stride,
size_t UNUSED bkg_stride, void UNUSED *_buf,
void UNUSED *bkg, hid_t UNUSED dset_xfer_plid)
{
if (H5T_CONV_CONV==cdata->command) num_opaque_conversions_g++;
return 0;
}
/*-------------------------------------------------------------------------
* Function: test_opaque
*
* Purpose: Test opaque datatypes
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Thursday, May 20, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_opaque(void)
{
#define OPAQUE_NELMTS 1000
hid_t st=-1, dt=-1;
herr_t status;
char buf[1]; /*not really used*/
int saved = num_opaque_conversions_g;
TESTING("opaque datatypes");
/* Build source and destination types */
if ((st=H5Tcreate(H5T_OPAQUE, 4))<0) goto error;
if (H5Tset_tag(st, "opaque source type")<0) goto error;
if ((dt=H5Tcreate(H5T_OPAQUE, 4))<0) goto error;
if (H5Tset_tag(dt, "opaque destination type")<0) goto error;
/* Make sure that we can't convert between the types yet */
H5E_BEGIN_TRY {
status = H5Tconvert(st, dt, (hsize_t)OPAQUE_NELMTS, buf, NULL, H5P_DEFAULT);
} H5E_END_TRY;
if (status>=0) {
H5_FAILED();
printf(" opaque conversion should have failed but succeeded\n");
goto error;
}
/* Register a conversion function */
if (H5Tregister(H5T_PERS_HARD, "o_test", st, dt, convert_opaque)<0)
goto error;
/* Try the conversion again, this time it should work */
if (H5Tconvert(st, dt, (hsize_t)OPAQUE_NELMTS, buf, NULL, H5P_DEFAULT)<0) goto error;
if (saved+1 != num_opaque_conversions_g) {
H5_FAILED();
printf(" unexpected number of opaque conversions\n");
goto error;
}
H5Tclose(st);
H5Tclose(dt);
PASSED();
return 0;
error:
if (st>0) H5Tclose(st);
if (dt>0) H5Tclose(dt);
H5_FAILED();
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_conv_int
*
* Purpose: Test atomic number conversions.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Wednesday, June 10, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int (void)
{
unsigned char byte[4];
/*---------------------------------------------------------------------
* Test some specific overflow/underflow cases.
*---------------------------------------------------------------------
*/
TESTING("integer overflow conversions");
/* (unsigned)0x80000000 -> (unsigned)0xffff */
byte[0] = byte[1] = byte[2] = 0;
byte[3] = 0x80;
if (H5Tconvert (H5T_STD_U32LE, H5T_STD_U16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) {
goto error;
}
if (byte[0]!=0xff || byte[1]!=0xff) {
H5_FAILED();
printf(" src: 0x80000000 unsigned\n");
printf(" dst: 0x%02x%02x unsigned\n", byte[1], byte[0]);
printf(" ans: 0xffff unsigned\n");
goto error;
}
/* (unsigned)0xffffffff -> (signed)0x7fff */
byte[0] = byte[1] = byte[2] = byte[3] = 0xff;
if (H5Tconvert (H5T_STD_U32LE, H5T_STD_I16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) {
goto error;
}
if (byte[0]!=0xff || byte[1]!=0x7f) {
H5_FAILED();
printf(" src: 0xffffffff unsigned\n");
printf(" dst: 0x%02x%02x signed\n", byte[1], byte[0]);
printf(" ans: 0x7fff signed\n");
goto error;
}
/* (signed)0xffffffff -> (unsigned)0x0000 */
byte[0] = byte[1] = byte[2] = byte[3] = 0xff;
if (H5Tconvert (H5T_STD_I32LE, H5T_STD_U16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) {
goto error;
}
if (byte[0]!=0x00 || byte[1]!=0x00) {
H5_FAILED();
printf(" src: 0xffffffff signed\n");
printf(" dst: 0x%02x%02x unsigned\n", byte[1], byte[0]);
printf(" ans: 0x0000 unsigned\n");
goto error;
}
/* (signed)0x7fffffff -> (unsigned)0xffff */
byte[0] = byte[1] = byte[2] = 0xff;
byte[3] = 0x7f;
if (H5Tconvert (H5T_STD_I32LE, H5T_STD_U16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) {
goto error;
}
if (byte[0]!=0xff || byte[1]!=0xff) {
H5_FAILED();
printf(" src: 0x7fffffff signed\n");
printf(" dst: 0x%02x%02x unsigned\n", byte[1], byte[0]);
printf(" ans: 0xffff unsigned\n");
goto error;
}
/* (signed)0x7fffffff -> (signed)0x7fff */
byte[0] = byte[1] = byte[2] = 0xff;
byte[3] = 0x7f;
if (H5Tconvert (H5T_STD_I32LE, H5T_STD_I16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) {
goto error;
}
if (byte[0]!=0xff || byte[1]!=0x7f) {
H5_FAILED();
printf(" src: 0x7fffffff signed\n");
printf(" dst: 0x%02x%02x signed\n", byte[1], byte[0]);
printf(" ans: 0x7fff signed\n");
goto error;
}
/* (signed)0xbfffffff -> (signed)0x8000 */
byte[0] = byte[1] = byte[2] = 0xff;
byte[3] = 0xbf;
if (H5Tconvert (H5T_STD_I32LE, H5T_STD_I16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) {
goto error;
}
if (byte[0]!=0x00 || byte[1]!=0x80) {
H5_FAILED();
printf(" src: 0xbfffffff signed\n");
printf(" dst: 0x%02x%02x signed\n", byte[1], byte[0]);
printf(" ans: 0x8000 signed\n");
goto error;
}
PASSED();
reset_hdf5();
return 0;
error:
reset_hdf5();
return 1;
}
/*-------------------------------------------------------------------------
* Function: test_conv_int_1
*
* Purpose: Test conversion of random integer values from SRC to DST.
