hdf5/test/API/tselect.c
2023-06-29 12:33:46 -07:00

16312 lines
599 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/***********************************************************
*
* Test program: tselect
*
* Test the Dataspace selection functionality
*
*************************************************************/
#define H5S_FRIEND /*suppress error about including H5Spkg */
/* Define this macro to indicate that the testing APIs should be available */
#define H5S_TESTING
#include "testhdf5.h"
#include "hdf5.h"
/* #include "H5Spkg.h" */ /* Dataspaces */
#define FILENAME "tselect.h5"
/* 3-D dataset with fixed dimensions */
#define SPACE1_NAME "Space1"
#define SPACE1_RANK 3
#define SPACE1_DIM1 3
#define SPACE1_DIM2 15
#define SPACE1_DIM3 13
/* 2-D dataset with fixed dimensions */
#define SPACE2_NAME "Space2"
#define SPACE2_RANK 2
#define SPACE2_DIM1 30
#define SPACE2_DIM2 26
#define SPACE2A_RANK 1
#define SPACE2A_DIM1 (SPACE2_DIM1 * SPACE2_DIM2)
/* 2-D dataset with fixed dimensions */
#define SPACE3_NAME "Space3"
#define SPACE3_RANK 2
#define SPACE3_DIM1 15
#define SPACE3_DIM2 26
/* 3-D dataset with fixed dimensions */
#define SPACE4_NAME "Space4"
#define SPACE4_RANK 3
#define SPACE4_DIM1 11
#define SPACE4_DIM2 13
#define SPACE4_DIM3 17
/* Number of random hyperslabs to test */
#define NHYPERSLABS 10
/* Number of random hyperslab tests performed */
#define NRAND_HYPER 100
/* 5-D dataset with fixed dimensions */
#define SPACE5_NAME "Space5"
#define SPACE5_RANK 5
#define SPACE5_DIM1 10
#define SPACE5_DIM2 10
#define SPACE5_DIM3 10
#define SPACE5_DIM4 10
#define SPACE5_DIM5 10
/* 1-D dataset with same size as 5-D dataset */
#define SPACE6_RANK 1
#define SPACE6_DIM1 (SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5)
/* 2-D dataset with easy dimension sizes */
#define SPACE7_NAME "Space7"
#define SPACE7_RANK 2
#define SPACE7_DIM1 10
#define SPACE7_DIM2 10
#define SPACE7_FILL 254
#define SPACE7_CHUNK_DIM1 5
#define SPACE7_CHUNK_DIM2 5
#define SPACE7_NPOINTS 8
/* 4-D dataset with fixed dimensions */
#define SPACE8_NAME "Space8"
#define SPACE8_RANK 4
#define SPACE8_DIM1 11
#define SPACE8_DIM2 13
#define SPACE8_DIM3 17
#define SPACE8_DIM4 19
/* Another 2-D dataset with easy dimension sizes */
#define SPACE9_RANK 2
#define SPACE9_DIM1 12
#define SPACE9_DIM2 12
/* Element selection information */
#define POINT1_NPOINTS 10
/* Chunked dataset information */
#define DATASETNAME "ChunkArray"
#define NX_SUB 87 /* hyperslab dimensions */
#define NY_SUB 61
#define NZ_SUB 181
#define NX 87 /* output buffer dimensions */
#define NY 61
#define NZ 181
#define RANK_F 3 /* File dataspace rank */
#define RANK_M 3 /* Memory dataspace rank */
#define X 87 /* dataset dimensions */
#define Y 61
#define Z 181
#define CHUNK_X 87 /* chunk dimensions */
#define CHUNK_Y 61
#define CHUNK_Z 181
/* Basic chunk size */
#define SPACE10_DIM1 180
#define SPACE10_CHUNK_SIZE 12
/* Information for bounds checking test */
#define SPACE11_RANK 2
#define SPACE11_DIM1 100
#define SPACE11_DIM2 100
#define SPACE11_NPOINTS 4
/* Information for offsets w/chunks test #2 */
#define SPACE12_RANK 1
#define SPACE12_DIM0 25
#define SPACE12_CHUNK_DIM0 5
/* Information for Space rebuild test */
#define SPACERE1_RANK 1
#define SPACERE1_DIM0 20
#define SPACERE2_RANK 2
#define SPACERE2_DIM0 8
#define SPACERE2_DIM1 12
#define SPACERE3_RANK 3
#define SPACERE3_DIM0 8
#define SPACERE3_DIM1 12
#define SPACERE3_DIM2 8
#define SPACERE4_RANK 4
#define SPACERE4_DIM0 8
#define SPACERE4_DIM1 12
#define SPACERE4_DIM2 8
#define SPACERE4_DIM3 12
#define SPACERE5_RANK 5
#define SPACERE5_DIM0 8
#define SPACERE5_DIM1 12
#define SPACERE5_DIM2 8
#define SPACERE5_DIM3 12
#define SPACERE5_DIM4 8
/* Information for Space update diminfo test */
#define SPACEUD1_DIM0 20
#define SPACEUD3_DIM0 9
#define SPACEUD3_DIM1 12
#define SPACEUD3_DIM2 13
/* #defines for shape same / different rank tests */
#define SS_DR_MAX_RANK 5
/* Information for regular hyperslab query test */
#define SPACE13_RANK 3
#define SPACE13_DIM1 50
#define SPACE13_DIM2 50
#define SPACE13_DIM3 50
#define SPACE13_NPOINTS 4
/* Information for testing selection iterators */
#define SEL_ITER_MAX_SEQ 256
/* Defines for test_hyper_io_1d() */
#define DNAME "DSET_1D"
#define RANK 1
#define NUMCHUNKS 3
#define CHUNKSZ 20
#define NUM_ELEMENTS NUMCHUNKS *CHUNKSZ
/* Location comparison function */
static int compare_size_t(const void *s1, const void *s2);
static herr_t test_select_hyper_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
void *operator_data);
static herr_t test_select_point_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
void *operator_data);
static herr_t test_select_all_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
void *operator_data);
static herr_t test_select_none_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
void *operator_data);
static herr_t test_select_hyper_iter2(void *_elem, hid_t type_id, unsigned ndim, const hsize_t *point,
void *_operator_data);
static herr_t test_select_hyper_iter3(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
void *operator_data);
/****************************************************************
**
** test_select_hyper_iter1(): Iterator for checking hyperslab iteration
**
****************************************************************/
static herr_t
test_select_hyper_iter1(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim,
const hsize_t H5_ATTR_UNUSED *point, void *_operator_data)
{
uint8_t *tbuf = (uint8_t *)_elem, /* temporary buffer pointer */
**tbuf2 = (uint8_t **)_operator_data; /* temporary buffer handle */
if (*tbuf != **tbuf2)
return (-1);
else {
(*tbuf2)++;
return (0);
}
} /* end test_select_hyper_iter1() */
/****************************************************************
**
** test_select_hyper(): Test basic H5S (dataspace) selection code.
** Tests hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper(hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
H5S_class_t ext_type; /* Extent type */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Verify extent type */
ext_type = H5Sget_simple_extent_type(sid1);
VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");
/* Test selecting stride==0 to verify failure */
start[0] = 1;
start[1] = 0;
start[2] = 0;
stride[0] = 0;
stride[1] = 0;
stride[2] = 0;
count[0] = 2;
count[1] = 15;
count[2] = 13;
block[0] = 1;
block[1] = 1;
block[2] = 1;
H5E_BEGIN_TRY
{
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
/* Test selecting stride<block to verify failure */
start[0] = 1;
start[1] = 0;
start[2] = 0;
stride[0] = 1;
stride[1] = 1;
stride[2] = 1;
count[0] = 2;
count[1] = 15;
count[2] = 13;
block[0] = 2;
block[1] = 2;
block[2] = 2;
H5E_BEGIN_TRY
{
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
/* Select 2x15x13 hyperslab for disk dataset */
start[0] = 1;
start[1] = 0;
start[2] = 0;
stride[0] = 1;
stride[1] = 1;
stride[2] = 1;
count[0] = 2;
count[1] = 15;
count[2] = 13;
block[0] = 1;
block[1] = 1;
block[2] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 15x26 hyperslab for memory dataset */
start[0] = 15;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 15;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Exercise checks for NULL buffer and valid selection */
H5E_BEGIN_TRY
{
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, NULL);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Dwrite");
H5E_BEGIN_TRY
{
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, NULL);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 15;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 0x26 hyperslab to OR into current selection (should be a NOOP) */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 0;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Exercise checks for NULL buffer and valid selection */
H5E_BEGIN_TRY
{
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, NULL);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Dread");
H5E_BEGIN_TRY
{
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, NULL);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Dread");
/* Check that the values match with a dataset iterator */
tbuf = wbuf + (15 * SPACE2_DIM2);
ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_hyper_iter1, &tbuf);
CHECK(ret, FAIL, "H5Diterate");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper() */
struct pnt_iter {
hsize_t coord[POINT1_NPOINTS * 2][SPACE2_RANK]; /* Coordinates for point selection */
uint8_t *buf; /* Buffer the points are in */
int offset; /* Which point we are looking at */
};
/****************************************************************
**
** test_select_point_iter1(): Iterator for checking point iteration
** (This is really ugly code, not a very good example of correct usage - QAK)
**
****************************************************************/
static herr_t
test_select_point_iter1(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim,
const hsize_t H5_ATTR_UNUSED *point, void *_operator_data)
{
uint8_t *elem = (uint8_t *)_elem; /* Pointer to the element to examine */
uint8_t *tmp; /* temporary ptr to element in operator data */
struct pnt_iter *pnt_info = (struct pnt_iter *)_operator_data;
tmp = pnt_info->buf + (pnt_info->coord[pnt_info->offset][0] * SPACE2_DIM2) +
pnt_info->coord[pnt_info->offset][1];
if (*elem != *tmp)
return (-1);
else {
pnt_info->offset++;
return (0);
}
} /* end test_select_point_iter1() */
/****************************************************************
**
** test_select_point(): Test basic H5S (dataspace) selection code.
** Tests element selections between dataspaces of various sizes
** and dimensionalities.
**
****************************************************************/
static void
test_select_point(hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
hsize_t temp_coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
hsize_t temp_coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
hsize_t temp_coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i, j; /* Counters */
struct pnt_iter pi; /* Custom Pointer iterator struct */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Element Selection Functions\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for write buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select sequence of ten points for disk dataset */
coord1[0][0] = 0;
coord1[0][1] = 10;
coord1[0][2] = 5;
coord1[1][0] = 1;
coord1[1][1] = 2;
coord1[1][2] = 7;
coord1[2][0] = 2;
coord1[2][1] = 4;
coord1[2][2] = 9;
coord1[3][0] = 0;
coord1[3][1] = 6;
coord1[3][2] = 11;
coord1[4][0] = 1;
coord1[4][1] = 8;
coord1[4][2] = 13;
coord1[5][0] = 2;
coord1[5][1] = 12;
coord1[5][2] = 0;
coord1[6][0] = 0;
coord1[6][1] = 14;
coord1[6][2] = 2;
coord1[7][0] = 1;
coord1[7][1] = 0;
coord1[7][2] = 4;
coord1[8][0] = 2;
coord1[8][1] = 1;
coord1[8][2] = 6;
coord1[9][0] = 0;
coord1[9][1] = 3;
coord1[9][2] = 8;
ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Verify correct elements selected */
H5Sget_select_elem_pointlist(sid1, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord1);
for (i = 0; i < POINT1_NPOINTS; i++) {
VERIFY(temp_coord1[i][0], coord1[i][0], "H5Sget_select_elem_pointlist");
VERIFY(temp_coord1[i][1], coord1[i][1], "H5Sget_select_elem_pointlist");
VERIFY(temp_coord1[i][2], coord1[i][2], "H5Sget_select_elem_pointlist");
} /* end for */
ret = (int)H5Sget_select_npoints(sid1);
VERIFY(ret, 10, "H5Sget_select_npoints");
/* Append another sequence of ten points to disk dataset */
coord1[0][0] = 0;
coord1[0][1] = 2;
coord1[0][2] = 0;
coord1[1][0] = 1;
coord1[1][1] = 10;
coord1[1][2] = 8;
coord1[2][0] = 2;
coord1[2][1] = 8;
coord1[2][2] = 10;
coord1[3][0] = 0;
coord1[3][1] = 7;
coord1[3][2] = 12;
coord1[4][0] = 1;
coord1[4][1] = 3;
coord1[4][2] = 11;
coord1[5][0] = 2;
coord1[5][1] = 1;
coord1[5][2] = 1;
coord1[6][0] = 0;
coord1[6][1] = 13;
coord1[6][2] = 7;
coord1[7][0] = 1;
coord1[7][1] = 14;
coord1[7][2] = 6;
coord1[8][0] = 2;
coord1[8][1] = 2;
coord1[8][2] = 5;
coord1[9][0] = 0;
coord1[9][1] = 6;
coord1[9][2] = 13;
ret = H5Sselect_elements(sid1, H5S_SELECT_APPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Verify correct elements selected */
H5Sget_select_elem_pointlist(sid1, (hsize_t)POINT1_NPOINTS, (hsize_t)POINT1_NPOINTS,
(hsize_t *)temp_coord1);
for (i = 0; i < POINT1_NPOINTS; i++) {
VERIFY(temp_coord1[i][0], coord1[i][0], "H5Sget_select_elem_pointlist");
VERIFY(temp_coord1[i][1], coord1[i][1], "H5Sget_select_elem_pointlist");
VERIFY(temp_coord1[i][2], coord1[i][2], "H5Sget_select_elem_pointlist");
} /* end for */
ret = (int)H5Sget_select_npoints(sid1);
VERIFY(ret, 20, "H5Sget_select_npoints");
/* Select sequence of ten points for memory dataset */
coord2[0][0] = 12;
coord2[0][1] = 3;
coord2[1][0] = 15;
coord2[1][1] = 13;
coord2[2][0] = 7;
coord2[2][1] = 25;
coord2[3][0] = 0;
coord2[3][1] = 6;
coord2[4][0] = 13;
coord2[4][1] = 0;
coord2[5][0] = 24;
coord2[5][1] = 11;
coord2[6][0] = 12;
coord2[6][1] = 21;
coord2[7][0] = 29;
coord2[7][1] = 4;
coord2[8][0] = 8;
coord2[8][1] = 8;
coord2[9][0] = 19;
coord2[9][1] = 17;
ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Verify correct elements selected */
H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord2);
for (i = 0; i < POINT1_NPOINTS; i++) {
VERIFY(temp_coord2[i][0], coord2[i][0], "H5Sget_select_elem_pointlist");
VERIFY(temp_coord2[i][1], coord2[i][1], "H5Sget_select_elem_pointlist");
} /* end for */
/* Save points for later iteration */
/* (these are in the second half of the buffer, because we are prepending */
/* the next list of points to the beginning of the point selection list) */
memcpy(((char *)pi.coord) + sizeof(coord2), coord2, sizeof(coord2));
ret = (int)H5Sget_select_npoints(sid2);
VERIFY(ret, 10, "H5Sget_select_npoints");
/* Append another sequence of ten points to memory dataset */
coord2[0][0] = 24;
coord2[0][1] = 0;
coord2[1][0] = 2;
coord2[1][1] = 25;
coord2[2][0] = 13;
coord2[2][1] = 17;
coord2[3][0] = 8;
coord2[3][1] = 3;
coord2[4][0] = 29;
coord2[4][1] = 4;
coord2[5][0] = 11;
coord2[5][1] = 14;
coord2[6][0] = 5;
coord2[6][1] = 22;
coord2[7][0] = 12;
coord2[7][1] = 2;
coord2[8][0] = 21;
coord2[8][1] = 12;
coord2[9][0] = 9;
coord2[9][1] = 18;
ret = H5Sselect_elements(sid2, H5S_SELECT_PREPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Verify correct elements selected */
H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord2);
for (i = 0; i < POINT1_NPOINTS; i++) {
VERIFY(temp_coord2[i][0], coord2[i][0], "H5Sget_select_elem_pointlist");
VERIFY(temp_coord2[i][1], coord2[i][1], "H5Sget_select_elem_pointlist");
} /* end for */
ret = (int)H5Sget_select_npoints(sid2);
VERIFY(ret, 20, "H5Sget_select_npoints");
/* Save points for later iteration */
memcpy(pi.coord, coord2, sizeof(coord2));
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select sequence of points for read dataset */
coord3[0][0] = 0;
coord3[0][1] = 2;
coord3[1][0] = 4;
coord3[1][1] = 8;
coord3[2][0] = 13;
coord3[2][1] = 13;
coord3[3][0] = 14;
coord3[3][1] = 20;
coord3[4][0] = 7;
coord3[4][1] = 9;
coord3[5][0] = 2;
coord3[5][1] = 0;
coord3[6][0] = 9;
coord3[6][1] = 19;
coord3[7][0] = 1;
coord3[7][1] = 22;
coord3[8][0] = 12;
coord3[8][1] = 21;
coord3[9][0] = 11;
coord3[9][1] = 6;
ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Verify correct elements selected */
H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord3);
for (i = 0; i < POINT1_NPOINTS; i++) {
VERIFY(temp_coord3[i][0], coord3[i][0], "H5Sget_select_elem_pointlist");
VERIFY(temp_coord3[i][1], coord3[i][1], "H5Sget_select_elem_pointlist");
} /* end for */
ret = (int)H5Sget_select_npoints(sid2);
VERIFY(ret, 10, "H5Sget_select_npoints");
/* Append another sequence of ten points to disk dataset */
coord3[0][0] = 14;
coord3[0][1] = 25;
coord3[1][0] = 0;
coord3[1][1] = 0;
coord3[2][0] = 11;
coord3[2][1] = 11;
coord3[3][0] = 5;
coord3[3][1] = 14;
coord3[4][0] = 3;
coord3[4][1] = 5;
coord3[5][0] = 2;
coord3[5][1] = 2;
coord3[6][0] = 7;
coord3[6][1] = 13;
coord3[7][0] = 9;
coord3[7][1] = 16;
coord3[8][0] = 12;
coord3[8][1] = 22;
coord3[9][0] = 13;
coord3[9][1] = 9;
ret = H5Sselect_elements(sid2, H5S_SELECT_APPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Verify correct elements selected */
H5Sget_select_elem_pointlist(sid2, (hsize_t)POINT1_NPOINTS, (hsize_t)POINT1_NPOINTS,
(hsize_t *)temp_coord3);
for (i = 0; i < POINT1_NPOINTS; i++) {
VERIFY(temp_coord3[i][0], coord3[i][0], "H5Sget_select_elem_pointlist");
VERIFY(temp_coord3[i][1], coord3[i][1], "H5Sget_select_elem_pointlist");
} /* end for */
ret = (int)H5Sget_select_npoints(sid2);
VERIFY(ret, 20, "H5Sget_select_npoints");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Check that the values match with a dataset iterator */
pi.buf = wbuf;
pi.offset = 0;
ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_point_iter1, &pi);
CHECK(ret, FAIL, "H5Diterate");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_point() */
/****************************************************************
**
** test_select_all_iter1(): Iterator for checking all iteration
**
**
****************************************************************/
static herr_t
test_select_all_iter1(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim,
const hsize_t H5_ATTR_UNUSED *point, void *_operator_data)
{
uint8_t *tbuf = (uint8_t *)_elem, /* temporary buffer pointer */
**tbuf2 = (uint8_t **)_operator_data; /* temporary buffer handle */
if (*tbuf != **tbuf2)
return (-1);
else {
(*tbuf2)++;
return (0);
}
} /* end test_select_all_iter1() */
/****************************************************************
**
** test_select_none_iter1(): Iterator for checking none iteration
** (This is never supposed to be called, so it always returns -1)
**
****************************************************************/
static herr_t
test_select_none_iter1(void H5_ATTR_UNUSED *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim,
const hsize_t H5_ATTR_UNUSED *point, void H5_ATTR_UNUSED *_operator_data)
{
return (-1);