* These types should be any combination of:
*
* H5T_NATIVE_SCHAR H5T_NATIVE_UCHAR
* H5T_NATIVE_SHORT H5T_NATIVE_USHORT
* H5T_NATIVE_INT H5T_NATIVE_UINT
* H5T_NATIVE_LONG H5T_NATIVE_ULONG
* H5T_NATIVE_LLONG H5T_NATIVE_ULLONG
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Monday, November 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int_1(const char *name, hid_t src, hid_t dst)
{
const size_t ntests=NTESTS; /*number of tests */
const size_t nelmts=NTESTELEM; /*num values per test */
const size_t max_fails=8; /*max number of failures*/
size_t fails_all_tests=0; /*number of failures */
size_t fails_this_test; /*fails for this test */
char str[256]; /*hello string */
int_t src_type, dst_type; /*data types */
const char *src_type_name=NULL; /*source type name */
const char *dst_type_name=NULL; /*destination type name */
int endian; /*machine endianess */
size_t src_size, dst_size; /*type sizes */
unsigned char *buf=NULL; /*buffer for conversion */
unsigned char *saved=NULL; /*original values */
size_t i, j, k; /*counters */
unsigned char *hw=NULL; /*hardware conv result */
unsigned char src_bits[32]; /*src value in LE order */
unsigned char dst_bits[32]; /*dest value in LE order*/
size_t src_nbits; /*source length in bits */
size_t dst_nbits; /*dst length in bits */
void *aligned=NULL; /*aligned temp buffer */
signed char hw_char;
unsigned char hw_uchar;
short hw_short;
unsigned short hw_ushort;
int hw_int;
unsigned hw_uint;
long hw_long;
unsigned long hw_ulong;
long_long hw_llong;
unsigned long_long hw_ullong;
/* What are the names of the source and destination types */
if (H5Tequal(src, H5T_NATIVE_SCHAR)) {
src_type_name = "signed char";
src_type = INT_CHAR;
} else if (H5Tequal(src, H5T_NATIVE_UCHAR)) {
src_type_name = "unsigned char";
src_type = INT_UCHAR;
} else if (H5Tequal(src, H5T_NATIVE_SHORT)) {
src_type_name = "short";
src_type = INT_SHORT;
} else if (H5Tequal(src, H5T_NATIVE_USHORT)) {
src_type_name = "unsigned short";
src_type = INT_USHORT;
} else if (H5Tequal(src, H5T_NATIVE_INT)) {
src_type_name = "int";
src_type = INT_INT;
} else if (H5Tequal(src, H5T_NATIVE_UINT)) {
src_type_name = "unsigned int";
src_type = INT_UINT;
} else if (H5Tequal(src, H5T_NATIVE_LONG)) {
src_type_name = "long";
src_type = INT_LONG;
} else if (H5Tequal(src, H5T_NATIVE_ULONG)) {
src_type_name = "unsigned long";
src_type = INT_ULONG;
} else if (H5Tequal(src, H5T_NATIVE_LLONG)) {
src_type_name = "long long";
src_type = INT_LLONG;
} else if (H5Tequal(src, H5T_NATIVE_ULLONG)) {
src_type_name = "unsigned long long";
src_type = INT_ULLONG;
} else {
src_type_name = "UNKNOWN";
src_type = INT_OTHER;
}
if (H5Tequal(dst, H5T_NATIVE_SCHAR)) {
dst_type_name = "signed char";
dst_type = INT_CHAR;
} else if (H5Tequal(dst, H5T_NATIVE_UCHAR)) {
dst_type_name = "unsigned char";
dst_type = INT_UCHAR;
} else if (H5Tequal(dst, H5T_NATIVE_SHORT)) {
dst_type_name = "short";
dst_type = INT_SHORT;
} else if (H5Tequal(dst, H5T_NATIVE_USHORT)) {
dst_type_name = "unsigned short";
dst_type = INT_USHORT;
} else if (H5Tequal(dst, H5T_NATIVE_INT)) {
dst_type_name = "int";
dst_type = INT_INT;
} else if (H5Tequal(dst, H5T_NATIVE_UINT)) {
dst_type_name = "unsigned int";
dst_type = INT_UINT;
} else if (H5Tequal(dst, H5T_NATIVE_LONG)) {
dst_type_name = "long";
dst_type = INT_LONG;
} else if (H5Tequal(dst, H5T_NATIVE_ULONG)) {
dst_type_name = "unsigned long";
dst_type = INT_ULONG;
} else if (H5Tequal(dst, H5T_NATIVE_LLONG)) {
dst_type_name = "long long";
dst_type = INT_LLONG;
} else if (H5Tequal(dst, H5T_NATIVE_ULLONG)) {
dst_type_name = "unsigned long long";
dst_type = INT_ULLONG;
} else {
dst_type_name = "UNKNOWN";
dst_type = INT_OTHER;
}
/* Sanity checks */
if (INT_OTHER==src_type || INT_OTHER==dst_type) {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
H5_FAILED();
puts(" Unknown data type.");
goto error;
}
/* Allocate buffers */
endian = H5Tget_order(H5T_NATIVE_INT);
src_size = H5Tget_size(src);
dst_size = H5Tget_size(dst);
src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */
dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */
buf = aligned_malloc(nelmts*MAX(src_size, dst_size));
saved = aligned_malloc(nelmts*MAX(src_size, dst_size));
aligned = malloc(sizeof(long_long));
#ifdef SHOW_OVERFLOWS
noverflows_g = 0;
#endif
/* The tests */
for (i=0; i<ntests; i++) {
if (ntests>1) {
sprintf(str, "Testing random %s %s -> %s conversions (test %d/%d)",
name, src_type_name, dst_type_name, (int)i+1, (int)ntests);
} else {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
}
printf("%-70s", str);
fflush(stdout);
fails_this_test=0;
/*
* Initialize the source buffers to random bits. The `buf' buffer
* will be used for the conversion while the `saved' buffer will be
* sed for the comparison later.
*/
for (j=0; j<nelmts*src_size; j++) buf[j] = saved[j] = rand();
/* Perform the conversion */
if (H5Tconvert(src, dst, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error;
/* Check the results from the library against hardware */
for (j=0; j<nelmts; j++) {
if (INT_CHAR==dst_type) {
hw = (unsigned char*)&hw_char;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_char = (char)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_char = (char)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_char = (char)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_char = (char)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_char = (char)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_char = (char)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_char = (char)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_char = (char)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_char = (char)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_char = (char)(*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_UCHAR==dst_type) {
hw = (unsigned char*)&hw_uchar;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(signed char));
hw_uchar = (unsigned char)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_uchar = (unsigned char)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_uchar = (unsigned char)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_uchar = (unsigned char)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_uchar = (unsigned char)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_uchar = (unsigned char)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_uchar = (unsigned char)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_uchar = (unsigned char)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_uchar = (unsigned char)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_uchar = (unsigned char)(*((unsigned long_long*)
aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_SHORT==dst_type) {
hw = (unsigned char*)&hw_short;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(signed char));
hw_short = (short)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_short = (short)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_short = (short)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_short = (short)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_short = (short)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_short = (short)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_short = (short)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_short = (short)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_short = (short)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_short = (short)(*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_USHORT==dst_type) {
hw = (unsigned char*)&hw_ushort;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(signed char));
hw_ushort = (unsigned short)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_ushort = (unsigned short)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_ushort = (unsigned short)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_ushort = (unsigned short)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_ushort = (unsigned short)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_ushort = (unsigned short)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_ushort = (unsigned short)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_ushort = (unsigned short)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_ushort = (unsigned short)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_ushort = (unsigned short)(*((unsigned long_long*)
aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_INT==dst_type) {
hw = (unsigned char*)&hw_int;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(signed char));
hw_int = (int)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_int = (int)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_int = (int)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_int = (int)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_int = (int)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_int = (int)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_int = (int)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_int = (int)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_int = (int)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_int = (int)(*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_UINT==dst_type) {
hw = (unsigned char*)&hw_uint;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(signed char));
hw_uint = (unsigned int)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_uint = (unsigned int)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_uint = (unsigned int)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_uint = (unsigned int)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_uint = (unsigned int)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_uint = (unsigned int)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_uint = (unsigned int)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_uint = (unsigned int)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_uint = (unsigned int)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_uint = (unsigned int)(*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_LONG==dst_type) {
hw = (unsigned char*)&hw_long;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(signed char));
hw_long = (long int)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_long = (long int)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_long = (long int)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_long = (long int)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_long = (long int)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_long = (long int)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_long = (long int)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_long = (long int)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_long = (long int)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_long = (long int)(*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_ULONG==dst_type) {
hw = (unsigned char*)&hw_ulong;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(signed char));
hw_ulong = (unsigned long)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_ulong = (unsigned long)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_ulong = (unsigned long)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_ulong = (unsigned long)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_ulong = (unsigned long)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_ulong = (unsigned long)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_ulong = (unsigned long)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_ulong = (unsigned long)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_ulong = (unsigned long)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_ulong = (unsigned long)(*((unsigned long_long*)
aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_LLONG==dst_type) {
hw = (unsigned char*)&hw_llong;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(signed char));
hw_llong = (long_long)(*((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_llong = (long_long)(*((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_llong = (long_long)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_llong = (long_long)(*((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_llong = (long_long)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_llong = (long_long)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_llong = (long_long)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_llong = (long_long)(*((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_llong = (long_long)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_llong = (long_long)(*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
} else if (INT_ULLONG==dst_type) {
hw = (unsigned char*)&hw_ullong;
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(signed char));
hw_ullong = (unsigned long_long)(*((signed char*)
aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char),
sizeof(unsigned char));
hw_ullong = (unsigned long_long)(*((unsigned char*)
aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_ullong = (unsigned long_long)(*((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
hw_ullong = (unsigned long_long)(*((unsigned short*)
aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_ullong = (unsigned long_long)(*((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned),
sizeof(unsigned));
hw_ullong = (unsigned long_long)(*((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_ullong = (unsigned long_long)(*((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long),
sizeof(unsigned long));
hw_ullong = (unsigned long_long)(*((unsigned long*)
aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(long_long));
hw_ullong = (unsigned long_long)(*((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
hw_ullong = (unsigned long_long)(*((unsigned long_long*)
aligned));
break;
case INT_OTHER:
break;
}
}
/* Make certain that there isn't some weird number of destination bits */
assert(dst_nbits%8==0);
/* Are the two results the same */
for (k=(dst_size-(dst_nbits/8)); k<dst_size; k++) {
if (buf[j*dst_size+k]!=hw[k]) break;
}
if (k==dst_size) continue; /*no error*/
/*
* Convert the source and destination values to little endian
* order so we can use the HDF5 bit vector operations to test
* certain things. These routines have already been tested by
* the `bittests' program.