} /* end test_select_none_iter1() */
/****************************************************************
**
** test_select_all(): Test basic H5S (dataspace) selection code.
** Tests "all" selections.
**
****************************************************************/
static void
test_select_all(hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1; /* Dataspace ID */
hsize_t dims1[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3};
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i, j, k; /* Counters */
herr_t ret; /* Generic return value */
H5S_class_t ext_type; /* Extent type */
/* Output message about test being performed */
MESSAGE(5, ("Testing 'All' Selection Functions\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE4_DIM1; i++)
for (j = 0; j < SPACE4_DIM2; j++)
for (k = 0; k < SPACE4_DIM3; k++)
*tbuf++ = (uint8_t)((((i * SPACE4_DIM2) + j) * SPACE4_DIM3) + k);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE4_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Verify extent type */
ext_type = H5Sget_simple_extent_type(sid1);
VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE4_NAME, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Check that the values match with a dataset iterator */
tbuf = wbuf;
ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid1, test_select_all_iter1, &tbuf);
CHECK(ret, FAIL, "H5Diterate");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_all() */
/****************************************************************
**
** test_select_all_hyper(): Test basic H5S (dataspace) selection code.
** Tests "all" and hyperslab selections.
**
****************************************************************/
static void
test_select_all_hyper(hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
H5S_class_t ext_type; /* Extent type */
/* Output message about test being performed */
MESSAGE(5, ("Testing 'All' Selection Functions\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE3_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Verify extent type */
ext_type = H5Sget_simple_extent_type(sid1);
VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");
/* Select entire 15x26 extent for disk dataset */
ret = H5Sselect_all(sid1);
CHECK(ret, FAIL, "H5Sselect_all");
/* Select 15x26 hyperslab for memory dataset */
start[0] = 15;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 15;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE3_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 15;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select no extent for disk dataset */
ret = H5Sselect_none(sid1);
CHECK(ret, FAIL, "H5Sselect_none");
/* Read selection from disk (should fail with no selection defined) */
H5E_BEGIN_TRY
{
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Dread");
/* Select entire 15x26 extent for disk dataset */
ret = H5Sselect_all(sid1);
CHECK(ret, FAIL, "H5Sselect_all");
/* Read selection from disk (should work now) */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Check that the values match with a dataset iterator */
tbuf = wbuf + (15 * SPACE2_DIM2);
ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_all_iter1, &tbuf);
CHECK(ret, FAIL, "H5Diterate");
/* A quick check to make certain that iterating through a "none" selection works */
ret = H5Sselect_none(sid2);
CHECK(ret, FAIL, "H5Sselect_none");
ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_none_iter1, &tbuf);
CHECK(ret, FAIL, "H5Diterate");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_all_hyper() */
/****************************************************************
**
** test_select_combo(): Test basic H5S (dataspace) selection code.
** Tests combinations of element and hyperslab selections between
** dataspaces of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_combo(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Combination of Hyperslab & Element Selection Functions\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for write buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select sequence of ten points for disk dataset */
coord1[0][0] = 0;
coord1[0][1] = 10;
coord1[0][2] = 5;
coord1[1][0] = 1;
coord1[1][1] = 2;
coord1[1][2] = 7;
coord1[2][0] = 2;
coord1[2][1] = 4;
coord1[2][2] = 9;
coord1[3][0] = 0;
coord1[3][1] = 6;
coord1[3][2] = 11;
coord1[4][0] = 1;
coord1[4][1] = 8;
coord1[4][2] = 13;
coord1[5][0] = 2;
coord1[5][1] = 12;
coord1[5][2] = 0;
coord1[6][0] = 0;
coord1[6][1] = 14;
coord1[6][2] = 2;
coord1[7][0] = 1;
coord1[7][1] = 0;
coord1[7][2] = 4;
coord1[8][0] = 2;
coord1[8][1] = 1;
coord1[8][2] = 6;
coord1[9][0] = 0;
coord1[9][1] = 3;
coord1[9][2] = 8;
ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Select 1x10 hyperslab for writing memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 10;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 10x1 hyperslab for reading memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 10;
count[1] = 1;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for (i = 0; i < POINT1_NPOINTS; i++) {
tbuf = wbuf + i;
tbuf2 = rbuf + (i * SPACE3_DIM2);
if (*tbuf != *tbuf2)
TestErrPrintf("element values don't match!, i=%d\n", i);
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_combo() */
static int
compare_size_t(const void *s1, const void *s2)
{
if (*(const size_t *)s1 < *(const size_t *)s2)
return (-1);
else if (*(const size_t *)s1 > *(const size_t *)s2)
return (1);
else
return (0);
}
/****************************************************************
**
** test_select_hyper_stride(): Test H5S (dataspace) selection code.
** Tests strided hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper_stride(hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
uint16_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
size_t loc1[72] = {
/* Gruesomely ugly way to make certain hyperslab locations are checked correctly */
27, 28, 29, 53, 54, 55, 79, 80, 81, /* Block #1 */
32, 33, 34, 58, 59, 60, 84, 85, 86, /* Block #2 */
157, 158, 159, 183, 184, 185, 209, 210, 211, /* Block #3 */
162, 163, 164, 188, 189, 190, 214, 215, 216, /* Block #4 */
287, 288, 289, 313, 314, 315, 339, 340, 341, /* Block #5 */
292, 293, 294, 318, 319, 320, 344, 345, 346, /* Block #6 */
417, 418, 419, 443, 444, 445, 469, 470, 471, /* Block #7 */
422, 423, 424, 448, 449, 450, 474, 475, 476, /* Block #8 */
};
size_t loc2[72] = {
0, 1, 2, 26, 27, 28, /* Block #1 */
4, 5, 6, 30, 31, 32, /* Block #2 */
8, 9, 10, 34, 35, 36, /* Block #3 */
12, 13, 14, 38, 39, 40, /* Block #4 */
104, 105, 106, 130, 131, 132, /* Block #5 */
108, 109, 110, 134, 135, 136, /* Block #6 */
112, 113, 114, 138, 139, 140, /* Block #7 */
116, 117, 118, 142, 143, 144, /* Block #8 */
208, 209, 210, 234, 235, 236, /* Block #9 */
212, 213, 214, 238, 239, 240, /* Block #10 */
216, 217, 218, 242, 243, 244, /* Block #11 */
220, 221, 222, 246, 247, 248, /* Block #12 */
};
int i, j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n"));
/* Allocate write & read buffers */
wbuf = (uint16_t *)malloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x3x3 count with a stride of 2x4x3 & 1x2x2 block hyperslab for disk dataset */
start[0] = 0;
start[1] = 0;
start[2] = 0;
stride[0] = 2;
stride[1] = 4;
stride[2] = 3;
count[0] = 2;
count[1] = 3;
count[2] = 3;
block[0] = 1;
block[1] = 2;
block[2] = 2;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 4x2 count with a stride of 5x5 & 3x3 block hyperslab for memory dataset */
start[0] = 1;
start[1] = 1;
stride[0] = 5;
stride[1] = 5;
count[0] = 4;
count[1] = 2;
block[0] = 3;
block[1] = 3;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 3x4 count with a stride of 4x4 & 2x3 block hyperslab for memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 4;
stride[1] = 4;
count[0] = 3;
count[1] = 4;
block[0] = 2;
block[1] = 3;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Sort the locations into the proper order */
qsort(loc1, (size_t)72, sizeof(size_t), compare_size_t);
qsort(loc2, (size_t)72, sizeof(size_t), compare_size_t);
/* Compare data read with data written out */
for (i = 0; i < 72; i++) {
tbuf = wbuf + loc1[i];
tbuf2 = rbuf + loc2[i];
if (*tbuf != *tbuf2) {
printf("%d: hyperslab values don't match!, loc1[%d]=%d, loc2[%d]=%d\n", __LINE__, i, (int)loc1[i],
i, (int)loc2[i]);
printf("wbuf=%p, tbuf=%p, rbuf=%p, tbuf2=%p\n", (void *)wbuf, (void *)tbuf, (void *)rbuf,
(void *)tbuf2);
TestErrPrintf("*tbuf=%u, *tbuf2=%u\n", (unsigned)*tbuf, (unsigned)*tbuf2);
} /* end if */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_stride() */
/****************************************************************
**
** test_select_hyper_contig(): Test H5S (dataspace) selection code.
** Tests contiguous hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper_contig(hid_t dset_type, hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims2[] = {SPACE2_DIM2, SPACE2_DIM1};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
uint16_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Contiguous Hyperslabs Functionality\n"));
/* Allocate write & read buffers */
wbuf = (uint16_t *)malloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 12x10 count with a stride of 1x3 & 3x3 block hyperslab for disk dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 3;
count[0] = 12;
count[1] = 10;
block[0] = 1;
block[1] = 3;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 4x5 count with a stride of 3x6 & 3x6 block hyperslab for memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 3;
stride[1] = 6;
count[0] = 4;
count[1] = 5;
block[0] = 3;
block[1] = 6;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE2_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 6x5 count with a stride of 2x6 & 2x6 block hyperslab for disk dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 2;
stride[1] = 6;
count[0] = 6;
count[1] = 5;
block[0] = 2;
block[1] = 6;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 3x15 count with a stride of 4x2 & 4x2 block hyperslab for memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 4;
stride[1] = 2;
count[0] = 3;
count[1] = 15;
block[0] = 4;
block[1] = 2;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
if (memcmp(rbuf, wbuf, sizeof(uint16_t) * 30 * 12) != 0)
TestErrPrintf("hyperslab values don't match! Line=%d\n", __LINE__);
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_contig() */
/****************************************************************
**
** test_select_hyper_contig2(): Test H5S (dataspace) selection code.
** Tests more contiguous hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper_contig2(hid_t dset_type, hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims2[] = {SPACE8_DIM4, SPACE8_DIM3, SPACE8_DIM2, SPACE8_DIM1};
hsize_t start[SPACE8_RANK]; /* Starting location of hyperslab */
hsize_t count[SPACE8_RANK]; /* Element count of hyperslab */
uint16_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i, j, k, l; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing More Contiguous Hyperslabs Functionality\n"));
/* Allocate write & read buffers */
wbuf = (uint16_t *)malloc(sizeof(uint16_t) * SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4);
CHECK_PTR(wbuf, "malloc");
rbuf =
(uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE8_DIM1; i++)
for (j = 0; j < SPACE8_DIM2; j++)
for (k = 0; k < SPACE8_DIM3; k++)
for (l = 0; l < SPACE8_DIM4; l++)
*tbuf++ = (uint16_t)((i * SPACE8_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select contiguous hyperslab for disk dataset */
start[0] = 0;
start[1] = 0;
start[2] = 0;
start[3] = 0;
count[0] = 2;
count[1] = SPACE8_DIM3;
count[2] = SPACE8_DIM2;
count[3] = SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select contiguous hyperslab in memory */
start[0] = 0;
start[1] = 0;
start[2] = 0;
start[3] = 0;
count[0] = 2;
count[1] = SPACE8_DIM3;
count[2] = SPACE8_DIM2;
count[3] = SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE8_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select contiguous hyperslab in memory */
start[0] = 0;
start[1] = 0;
start[2] = 0;
start[3] = 0;
count[0] = 2;
count[1] = SPACE8_DIM3;
count[2] = SPACE8_DIM2;
count[3] = SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select contiguous hyperslab in memory */
start[0] = 0;
start[1] = 0;
start[2] = 0;
start[3] = 0;
count[0] = 2;
count[1] = SPACE8_DIM3;
count[2] = SPACE8_DIM2;
count[3] = SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
if (memcmp(rbuf, wbuf, sizeof(uint16_t) * 2 * SPACE8_DIM3 * SPACE8_DIM2 * SPACE8_DIM1) != 0)
TestErrPrintf("Error: hyperslab values don't match!\n");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_contig2() */
/****************************************************************
**
** test_select_hyper_contig3(): Test H5S (dataspace) selection code.
** Tests contiguous hyperslabs of various sizes and dimensionalities.
** This test uses a hyperslab that is contiguous in the lowest dimension,
** not contiguous in a dimension, then has a selection across the entire next
** dimension (which should be "flattened" out also).
**
****************************************************************/
static void
test_select_hyper_contig3(hid_t dset_type, hid_t xfer_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims2[] = {SPACE8_DIM4, SPACE8_DIM3, SPACE8_DIM2, SPACE8_DIM1};
hsize_t start[SPACE8_RANK]; /* Starting location of hyperslab */
hsize_t count[SPACE8_RANK]; /* Element count of hyperslab */
uint16_t *wbuf, /* Buffer to write to disk */
*rbuf, /* Buffer read from disk */
*tbuf, *tbuf2; /* Temporary buffer pointers */
unsigned i, j, k, l; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Yet More Contiguous Hyperslabs Functionality\n"));
/* Allocate write & read buffers */
wbuf = (uint16_t *)malloc(sizeof(uint16_t) * SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4);
CHECK_PTR(wbuf, "malloc");
rbuf =
(uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE8_DIM4; i++)
for (j = 0; j < SPACE8_DIM3; j++)
for (k = 0; k < SPACE8_DIM2; k++)
for (l = 0; l < SPACE8_DIM1; l++)
*tbuf++ = (uint16_t)((k * SPACE8_DIM2) + l);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select semi-contiguous hyperslab for disk dataset */
start[0] = 0;
start[1] = 0;
start[2] = SPACE8_DIM2 / 2;
start[3] = 0;
count[0] = 2;
count[1] = SPACE8_DIM3;
count[2] = SPACE8_DIM2 / 2;
count[3] = SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select semi-contiguous hyperslab in memory */
start[0] = 0;
start[1] = 0;
start[2] = SPACE8_DIM2 / 2;
start[3] = 0;
count[0] = 2;
count[1] = SPACE8_DIM3;
count[2] = SPACE8_DIM2 / 2;
count[3] = SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE8_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select semi-contiguous hyperslab in memory */
start[0] = 0;
start[1] = 0;
start[2] = SPACE8_DIM2 / 2;
start[3] = 0;
count[0] = 2;
count[1] = SPACE8_DIM3;
count[2] = SPACE8_DIM2 / 2;
count[3] = SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select semi-contiguous hyperslab in memory */
start[0] = 0;
start[1] = 0;
start[2] = SPACE8_DIM2 / 2;
start[3] = 0;
count[0] = 2;
count[1] = SPACE8_DIM3;
count[2] = SPACE8_DIM2 / 2;
count[3] = SPACE8_DIM1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for (i = 0, tbuf = wbuf, tbuf2 = rbuf; i < SPACE8_DIM4; i++)
for (j = 0; j < SPACE8_DIM3; j++)
for (k = 0; k < SPACE8_DIM2; k++)
for (l = 0; l < SPACE8_DIM1; l++, tbuf++, tbuf2++)
if ((i >= start[0] && i < (start[0] + count[0])) &&
(j >= start[1] && j < (start[1] + count[1])) &&
(k >= start[2] && k < (start[2] + count[2])) &&
(l >= start[3] && l < (start[3] + count[3]))) {
if (*tbuf != *tbuf2) {
printf("Error: hyperslab values don't match!\n");
TestErrPrintf("Line: %d, i=%u, j=%u, k=%u, l=%u, *tbuf=%u,*tbuf2=%u\n", __LINE__,
i, j, k, l, (unsigned)*tbuf, (unsigned)*tbuf2);
} /* end if */
} /* end if */
else {
if (*tbuf2 != 0) {
printf("Error: invalid data in read buffer!\n");
TestErrPrintf("Line: %d, i=%u, j=%u, k=%u, l=%u, *tbuf=%u,*tbuf2=%u\n", __LINE__,
i, j, k, l, (unsigned)*tbuf, (unsigned)*tbuf2);
} /* end if */
} /* end else */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_contig3() */
#if 0
/****************************************************************
**
** verify_select_hyper_contig_dr__run_test(): Verify data from
** test_select_hyper_contig_dr__run_test()
**
****************************************************************/
static void
verify_select_hyper_contig_dr__run_test(const uint16_t *cube_buf, size_t cube_size,
unsigned edge_size, unsigned cube_rank)
{
const uint16_t *cube_ptr; /* Pointer into the cube buffer */
uint16_t expected_value; /* Expected value in dataset */
unsigned i, j, k, l, m; /* Local index variables */
size_t s; /* Local index variable */
hbool_t mis_match; /* Flag to indicate mismatch in expected value */
assert(cube_buf);
assert(cube_size > 0);
expected_value = 0;
mis_match = FALSE;
cube_ptr = cube_buf;
s = 0;
i = 0;
do {
j = 0;
do {
k = 0;
do {
l = 0;
do {
m = 0;
do {
/* Sanity check */
assert(s < cube_size);
/* Check for correct value */
if (*cube_ptr != expected_value)
mis_match = TRUE;
/* Advance to next element */
cube_ptr++;
expected_value++;
s++;
m++;
} while ((cube_rank > 0) && (m < edge_size));
l++;
} while ((cube_rank > 1) && (l < edge_size));
k++;
} while ((cube_rank > 2) && (k < edge_size));
j++;
} while ((cube_rank > 3) && (j < edge_size));
i++;
} while ((cube_rank > 4) && (i < edge_size));
if (mis_match)
TestErrPrintf("Initial cube data don't match! Line = %d\n", __LINE__);