*/
for (k=0; k<src_size; k++) {
src_bits[src_size-(k+1)] = saved[j*src_size+
ENDIAN(src_size, k)];
}
for (k=0; k<dst_size; k++) {
dst_bits[dst_size-(k+1)] = buf[j*dst_size+
ENDIAN(dst_size, k)];
}
/*
* Hardware usually doesn't handle overflows too gracefully. The
* hardware conversion result during overflows is usually garbage
* so we must handle those cases differetly when checking results.
*/
if (H5T_SGN_2==H5Tget_sign(src) && H5T_SGN_2==H5Tget_sign(dst)) {
if (src_nbits>dst_nbits) {
if(0==H5T_bit_get_d(src_bits, src_nbits-1, 1) &&
H5T_bit_find(src_bits, dst_nbits-1, (src_nbits-dst_nbits),
H5T_BIT_MSB, 1)>=0) {
/*
* Source is positive and the magnitude is too large for
* the destination. The destination should be set to the
* maximum possible value: 0x7f...f
*/
if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1,
H5T_BIT_LSB, 0)<0) {
continue; /*no error*/
}
} else if (1==H5T_bit_get_d(src_bits, src_nbits-1, 1) &&
H5T_bit_find(src_bits, 0, src_nbits-1, H5T_BIT_MSB,
0)+1>=(ssize_t)dst_nbits) {
/*
* Source is negative but the magnitude is too large for
* the destination. The destination should be set to the
* smallest possible value: 0x80...0
*/
if (1==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1,
H5T_BIT_LSB, 1)<0) {
continue; /*no error*/
}
}
} else if(src_nbits<dst_nbits) {
/* Source is smaller than the destination */
if(0==H5T_bit_get_d(src_bits, src_nbits-1, 1)) {
/*
* Source is positive, so the excess bits in the
* destination should be set to 0's.
*/
if (0==H5T_bit_get_d(dst_bits, src_nbits-1, 1) &&
H5T_bit_find(dst_bits, src_nbits, dst_nbits-src_nbits,
H5T_BIT_LSB, 1)<0) {
continue; /*no error*/
}
} else {
/*
* Source is negative, so the excess bits in the
* destination should be set to 1's.
*/
if (1==H5T_bit_get_d(dst_bits, src_nbits-1, 1) &&
H5T_bit_find(dst_bits, src_nbits, dst_nbits-src_nbits,
H5T_BIT_LSB, 0)<0) {
continue; /*no error*/
}
}
}
} else if (H5T_SGN_2==H5Tget_sign(src) && H5T_SGN_NONE==H5Tget_sign(dst)) {
if (H5T_bit_get_d(src_bits, src_nbits-1, 1)) {
/*
* The source is negative so the result should be zero.
* The source is negative if the most significant bit is
* set. The destination is zero if all bits are zero.
*/
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 1)<0)
continue; /*no error*/
} else if (src_nbits>dst_nbits &&
H5T_bit_find(src_bits, dst_nbits-1,
src_nbits-dst_nbits, H5T_BIT_LSB,
1)>=0) {
/*
* The source is a value with a magnitude too large for
* the destination. The destination should be the
* largest possible value: 0xff...f
*/
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0) {
continue; /*no error*/
}
}
} else if (H5T_SGN_NONE==H5Tget_sign(src) && H5T_SGN_2==H5Tget_sign(dst)) {
if (src_nbits>=dst_nbits &&
H5T_bit_find(src_bits, dst_nbits-1, (src_nbits-dst_nbits)+1,
H5T_BIT_LSB, 1)>=0) {
/*
* The source value has a magnitude that is larger than
* the destination can handle. The destination should be
* set to the largest possible positive value: 0x7f...f
*/
if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 0)<0) {
continue; /*no error*/
}
}
} else {
if (src_nbits>dst_nbits &&
H5T_bit_find(src_bits, dst_nbits, src_nbits-dst_nbits,
H5T_BIT_LSB, 1)>=0) {
/*
* The unsigned source has a value which is too large for
* the unsigned destination. The destination should be
* set to the largest possible value: 0xff...f
*/
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0) {
continue; /*no error*/
}
}
}
/* Print errors */
if (0==fails_this_test++) H5_FAILED();
printf(" test %u elmt %u\n", (unsigned)i+1, (unsigned)j);
printf(" src = ");
for (k=0; k<src_size; k++) {
printf(" %02x", saved[j*src_size+ENDIAN(src_size, k)]);
}
printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)),
"");
switch (src_type) {
case INT_CHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(signed char));
printf(" %29d\n", *((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, saved+j*sizeof(char), sizeof(unsigned char));
printf(" %29u\n", *((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, saved+j*sizeof(short), sizeof(short));
printf(" %29hd\n", *((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, saved+j*sizeof(short),
sizeof(unsigned short));
printf(" %29hu\n", *((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, saved+j*sizeof(int), sizeof(int));
printf(" %29d\n", *((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
printf(" %29u\n", *((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(long));
printf(" %29ld\n", *((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, saved+j*sizeof(long), sizeof(unsigned long));
printf(" %29lu\n", *((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, saved+j*sizeof(long_long),
sizeof(unsigned long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n",