} /* verify_select_hyper_contig_dr__run_test() */
#endif
#if 0
/****************************************************************
**
** test_select_hyper_contig_dr__run_test(): Test H5S (dataspace)
** selection code with contiguous source and target having
** different ranks but the same shape. We have already
** tested H5Sselect_shape_same in isolation, so now we try to do
** I/O.
**
****************************************************************/
static void
test_select_hyper_contig_dr__run_test(int test_num, const uint16_t *cube_buf, const uint16_t *zero_buf,
unsigned edge_size, unsigned chunk_edge_size, unsigned small_rank,
unsigned large_rank, hid_t dset_type, hid_t xfer_plist)
{
hbool_t mis_match; /* Flag indicating a value read in wasn't what was expected */
hid_t fapl; /* File access property list */
hid_t fid1; /* File ID */
hid_t small_cube_sid; /* Dataspace ID for small cube in memory & file */
hid_t mem_large_cube_sid; /* Dataspace ID for large cube in memory */
hid_t file_large_cube_sid; /* Dataspace ID for large cube in file */
hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */
hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */
hid_t small_cube_dataset; /* Dataset ID */
hid_t large_cube_dataset; /* Dataset ID */
size_t start_index; /* Offset within buffer to begin inspecting */
size_t stop_index; /* Offset within buffer to end inspecting */
uint16_t expected_value; /* Expected value in dataset */
uint16_t *small_cube_buf_1; /* Buffer for small cube data */
uint16_t *large_cube_buf_1; /* Buffer for large cube data */
uint16_t *ptr_1; /* Temporary pointer into cube data */
hsize_t dims[SS_DR_MAX_RANK]; /* Dataspace dimensions */
hsize_t start[SS_DR_MAX_RANK]; /* Shared hyperslab start offset */
hsize_t stride[SS_DR_MAX_RANK]; /* Shared hyperslab stride */
hsize_t count[SS_DR_MAX_RANK]; /* Shared hyperslab count */
hsize_t block[SS_DR_MAX_RANK]; /* Shared hyperslab block size */
hsize_t *start_ptr; /* Actual hyperslab start offset */
hsize_t *stride_ptr; /* Actual hyperslab stride */
hsize_t *count_ptr; /* Actual hyperslab count */
hsize_t *block_ptr; /* Actual hyperslab block size */
size_t small_cube_size; /* Number of elements in small cube */
size_t large_cube_size; /* Number of elements in large cube */
unsigned u, v, w, x; /* Local index variables */
size_t s; /* Local index variable */
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num));
MESSAGE(7, ("\tranks = %u/%u, edge_size = %u, chunk_edge_size = %u.\n", small_rank, large_rank, edge_size,
chunk_edge_size));
assert(edge_size >= 6);
assert(edge_size >= chunk_edge_size);
assert((chunk_edge_size == 0) || (chunk_edge_size >= 3));
assert(small_rank > 0);
assert(small_rank < large_rank);
assert(large_rank <= SS_DR_MAX_RANK);
/* Compute cube sizes */
small_cube_size = large_cube_size = (size_t)1;
for (u = 0; u < large_rank; u++) {
if (u < small_rank)
small_cube_size *= (size_t)edge_size;
large_cube_size *= (size_t)edge_size;
} /* end for */
assert(large_cube_size < (size_t)UINT_MAX);
/* set up the start, stride, count, and block pointers */
start_ptr = &(start[SS_DR_MAX_RANK - large_rank]);
stride_ptr = &(stride[SS_DR_MAX_RANK - large_rank]);
count_ptr = &(count[SS_DR_MAX_RANK - large_rank]);
block_ptr = &(block[SS_DR_MAX_RANK - large_rank]);
/* Allocate buffers */
small_cube_buf_1 = (uint16_t *)calloc(sizeof(uint16_t), small_cube_size);
CHECK_PTR(small_cube_buf_1, "calloc");
large_cube_buf_1 = (uint16_t *)calloc(sizeof(uint16_t), large_cube_size);
CHECK_PTR(large_cube_buf_1, "calloc");
/* Create a dataset transfer property list */
fapl = H5Pcreate(H5P_FILE_ACCESS);
CHECK(fapl, FAIL, "H5Pcreate");
/* Use the 'core' VFD for this test */
ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE);
CHECK(ret, FAIL, "H5Pset_fapl_core");
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
CHECK(fid1, FAIL, "H5Fcreate");
/* Close file access property list */
ret = H5Pclose(fapl);
CHECK(ret, FAIL, "H5Pclose");
/* setup dims: */
dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = (hsize_t)edge_size;
/* Create small cube dataspaces */
small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
CHECK(small_cube_sid, FAIL, "H5Screate_simple");
/* Create large cube dataspace */
mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple");
file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
CHECK(file_large_cube_sid, FAIL, "H5Screate_simple");
/* if chunk edge size is greater than zero, set up the small and
* large data set creation property lists to specify chunked
* datasets.
*/
if (chunk_edge_size > 0) {
hsize_t chunk_dims[SS_DR_MAX_RANK]; /* Chunk dimensions */
chunk_dims[0] = chunk_dims[1] = chunk_dims[2] = chunk_dims[3] = chunk_dims[4] =
(hsize_t)chunk_edge_size;
small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate");
ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED);
CHECK(ret, FAIL, "H5Pset_layout");
ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims);
CHECK(ret, FAIL, "H5Pset_chunk");
large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate");
ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED);
CHECK(ret, FAIL, "H5Pset_layout");
ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims);
CHECK(ret, FAIL, "H5Pset_chunk");
} /* end if */
/* create the small cube dataset */
small_cube_dataset = H5Dcreate2(fid1, "small_cube_dataset", dset_type, small_cube_sid, H5P_DEFAULT,
small_cube_dcpl_id, H5P_DEFAULT);
CHECK(small_cube_dataset, FAIL, "H5Dcreate2");
/* Close non-default small dataset DCPL */
if (small_cube_dcpl_id != H5P_DEFAULT) {
ret = H5Pclose(small_cube_dcpl_id);
CHECK(ret, FAIL, "H5Pclose");
} /* end if */
/* create the large cube dataset */
large_cube_dataset = H5Dcreate2(fid1, "large_cube_dataset", dset_type, file_large_cube_sid, H5P_DEFAULT,
large_cube_dcpl_id, H5P_DEFAULT);
CHECK(large_cube_dataset, FAIL, "H5Dcreate2");
/* Close non-default large dataset DCPL */
if (large_cube_dcpl_id != H5P_DEFAULT) {
ret = H5Pclose(large_cube_dcpl_id);
CHECK(ret, FAIL, "H5Pclose");
} /* end if */
/* write initial data to the on disk datasets */
ret =
H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist, cube_buf);
CHECK(ret, FAIL, "H5Dwrite");
ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_large_cube_sid, xfer_plist,
cube_buf);
CHECK(ret, FAIL, "H5Dwrite");
/* read initial data from disk and verify that it is as expected. */
ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist,
small_cube_buf_1);
CHECK(ret, FAIL, "H5Dread");
/* Check that the data is valid */
verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, edge_size, small_rank);
ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_large_cube_sid, xfer_plist,
large_cube_buf_1);
CHECK(ret, FAIL, "H5Dread");
/* Check that the data is valid */
verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, edge_size, large_rank);
/* first, verify that we can read from disk correctly using selections
* of different rank that H5Sselect_shape_same() views as being of the
* same shape.
*
* Start by reading small_rank-D slice from the on disk large cube, and
* verifying that the data read is correct. Verify that H5Sselect_shape_same()
* returns true on the memory and file selections.
*/
/* set up start, stride, count, and block -- note that we will
* change start[] so as to read slices of the large cube.
*/
for (u = 0; u < SS_DR_MAX_RANK; u++) {
start[u] = 0;
stride[u] = 1;
count[u] = 1;
if ((SS_DR_MAX_RANK - u) > small_rank)
block[u] = 1;
else
block[u] = (hsize_t)edge_size;
} /* end for */
u = 0;
do {
v = 0;
do {
w = 0;
do {
x = 0;
do {
/* we know that small_rank >= 1 and that large_rank > small_rank
* by the assertions at the head of this function. Thus no
* need for another inner loop.
*/
start[0] = (hsize_t)u;
start[1] = (hsize_t)v;
start[2] = (hsize_t)w;
start[3] = (hsize_t)x;
start[4] = (hsize_t)0;
ret = H5Sselect_hyperslab(file_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr,
count_ptr, block_ptr);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* verify that H5Sselect_shape_same() reports the two
* selections as having the same shape.
*/
check = H5Sselect_shape_same(small_cube_sid, file_large_cube_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Read selection from disk */
ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, file_large_cube_sid,
xfer_plist, small_cube_buf_1);
CHECK(ret, FAIL, "H5Dread");
/* verify that expected data is retrieved */
mis_match = FALSE;
ptr_1 = small_cube_buf_1;
expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) +
(v * edge_size * edge_size * edge_size) +
(w * edge_size * edge_size) + (x * edge_size));
for (s = 0; s < small_cube_size; s++) {
if (*ptr_1 != expected_value)
mis_match = TRUE;
ptr_1++;
expected_value++;
} /* end for */
if (mis_match)
TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__);
x++;
} while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
w++;
} while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
v++;
} while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
u++;
} while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));
/* similarly, read the on disk small cube into slices through the in memory
* large cube, and verify that the correct data (and only the correct data)
* is read.
*/
/* zero out the in-memory large cube */
memset(large_cube_buf_1, 0, large_cube_size * sizeof(uint16_t));
u = 0;
do {
v = 0;
do {
w = 0;
do {
x = 0;
do {
/* we know that small_rank >= 1 and that large_rank > small_rank
* by the assertions at the head of this function. Thus no
* need for another inner loop.
*/
start[0] = (hsize_t)u;
start[1] = (hsize_t)v;
start[2] = (hsize_t)w;
start[3] = (hsize_t)x;
start[4] = (hsize_t)0;
ret = H5Sselect_hyperslab(mem_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr,
count_ptr, block_ptr);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* verify that H5Sselect_shape_same() reports the two
* selections as having the same shape.
*/
check = H5Sselect_shape_same(small_cube_sid, mem_large_cube_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Read selection from disk */
ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, small_cube_sid,
xfer_plist, large_cube_buf_1);
CHECK(ret, FAIL, "H5Dread");
/* verify that the expected data and only the
* expected data was read.
*/
start_index = (u * edge_size * edge_size * edge_size * edge_size) +
(v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) +
(x * edge_size);
stop_index = start_index + small_cube_size - 1;
assert(start_index < stop_index);
assert(stop_index <= large_cube_size);
mis_match = FALSE;
ptr_1 = large_cube_buf_1;
expected_value = 0;
for (s = 0; s < start_index; s++) {
if (*ptr_1 != 0)
mis_match = TRUE;
ptr_1++;
} /* end for */
for (; s <= stop_index; s++) {
if (*ptr_1 != expected_value)
mis_match = TRUE;
expected_value++;
ptr_1++;
} /* end for */
for (; s < large_cube_size; s++) {
if (*ptr_1 != 0)
mis_match = TRUE;
ptr_1++;
} /* end for */
if (mis_match)
TestErrPrintf("large cube read from small cube has bad data! Line=%u\n", __LINE__);
/* Zero out the buffer for the next pass */
memset(large_cube_buf_1 + start_index, 0, small_cube_size * sizeof(uint16_t));
x++;
} while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
w++;
} while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
v++;
} while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
u++;
} while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));
/* now we go in the opposite direction, verifying that we can write
* from memory to file using selections of different rank that
* H5Sselect_shape_same() views as being of the same shape.
*
* Start by writing small_rank D slices from the in memory large cube, to
* the the on disk small cube dataset. After each write, read the small
* cube dataset back from disk, and verify that it contains the expected
* data. Verify that H5Sselect_shape_same() returns true on the
* memory and file selections.
*/
u = 0;
do {
v = 0;
do {
w = 0;
do {
x = 0;
do {
/* we know that small_rank >= 1 and that large_rank > small_rank
* by the assertions at the head of this function. Thus no
* need for another inner loop.
*/
/* zero out the on disk small cube */
ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid,
xfer_plist, zero_buf);
CHECK(ret, FAIL, "H5Dwrite");
/* select the portion of the in memory large cube from which we
* are going to write data.
*/
start[0] = (hsize_t)u;
start[1] = (hsize_t)v;
start[2] = (hsize_t)w;
start[3] = (hsize_t)x;
start[4] = (hsize_t)0;
ret = H5Sselect_hyperslab(mem_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr,
count_ptr, block_ptr);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* verify that H5Sselect_shape_same() reports the in
* memory slice through the cube selection and the
* on disk full small cube selections as having the same shape.
*/
check = H5Sselect_shape_same(small_cube_sid, mem_large_cube_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* write the slice from the in memory large cube to the on disk small cube */
ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, small_cube_sid,
xfer_plist, cube_buf);
CHECK(ret, FAIL, "H5Dwrite");
/* read the on disk small cube into memory */
ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid,
xfer_plist, small_cube_buf_1);
CHECK(ret, FAIL, "H5Dread");
/* verify that expected data is retrieved */
mis_match = FALSE;
ptr_1 = small_cube_buf_1;
expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) +
(v * edge_size * edge_size * edge_size) +
(w * edge_size * edge_size) + (x * edge_size));
for (s = 0; s < small_cube_size; s++) {
if (*ptr_1 != expected_value)
mis_match = TRUE;
expected_value++;
ptr_1++;
} /* end for */
if (mis_match)
TestErrPrintf("small cube data don't match! Line=%d\n", __LINE__);
x++;
} while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
w++;
} while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
v++;
} while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
u++;
} while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));
/* Now write the contents of the in memory small cube to slices of
* the on disk cube. After each write, read the on disk cube
* into memory, and verify that it contains the expected
* data. Verify that H5Sselect_shape_same() returns true on
* the memory and file selections.
*/
/* select the entire memory and file cube dataspaces */
ret = H5Sselect_all(mem_large_cube_sid);
CHECK(ret, FAIL, "H5Sselect_all");
ret = H5Sselect_all(file_large_cube_sid);
CHECK(ret, FAIL, "H5Sselect_all");
u = 0;
do {
v = 0;
do {
w = 0;
do {
x = 0;
do {
/* we know that small_rank >= 1 and that large_rank > small_rank
* by the assertions at the head of this function. Thus no
* need for another inner loop.
*/
/* zero out the on disk cube */
ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_USHORT, mem_large_cube_sid,
file_large_cube_sid, xfer_plist, zero_buf);
CHECK(ret, FAIL, "H5Dwrite");
/* select the portion of the in memory large cube to which we
* are going to write data.
*/
start[0] = (hsize_t)u;
start[1] = (hsize_t)v;
start[2] = (hsize_t)w;
start[3] = (hsize_t)x;
start[4] = (hsize_t)0;
ret = H5Sselect_hyperslab(file_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr,
count_ptr, block_ptr);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* verify that H5Sselect_shape_same() reports the in
* memory full selection of the small cube and the
* on disk slice through the large cube selection
* as having the same shape.
*/
check = H5Sselect_shape_same(small_cube_sid, file_large_cube_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* write the cube from memory to the target slice of the disk cube */
ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, file_large_cube_sid,
xfer_plist, cube_buf);
CHECK(ret, FAIL, "H5Dwrite");
/* read the on disk cube into memory */
ret = H5Sselect_all(file_large_cube_sid);
CHECK(ret, FAIL, "H5Sselect_all");
ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid,
file_large_cube_sid, xfer_plist, large_cube_buf_1);
CHECK(ret, FAIL, "H5Dread");
/* verify that the expected data and only the
* expected data was read.
*/
start_index = (u * edge_size * edge_size * edge_size * edge_size) +
(v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) +
(x * edge_size);
stop_index = start_index + small_cube_size - 1;
assert(start_index < stop_index);
assert(stop_index <= large_cube_size);
mis_match = FALSE;
ptr_1 = large_cube_buf_1;
expected_value = 0;
for (s = 0; s < start_index; s++) {
if (*ptr_1 != 0)
mis_match = TRUE;
ptr_1++;
} /* end for */
for (; s <= stop_index; s++) {
if (*ptr_1 != expected_value)
mis_match = TRUE;
expected_value++;
ptr_1++;
} /* end for */
for (; s < large_cube_size; s++) {
if (*ptr_1 != 0)
mis_match = TRUE;
ptr_1++;
} /* end for */
if (mis_match)
TestErrPrintf("large cube written from small cube has bad data! Line=%d\n", __LINE__);
x++;
} while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
w++;
} while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
v++;
} while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
u++;
} while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));
/* Close memory dataspaces */
ret = H5Sclose(small_cube_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(mem_large_cube_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(file_large_cube_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Close Datasets */
ret = H5Dclose(small_cube_dataset);
CHECK(ret, FAIL, "H5Dclose");
ret = H5Dclose(large_cube_dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(small_cube_buf_1);
free(large_cube_buf_1);
} /* test_select_hyper_contig_dr__run_test() */
#endif
#if 0
/****************************************************************
**
** test_select_hyper_contig_dr(): Test H5S (dataspace)
** selection code with contiguous source and target having
** different ranks but the same shape. We have already
** tested H5Sselect_shape_same in isolation, so now we try to do
** I/O.
**
****************************************************************/
static void
test_select_hyper_contig_dr(hid_t dset_type, hid_t xfer_plist)
{
int test_num = 0;
unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */
unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */
unsigned small_rank; /* Current rank of small dataset */
unsigned large_rank; /* Current rank of large dataset */
uint16_t *cube_buf; /* Buffer for writing cube data */
uint16_t *zero_buf; /* Buffer for writing zeroed cube data */
uint16_t *cube_ptr; /* Temporary pointer into cube data */
unsigned max_rank = 5; /* Max. rank to use */
size_t max_cube_size; /* Max. number of elements in largest cube */
size_t s; /* Local index variable */
unsigned u; /* Local index variable */
/* Output message about test being performed */
MESSAGE(5, ("Testing Contiguous Hyperslabs With Different Rank I/O Functionality\n"));
/* Compute max. cube size */
max_cube_size = (size_t)1;
for (u = 0; u < max_rank; u++)
max_cube_size *= (size_t)edge_size;
/* Allocate cube buffer for writing values */
cube_buf = (uint16_t *)malloc(sizeof(uint16_t) * max_cube_size);
CHECK_PTR(cube_buf, "malloc");
/* Initialize the cube buffer */
cube_ptr = cube_buf;
for (s = 0; s < max_cube_size; s++)
*cube_ptr++ = (uint16_t)s;
/* Allocate cube buffer for zeroing values on disk */
zero_buf = (uint16_t *)calloc(sizeof(uint16_t), max_cube_size);
CHECK_PTR(zero_buf, "calloc");
for (large_rank = 1; large_rank <= max_rank; large_rank++) {
for (small_rank = 1; small_rank < large_rank; small_rank++) {
chunk_edge_size = 0;
test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, edge_size, chunk_edge_size,
small_rank, large_rank, dset_type, xfer_plist);
test_num++;
chunk_edge_size = 3;
test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, edge_size, chunk_edge_size,
small_rank, large_rank, dset_type, xfer_plist);
test_num++;
} /* for loop on small rank */
} /* for loop on large rank */
free(cube_buf);
free(zero_buf);
} /* test_select_hyper_contig_dr() */
#endif
/****************************************************************
**
** test_select_hyper_checker_board_dr__select_checker_board():
** Given an n-cube dataspace with each edge of length
** edge_size, and a checker_edge_size either select a checker
** board selection of the entire cube(if sel_rank == n),
** or select a checker board selection of a
** sel_rank dimensional slice through n-cube parallel to the
** sel_rank fastest changing indices, with origin (in the
** higher indices) as indicated by the start array.
**
** Note that this function, like all its relatives, is
** hard coded to presume a maximum n-cube rank of 5.
** While this maximum is declared as a constant, increasing
** it will require extensive coding in addition to changing
** the value of the constant.
**
** JRM -- 9/9/09
**
****************************************************************/
#if 0
static void
test_select_hyper_checker_board_dr__select_checker_board(hid_t tgt_n_cube_sid, unsigned tgt_n_cube_rank,
unsigned edge_size, unsigned checker_edge_size,
unsigned sel_rank, const hsize_t sel_start[])
{
hbool_t first_selection = TRUE;
unsigned n_cube_offset;
unsigned sel_offset;
hsize_t base_count;
hsize_t offset_count;
hsize_t start[SS_DR_MAX_RANK]; /* Offset of hyperslab selection */
hsize_t stride[SS_DR_MAX_RANK]; /* Stride of hyperslab selection */
hsize_t count[SS_DR_MAX_RANK]; /* Count of hyperslab selection */
hsize_t block[SS_DR_MAX_RANK]; /* Block size of hyperslab selection */
unsigned i, j, k, l, m; /* Local index variable */
unsigned u; /* Local index variables */
herr_t ret; /* Generic return value */
assert(edge_size >= 6);
assert(0 < checker_edge_size);
assert(checker_edge_size <= edge_size);
assert(0 < sel_rank);
assert(sel_rank <= tgt_n_cube_rank);
assert(tgt_n_cube_rank <= SS_DR_MAX_RANK);
sel_offset = SS_DR_MAX_RANK - sel_rank;
n_cube_offset = SS_DR_MAX_RANK - tgt_n_cube_rank;
assert(n_cube_offset <= sel_offset);
/* First, compute the base count (which assumes start == 0
* for the associated offset) and offset_count (which
* assumes start == checker_edge_size for the associated
* offset).