*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
printf(" dst = ");
for (k=0; k<dst_size; k++) {
printf(" %02x", buf[j*dst_size+ENDIAN(dst_size, k)]);
}
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)),
"");
switch (dst_type) {
case INT_CHAR:
memcpy(aligned, buf+j*sizeof(char), sizeof(signed char));
printf(" %29d\n", *((signed char*)aligned));
break;
case INT_UCHAR:
memcpy(aligned, buf+j*sizeof(char), sizeof(unsigned char));
printf(" %29u\n", *((unsigned char*)aligned));
break;
case INT_SHORT:
memcpy(aligned, buf+j*sizeof(short), sizeof(short));
printf(" %29d\n", *((short*)aligned));
break;
case INT_USHORT:
memcpy(aligned, buf+j*sizeof(short), sizeof(unsigned short));
printf(" %29u\n", *((unsigned short*)aligned));
break;
case INT_INT:
memcpy(aligned, buf+j*sizeof(int), sizeof(int));
printf(" %29d\n", *((int*)aligned));
break;
case INT_UINT:
memcpy(aligned, buf+j*sizeof(unsigned), sizeof(unsigned));
printf(" %29u\n", *((unsigned*)aligned));
break;
case INT_LONG:
memcpy(aligned, buf+j*sizeof(long), sizeof(long));
printf(" %29ld\n", *((long*)aligned));
break;
case INT_ULONG:
memcpy(aligned, buf+j*sizeof(long), sizeof(unsigned long));
printf(" %29lu\n", *((unsigned long*)aligned));
break;
case INT_LLONG:
memcpy(aligned, buf+j*sizeof(long_long), sizeof(long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned));
break;
case INT_ULLONG:
memcpy(aligned, buf+j*sizeof(long_long),
sizeof(unsigned long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n",
*((unsigned long_long*)aligned));
break;
case INT_OTHER:
break;
}
printf(" ans = ");
for (k=0; k<dst_size; k++) {
printf(" %02x", hw[ENDIAN(dst_size, k)]);
}
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)),
"");
switch (dst_type) {
case INT_CHAR:
printf(" %29d\n", *((signed char*)hw));
break;
case INT_UCHAR:
printf(" %29u\n", *((unsigned char*)hw));
break;
case INT_SHORT:
printf(" %29d\n", *((short*)hw));
break;
case INT_USHORT:
printf(" %29u\n", *((unsigned short*)hw));
break;
case INT_INT:
printf(" %29d\n", *((int*)hw));
break;
case INT_UINT:
printf(" %29u\n", *((unsigned*)hw));
break;
case INT_LONG:
printf(" %29ld\n", *((long*)hw));
break;
case INT_ULONG:
printf(" %29lu\n", *((unsigned long*)hw));
break;
case INT_LLONG:
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)hw));
break;
case INT_ULLONG:
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)hw));
break;
case INT_OTHER:
break;
}
if (++fails_all_tests>=max_fails) {
puts(" maximum failures reached, aborting test...");
goto done;
}
}
PASSED();
}
#ifdef SHOW_OVERFLOWS
if (noverflows_g>0) {
printf(" %d overflow%s in previous test\n",
noverflows_g, 1==noverflows_g?"":"s");
}
#endif
done:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) free(aligned);
fflush(stdout);
reset_hdf5(); /*print statistics*/
return (int)fails_all_tests;
error:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) free(aligned);
fflush(stdout);
reset_hdf5(); /*print statistics*/
return MAX((int)fails_all_tests, 1);
}
/*-------------------------------------------------------------------------
* Function: test_conv_int_2
*
* Purpose: Tests overlap calculates in H5T_conv_i_i(), which should be
* the same as for H5T_conv_f_f() and H5T_conv_s_s().
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Friday, April 30, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int_2(void)
{
int i, j;
hid_t src_type, dst_type;
char buf[32*100];
printf("%-70s", "Testing overlap calculations");
fflush(stdout);
memset(buf, 0, sizeof buf);
for (i=1; i<=32; i++) {
for (j=1; j<=32; j++) {
/* Source type */
src_type = H5Tcopy(H5T_NATIVE_CHAR);
H5Tset_size(src_type, (size_t)i);
/* Destination type */
dst_type = H5Tcopy(H5T_NATIVE_CHAR);
H5Tset_size(dst_type, (size_t)j);
/*
* Conversion. If overlap calculations aren't right then an
* assertion will fail in H5T_conv_i_i()
*/
H5Tconvert(src_type, dst_type, (hsize_t)100, buf, NULL, H5P_DEFAULT);
H5Tclose(src_type);
H5Tclose(dst_type);
}
}
PASSED();
return 0;
}
/*-------------------------------------------------------------------------
* Function: my_isnan
*
* Purpose: Determines whether VAL points to NaN.
*
* Return: TRUE or FALSE
*
* Programmer: Robb Matzke
* Monday, July 6, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
my_isnan(flt_t type, void *val)
{
int retval;
char s[256];
if (FLT_FLOAT==type) {
float x;
memcpy(&x, val, sizeof(float));
retval = (x!=x);
} else if (FLT_DOUBLE==type) {
double x;
memcpy(&x, val, sizeof(double));
retval = (x!=x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else if (FLT_LDOUBLE==type) {
long double x;
memcpy(&x, val, sizeof(long double));
retval = (x!=x);
#endif
} else {
return 0;
}
/*
* Sometimes NaN==NaN (e.g., DEC Alpha) so we try to print it and see if
* the result contains a NaN string.