*/
base_count = edge_size / (checker_edge_size * 2);
if ((edge_size % (checker_edge_size * 2)) > 0)
base_count++;
offset_count = (edge_size - checker_edge_size) / (checker_edge_size * 2);
if (((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0)
offset_count++;
/* Now set up the stride and block arrays, and portions of the start
* and count arrays that will not be altered during the selection of
* the checker board.
*/
u = 0;
while (u < n_cube_offset) {
/* these values should never be used */
start[u] = 0;
stride[u] = 0;
count[u] = 0;
block[u] = 0;
u++;
} /* end while */
while (u < sel_offset) {
start[u] = sel_start[u];
stride[u] = 2 * edge_size;
count[u] = 1;
block[u] = 1;
u++;
} /* end while */
while (u < SS_DR_MAX_RANK) {
stride[u] = 2 * checker_edge_size;
block[u] = checker_edge_size;
u++;
} /* end while */
i = 0;
do {
if (0 >= sel_offset) {
if (i == 0) {
start[0] = 0;
count[0] = base_count;
} /* end if */
else {
start[0] = checker_edge_size;
count[0] = offset_count;
} /* end else */
} /* end if */
j = 0;
do {
if (1 >= sel_offset) {
if (j == 0) {
start[1] = 0;
count[1] = base_count;
} /* end if */
else {
start[1] = checker_edge_size;
count[1] = offset_count;
} /* end else */
} /* end if */
k = 0;
do {
if (2 >= sel_offset) {
if (k == 0) {
start[2] = 0;
count[2] = base_count;
} /* end if */
else {
start[2] = checker_edge_size;
count[2] = offset_count;
} /* end else */
} /* end if */
l = 0;
do {
if (3 >= sel_offset) {
if (l == 0) {
start[3] = 0;
count[3] = base_count;
} /* end if */
else {
start[3] = checker_edge_size;
count[3] = offset_count;
} /* end else */
} /* end if */
m = 0;
do {
if (4 >= sel_offset) {
if (m == 0) {
start[4] = 0;
count[4] = base_count;
} /* end if */
else {
start[4] = checker_edge_size;
count[4] = offset_count;
} /* end else */
} /* end if */
if (((i + j + k + l + m) % 2) == 0) {
if (first_selection) {
first_selection = FALSE;
ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_SET,
&(start[n_cube_offset]), &(stride[n_cube_offset]),
&(count[n_cube_offset]), &(block[n_cube_offset]));
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end if */
else {
ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_OR,
&(start[n_cube_offset]), &(stride[n_cube_offset]),
&(count[n_cube_offset]), &(block[n_cube_offset]));
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end else */
} /* end if */
m++;
} while ((m <= 1) && (4 >= sel_offset));
l++;
} while ((l <= 1) && (3 >= sel_offset));
k++;
} while ((k <= 1) && (2 >= sel_offset));
j++;
} while ((j <= 1) && (1 >= sel_offset));
i++;
} while ((i <= 1) && (0 >= sel_offset));
/* Weirdness alert:
*
* Some how, it seems that selections can extend beyond the
* boundaries of the target dataspace -- hence the following
* code to manually clip the selection back to the dataspace
* proper.
*/
for (u = 0; u < SS_DR_MAX_RANK; u++) {
start[u] = 0;
stride[u] = edge_size;
count[u] = 1;
block[u] = edge_size;
} /* end for */
ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_AND, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* test_select_hyper_checker_board_dr__select_checker_board() */
#endif
/****************************************************************
**
** test_select_hyper_checker_board_dr__verify_data():
**
** Examine the supplied buffer to see if it contains the
** expected data. Return TRUE if it does, and FALSE
** otherwise.
**
** The supplied buffer is presumed to contain the results
** of read or writing a checkerboard selection of an
** n-cube, or a checkerboard selection of an m (1 <= m < n)
** dimensional slice through an n-cube parallel to the
** fastest changing indices.
**
** It is further presumed that the buffer was zeroed before
** the read, and that the n-cube was initialize with the
** natural numbers listed in order from the origin along
** the fastest changing axis.
**
** Thus for a 10x10x10 3-cube, the value stored in location
** (x, y, z) (assuming that z is the fastest changing index
** and x the slowest) is assumed to be:
**
** (10 * 10 * x) + (10 * y) + z
**
** Thus, if the buffer contains the result of reading a
** checker board selection of a 10x10x10 3-cube, location
** (x, y, z) will contain zero if it is not in a checker,
** and 100x + 10y + z if (x, y, z) is in a checker.
**
** If the buffer contains the result of reading a 3
** dimensional slice (parallel to the three fastest changing
** indices) through an n cube (n > 3), then the expected
** values in the buffer will be the same, save that we will
** add a constant determined by the origin of the 3-cube
** in the n-cube.
**
** Finally, the function presumes that the first element
** of the buffer resides either at the origin of either
** a selected or an unselected checker.
**
****************************************************************/
#if 0
H5_ATTR_PURE static hbool_t
test_select_hyper_checker_board_dr__verify_data(uint16_t *buf_ptr, unsigned rank, unsigned edge_size,
unsigned checker_edge_size, uint16_t first_expected_val,
hbool_t buf_starts_in_checker)
{
hbool_t good_data = TRUE;
hbool_t in_checker;
hbool_t start_in_checker[5];
uint16_t expected_value;
uint16_t *val_ptr;
unsigned i, j, k, l, m; /* to track position in n-cube */
unsigned v, w, x, y, z; /* to track position in checker */
const unsigned test_max_rank = 5; /* code changes needed if this is increased */
assert(buf_ptr != NULL);
assert(0 < rank);
assert(rank <= test_max_rank);
assert(edge_size >= 6);
assert(0 < checker_edge_size);
assert(checker_edge_size <= edge_size);
assert(test_max_rank <= SS_DR_MAX_RANK);
val_ptr = buf_ptr;
expected_value = first_expected_val;
i = 0;
v = 0;
start_in_checker[0] = buf_starts_in_checker;
do {
if (v >= checker_edge_size) {
start_in_checker[0] = !start_in_checker[0];
v = 0;
} /* end if */
j = 0;
w = 0;
start_in_checker[1] = start_in_checker[0];
do {
if (w >= checker_edge_size) {
start_in_checker[1] = !start_in_checker[1];
w = 0;
} /* end if */
k = 0;
x = 0;
start_in_checker[2] = start_in_checker[1];
do {
if (x >= checker_edge_size) {
start_in_checker[2] = !start_in_checker[2];
x = 0;
} /* end if */
l = 0;
y = 0;
start_in_checker[3] = start_in_checker[2];
do {
if (y >= checker_edge_size) {
start_in_checker[3] = !start_in_checker[3];
y = 0;
} /* end if */
m = 0;
z = 0;
in_checker = start_in_checker[3];
do {
if (z >= checker_edge_size) {
in_checker = !in_checker;
z = 0;
} /* end if */
if (in_checker) {
if (*val_ptr != expected_value)
good_data = FALSE;
} /* end if */
else {
if (*val_ptr != 0)
good_data = FALSE;
} /* end else */
val_ptr++;
expected_value++;
m++;
z++;
} while ((rank >= (test_max_rank - 4)) && (m < edge_size));
l++;
y++;
} while ((rank >= (test_max_rank - 3)) && (l < edge_size));
k++;
x++;
} while ((rank >= (test_max_rank - 2)) && (k < edge_size));
j++;
w++;
} while ((rank >= (test_max_rank - 1)) && (j < edge_size));
i++;
v++;
} while ((rank >= test_max_rank) && (i < edge_size));
return (good_data);
} /* test_select_hyper_checker_board_dr__verify_data() */
#endif
/****************************************************************
**
** test_select_hyper_checker_board_dr__run_test(): Test H5S
** (dataspace) selection code with checker board source and
** target selections having different ranks but the same
** shape. We have already tested H5Sselect_shape_same in
** isolation, so now we try to do I/O.
**
****************************************************************/
#if 0
static void
test_select_hyper_checker_board_dr__run_test(int test_num, const uint16_t *cube_buf, const uint16_t *zero_buf,
unsigned edge_size, unsigned checker_edge_size,
unsigned chunk_edge_size, unsigned small_rank,
unsigned large_rank, hid_t dset_type, hid_t xfer_plist)
{
hbool_t data_ok;
hid_t fapl; /* File access property list */
hid_t fid; /* HDF5 File IDs */
hid_t full_small_cube_sid; /* Dataspace for small cube w/all selection */
hid_t mem_small_cube_sid;
hid_t file_small_cube_sid;
hid_t full_large_cube_sid; /* Dataspace for large cube w/all selection */
hid_t mem_large_cube_sid;
hid_t file_large_cube_sid;
hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */
hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */
hid_t small_cube_dataset; /* Dataset ID */
hid_t large_cube_dataset; /* Dataset ID */
unsigned small_rank_offset; /* Rank offset of slice */
const unsigned test_max_rank = 5; /* must update code if this changes */
size_t start_index; /* Offset within buffer to begin inspecting */
size_t stop_index; /* Offset within buffer to end inspecting */
uint16_t expected_value;
uint16_t *small_cube_buf_1;
uint16_t *large_cube_buf_1;
uint16_t *ptr_1;
size_t small_cube_size; /* Number of elements in small cube */
size_t large_cube_size; /* Number of elements in large cube */
hsize_t dims[SS_DR_MAX_RANK];
hsize_t chunk_dims[SS_DR_MAX_RANK];
hsize_t sel_start[SS_DR_MAX_RANK];
unsigned u, v, w, x; /* Local index variables */
size_t s; /* Local index variable */
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num));
MESSAGE(7, ("\tranks = %d/%d, edge_size = %d, checker_edge_size = %d, chunk_edge_size = %d.\n",
small_rank, large_rank, edge_size, checker_edge_size, chunk_edge_size));
assert(edge_size >= 6);
assert(checker_edge_size > 0);
assert(checker_edge_size <= edge_size);
assert(edge_size >= chunk_edge_size);
assert((chunk_edge_size == 0) || (chunk_edge_size >= 3));
assert(small_rank > 0);
assert(small_rank < large_rank);
assert(large_rank <= test_max_rank);
assert(test_max_rank <= SS_DR_MAX_RANK);
/* Compute cube sizes */
small_cube_size = large_cube_size = (size_t)1;
for (u = 0; u < large_rank; u++) {
if (u < small_rank)
small_cube_size *= (size_t)edge_size;
large_cube_size *= (size_t)edge_size;
} /* end for */
assert(large_cube_size < (size_t)(UINT_MAX));
small_rank_offset = test_max_rank - small_rank;
assert(small_rank_offset >= 1);
/* also, at present, we use 16 bit values in this test --
* hence the following assertion. Delete it if we convert
* to 32 bit values.
*/
assert(large_cube_size < (size_t)(64 * 1024));
/* Allocate & initialize buffers */
small_cube_buf_1 = (uint16_t *)calloc(sizeof(uint16_t), small_cube_size);
CHECK_PTR(small_cube_buf_1, "calloc");
large_cube_buf_1 = (uint16_t *)calloc(sizeof(uint16_t), large_cube_size);
CHECK_PTR(large_cube_buf_1, "calloc");
/* Create a dataset transfer property list */
fapl = H5Pcreate(H5P_FILE_ACCESS);
CHECK(fapl, FAIL, "H5Pcreate");
/* Use the 'core' VFD for this test */
ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE);
CHECK(ret, FAIL, "H5Pset_fapl_core");
/* Create file */
fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
CHECK(fid, FAIL, "H5Fcreate");
/* Close file access property list */
ret = H5Pclose(fapl);
CHECK(ret, FAIL, "H5Pclose");
/* setup dims: */
dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = edge_size;
/* Create small cube dataspaces */
full_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
CHECK(full_small_cube_sid, FAIL, "H5Screate_simple");
mem_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
CHECK(mem_small_cube_sid, FAIL, "H5Screate_simple");
file_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
CHECK(file_small_cube_sid, FAIL, "H5Screate_simple");
/* Create large cube dataspace */
full_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
CHECK(full_large_cube_sid, FAIL, "H5Screate_simple");
mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple");
file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
CHECK(file_large_cube_sid, FAIL, "H5Screate_simple");
/* if chunk edge size is greater than zero, set up the small and
* large data set creation property lists to specify chunked
* datasets.
*/
if (chunk_edge_size > 0) {
chunk_dims[0] = chunk_dims[1] = chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = chunk_edge_size;
small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate");
ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED);
CHECK(ret, FAIL, "H5Pset_layout");
ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims);
CHECK(ret, FAIL, "H5Pset_chunk");
large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate");
ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED);
CHECK(ret, FAIL, "H5Pset_layout");
ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims);
CHECK(ret, FAIL, "H5Pset_chunk");
} /* end if */
/* create the small cube dataset */
small_cube_dataset = H5Dcreate2(fid, "small_cube_dataset", dset_type, file_small_cube_sid, H5P_DEFAULT,
small_cube_dcpl_id, H5P_DEFAULT);
CHECK(small_cube_dataset, FAIL, "H5Dcreate2");
/* Close non-default small dataset DCPL */
if (small_cube_dcpl_id != H5P_DEFAULT) {
ret = H5Pclose(small_cube_dcpl_id);
CHECK(ret, FAIL, "H5Pclose");
} /* end if */
/* create the large cube dataset */
large_cube_dataset = H5Dcreate2(fid, "large_cube_dataset", dset_type, file_large_cube_sid, H5P_DEFAULT,
large_cube_dcpl_id, H5P_DEFAULT);
CHECK(large_cube_dataset, FAIL, "H5Dcreate2");
/* Close non-default large dataset DCPL */
if (large_cube_dcpl_id != H5P_DEFAULT) {
ret = H5Pclose(large_cube_dcpl_id);
CHECK(ret, FAIL, "H5Pclose");
} /* end if */
/* write initial data to the on disk datasets */
ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid,
xfer_plist, cube_buf);
CHECK(ret, FAIL, "H5Dwrite");
ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, full_large_cube_sid,
xfer_plist, cube_buf);
CHECK(ret, FAIL, "H5Dwrite");
/* read initial small cube data from disk and verify that it is as expected. */
ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid, xfer_plist,
small_cube_buf_1);
CHECK(ret, FAIL, "H5Dread");
/* Check that the data is valid */
verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, edge_size, small_rank);
/* read initial large cube data from disk and verify that it is as expected. */
ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, full_large_cube_sid, xfer_plist,
large_cube_buf_1);
CHECK(ret, FAIL, "H5Dread");
/* Check that the data is valid */
verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, edge_size, large_rank);
/* first, verify that we can read from disk correctly using selections
* of different rank that H5Sselect_shape_same() views as being of the
* same shape.
*
* Start by reading small_rank-D slice from the on disk large cube, and
* verifying that the data read is correct. Verify that H5Sselect_shape_same()
* returns true on the memory and file selections.
*
* The first step is to set up the needed checker board selection in the
* in memory small small cube
*/
sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, small_rank, edge_size,
checker_edge_size, small_rank, sel_start);
/* now read slices from the large, on-disk cube into the small cube.
* Note how we adjust sel_start only in the dimensions peculiar to the
* large cube.
*/
u = 0;
do {
if (small_rank_offset > 0)
sel_start[0] = u;
v = 0;
do {
if (small_rank_offset > 1)
sel_start[1] = v;
w = 0;
do {
if (small_rank_offset > 2)
sel_start[2] = w;
x = 0;
do {
if (small_rank_offset > 3)
sel_start[3] = x;
/* we know that small_rank >= 1 and that large_rank > small_rank
* by the assertions at the head of this function. Thus no
* need for another inner loop.
*/
assert((sel_start[0] == 0) || (0 < small_rank_offset));
assert((sel_start[1] == 0) || (1 < small_rank_offset));
assert((sel_start[2] == 0) || (2 < small_rank_offset));
assert((sel_start[3] == 0) || (3 < small_rank_offset));
assert((sel_start[4] == 0) || (4 < small_rank_offset));
test_select_hyper_checker_board_dr__select_checker_board(
file_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start);
/* verify that H5Sselect_shape_same() reports the two
* selections as having the same shape.
*/
check = H5Sselect_shape_same(mem_small_cube_sid, file_large_cube_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* zero the buffer that we will be using for reading */
memset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size);
/* Read selection from disk */
ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_small_cube_sid,
file_large_cube_sid, xfer_plist, small_cube_buf_1);
CHECK(ret, FAIL, "H5Dread");
expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) +
(v * edge_size * edge_size * edge_size) +
(w * edge_size * edge_size) + (x * edge_size));
data_ok = test_select_hyper_checker_board_dr__verify_data(small_cube_buf_1, small_rank,
edge_size, checker_edge_size,
expected_value, (hbool_t)TRUE);
if (!data_ok)
TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__);
x++;
} while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) &&
(x < edge_size));
w++;
} while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) &&
(w < edge_size));
v++;
} while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) &&
(v < edge_size));
u++;
} while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size));
/* similarly, read the on disk small cube into slices through the in memory
* large cube, and verify that the correct data (and only the correct data)
* is read.
*/
/* select a checker board in the file small cube dataspace */
sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, small_rank, edge_size,
checker_edge_size, small_rank, sel_start);
u = 0;
do {
if (0 < small_rank_offset)
sel_start[0] = u;
v = 0;
do {
if (1 < small_rank_offset)
sel_start[1] = v;
w = 0;
do {
if (2 < small_rank_offset)
sel_start[2] = w;
x = 0;
do {
if (3 < small_rank_offset)
sel_start[3] = x;
/* we know that small_rank >= 1 and that large_rank > small_rank
* by the assertions at the head of this function. Thus no
* need for another inner loop.
*/
assert((sel_start[0] == 0) || (0 < small_rank_offset));
assert((sel_start[1] == 0) || (1 < small_rank_offset));
assert((sel_start[2] == 0) || (2 < small_rank_offset));
assert((sel_start[3] == 0) || (3 < small_rank_offset));
assert((sel_start[4] == 0) || (4 < small_rank_offset));
test_select_hyper_checker_board_dr__select_checker_board(
mem_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start);
/* verify that H5Sselect_shape_same() reports the two
* selections as having the same shape.
*/
check = H5Sselect_shape_same(file_small_cube_sid, mem_large_cube_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* zero out the in memory large cube */
memset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size);
/* Read selection from disk */
ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid,
file_small_cube_sid, xfer_plist, large_cube_buf_1);
CHECK(ret, FAIL, "H5Dread");
/* verify that the expected data and only the
* expected data was read.
*/
data_ok = TRUE;
ptr_1 = large_cube_buf_1;
expected_value = 0;
start_index = (u * edge_size * edge_size * edge_size * edge_size) +
(v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) +
(x * edge_size);
stop_index = start_index + small_cube_size - 1;
assert(start_index < stop_index);
assert(stop_index <= large_cube_size);
/* verify that the large cube contains only zeros before the slice */
for (s = 0; s < start_index; s++) {
if (*ptr_1 != 0)
data_ok = FALSE;
ptr_1++;
} /* end for */
assert(s == start_index);
data_ok &= test_select_hyper_checker_board_dr__verify_data(
ptr_1, small_rank, edge_size, checker_edge_size, (uint16_t)0, (hbool_t)TRUE);
ptr_1 += small_cube_size;
s += small_cube_size;
assert(s == stop_index + 1);
/* verify that the large cube contains only zeros after the slice */
for (s = stop_index + 1; s < large_cube_size; s++) {
if (*ptr_1 != 0)
data_ok = FALSE;
ptr_1++;
} /* end for */
if (!data_ok)
TestErrPrintf("large cube read from small cube has bad data! Line=%d\n", __LINE__);
x++;
} while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) &&
(x < edge_size));
w++;
} while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) &&
(w < edge_size));
v++;
} while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) &&
(v < edge_size));
u++;
} while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size));
/* now we go in the opposite direction, verifying that we can write
* from memory to file using selections of different rank that
* H5Sselect_shape_same() views as being of the same shape.
*
* Start by writing small_rank D slices from the in memory large cube, to
* the the on disk small cube dataset. After each write, read the small
* cube dataset back from disk, and verify that it contains the expected
* data. Verify that H5Sselect_shape_same() returns true on the
* memory and file selections.
*/
/* select a checker board in the file small cube dataspace */
sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, small_rank, edge_size,
checker_edge_size, small_rank, sel_start);
u = 0;
do {
if (small_rank_offset > 0)
sel_start[0] = u;
v = 0;
do {
if (small_rank_offset > 1)
sel_start[1] = v;
w = 0;
do {
if (small_rank_offset > 2)
sel_start[2] = w;
x = 0;
do {
if (small_rank_offset > 3)
sel_start[3] = x;
/* zero out the on disk small cube */
ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid,
full_small_cube_sid, xfer_plist, zero_buf);
CHECK(ret, FAIL, "H5Dwrite");
/* we know that small_rank >= 1 and that large_rank > small_rank
* by the assertions at the head of this function. Thus no
* need for another inner loop.
*/
assert((sel_start[0] == 0) || (0 < small_rank_offset));
assert((sel_start[1] == 0) || (1 < small_rank_offset));
assert((sel_start[2] == 0) || (2 < small_rank_offset));
assert((sel_start[3] == 0) || (3 < small_rank_offset));
assert((sel_start[4] == 0) || (4 < small_rank_offset));
test_select_hyper_checker_board_dr__select_checker_board(
mem_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start);
/* verify that H5Sselect_shape_same() reports the two
* selections as having the same shape.
*/
check = H5Sselect_shape_same(file_small_cube_sid, mem_large_cube_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* write the slice from the in memory large cube to the
* on disk small cube
*/
ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid,
file_small_cube_sid, xfer_plist, cube_buf);
CHECK(ret, FAIL, "H5Dwrite");
/* zero the buffer that we will be using for reading */
memset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size);
/* read the on disk small cube into memory */
ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid,
full_small_cube_sid, xfer_plist, small_cube_buf_1);
CHECK(ret, FAIL, "H5Dread");
expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) +
(v * edge_size * edge_size * edge_size) +
(w * edge_size * edge_size) + (x * edge_size));
data_ok = test_select_hyper_checker_board_dr__verify_data(small_cube_buf_1, small_rank,
edge_size, checker_edge_size,
expected_value, (hbool_t)TRUE);
if (!data_ok)
TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__);
x++;
} while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) &&
(x < edge_size));
w++;
} while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) &&
(w < edge_size));
v++;
} while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) &&
(v < edge_size));
u++;
} while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size));
/* Now write checker board selections of the entries in memory
* small cube to slices of the on disk cube. After each write,
* read the on disk large cube * into memory, and verify that
* it contains the expected * data. Verify that
* H5Sselect_shape_same() returns true on the memory and file
* selections.
*/
/* select a checker board in the in memory small cube dataspace */
sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, small_rank, edge_size,
checker_edge_size, small_rank, sel_start);
u = 0;
do {
if (small_rank_offset > 0)
sel_start[0] = u;
v = 0;
do {
if (small_rank_offset > 1)
sel_start[1] = v;
w = 0;
do {
if (small_rank_offset > 2)
sel_start[2] = w;
x = 0;
do {
if (small_rank_offset > 3)
sel_start[3] = x;
/* zero out the on disk cube */
ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_USHORT, full_large_cube_sid,
full_large_cube_sid, xfer_plist, zero_buf);
CHECK(ret, FAIL, "H5Dwrite");
/* we know that small_rank >= 1 and that large_rank > small_rank
* by the assertions at the head of this function. Thus no
* need for another inner loop.
*/
assert((sel_start[0] == 0) || (0 < small_rank_offset));
assert((sel_start[1] == 0) || (1 < small_rank_offset));
assert((sel_start[2] == 0) || (2 < small_rank_offset));
assert((sel_start[3] == 0) || (3 < small_rank_offset));
assert((sel_start[4] == 0) || (4 < small_rank_offset));
test_select_hyper_checker_board_dr__select_checker_board(
file_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start);
/* verify that H5Sselect_shape_same() reports the two
* selections as having the same shape.
*/
check = H5Sselect_shape_same(file_large_cube_sid, mem_small_cube_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* write the checker board selection of the in memory
* small cube to a slice through the on disk large
* cube.
*/
ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_small_cube_sid,
file_large_cube_sid, xfer_plist, cube_buf);
CHECK(ret, FAIL, "H5Dwrite");
/* zero out the in memory large cube */
memset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size);
/* read the on disk large cube into memory */
ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid,
full_large_cube_sid, xfer_plist, large_cube_buf_1);
CHECK(ret, FAIL, "H5Dread");
/* verify that the expected data and only the
* expected data was written to the on disk large
* cube.
*/
data_ok = TRUE;
ptr_1 = large_cube_buf_1;
expected_value = 0;
start_index = (u * edge_size * edge_size * edge_size * edge_size) +
(v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) +
(x * edge_size);
stop_index = start_index + small_cube_size - 1;
assert(start_index < stop_index);
assert(stop_index <= large_cube_size);
/* verify that the large cube contains only zeros before the slice */
for (s = 0; s < start_index; s++) {
if (*ptr_1 != 0)
data_ok = FALSE;
ptr_1++;
} /* end for */
assert(s == start_index);
/* verify that the slice contains the expected data */
data_ok &= test_select_hyper_checker_board_dr__verify_data(
ptr_1, small_rank, edge_size, checker_edge_size, (uint16_t)0, (hbool_t)TRUE);
ptr_1 += small_cube_size;
s += small_cube_size;
assert(s == stop_index + 1);
/* verify that the large cube contains only zeros after the slice */
for (s = stop_index + 1; s < large_cube_size; s++) {
if (*ptr_1 != 0)
data_ok = FALSE;
ptr_1++;
} /* end for */
if (!data_ok)
TestErrPrintf("large cube written from small cube has bad data! Line=%d\n", __LINE__);
x++;
} while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) &&
(x < edge_size));
w++;
} while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) &&
(w < edge_size));
v++;
} while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) &&
(v < edge_size));
u++;
} while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size));
/* Close memory dataspaces */
ret = H5Sclose(full_small_cube_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(full_large_cube_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(mem_small_cube_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(mem_large_cube_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(file_small_cube_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(file_large_cube_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Close Datasets */
ret = H5Dclose(small_cube_dataset);
CHECK(ret, FAIL, "H5Dclose");
ret = H5Dclose(large_cube_dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(small_cube_buf_1);
free(large_cube_buf_1);
} /* test_select_hyper_checker_board_dr__run_test() */
#endif
/****************************************************************
**
** test_select_hyper_checker_board_dr(): Test H5S (dataspace)
** selection code with checkerboard source and target having
** different ranks but the same shape. We have already
** tested H5Sselect_shape_same in isolation, so now we try to do
** I/O.
**
** This is just an initial smoke check, so we will work
** with a slice through a cube only.
**
****************************************************************/
#if 0
static void
test_select_hyper_checker_board_dr(hid_t dset_type, hid_t xfer_plist)
{
uint16_t *cube_buf; /* Buffer for writing cube data */
uint16_t *cube_ptr; /* Temporary pointer into cube data */
uint16_t *zero_buf; /* Buffer for writing zeroed cube data */
int test_num = 0;
unsigned checker_edge_size = 2; /* Size of checkerboard dimension */
unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */
unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */
unsigned small_rank; /* Current rank of small dataset */
unsigned large_rank; /* Current rank of large dataset */
unsigned max_rank = 5; /* Max. rank to use */
size_t max_cube_size; /* Max. number of elements in largest cube */
size_t s; /* Local index variable */
unsigned u; /* Local index variable */
/* Output message about test being performed */
MESSAGE(5, ("Testing Checker Board Hyperslabs With Different Rank I/O Functionality\n"));
/* Compute max. cube size */
max_cube_size = (size_t)1;
for (u = 0; u < max_rank; u++)
max_cube_size *= (size_t)(edge_size + 1);
/* Allocate cube buffer for writing values */
cube_buf = (uint16_t *)malloc(sizeof(uint16_t) * max_cube_size);
CHECK_PTR(cube_buf, "malloc");
/* Initialize the cube buffer */
cube_ptr = cube_buf;
for (s = 0; s < max_cube_size; s++)
*cube_ptr++ = (uint16_t)s;
/* Allocate cube buffer for zeroing values on disk */
zero_buf = (uint16_t *)calloc(sizeof(uint16_t), max_cube_size);
CHECK_PTR(zero_buf, "calloc");
for (large_rank = 1; large_rank <= max_rank; large_rank++) {
for (small_rank = 1; small_rank < large_rank; small_rank++) {
chunk_edge_size = 0;
test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size,
checker_edge_size, chunk_edge_size, small_rank,
large_rank, dset_type, xfer_plist);
test_num++;
test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size + 1,
checker_edge_size, chunk_edge_size, small_rank,
large_rank, dset_type, xfer_plist);
test_num++;
chunk_edge_size = 3;
test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size,
checker_edge_size, chunk_edge_size, small_rank,
large_rank, dset_type, xfer_plist);
test_num++;
test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size + 1,
checker_edge_size, chunk_edge_size, small_rank,
large_rank, dset_type, xfer_plist);
test_num++;
} /* for loop on small rank */
} /* for loop on large rank */
free(cube_buf);
free(zero_buf);
} /* test_select_hyper_checker_board_dr() */
#endif
/****************************************************************
**
** test_select_hyper_copy(): Test H5S (dataspace) selection code.
** Tests copying hyperslab selections
**
****************************************************************/
static void
test_select_hyper_copy(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t data1, data2; /* Dataset IDs */
hid_t sid1, sid2, sid3; /* Dataspace IDs */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
uint16_t *wbuf, /* buffer to write to disk */
*rbuf, /* 1st buffer read from disk */
*rbuf2, /* 2nd buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n"));
/* Allocate write & read buffers */
wbuf = (uint16_t *)malloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
CHECK_PTR(rbuf, "calloc");
rbuf2 = (uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
CHECK_PTR(rbuf2, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x3x3 count with a stride of 2x4x3 & 1x2x2 block hyperslab for disk dataset */
start[0] = 0;
start[1] = 0;
start[2] = 0;
stride[0] = 2;
stride[1] = 4;
stride[2] = 3;
count[0] = 2;
count[1] = 3;
count[2] = 3;
block[0] = 1;
block[1] = 2;
block[2] = 2;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 4x2 count with a stride of 5x5 & 3x3 block hyperslab for memory dataset */
start[0] = 1;
start[1] = 1;
stride[0] = 5;
stride[1] = 5;
count[0] = 4;
count[1] = 2;
block[0] = 3;
block[1] = 3;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Make a copy of the dataspace to write */
sid3 = H5Scopy(sid2);
CHECK(sid3, FAIL, "H5Scopy");
/* Create a dataset */
data1 = H5Dcreate2(fid1, SPACE1_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(data1, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create another dataset */
data2 = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(data2, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid3);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 3x4 count with a stride of 4x4 & 2x3 block hyperslab for memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 4;
stride[1] = 4;
count[0] = 3;
count[1] = 4;
block[0] = 2;
block[1] = 3;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Make a copy of the dataspace to read */
sid3 = H5Scopy(sid2);
CHECK(sid3, FAIL, "H5Scopy");
/* Read selection from disk */
ret = H5Dread(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Read selection from disk */
ret = H5Dread(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, rbuf2);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
if (memcmp(rbuf, rbuf2, sizeof(uint16_t) * SPACE3_DIM1 * SPACE3_DIM2) != 0)
TestErrPrintf("hyperslab values don't match! Line=%d\n", __LINE__);
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close 2nd memory dataspace */
ret = H5Sclose(sid3);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(data1);
CHECK(ret, FAIL, "H5Dclose");
/* Close Dataset */
ret = H5Dclose(data2);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
free(rbuf2);
} /* test_select_hyper_copy() */
/****************************************************************
**
** test_select_point_copy(): Test H5S (dataspace) selection code.
** Tests copying point selections
**
****************************************************************/
static void
test_select_point_copy(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t data1, data2; /* Dataset IDs */
hid_t sid1, sid2, sid3; /* Dataspace IDs */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
uint16_t *wbuf, /* buffer to write to disk */
*rbuf, /* 1st buffer read from disk */
*rbuf2, /* 2nd buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n"));
/* Allocate write & read buffers */
wbuf = (uint16_t *)malloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
CHECK_PTR(rbuf, "calloc");
rbuf2 = (uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
CHECK_PTR(rbuf2, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select sequence of ten points for disk dataset */
coord1[0][0] = 0;
coord1[0][1] = 10;
coord1[0][2] = 5;
coord1[1][0] = 1;
coord1[1][1] = 2;
coord1[1][2] = 7;
coord1[2][0] = 2;
coord1[2][1] = 4;
coord1[2][2] = 9;
coord1[3][0] = 0;
coord1[3][1] = 6;
coord1[3][2] = 11;
coord1[4][0] = 1;
coord1[4][1] = 8;
coord1[4][2] = 13;
coord1[5][0] = 2;
coord1[5][1] = 12;
coord1[5][2] = 0;
coord1[6][0] = 0;
coord1[6][1] = 14;
coord1[6][2] = 2;
coord1[7][0] = 1;
coord1[7][1] = 0;
coord1[7][2] = 4;
coord1[8][0] = 2;
coord1[8][1] = 1;
coord1[8][2] = 6;
coord1[9][0] = 0;
coord1[9][1] = 3;
coord1[9][2] = 8;
ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Select sequence of ten points for write dataset */
coord2[0][0] = 12;
coord2[0][1] = 3;
coord2[1][0] = 15;
coord2[1][1] = 13;
coord2[2][0] = 7;
coord2[2][1] = 25;
coord2[3][0] = 0;
coord2[3][1] = 6;
coord2[4][0] = 13;
coord2[4][1] = 0;
coord2[5][0] = 24;
coord2[5][1] = 11;
coord2[6][0] = 12;
coord2[6][1] = 21;
coord2[7][0] = 29;
coord2[7][1] = 4;
coord2[8][0] = 8;
coord2[8][1] = 8;
coord2[9][0] = 19;
coord2[9][1] = 17;
ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Make a copy of the dataspace to write */
sid3 = H5Scopy(sid2);
CHECK(sid3, FAIL, "H5Scopy");
/* Create a dataset */
data1 = H5Dcreate2(fid1, SPACE1_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(data1, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create another dataset */
data2 = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(data2, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid3);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select sequence of points for read dataset */
coord3[0][0] = 0;
coord3[0][1] = 2;
coord3[1][0] = 4;
coord3[1][1] = 8;
coord3[2][0] = 13;
coord3[2][1] = 13;
coord3[3][0] = 14;
coord3[3][1] = 25;
coord3[4][0] = 7;
coord3[4][1] = 9;
coord3[5][0] = 2;
coord3[5][1] = 0;
coord3[6][0] = 9;
coord3[6][1] = 19;
coord3[7][0] = 1;
coord3[7][1] = 22;
coord3[8][0] = 12;
coord3[8][1] = 21;
coord3[9][0] = 11;
coord3[9][1] = 6;
ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Make a copy of the dataspace to read */
sid3 = H5Scopy(sid2);
CHECK(sid3, FAIL, "H5Scopy");
/* Read selection from disk */
ret = H5Dread(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Read selection from disk */
ret = H5Dread(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, rbuf2);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
if (memcmp(rbuf, rbuf2, sizeof(uint16_t) * SPACE3_DIM1 * SPACE3_DIM2) != 0)
TestErrPrintf("point values don't match!\n");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close 2nd memory dataspace */
ret = H5Sclose(sid3);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(data1);
CHECK(ret, FAIL, "H5Dclose");
/* Close Dataset */
ret = H5Dclose(data2);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
free(rbuf2);