*/
if (!retval) {
if (FLT_FLOAT==type) {
float x;
memcpy(&x, val, sizeof(float));
sprintf(s, "%g", x);
} else if (FLT_DOUBLE==type) {
double x;
memcpy(&x, val, sizeof(double));
sprintf(s, "%g", x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else if (FLT_LDOUBLE==type) {
long double x;
memcpy(&x, val, sizeof(long double));
sprintf(s, "%Lg", x);
#endif
} else {
return 0;
}
if (!strstr(s, "NaN") || !strstr(s, "NAN") || !strstr(s, "nan")) {
retval = 1;
}
}
return retval;
}
/*-------------------------------------------------------------------------
* Function: test_conv_flt_1
*
* Purpose: Test conversion of random floating point values from SRC to
* DST. These types should be H5T_NATIVE_FLOAT,
* H5T_NATIVE_DOUBLE, or H5T_NATIVE_LDOUBLE.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Tuesday, June 23, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_flt_1 (const char *name, hid_t src, hid_t dst)
{
flt_t src_type, dst_type; /*data types */
const size_t ntests=NTESTS; /*number of tests */
const size_t nelmts=NTESTELEM; /*num values per test */
const size_t max_fails=8; /*max number of failures*/
size_t fails_all_tests=0; /*number of failures */
size_t fails_this_test; /*fails for this test */
const char *src_type_name = NULL; /*source type name */
const char *dst_type_name = NULL; /*destination type name */
size_t src_size, dst_size; /*type sizes */
unsigned char *buf = NULL; /*buffer for conversion */
unsigned char *saved = NULL; /*original values */
char str[256]; /*hello string */
float hw_f; /*hardware-converted */
double hw_d; /*hardware-converted */
void *aligned=NULL; /*aligned buffer */
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
long double hw_ld; /*hardware-converted */
#endif
unsigned char *hw=NULL; /*ptr to hardware-conv'd*/
size_t i, j, k; /*counters */
int endian; /*machine endianess */
#ifdef HANDLE_SIGFPE
pid_t child_pid; /*process ID of child */
int status; /*child exit status */
/*
* Some systems generage SIGFPE during floating point overflow and we
* cannot assume that we can continue from such a signal. Therefore, we
* fork here and let the child run the test and return the number of
* failures with the exit status.
*/
fflush(stdout);
fflush(stderr);
if ((child_pid=fork())<0) {
perror("fork");
return 1;
} else if (child_pid>0) {
while (child_pid!=waitpid(child_pid, &status, 0)) /*void*/;
if (WIFEXITED(status) && 255==WEXITSTATUS(status)) {
return 0; /*child exit after catching SIGFPE*/
} else if (WIFEXITED(status)) {
return WEXITSTATUS(status);
} else {
puts(" Child didn't exit normally.");
return 1;
}
}
#endif
/*
* The remainder of this function is executed only by the child if
* HANDLE_SIGFPE is defined.
*/
#ifndef __WATCOMC__
signal(SIGFPE,fpe_handler);
#endif
/* What are the names of the source and destination types */
if (H5Tequal(src, H5T_NATIVE_FLOAT)) {
src_type_name = "float";
src_type = FLT_FLOAT;
} else if (H5Tequal(src, H5T_NATIVE_DOUBLE)) {
src_type_name = "double";
src_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else if (H5Tequal(src, H5T_NATIVE_LDOUBLE)) {
src_type_name = "long double";
src_type = FLT_LDOUBLE;
#endif
} else {
src_type_name = "UNKNOWN";
src_type = FLT_OTHER;
}
if (H5Tequal(dst, H5T_NATIVE_FLOAT)) {
dst_type_name = "float";
dst_type = FLT_FLOAT;
} else if (H5Tequal(dst, H5T_NATIVE_DOUBLE)) {
dst_type_name = "double";
dst_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else if (H5Tequal(dst, H5T_NATIVE_LDOUBLE)) {
dst_type_name = "long double";
dst_type = FLT_LDOUBLE;
#endif
} else {
dst_type_name = "UNKNOWN";
dst_type = FLT_OTHER;
}
/* Sanity checks */
if(sizeof(float)==sizeof(double))
puts("Sizeof(float)==sizeof(double) - some tests may not be sensible.");
if (FLT_OTHER==src_type || FLT_OTHER==dst_type) {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
H5_FAILED();
puts(" Unknown data type.");
goto error;
}
/* Allocate buffers */
endian = H5Tget_order(H5T_NATIVE_FLOAT);
src_size = H5Tget_size(src);
dst_size = H5Tget_size(dst);
buf = aligned_malloc(nelmts*MAX(src_size, dst_size));
saved = aligned_malloc(nelmts*MAX(src_size, dst_size));
aligned = malloc(16); /*should be big enough for any type*/
#ifdef SHOW_OVERFLOWS
noverflows_g = 0;
#endif
for (i=0; i<ntests; i++) {
/*
* If it looks like it might take a long time then print a progress
* report between each test.
*/
if (ntests>1) {
sprintf(str, "Testing random %s %s -> %s conversions (test %d/%d)",
name, src_type_name, dst_type_name, (int)i+1, (int)ntests);
} else {
sprintf(str, "Testing random %s %s -> %s conversions",
name, src_type_name, dst_type_name);
}
printf("%-70s", str);
fflush(stdout);
fails_this_test = 0;
/*
* Initialize the source buffers to random bits. The `buf' buffer
* will be used for the conversion while the `saved' buffer will be
* used for the comparison later.