} /* test_select_point_copy() */
/****************************************************************
**
** test_select_hyper_offset(): Test basic H5S (dataspace) selection code.
** Tests hyperslabs of various sizes and dimensionalities with selection
** offsets.
**
****************************************************************/
static void
test_select_hyper_offset(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
hssize_t offset[SPACE1_RANK]; /* Offset of selection */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
htri_t valid; /* Generic boolean return value */
H5S_class_t ext_type; /* Extent type */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with Offsets\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Verify extent type */
ext_type = H5Sget_simple_extent_type(sid1);
VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");
/* Select 2x15x13 hyperslab for disk dataset */
start[0] = 1;
start[1] = 0;
start[2] = 0;
stride[0] = 1;
stride[1] = 1;
stride[2] = 1;
count[0] = 2;
count[1] = 15;
count[2] = 13;
block[0] = 1;
block[1] = 1;
block[2] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Check a valid offset */
offset[0] = -1;
offset[1] = 0;
offset[2] = 0;
ret = H5Soffset_simple(sid1, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid1);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Check an invalid offset */
offset[0] = 10;
offset[1] = 0;
offset[2] = 0;
ret = H5Soffset_simple(sid1, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid1);
VERIFY(valid, FALSE, "H5Sselect_valid");
/* Reset offset */
offset[0] = 0;
offset[1] = 0;
offset[2] = 0;
ret = H5Soffset_simple(sid1, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid1);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Select 15x26 hyperslab for memory dataset */
start[0] = 15;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 15;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Choose a valid offset for the memory dataspace */
offset[0] = -10;
offset[1] = 0;
ret = H5Soffset_simple(sid2, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid2);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 15;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for (i = 0; i < SPACE3_DIM1; i++) {
tbuf = wbuf + ((i + 5) * SPACE2_DIM2);
tbuf2 = rbuf + (i * SPACE3_DIM2);
for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
if (*tbuf != *tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%u, *tbuf2=%u\n",
__LINE__, i, j, (unsigned)*tbuf, (unsigned)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_offset() */
/****************************************************************
**
** test_select_hyper_offset2(): Test basic H5S (dataspace) selection code.
** Tests optimized hyperslab I/O with selection offsets.
**
****************************************************************/
static void
test_select_hyper_offset2(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
hsize_t start[SPACE7_RANK]; /* Starting location of hyperslab */
hsize_t count[SPACE7_RANK]; /* Element count of hyperslab */
hssize_t offset[SPACE7_RANK]; /* Offset of selection */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
htri_t valid; /* Generic boolean return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing More Hyperslab Selection Functions with Offsets\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE7_DIM1 * SPACE7_DIM2));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE7_DIM1; i++)
for (j = 0; j < SPACE7_DIM2; j++)
*tbuf++ = (uint8_t)((i * SPACE7_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 4x10 hyperslab for disk dataset */
start[0] = 1;
start[1] = 0;
count[0] = 4;
count[1] = 10;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Set offset */
offset[0] = 1;
offset[1] = 0;
ret = H5Soffset_simple(sid1, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid1);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Select 4x10 hyperslab for memory dataset */
start[0] = 1;
start[1] = 0;
count[0] = 4;
count[1] = 10;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Choose a valid offset for the memory dataspace */
offset[0] = 2;
offset[1] = 0;
ret = H5Soffset_simple(sid2, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid2);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE7_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for (i = 0; i < 4; i++) {
tbuf = wbuf + ((i + 3) * SPACE7_DIM2);
tbuf2 = rbuf + ((i + 3) * SPACE7_DIM2);
for (j = 0; j < SPACE7_DIM2; j++, tbuf++, tbuf2++) {
if (*tbuf != *tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%u, *tbuf2=%u\n",
__LINE__, i, j, (unsigned)*tbuf, (unsigned)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_offset2() */
/****************************************************************
**
** test_select_point_offset(): Test basic H5S (dataspace) selection code.
** Tests element selections between dataspaces of various sizes
** and dimensionalities with selection offsets.
**
****************************************************************/
static void
test_select_point_offset(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
hssize_t offset[SPACE1_RANK]; /* Offset of selection */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
htri_t valid; /* Generic boolean return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Element Selection Functions\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for write buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select sequence of ten points for disk dataset */
coord1[0][0] = 0;
coord1[0][1] = 10;
coord1[0][2] = 5;
coord1[1][0] = 1;
coord1[1][1] = 2;
coord1[1][2] = 7;
coord1[2][0] = 2;
coord1[2][1] = 4;
coord1[2][2] = 9;
coord1[3][0] = 0;
coord1[3][1] = 6;
coord1[3][2] = 11;
coord1[4][0] = 1;
coord1[4][1] = 8;
coord1[4][2] = 12;
coord1[5][0] = 2;
coord1[5][1] = 12;
coord1[5][2] = 0;
coord1[6][0] = 0;
coord1[6][1] = 14;
coord1[6][2] = 2;
coord1[7][0] = 1;
coord1[7][1] = 0;
coord1[7][2] = 4;
coord1[8][0] = 2;
coord1[8][1] = 1;
coord1[8][2] = 6;
coord1[9][0] = 0;
coord1[9][1] = 3;
coord1[9][2] = 8;
ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Check a valid offset */
offset[0] = 0;
offset[1] = 0;
offset[2] = 1;
ret = H5Soffset_simple(sid1, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid1);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Check an invalid offset */
offset[0] = 10;
offset[1] = 0;
offset[2] = 0;
ret = H5Soffset_simple(sid1, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid1);
VERIFY(valid, FALSE, "H5Sselect_valid");
/* Reset offset */
offset[0] = 0;
offset[1] = 0;
offset[2] = 0;
ret = H5Soffset_simple(sid1, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid1);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Select sequence of ten points for write dataset */
coord2[0][0] = 12;
coord2[0][1] = 3;
coord2[1][0] = 15;
coord2[1][1] = 13;
coord2[2][0] = 7;
coord2[2][1] = 24;
coord2[3][0] = 0;
coord2[3][1] = 6;
coord2[4][0] = 13;
coord2[4][1] = 0;
coord2[5][0] = 24;
coord2[5][1] = 11;
coord2[6][0] = 12;
coord2[6][1] = 21;
coord2[7][0] = 23;
coord2[7][1] = 4;
coord2[8][0] = 8;
coord2[8][1] = 8;
coord2[9][0] = 19;
coord2[9][1] = 17;
ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Choose a valid offset for the memory dataspace */
offset[0] = 5;
offset[1] = 1;
ret = H5Soffset_simple(sid2, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
valid = H5Sselect_valid(sid2);
VERIFY(valid, TRUE, "H5Sselect_valid");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select sequence of points for read dataset */
coord3[0][0] = 0;
coord3[0][1] = 2;
coord3[1][0] = 4;
coord3[1][1] = 8;
coord3[2][0] = 13;
coord3[2][1] = 13;
coord3[3][0] = 14;
coord3[3][1] = 25;
coord3[4][0] = 7;
coord3[4][1] = 9;
coord3[5][0] = 2;
coord3[5][1] = 0;
coord3[6][0] = 9;
coord3[6][1] = 19;
coord3[7][0] = 1;
coord3[7][1] = 22;
coord3[8][0] = 12;
coord3[8][1] = 21;
coord3[9][0] = 11;
coord3[9][1] = 6;
ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for (i = 0; i < POINT1_NPOINTS; i++) {
tbuf = wbuf + ((coord2[i][0] + (hsize_t)offset[0]) * SPACE2_DIM2) + coord2[i][1] + (hsize_t)offset[1];
tbuf2 = rbuf + (coord3[i][0] * SPACE3_DIM2) + coord3[i][1];
if (*tbuf != *tbuf2)
TestErrPrintf("element values don't match!, i=%d\n", i);
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_point_offset() */
/****************************************************************
**
** test_select_hyper_union(): Test basic H5S (dataspace) selection code.
** Tests unions of hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper_union(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hid_t xfer; /* Dataset Transfer Property List ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
size_t begin[SPACE2_DIM1] = /* Offset within irregular block */
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* First ten rows start at offset 0 */
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}; /* Next eighteen rows start at offset 5 */
size_t len[SPACE2_DIM1] = /* Len of each row within irregular block */
{10, 10, 10, 10, 10, 10, 10, 10, /* First eight rows are 10 long */
20, 20, /* Next two rows are 20 long */
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15}; /* Next eighteen rows are 15 long */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
hssize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of hyperslabs\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Test simple case of one block overlapping another */
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x15x13 hyperslab for disk dataset */
start[0] = 1;
start[1] = 0;
start[2] = 0;
stride[0] = 1;
stride[1] = 1;
stride[2] = 1;
count[0] = 2;
count[1] = 15;
count[2] = 13;
block[0] = 1;
block[1] = 1;
block[2] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid1);
VERIFY(npoints, 2 * 15 * 13, "H5Sget_select_npoints");
/* Select 8x26 hyperslab for memory dataset */
start[0] = 15;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 8;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Union overlapping 8x26 hyperslab for memory dataset (to form a 15x26 selection) */
start[0] = 22;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 8;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 15;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for (i = 0; i < SPACE3_DIM1; i++) {
tbuf = wbuf + ((i + 15) * SPACE2_DIM2);
tbuf2 = rbuf + (i * SPACE3_DIM2);
for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
if (*tbuf != *tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
__LINE__, i, j, (int)*tbuf, (int)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Test simple case of several block overlapping another */
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x15x13 hyperslab for disk dataset */
start[0] = 1;
start[1] = 0;
start[2] = 0;
stride[0] = 1;
stride[1] = 1;
stride[2] = 1;
count[0] = 2;
count[1] = 15;
count[2] = 13;
block[0] = 1;
block[1] = 1;
block[2] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 8x15 hyperslab for memory dataset */
start[0] = 15;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 8;
count[1] = 15;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Union overlapping 8x15 hyperslab for memory dataset (to form a 15x15 selection) */
start[0] = 22;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 8;
count[1] = 15;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Union overlapping 15x15 hyperslab for memory dataset (to form a 15x26 selection) */
start[0] = 15;
start[1] = 11;
stride[0] = 1;
stride[1] = 1;
count[0] = 15;
count[1] = 15;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 15;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for (i = 0; i < SPACE3_DIM1; i++) {
tbuf = wbuf + ((i + 15) * SPACE2_DIM2);
tbuf2 = rbuf + (i * SPACE3_DIM2);
for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
if (*tbuf != *tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
__LINE__, i, j, (int)*tbuf, (int)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Test disjoint case of two non-overlapping blocks */
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x15x13 hyperslab for disk dataset */
start[0] = 1;
start[1] = 0;
start[2] = 0;
stride[0] = 1;
stride[1] = 1;
stride[2] = 1;
count[0] = 2;
count[1] = 15;
count[2] = 13;
block[0] = 1;
block[1] = 1;
block[2] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 7x26 hyperslab for memory dataset */
start[0] = 1;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 7;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Union non-overlapping 8x26 hyperslab for memory dataset (to form a 15x26 disjoint selection) */
start[0] = 22;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 8;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE3_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 15;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for (i = 0; i < SPACE3_DIM1; i++) {
/* Jump over gap in middle */
if (i < 7)
tbuf = wbuf + ((i + 1) * SPACE2_DIM2);
else
tbuf = wbuf + ((i + 15) * SPACE2_DIM2);
tbuf2 = rbuf + (i * SPACE3_DIM2);
for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
if (*tbuf != *tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
__LINE__, i, j, (int)*tbuf, (int)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Test disjoint case of two non-overlapping blocks with hyperslab caching turned off */
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x15x13 hyperslab for disk dataset */
start[0] = 1;
start[1] = 0;
start[2] = 0;
stride[0] = 1;
stride[1] = 1;
stride[2] = 1;
count[0] = 2;
count[1] = 15;
count[2] = 13;
block[0] = 1;
block[1] = 1;
block[2] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 7x26 hyperslab for memory dataset */
start[0] = 1;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 7;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Union non-overlapping 8x26 hyperslab for memory dataset (to form a 15x26 disjoint selection) */
start[0] = 22;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 8;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE4_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
xfer = H5Pcreate(H5P_DATASET_XFER);
CHECK(xfer, FAIL, "H5Pcreate");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 15;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Close transfer property list */
ret = H5Pclose(xfer);
CHECK(ret, FAIL, "H5Pclose");
/* Compare data read with data written out */
for (i = 0; i < SPACE3_DIM1; i++) {
/* Jump over gap in middle */
if (i < 7)
tbuf = wbuf + ((i + 1) * SPACE2_DIM2);
else
tbuf = wbuf + ((i + 15) * SPACE2_DIM2);
tbuf2 = rbuf + (i * SPACE3_DIM2);
for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
if (*tbuf != *tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
__LINE__, i, j, (int)*tbuf, (int)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Test case of two blocks which overlap corners and must be split */
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x15x13 hyperslab for disk dataset */
start[0] = 1;
start[1] = 0;
start[2] = 0;
stride[0] = 1;
stride[1] = 1;
stride[2] = 1;
count[0] = 2;
count[1] = 15;
count[2] = 13;
block[0] = 1;
block[1] = 1;
block[2] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 10x10 hyperslab for memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 10;
count[1] = 10;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Union overlapping 15x20 hyperslab for memory dataset (forming a irregularly shaped region) */
start[0] = 8;
start[1] = 5;
stride[0] = 1;
stride[1] = 1;
count[0] = 20;
count[1] = 15;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE5_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 15;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for (i = 0, tbuf2 = rbuf; i < SPACE2_DIM1; i++) {
tbuf = wbuf + (i * SPACE2_DIM2) + begin[i];
for (j = 0; j < (int)len[i]; j++, tbuf++, tbuf2++) {
if (*tbuf != *tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
__LINE__, i, j, (int)*tbuf, (int)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_union() */
/****************************************************************
**
** test_select_hyper_union_stagger(): Test basic H5S (dataspace) selection code.
** Tests unions of staggered hyperslabs. (Uses H5Scombine_hyperslab
** and H5Smodify_select instead of H5Sselect_hyperslab)
**
****************************************************************/
static void
test_select_hyper_union_stagger(void)
{
hid_t file_id; /* File ID */
hid_t dset_id; /* Dataset ID */
hid_t dataspace; /* File dataspace ID */
hid_t memspace; /* Memory dataspace ID */
hid_t tmp_space; /* Temporary dataspace ID */
hid_t tmp2_space; /* Another emporary dataspace ID */
hsize_t dimsm[2] = {7, 7}; /* Memory array dimensions */
hsize_t dimsf[2] = {6, 5}; /* File array dimensions */
hsize_t count[2] = {3, 1}; /* 1st Hyperslab size */
hsize_t count2[2] = {3, 1}; /* 2nd Hyperslab size */
hsize_t count3[2] = {2, 1}; /* 3rd Hyperslab size */
hsize_t start[2] = {0, 0}; /* 1st Hyperslab offset */
hsize_t start2[2] = {2, 1}; /* 2nd Hyperslab offset */
hsize_t start3[2] = {4, 2}; /* 3rd Hyperslab offset */
hsize_t count_out[2] = {4, 2}; /* Hyperslab size in memory */
hsize_t start_out[2] = {0, 3}; /* Hyperslab offset in memory */
int data[6][5]; /* Data to write */
int data_out[7][7]; /* Data read in */
int input_loc[8][2] = {{0, 0}, {1, 0}, {2, 0}, {2, 1}, {3, 1}, {4, 1}, {4, 2}, {5, 2}};
int output_loc[8][2] = {{0, 3}, {0, 4}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 3}, {3, 4}};
int dsetrank = 2; /* File Dataset rank */
int memrank = 2; /* Memory Dataset rank */
int i, j; /* Local counting variables */
herr_t error;
hsize_t stride[2] = {1, 1};
hsize_t block[2] = {1, 1};
/* Initialize data to write */
for (i = 0; i < 6; i++)
for (j = 0; j < 5; j++)
data[i][j] = j * 10 + i;
/* Create file */
file_id = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(file_id, FAIL, "H5Fcreate");
/* Create File Dataspace */
dataspace = H5Screate_simple(dsetrank, dimsf, NULL);
CHECK(dataspace, FAIL, "H5Screate_simple");
/* Create File Dataset */
dset_id =
H5Dcreate2(file_id, "IntArray", H5T_NATIVE_INT, dataspace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dset_id, FAIL, "H5Dcreate2");
/* Write File Dataset */
error = H5Dwrite(dset_id, H5T_NATIVE_INT, dataspace, dataspace, H5P_DEFAULT, data);
CHECK(error, FAIL, "H5Dwrite");
/* Close things */
error = H5Sclose(dataspace);
CHECK(error, FAIL, "H5Sclose");
error = H5Dclose(dset_id);
CHECK(error, FAIL, "H5Dclose");
error = H5Fclose(file_id);
CHECK(error, FAIL, "H5Fclose");
/* Initialize input buffer */
memset(data_out, 0, 7 * 7 * sizeof(int));
/* Open file */
file_id = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT);
CHECK(file_id, FAIL, "H5Fopen");
/* Open dataset */
dset_id = H5Dopen2(file_id, "IntArray", H5P_DEFAULT);
CHECK(dset_id, FAIL, "H5Dopen2");
/* Get the dataspace */
dataspace = H5Dget_space(dset_id);
CHECK(dataspace, FAIL, "H5Dget_space");
/* Select the hyperslabs */
error = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, start, stride, count, block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
tmp_space = H5Scombine_hyperslab(dataspace, H5S_SELECT_OR, start2, stride, count2, block);
CHECK(tmp_space, FAIL, "H5Scombine_hyperslab");
/* Copy the file dataspace and select hyperslab */
tmp2_space = H5Scopy(dataspace);
CHECK(tmp2_space, FAIL, "H5Scopy");
error = H5Sselect_hyperslab(tmp2_space, H5S_SELECT_SET, start3, stride, count3, block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Combine the copied dataspace with the temporary dataspace */
error = H5Smodify_select(tmp_space, H5S_SELECT_OR, tmp2_space);
CHECK(error, FAIL, "H5Smodify_select");
/* Create Memory Dataspace */
memspace = H5Screate_simple(memrank, dimsm, NULL);
CHECK(memspace, FAIL, "H5Screate_simple");
/* Select hyperslab in memory */
error = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, start_out, stride, count_out, block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Read File Dataset */
error = H5Dread(dset_id, H5T_NATIVE_INT, memspace, tmp_space, H5P_DEFAULT, data_out);
CHECK(error, FAIL, "H5Dread");
/* Verify input data */
for (i = 0; i < 8; i++) {
if (data[input_loc[i][0]][input_loc[i][1]] != data_out[output_loc[i][0]][output_loc[i][1]]) {
printf("input data #%d is wrong!\n", i);
printf("input_loc=[%d][%d]\n", input_loc[i][0], input_loc[i][1]);
printf("output_loc=[%d][%d]\n", output_loc[i][0], output_loc[i][1]);
printf("data=%d\n", data[input_loc[i][0]][input_loc[i][1]]);
TestErrPrintf("data_out=%d\n", data_out[output_loc[i][0]][output_loc[i][1]]);
} /* end if */
} /* end for */
/* Close things */
error = H5Sclose(tmp2_space);
CHECK(error, FAIL, "H5Sclose");
error = H5Sclose(tmp_space);
CHECK(error, FAIL, "H5Sclose");
error = H5Sclose(dataspace);
CHECK(error, FAIL, "H5Sclose");
error = H5Sclose(memspace);
CHECK(error, FAIL, "H5Sclose");
error = H5Dclose(dset_id);
CHECK(error, FAIL, "H5Dclose");
error = H5Fclose(file_id);
CHECK(error, FAIL, "H5Fclose");