*/
if (!skip_overflow_tests_g) {
for (j=0; j<nelmts*src_size; j++) buf[j] = saved[j] = rand();
} else {
for (j=0; j<nelmts; j++) {
/* Do it this way for alignment reasons */
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
long double temp[1];
#else
double temp[1];
#endif
if (src_size<=dst_size) {
for (k=0; k<dst_size; k++) buf[j*src_size+k] = rand();
} else {
for (k=0; k<dst_size; k++) {
((unsigned char*)temp)[k] = rand();
}
if (FLT_DOUBLE==src_type && FLT_FLOAT==dst_type) {
hw_d = *((float*)temp);
memcpy(buf+j*src_size, &hw_d, src_size);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else if (FLT_LDOUBLE==src_type && FLT_FLOAT==dst_type) {
hw_ld = *((float*)temp);
memcpy(buf+j*src_size, &hw_ld, src_size);
} else if (FLT_LDOUBLE==src_type && FLT_DOUBLE==dst_type) {
hw_ld = *((double*)temp);
memcpy(buf+j*src_size, &hw_ld, src_size);
#endif
}
}
memcpy(saved+j*src_size, buf+j*src_size, src_size);
}
}
/* Perform the conversion in software */
if (H5Tconvert(src, dst, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error;
/* Check the software results against the hardware */
for (j=0; j<nelmts; j++) {
hw_f = 911.0;
hw_d = 911.0;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
hw_ld = 911.0;
#endif
/* The hardware conversion */
if (FLT_FLOAT==src_type) {
memcpy(aligned, saved+j*sizeof(float), sizeof(float));
if (FLT_FLOAT==dst_type) {
hw_f = *((float*)aligned);
hw = (unsigned char*)&hw_f;
} else if (FLT_DOUBLE==dst_type) {
hw_d = *((float*)aligned);
hw = (unsigned char*)&hw_d;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
hw_ld = *((float*)aligned);
hw = (unsigned char*)&hw_ld;
#endif
}
} else if (FLT_DOUBLE==src_type) {
memcpy(aligned, saved+j*sizeof(double), sizeof(double));
if (FLT_FLOAT==dst_type) {
hw_f = (float)(*((double*)aligned));
hw = (unsigned char*)&hw_f;
} else if (FLT_DOUBLE==dst_type) {
hw_d = *((double*)aligned);
hw = (unsigned char*)&hw_d;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
hw_ld = *((double*)aligned);
hw = (unsigned char*)&hw_ld;
#endif
}
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
memcpy(aligned, saved+j*sizeof(long double),
sizeof(long double));
if (FLT_FLOAT==dst_type) {
hw_f = *((long double*)aligned);
hw = (unsigned char*)&hw_f;
} else if (FLT_DOUBLE==dst_type) {
hw_d = *((long double*)aligned);
hw = (unsigned char*)&hw_d;
} else {
hw_ld = *((long double*)aligned);
hw = (unsigned char*)&hw_ld;
}
#endif
}
/* Are the two results the same? */
for (k=0; k<dst_size; k++) {
if (buf[j*dst_size+k]!=hw[k]) break;
}
if (k==dst_size) continue; /*no error*/
#if 1
/*
* Assume same if both results are NaN. There are many NaN bit
* patterns and the software doesn't attemt to emulate the
* hardware in this regard. Instead, software uses a single bit
* pattern for NaN by setting the significand to all ones.
*/
if (FLT_FLOAT==dst_type &&
my_isnan(dst_type, (float*)buf+j) &&
my_isnan(dst_type, hw)) {
continue;
} else if (FLT_DOUBLE==dst_type &&
my_isnan(dst_type, (double*)buf+j) &&
my_isnan(dst_type, hw)) {
continue;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else if (FLT_LDOUBLE==dst_type &&
my_isnan(dst_type, (long double*)buf+j) &&
my_isnan(dst_type, hw)) {
continue;
#endif
}
#endif
#if 1
/*
* Assume same if hardware result is NaN. This is because the
* hardware conversions on some machines return NaN instead of
* overflowing to +Inf or -Inf or underflowing to +0 or -0.
*/
if (my_isnan(dst_type, hw)) continue;
#endif
#if 1
/*
* Instead of matching down to the bit, just make sure the
* exponents are the same and the mantissa is the same to a
* certain precision. This is needed on machines that don't
* round as expected.
*/
{
double check_mant[2];
int check_expo[2];
if (FLT_FLOAT==dst_type) {
float x;
memcpy(&x, (float*)buf+j, sizeof(float));
check_mant[0] = frexp(x, check_expo+0);
check_mant[1] = frexp(((float*)hw)[0], check_expo+1);
} else if (FLT_DOUBLE==dst_type) {
double x;
memcpy(&x, (double*)buf+j, sizeof(double));
check_mant[0] = frexp(x, check_expo+0);
check_mant[1] = frexp(((double*)hw)[0], check_expo+1);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
long double x;
memcpy(&x, (long double*)buf+j, sizeof(long double));
check_mant[0] = frexp(x, check_expo+0);
check_mant[1] = frexp(((long double*)hw)[0], check_expo+1);
#endif
}
if (check_expo[0]==check_expo[1] &&
fabs(check_mant[0]-check_mant[1])<0.000001) {
continue;
}
}
#endif
if (0==fails_this_test++) H5_FAILED();
printf(" test %u, elmt %u\n", (unsigned)i+1, (unsigned)j);
printf(" src =");
for (k=0; k<src_size; k++) {
printf(" %02x", saved[j*src_size+ENDIAN(src_size,k)]);
}
printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)),
"");
if (FLT_FLOAT==src_type) {
float x;
memcpy(&x, (float*)saved+j, sizeof(float));
printf(" %29.20e\n", x);
} else if (FLT_DOUBLE==src_type) {
double x;
memcpy(&x, (double*)saved+j, sizeof(double));
printf(" %29.20e\n", x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
long double x;
memcpy(&x, (long double*)saved+j, sizeof(long double));
HDfprintf(stdout," %29.20Le\n", x);
#endif
}
printf(" dst =");
for (k=0; k<dst_size; k++) {
printf(" %02x", buf[j*dst_size+ENDIAN(dst_size,k)]);
}
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)),
"");
if (FLT_FLOAT==dst_type) {
float x;
memcpy(&x, (float*)buf+j, sizeof(float));
printf(" %29.20e\n", x);
} else if (FLT_DOUBLE==dst_type) {
double x;
memcpy(&x, (double*)buf+j, sizeof(double));
printf(" %29.20e\n", x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
long double x;
memcpy(&x, (long double*)buf+j, sizeof(long double));
HDfprintf(stdout," %29.20Le\n", x);
#endif
}
printf(" ans =");
for (k=0; k<dst_size; k++) {
printf(" %02x", hw[ENDIAN(dst_size,k)]);
}
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)),
"");
if (FLT_FLOAT==dst_type) {
printf(" %29.20e\n", hw_f);
} else if (FLT_DOUBLE==dst_type) {
printf(" %29.20e\n", hw_d);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
HDfprintf(stdout," %29.20Le\n", hw_ld);
#endif
}
if (++fails_all_tests>=max_fails) {
puts(" maximum failures reached, aborting test...");
goto done;
}
}
PASSED();
}
#ifdef SHOW_OVERFLOWS
if (noverflows_g>0) {
printf(" %d overflow%s in previous test\n",
noverflows_g, 1==noverflows_g?"":"s");
}
#endif
done:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) free(aligned);
fflush(stdout);
#ifdef HANDLE_SIGFPE
exit(MIN((int)fails_all_tests, 254));
#else
reset_hdf5();
return (int)fails_all_tests;
#endif
error:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) free(aligned);
fflush(stdout);
#ifdef HANDLE_SIGFPE
exit(MIN(MAX((int)fails_all_tests, 1), 254));
#else
reset_hdf5();
return MAX((int)fails_all_tests, 1);
#endif
}
/*-------------------------------------------------------------------------
* Function: run_integer_tests
*
* Purpose: Runs all integer tests.
*
* Return: Number of errors
*
* Programmer: Robb Matzke
* Tuesday, November 24, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
run_integer_tests(const char *name)
{
int nerrors = 0;
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_INT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULLONG);
#endif
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UINT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULONG);
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULLONG);
#endif
#endif
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UINT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LONG);
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_ULLONG);
#endif
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULLONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_ULONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LLONG);
#endif
return nerrors;
}
/*-------------------------------------------------------------------------
* Function: main
*
* Purpose: Test the data type interface.
*
* Return: Success:
*
* Failure:
*
* Programmer: Robb Matzke
* Tuesday, December 9, 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
int
main(void)
{
unsigned long nerrors = 0;
hid_t fapl=-1;
/* Set the random # seed */
HDsrandom((unsigned long)time(NULL));
reset_hdf5();
fapl = h5_fileaccess();
if (ALIGNMENT) {
printf("Testing non-aligned conversions (ALIGNMENT=%d)....\n",
ALIGNMENT);
}
/* Do the tests */
nerrors += test_classes();
nerrors += test_copy();
nerrors += test_compound_1();
nerrors += test_query();
nerrors += test_transient (fapl);
nerrors += test_named (fapl);
h5_cleanup(FILENAME, fapl); /*must happen before first reset*/
reset_hdf5();
nerrors += test_conv_str_1();
nerrors += test_conv_str_2();
nerrors += test_compound_2();
nerrors += test_compound_3();
nerrors += test_compound_4();
nerrors += test_compound_5();
nerrors += test_compound_6();
nerrors += test_compound_7();
nerrors += test_conv_int ();
nerrors += test_conv_enum_1();
nerrors += test_conv_enum_2();
nerrors += test_conv_bitfield();
nerrors += test_opaque();
/* Does floating point overflow generate a SIGFPE? */
generates_sigfpe();
/* Test degenerate cases */
nerrors += test_conv_flt_1("noop", H5T_NATIVE_FLOAT, H5T_NATIVE_FLOAT);
nerrors += test_conv_flt_1("noop", H5T_NATIVE_DOUBLE, H5T_NATIVE_DOUBLE);
/* Test hardware integer conversion functions */
nerrors += run_integer_tests("hw");
/* Test hardware floating-point conversion functions */
nerrors += test_conv_flt_1("hw", H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_flt_1("hw", H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT);
/*----------------------------------------------------------------------
* Software tests
*----------------------------------------------------------------------
*/
without_hardware_g = TRUE;
reset_hdf5();
/* Test software integer conversion functions */
nerrors += test_conv_int_2();
nerrors += run_integer_tests("sw");
/* Test software floating-point conversion functions */
nerrors += test_conv_flt_1("sw", H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_flt_1("sw", H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
nerrors += test_conv_flt_1("sw", H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1("sw", H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1("sw", H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT);
nerrors += test_conv_flt_1("sw", H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE);
#endif
if (nerrors) {
printf("***** %lu FAILURE%s! *****\n",
nerrors, 1==nerrors?"":"S");
exit(1);
}
printf("All data type tests passed.\n");
return 0;
}