}
/****************************************************************
**
** test_select_hyper_union_3d(): Test basic H5S (dataspace) selection code.
** Tests unions of hyperslabs in 3-D (Uses H5Scombine_hyperslab
** and H5Scombine_select instead of H5Sselect_hyperslab)
**
****************************************************************/
static void
test_select_hyper_union_3d(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hid_t tmp_space; /* Temporary Dataspace ID */
hid_t tmp2_space; /* Another temporary Dataspace ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3};
hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
struct row_list {
size_t z;
size_t y;
size_t x;
size_t l;
} rows[] = {
/* Array of x,y,z coordinates & length for each row written from memory */
{0, 0, 0, 6}, /* 1st face of 3-D object */
{0, 1, 0, 6}, {0, 2, 0, 6}, {0, 3, 0, 6}, {0, 4, 0, 6}, {1, 0, 0, 6}, /* 2nd face of 3-D object */
{1, 1, 0, 6}, {1, 2, 0, 6}, {1, 3, 0, 6}, {1, 4, 0, 6}, {2, 0, 0, 6}, /* 3rd face of 3-D object */
{2, 1, 0, 10}, {2, 2, 0, 10}, {2, 3, 0, 10}, {2, 4, 0, 10}, {2, 5, 2, 8},
{2, 6, 2, 8}, {3, 0, 0, 6}, /* 4th face of 3-D object */
{3, 1, 0, 10}, {3, 2, 0, 10}, {3, 3, 0, 10}, {3, 4, 0, 10}, {3, 5, 2, 8},
{3, 6, 2, 8}, {4, 0, 0, 6}, /* 5th face of 3-D object */
{4, 1, 0, 10}, {4, 2, 0, 10}, {4, 3, 0, 10}, {4, 4, 0, 10}, {4, 5, 2, 8},
{4, 6, 2, 8}, {5, 1, 2, 8}, /* 6th face of 3-D object */
{5, 2, 2, 8}, {5, 3, 2, 8}, {5, 4, 2, 8}, {5, 5, 2, 8}, {5, 6, 2, 8},
{6, 1, 2, 8}, /* 7th face of 3-D object */
{6, 2, 2, 8}, {6, 3, 2, 8}, {6, 4, 2, 8}, {6, 5, 2, 8}, {6, 6, 2, 8},
{7, 1, 2, 8}, /* 8th face of 3-D object */
{7, 2, 2, 8}, {7, 3, 2, 8}, {7, 4, 2, 8}, {7, 5, 2, 8}, {7, 6, 2, 8}};
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i, j, k; /* Counters */
herr_t ret; /* Generic return value */
hsize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of 3-D hyperslabs\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), SPACE3_DIM1 * SPACE3_DIM2);
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE4_DIM1; i++)
for (j = 0; j < SPACE4_DIM2; j++)
for (k = 0; k < SPACE4_DIM3; k++)
*tbuf++ = (uint8_t)((((i * SPACE4_DIM2) + j) * SPACE4_DIM3) + k);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Test case of two blocks which overlap corners and must be split */
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE4_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 2x15x13 hyperslab for disk dataset */
start[0] = 1;
start[1] = 0;
start[2] = 0;
stride[0] = 1;
stride[1] = 1;
stride[2] = 1;
count[0] = 2;
count[1] = 15;
count[2] = 13;
block[0] = 1;
block[1] = 1;
block[2] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select 5x5x6 hyperslab for memory dataset */
start[0] = 0;
start[1] = 0;
start[2] = 0;
stride[0] = 1;
stride[1] = 1;
stride[2] = 1;
count[0] = 5;
count[1] = 5;
count[2] = 6;
block[0] = 1;
block[1] = 1;
block[2] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Union overlapping 15x20 hyperslab for memory dataset (forming a irregularly shaped region) */
start[0] = 2;
start[1] = 1;
start[2] = 2;
stride[0] = 1;
stride[1] = 1;
stride[2] = 1;
count[0] = 6;
count[1] = 6;
count[2] = 8;
block[0] = 1;
block[1] = 1;
block[2] = 1;
tmp_space = H5Scombine_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(tmp_space, FAIL, "H5Sselect_hyperslab");
/* Combine dataspaces and create new dataspace */
tmp2_space = H5Scombine_select(sid2, H5S_SELECT_OR, tmp_space);
CHECK(tmp2_space, FAIL, "H5Scombin_select");
npoints = (hsize_t)H5Sget_select_npoints(tmp2_space);
VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, tmp2_space, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close temporary dataspaces */
ret = H5Sclose(tmp_space);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(tmp2_space);
CHECK(ret, FAIL, "H5Sclose");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 15x26 hyperslab for reading memory dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 15;
count[1] = 26;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
for (i = 0, tbuf2 = rbuf; i < (int)(sizeof(rows) / sizeof(struct row_list)); i++) {
tbuf = wbuf + (rows[i].z * SPACE4_DIM3 * SPACE4_DIM2) + (rows[i].y * SPACE4_DIM3) + rows[i].x;
for (j = 0; j < (int)rows[i].l; j++, tbuf++, tbuf2++) {
if (*tbuf != *tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
__LINE__, i, j, (int)*tbuf, (int)*tbuf2);
} /* end for */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_union_3d() */
/****************************************************************
**
** test_select_hyper_valid_combination(): Tests invalid and valid
** combinations of selections on dataspace for H5Scombine_select
** and H5Smodify_select.
**
****************************************************************/
static void
test_select_hyper_valid_combination(void)
{
hid_t single_pt_sid; /* Dataspace ID with single point selection */
hid_t single_hyper_sid; /* Dataspace ID with single block hyperslab selection */
hid_t regular_hyper_sid; /* Dataspace ID with regular hyperslab selection */
hid_t non_existent_sid = -1; /* A non-existent space id */
hid_t tmp_sid; /* Temporary dataspace ID */
hsize_t dims2D[] = {SPACE9_DIM1, SPACE9_DIM2};
hsize_t dims3D[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3};
hsize_t coord1[1][SPACE2_RANK]; /* Coordinates for single point selection */
hsize_t start[SPACE4_RANK]; /* Hyperslab start */
hsize_t stride[SPACE4_RANK]; /* Hyperslab stride */
hsize_t count[SPACE4_RANK]; /* Hyperslab block count */
hsize_t block[SPACE4_RANK]; /* Hyperslab block size */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(6, ("Testing Selection Combination Validity\n"));
assert(SPACE9_DIM2 >= POINT1_NPOINTS);
/* Create dataspace for single point selection */
single_pt_sid = H5Screate_simple(SPACE9_RANK, dims2D, NULL);
CHECK(single_pt_sid, FAIL, "H5Screate_simple");
/* Select sequence of ten points for multiple point selection */
coord1[0][0] = 2;
coord1[0][1] = 2;
ret = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Create dataspace for single hyperslab selection */
single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims2D, NULL);
CHECK(single_hyper_sid, FAIL, "H5Screate_simple");
/* Select 10x10 hyperslab for single hyperslab selection */
start[0] = 1;
start[1] = 1;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = (SPACE9_DIM1 - 2);
block[1] = (SPACE9_DIM2 - 2);
ret = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for regular hyperslab selection */
regular_hyper_sid = H5Screate_simple(SPACE4_RANK, dims3D, NULL);
CHECK(regular_hyper_sid, FAIL, "H5Screate_simple");
/* Select regular, strided hyperslab selection */
start[0] = 2;
start[1] = 2;
start[2] = 2;
stride[0] = 2;
stride[1] = 2;
stride[2] = 2;
count[0] = 5;
count[1] = 2;
count[2] = 5;
block[0] = 1;
block[1] = 1;
block[2] = 1;
ret = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Test all the selections created */
/* Test the invalid combinations between point and hyperslab */
H5E_BEGIN_TRY
{
tmp_sid = H5Scombine_select(single_pt_sid, H5S_SELECT_AND, single_hyper_sid);
}
H5E_END_TRY;
VERIFY(tmp_sid, FAIL, "H5Scombine_select");
H5E_BEGIN_TRY
{
tmp_sid = H5Smodify_select(single_pt_sid, H5S_SELECT_AND, single_hyper_sid);
}
H5E_END_TRY;
VERIFY(tmp_sid, FAIL, "H5Smodify_select");
/* Test the invalid combination between two hyperslab but of different dimension size */
H5E_BEGIN_TRY
{
tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_AND, regular_hyper_sid);
}
H5E_END_TRY;
VERIFY(tmp_sid, FAIL, "H5Scombine_select");
H5E_BEGIN_TRY
{
tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_AND, regular_hyper_sid);
}
H5E_END_TRY;
VERIFY(tmp_sid, FAIL, "H5Smodify_select");
/* Test invalid operation inputs to the two functions */
H5E_BEGIN_TRY
{
tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_SET, single_hyper_sid);
}
H5E_END_TRY;
VERIFY(tmp_sid, FAIL, "H5Scombine_select");
H5E_BEGIN_TRY
{
tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_SET, single_hyper_sid);
}
H5E_END_TRY;
VERIFY(tmp_sid, FAIL, "H5Smodify_select");
/* Test inputs in case of non-existent space ids */
H5E_BEGIN_TRY
{
tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_AND, non_existent_sid);
}
H5E_END_TRY;
VERIFY(tmp_sid, FAIL, "H5Scombine_select");
H5E_BEGIN_TRY
{
tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_AND, non_existent_sid);
}
H5E_END_TRY;
VERIFY(tmp_sid, FAIL, "H5Smodify_select");
/* Close dataspaces */
ret = H5Sclose(single_pt_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(single_hyper_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(regular_hyper_sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_select_hyper_valid_combination() */
/****************************************************************
**
** test_select_hyper_and_2d(): Test basic H5S (dataspace) selection code.
** Tests 'and' of hyperslabs in 2-D
**
****************************************************************/
static void
test_select_hyper_and_2d(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims2[] = {SPACE2A_DIM1};
hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
hssize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with intersection of 2-D hyperslabs\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 10x10 hyperslab for disk dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 10;
count[1] = 10;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Intersect overlapping 10x10 hyperslab */
start[0] = 5;
start[1] = 5;
stride[0] = 1;
stride[1] = 1;
count[0] = 10;
count[1] = 10;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_AND, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid1);
VERIFY(npoints, 5 * 5, "H5Sget_select_npoints");
/* Select 25 hyperslab for memory dataset */
start[0] = 0;
stride[0] = 1;
count[0] = 25;
block[0] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 5 * 5, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Read entire dataset from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Initialize write buffer */
for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++, tbuf++) {
if ((i >= 5 && i <= 9) && (j >= 5 && j <= 9)) {
if (*tbuf != *tbuf2)
printf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__,
i, j, (int)*tbuf, (int)*tbuf2);
tbuf2++;
} /* end if */
else {
if (*tbuf != 0)
printf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j,
(int)*tbuf);
} /* end else */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_and_2d() */
/****************************************************************
**
** test_select_hyper_xor_2d(): Test basic H5S (dataspace) selection code.
** Tests 'xor' of hyperslabs in 2-D
**
****************************************************************/
static void
test_select_hyper_xor_2d(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims2[] = {SPACE2A_DIM1};
hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
hssize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with XOR of 2-D hyperslabs\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 10x10 hyperslab for disk dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 10;
count[1] = 10;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Intersect overlapping 10x10 hyperslab */
start[0] = 5;
start[1] = 5;
stride[0] = 1;
stride[1] = 1;
count[0] = 10;
count[1] = 10;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_XOR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid1);
VERIFY(npoints, 150, "H5Sget_select_npoints");
/* Select 25 hyperslab for memory dataset */
start[0] = 0;
stride[0] = 1;
count[0] = 150;
block[0] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 150, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Read entire dataset from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Initialize write buffer */
for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++, tbuf++) {
if (((i >= 0 && i <= 4) && (j >= 0 && j <= 9)) ||
((i >= 5 && i <= 9) && ((j >= 0 && j <= 4) || (j >= 10 && j <= 14))) ||
((i >= 10 && i <= 14) && (j >= 5 && j <= 14))) {
if (*tbuf != *tbuf2)
printf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__,
i, j, (int)*tbuf, (int)*tbuf2);
tbuf2++;
} /* end if */
else {
if (*tbuf != 0)
printf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j,
(int)*tbuf);
} /* end else */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_xor_2d() */
/****************************************************************
**
** test_select_hyper_notb_2d(): Test basic H5S (dataspace) selection code.
** Tests 'notb' of hyperslabs in 2-D
**
****************************************************************/
static void
test_select_hyper_notb_2d(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims2[] = {SPACE2A_DIM1};
hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
hssize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTB of 2-D hyperslabs\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 10x10 hyperslab for disk dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 10;
count[1] = 10;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Intersect overlapping 10x10 hyperslab */
start[0] = 5;
start[1] = 5;
stride[0] = 1;
stride[1] = 1;
count[0] = 10;
count[1] = 10;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_NOTB, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid1);
VERIFY(npoints, 75, "H5Sget_select_npoints");
/* Select 75 hyperslab for memory dataset */
start[0] = 0;
stride[0] = 1;
count[0] = 75;
block[0] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 75, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Read entire dataset from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Initialize write buffer */
for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++, tbuf++) {
if (((i >= 0 && i <= 4) && (j >= 0 && j <= 9)) || ((i >= 5 && i <= 9) && (j >= 0 && j <= 4))) {
if (*tbuf != *tbuf2)
printf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__,
i, j, (int)*tbuf, (int)*tbuf2);
tbuf2++;
} /* end if */
else {
if (*tbuf != 0)
printf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j,
(int)*tbuf);
} /* end else */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_notb_2d() */
/****************************************************************
**
** test_select_hyper_nota_2d(): Test basic H5S (dataspace) selection code.
** Tests 'nota' of hyperslabs in 2-D
**
****************************************************************/
static void
test_select_hyper_nota_2d(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
hsize_t dims2[] = {SPACE2A_DIM1};
hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */
hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */
hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */
hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf, /* temporary buffer pointer */
*tbuf2; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
hssize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTA of 2-D hyperslabs\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++)
*tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Select 10x10 hyperslab for disk dataset */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 10;
count[1] = 10;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Intersect overlapping 10x10 hyperslab */
start[0] = 5;
start[1] = 5;
stride[0] = 1;
stride[1] = 1;
count[0] = 10;
count[1] = 10;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_NOTA, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid1);
VERIFY(npoints, 75, "H5Sget_select_npoints");
/* Select 75 hyperslab for memory dataset */
start[0] = 0;
stride[0] = 1;
count[0] = 75;
block[0] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
VERIFY(npoints, 75, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write selection to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Read entire dataset from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Initialize write buffer */
for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++)
for (j = 0; j < SPACE2_DIM2; j++, tbuf++) {
if (((i >= 10 && i <= 14) && (j >= 5 && j <= 14)) ||
((i >= 5 && i <= 9) && (j >= 10 && j <= 14))) {
if (*tbuf != *tbuf2)
TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
__LINE__, i, j, (int)*tbuf, (int)*tbuf2);
tbuf2++;
} /* end if */
else {
if (*tbuf != 0)
TestErrPrintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__,
i, j, (int)*tbuf);
} /* end else */
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_nota_2d() */
/****************************************************************
**
** test_select_hyper_iter2(): Iterator for checking hyperslab iteration
**
****************************************************************/
static herr_t
test_select_hyper_iter2(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned ndim, const hsize_t *point,
void *_operator_data)
{
int *tbuf = (int *)_elem, /* temporary buffer pointer */
**tbuf2 = (int **)_operator_data; /* temporary buffer handle */
unsigned u; /* Local counting variable */
if (*tbuf != **tbuf2) {
TestErrPrintf("Error in hyperslab iteration!\n");
printf("location: { ");
for (u = 0; u < ndim; u++) {
printf("%2d", (int)point[u]);
if (u < (ndim - 1))
printf(", ");
} /* end for */
printf("}\n");
printf("*tbuf=%d, **tbuf2=%d\n", *tbuf, **tbuf2);
return (-1);
} /* end if */
else {
(*tbuf2)++;
return (0);
}
} /* end test_select_hyper_iter2() */
/****************************************************************
**
** test_select_hyper_union_random_5d(): Test basic H5S (dataspace) selection code.
** Tests random unions of 5-D hyperslabs
**
****************************************************************/
static void
test_select_hyper_union_random_5d(hid_t read_plist)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE5_DIM1, SPACE5_DIM2, SPACE5_DIM3, SPACE5_DIM4, SPACE5_DIM5};
hsize_t dims2[] = {SPACE6_DIM1};
hsize_t start[SPACE5_RANK]; /* Starting location of hyperslab */
hsize_t count[SPACE5_RANK]; /* Element count of hyperslab */
int *wbuf, /* buffer to write to disk */
*rbuf, /* buffer read from disk */
*tbuf; /* temporary buffer pointer */
int i, j, k, l, m; /* Counters */
herr_t ret; /* Generic return value */
hssize_t npoints, /* Number of elements in file selection */
npoints2; /* Number of elements in memory selection */
unsigned seed; /* Random number seed for each test */
unsigned test_num; /* Count of tests being executed */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with random unions of 5-D hyperslabs\n"));
/* Allocate write & read buffers */
wbuf = (int *)malloc(sizeof(int) * SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5);
CHECK_PTR(wbuf, "malloc");
rbuf = (int *)calloc(sizeof(int),
(size_t)(SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5));
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE5_DIM1; i++)
for (j = 0; j < SPACE5_DIM2; j++)
for (k = 0; k < SPACE5_DIM3; k++)
for (l = 0; l < SPACE5_DIM4; l++)
for (m = 0; m < SPACE5_DIM5; m++)
*tbuf++ = (int)(((((((i * SPACE5_DIM2) + j) * SPACE5_DIM3) + k) * SPACE5_DIM4) + l) *
SPACE5_DIM5) +
m;
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE5_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE5_NAME, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write entire dataset to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Create dataspace for reading buffer */
sid2 = H5Screate_simple(SPACE6_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Get initial random # seed */
seed = (unsigned)HDtime(NULL) + (unsigned)HDclock();
/* Crunch through a bunch of random hyperslab reads from the file dataset */
for (test_num = 0; test_num < NRAND_HYPER; test_num++) {
/* Save random # seed for later use */
/* (Used in case of errors, to regenerate the hyperslab sequence) */
seed += (unsigned)HDclock();
HDsrandom(seed);
for (i = 0; i < NHYPERSLABS; i++) {
/* Select random hyperslab location & size for selection */
for (j = 0; j < SPACE5_RANK; j++) {
start[j] = ((hsize_t)HDrandom() % dims1[j]);
count[j] = (((hsize_t)HDrandom() % (dims1[j] - start[j])) + 1);
} /* end for */
/* Select hyperslab */
ret = H5Sselect_hyperslab(sid1, (i == 0 ? H5S_SELECT_SET : H5S_SELECT_OR), start, NULL, count,
NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
if (ret < 0) {
TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed);
break;
} /* end if */
} /* end for */
/* Get the number of elements selected */
npoints = H5Sget_select_npoints(sid1);
CHECK(npoints, 0, "H5Sget_select_npoints");
/* Select linear 1-D hyperslab for memory dataset */
start[0] = 0;
count[0] = (hsize_t)npoints;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints2 = H5Sget_select_npoints(sid2);
VERIFY(npoints, npoints2, "H5Sget_select_npoints");
/* Read selection from disk */
ret = H5Dread(dataset, H5T_NATIVE_INT, sid2, sid1, read_plist, rbuf);
CHECK(ret, FAIL, "H5Dread");
if (ret < 0) {
TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed);
break;
} /* end if */
/* Compare data read with data written out */
tbuf = rbuf;
ret = H5Diterate(wbuf, H5T_NATIVE_INT, sid1, test_select_hyper_iter2, &tbuf);
if (ret < 0) {
TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed);
break;
} /* end if */
/* Set the read buffer back to all zeroes */
memset(rbuf, 0, (size_t)SPACE6_DIM1);
} /* end for */
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_union_random_5d() */
/****************************************************************
**
** test_select_hyper_chunk(): Test basic H5S (dataspace) selection code.
** Tests large hyperslab selection in chunked dataset
**
****************************************************************/
static void
test_select_hyper_chunk(hid_t fapl_plist, hid_t xfer_plist)
{
hsize_t dimsf[3]; /* dataset dimensions */
hsize_t chunk_dimsf[3] = {CHUNK_X, CHUNK_Y, CHUNK_Z}; /* chunk sizes */
short *data; /* data to write */
short *tmpdata; /* data to write */
/*
* Data and output buffer initialization.
*/
hid_t file, dataset; /* handles */
hid_t dataspace;
hid_t memspace;
hid_t plist;
hsize_t dimsm[3]; /* memory space dimensions */
hsize_t dims_out[3]; /* dataset dimensions */
herr_t status;
short *data_out; /* output buffer */
short *tmpdata_out; /* output buffer */
hsize_t count[3]; /* size of the hyperslab in the file */
hsize_t offset[3]; /* hyperslab offset in the file */
hsize_t count_out[3]; /* size of the hyperslab in memory */
hsize_t offset_out[3]; /* hyperslab offset in memory */
int i, j, k, status_n, rank;
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab I/O on Large Chunks\n"));
/* Allocate the transfer buffers */
data = (short *)malloc(sizeof(short) * X * Y * Z);
CHECK_PTR(data, "malloc");
data_out = (short *)calloc((size_t)(NX * NY * NZ), sizeof(short));
CHECK_PTR(data_out, "calloc");
/*
* Data buffer initialization.
*/
tmpdata = data;
for (j = 0; j < X; j++)
for (i = 0; i < Y; i++)
for (k = 0; k < Z; k++)
*tmpdata++ = (short)((k + 1) % 256);
/*
* Create a new file using H5F_ACC_TRUNC access,
* the default file creation properties, and the default file
* access properties.
*/
file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_plist);
CHECK(file, FAIL, "H5Fcreate");
/*
* Describe the size of the array and create the dataspace for fixed
* size dataset.
*/
dimsf[0] = X;
dimsf[1] = Y;
dimsf[2] = Z;
dataspace = H5Screate_simple(RANK_F, dimsf, NULL);
CHECK(dataspace, FAIL, "H5Screate_simple");
/*
* Create a new dataset within the file using defined dataspace and
* chunking properties.
*/
plist = H5Pcreate(H5P_DATASET_CREATE);
CHECK(plist, FAIL, "H5Pcreate");
status = H5Pset_chunk(plist, RANK_F, chunk_dimsf);
CHECK(status, FAIL, "H5Pset_chunk");
dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UCHAR, dataspace, H5P_DEFAULT, plist, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/*
* Define hyperslab in the dataset.
*/
offset[0] = 0;
offset[1] = 0;
offset[2] = 0;
count[0] = NX_SUB;
count[1] = NY_SUB;
count[2] = NZ_SUB;
status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, NULL, count, NULL);
CHECK(status, FAIL, "H5Sselect_hyperslab");
/*
* Define the memory dataspace.
*/
dimsm[0] = NX;
dimsm[1] = NY;
dimsm[2] = NZ;
memspace = H5Screate_simple(RANK_M, dimsm, NULL);
CHECK(memspace, FAIL, "H5Screate_simple");
/*
* Define memory hyperslab.
*/
offset_out[0] = 0;
offset_out[1] = 0;
offset_out[2] = 0;
count_out[0] = NX_SUB;
count_out[1] = NY_SUB;
count_out[2] = NZ_SUB;
status = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, offset_out, NULL, count_out, NULL);
CHECK(status, FAIL, "H5Sselect_hyperslab");
/*
* Write the data to the dataset using hyperslabs
*/
status = H5Dwrite(dataset, H5T_NATIVE_SHORT, memspace, dataspace, xfer_plist, data);
CHECK(status, FAIL, "H5Dwrite");
/*
* Close/release resources.
*/
status = H5Pclose(plist);
CHECK(status, FAIL, "H5Pclose");
status = H5Sclose(dataspace);
CHECK(status, FAIL, "H5Sclose");
status = H5Sclose(memspace);
CHECK(status, FAIL, "H5Sclose");
status = H5Dclose(dataset);
CHECK(status, FAIL, "H5Dclose");
status = H5Fclose(file);
CHECK(status, FAIL, "H5Fclose");
/*************************************************************
This reads the hyperslab from the test.h5 file just
created, into a 3-dimensional plane of the 3-dimensional
array.
************************************************************/
/*
* Open the file and the dataset.
*/
file = H5Fopen(FILENAME, H5F_ACC_RDONLY, fapl_plist);
CHECK(file, FAIL, "H5Fopen");
dataset = H5Dopen2(file, DATASETNAME, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dopen2");
dataspace = H5Dget_space(dataset); /* dataspace handle */
CHECK(dataspace, FAIL, "H5Dget_space");
rank = H5Sget_simple_extent_ndims(dataspace);
VERIFY(rank, 3, "H5Sget_simple_extent_ndims");
status_n = H5Sget_simple_extent_dims(dataspace, dims_out, NULL);
CHECK(status_n, FAIL, "H5Sget_simple_extent_dims");
VERIFY(dims_out[0], dimsf[0], "Dataset dimensions");
VERIFY(dims_out[1], dimsf[1], "Dataset dimensions");
VERIFY(dims_out[2], dimsf[2], "Dataset dimensions");
/*
* Define hyperslab in the dataset.
*/
offset[0] = 0;
offset[1] = 0;
offset[2] = 0;
count[0] = NX_SUB;
count[1] = NY_SUB;
count[2] = NZ_SUB;
status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, NULL, count, NULL);
CHECK(status, FAIL, "H5Sselect_hyperslab");
/*
* Define the memory dataspace.
*/
dimsm[0] = NX;
dimsm[1] = NY;
dimsm[2] = NZ;
memspace = H5Screate_simple(RANK_M, dimsm, NULL);
CHECK(memspace, FAIL, "H5Screate_simple");
/*
* Define memory hyperslab.
*/
offset_out[0] = 0;
offset_out[1] = 0;
offset_out[2] = 0;
count_out[0] = NX_SUB;
count_out[1] = NY_SUB;
count_out[2] = NZ_SUB;
status = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, offset_out, NULL, count_out, NULL);
CHECK(status, FAIL, "H5Sselect_hyperslab");
/*
* Read data from hyperslab in the file into the hyperslab in
* memory and display.
*/
status = H5Dread(dataset, H5T_NATIVE_SHORT, memspace, dataspace, xfer_plist, data_out);
CHECK(status, FAIL, "H5Dread");
/* Compare data written with data read in */
tmpdata = data;
tmpdata_out = data_out;
for (j = 0; j < X; j++)
for (i = 0; i < Y; i++)
for (k = 0; k < Z; k++, tmpdata++, tmpdata_out++) {
if (*tmpdata != *tmpdata_out)
TestErrPrintf("Line %d: Error! j=%d, i=%d, k=%d, *tmpdata=%x, *tmpdata_out=%x\n",
__LINE__, j, i, k, (unsigned)*tmpdata, (unsigned)*tmpdata_out);
} /* end for */
/*
* Close and release resources.
*/
status = H5Dclose(dataset);
CHECK(status, FAIL, "H5Dclose");
status = H5Sclose(dataspace);
CHECK(status, FAIL, "H5Sclose");
status = H5Sclose(memspace);
CHECK(status, FAIL, "H5Sclose");
status = H5Fclose(file);
CHECK(status, FAIL, "H5Fclose");
free(data);
free(data_out);
} /* test_select_hyper_chunk() */
/****************************************************************
**
** test_select_point_chunk(): Test basic H5S (dataspace) selection code.
** Tests combinations of hyperslab and point selections on
** chunked datasets.
**
****************************************************************/
static void
test_select_point_chunk(void)
{
hsize_t dimsf[SPACE7_RANK]; /* dataset dimensions */
hsize_t chunk_dimsf[SPACE7_RANK] = {SPACE7_CHUNK_DIM1, SPACE7_CHUNK_DIM2}; /* chunk sizes */
unsigned *data; /* data to write */
unsigned *tmpdata; /* data to write */
/*
* Data and output buffer initialization.
*/
hid_t file, dataset; /* handles */
hid_t dataspace;
hid_t pnt1_space; /* Dataspace to hold 1st point selection */
hid_t pnt2_space; /* Dataspace to hold 2nd point selection */
hid_t hyp1_space; /* Dataspace to hold 1st hyperslab selection */
hid_t hyp2_space; /* Dataspace to hold 2nd hyperslab selection */
hid_t dcpl;
herr_t ret; /* Generic return value */
unsigned *data_out; /* output buffer */
hsize_t start[SPACE7_RANK]; /* hyperslab offset */
hsize_t count[SPACE7_RANK]; /* size of the hyperslab */
hsize_t points[SPACE7_NPOINTS][SPACE7_RANK]; /* points for selection */
unsigned i, j; /* Local index variables */
/* Output message about test being performed */
MESSAGE(5, ("Testing Point Selections on Chunked Datasets\n"));
/* Allocate the transfer buffers */
data = (unsigned *)malloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK_PTR(data, "malloc");
data_out = (unsigned *)calloc((size_t)(SPACE7_DIM1 * SPACE7_DIM2), sizeof(unsigned));
CHECK_PTR(data_out, "calloc");
/*
* Data buffer initialization.
*/
tmpdata = data;
for (i = 0; i < SPACE7_DIM1; i++)
for (j = 0; j < SPACE7_DIM1; j++)
*tmpdata++ = ((i * SPACE7_DIM2) + j) % 256;
/*
* Create a new file using H5F_ACC_TRUNC access,
* the default file creation properties and file
* access properties.
*/
file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(file, FAIL, "H5Fcreate");
/* Create file dataspace */
dimsf[0] = SPACE7_DIM1;
dimsf[1] = SPACE7_DIM2;
dataspace = H5Screate_simple(SPACE7_RANK, dimsf, NULL);
CHECK(dataspace, FAIL, "H5Screate_simple");
/*
* Create a new dataset within the file using defined dataspace and
* chunking properties.
*/
dcpl = H5Pcreate(H5P_DATASET_CREATE);
CHECK(dcpl, FAIL, "H5Pcreate");
ret = H5Pset_chunk(dcpl, SPACE7_RANK, chunk_dimsf);
CHECK(ret, FAIL, "H5Pset_chunk");
dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UCHAR, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Create 1st point selection */
pnt1_space = H5Scopy(dataspace);
CHECK(pnt1_space, FAIL, "H5Scopy");
points[0][0] = 3;
points[0][1] = 3;
points[1][0] = 3;
points[1][1] = 8;
points[2][0] = 8;
points[2][1] = 3;
points[3][0] = 8;
points[3][1] = 8;
points[4][0] = 1; /* In same chunk as point #0, but "earlier" in chunk */
points[4][1] = 1;
points[5][0] = 1; /* In same chunk as point #1, but "earlier" in chunk */
points[5][1] = 6;
points[6][0] = 6; /* In same chunk as point #2, but "earlier" in chunk */
points[6][1] = 1;
points[7][0] = 6; /* In same chunk as point #3, but "earlier" in chunk */
points[7][1] = 6;
ret = H5Sselect_elements(pnt1_space, H5S_SELECT_SET, (size_t)SPACE7_NPOINTS, (const hsize_t *)points);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Create 1st hyperslab selection */
hyp1_space = H5Scopy(dataspace);
CHECK(hyp1_space, FAIL, "H5Scopy");
start[0] = 2;
start[1] = 2;
count[0] = 4;
count[1] = 2;
ret = H5Sselect_hyperslab(hyp1_space, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Write out data using 1st point selection for file & hyperslab for memory */
ret = H5Dwrite(dataset, H5T_NATIVE_UINT, hyp1_space, pnt1_space, H5P_DEFAULT, data);
CHECK(ret, FAIL, "H5Dwrite");
/* Create 2nd point selection */
pnt2_space = H5Scopy(dataspace);
CHECK(pnt2_space, FAIL, "H5Scopy");
points[0][0] = 4;
points[0][1] = 4;
points[1][0] = 4;
points[1][1] = 9;
points[2][0] = 9;
points[2][1] = 4;
points[3][0] = 9;
points[3][1] = 9;
points[4][0] = 2; /* In same chunk as point #0, but "earlier" in chunk */
points[4][1] = 2;
points[5][0] = 2; /* In same chunk as point #1, but "earlier" in chunk */
points[5][1] = 7;
points[6][0] = 7; /* In same chunk as point #2, but "earlier" in chunk */
points[6][1] = 2;
points[7][0] = 7; /* In same chunk as point #3, but "earlier" in chunk */
points[7][1] = 7;
ret = H5Sselect_elements(pnt2_space, H5S_SELECT_SET, (size_t)SPACE7_NPOINTS, (const hsize_t *)points);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Create 2nd hyperslab selection */
hyp2_space = H5Scopy(dataspace);
CHECK(hyp2_space, FAIL, "H5Scopy");
start[0] = 2;
start[1] = 4;
count[0] = 4;
count[1] = 2;
ret = H5Sselect_hyperslab(hyp2_space, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Write out data using 2nd hyperslab selection for file & point for memory */
ret = H5Dwrite(dataset, H5T_NATIVE_UINT, pnt2_space, hyp2_space, H5P_DEFAULT, data);
CHECK(ret, FAIL, "H5Dwrite");
/* Close everything (except selections) */
ret = H5Pclose(dcpl);
CHECK(ret, FAIL, "H5Pclose");
ret = H5Sclose(dataspace);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
ret = H5Fclose(file);
CHECK(ret, FAIL, "H5Fclose");
/* Re-open file & dataset */
file = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT);
CHECK(file, FAIL, "H5Fopen");
dataset = H5Dopen2(file, DATASETNAME, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dopen2");
/* Read data using 1st point selection for file and hyperslab for memory */
ret = H5Dread(dataset, H5T_NATIVE_UINT, hyp1_space, pnt1_space, H5P_DEFAULT, data_out);
CHECK(ret, FAIL, "H5Dread");
/* Verify data (later) */
/* Read data using 2nd hyperslab selection for file and point for memory */
ret = H5Dread(dataset, H5T_NATIVE_UINT, pnt2_space, hyp2_space, H5P_DEFAULT, data_out);
CHECK(ret, FAIL, "H5Dread");
/* Verify data (later) */
/* Close everything (including selections) */
ret = H5Sclose(pnt1_space);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(pnt2_space);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(hyp1_space);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(hyp2_space);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
ret = H5Fclose(file);
CHECK(ret, FAIL, "H5Fclose");
free(data);
free(data_out);
} /* test_select_point_chunk() */
/****************************************************************
**
** test_select_sclar_chunk(): Test basic H5S (dataspace) selection code.
** Tests using a scalar dataspace (in memory) to access chunked datasets.
**
****************************************************************/
static void
test_select_scalar_chunk(void)
{
hid_t file_id; /* File ID */
hid_t dcpl; /* Dataset creation property list */
hid_t dsid; /* Dataset ID */
hid_t sid; /* Dataspace ID */
hid_t m_sid; /* Memory dataspace */
hsize_t dims[] = {2}; /* Dataset dimensions */
hsize_t maxdims[] = {H5S_UNLIMITED}; /* Dataset maximum dimensions */
hsize_t offset[] = {0}; /* Hyperslab start */
hsize_t count[] = {1}; /* Hyperslab count */
unsigned data = 2; /* Data to write */
herr_t ret;
/* Output message about test being performed */
MESSAGE(5, ("Testing Scalar Dataspaces and Chunked Datasets\n"));
file_id = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(file_id, FAIL, "H5Fcreate");
dcpl = H5Pcreate(H5P_DATASET_CREATE);
CHECK(dcpl, FAIL, "H5Pcreate");
dims[0] = 1024U;
ret = H5Pset_chunk(dcpl, 1, dims);
CHECK(ret, FAIL, "H5Pset_chunk");
/* Create 1-D dataspace */
sid = H5Screate_simple(1, dims, maxdims);
CHECK(sid, FAIL, "H5Screate_simple");
dsid = H5Dcreate2(file_id, "dset", H5T_NATIVE_UINT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT);
CHECK(dsid, FAIL, "H5Dcreate2");
/* Select scalar area (offset 0, count 1) */
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create scalar memory dataspace */
m_sid = H5Screate(H5S_SCALAR);
CHECK(m_sid, FAIL, "H5Screate");
/* Write out data using scalar dataspace for memory dataspace */
ret = H5Dwrite(dsid, H5T_NATIVE_UINT, m_sid, sid, H5P_DEFAULT, &data);
CHECK(ret, FAIL, "H5Dwrite");
/* Close resources */
ret = H5Sclose(m_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Dclose(dsid);
CHECK(ret, FAIL, "H5Dclose");
ret = H5Pclose(dcpl);
CHECK(ret, FAIL, "H5Pclose");
ret = H5Fclose(file_id);
CHECK(ret, FAIL, "H5Fclose");
} /* test_select_scalar_chunk() */
/****************************************************************
**
** test_select_valid(): Test basic H5S (dataspace) selection code.
** Tests selection validity
**
****************************************************************/
static void
test_select_valid(void)
{
herr_t error;
htri_t valid;
hid_t main_space, sub_space;
hsize_t safe_start[2] = {1, 1};
hsize_t safe_count[2] = {1, 1};
hsize_t start[2];
hsize_t dims[2], maxdims[2], size[2], count[2];
/* Output message about test being performed */
MESSAGE(5, ("Testing Selection Validity\n"));
MESSAGE(8, ("Case 1 : sub_space is not a valid dataspace\n"));
dims[0] = dims[1] = H5S_UNLIMITED;
H5E_BEGIN_TRY
{
sub_space = H5Screate_simple(2, dims, NULL);
}
H5E_END_TRY;
VERIFY(sub_space, FAIL, "H5Screate_simple");
H5E_BEGIN_TRY
{
valid = H5Sselect_valid(sub_space);
}
H5E_END_TRY;
VERIFY(valid, FAIL, "H5Sselect_valid");
/* Set arrays and dataspace for the rest of the cases */
count[0] = count[1] = 1;
dims[0] = dims[1] = maxdims[0] = maxdims[1] = 10;
main_space = H5Screate_simple(2, dims, maxdims);
CHECK(main_space, FAIL, "H5Screate_simple");
MESSAGE(8, ("Case 2 : sub_space is a valid but closed dataspace\n"));
sub_space = H5Scopy(main_space);
CHECK(sub_space, FAIL, "H5Scopy");
error = H5Sclose(sub_space);
CHECK(error, FAIL, "H5Sclose");
H5E_BEGIN_TRY
{
valid = H5Sselect_valid(sub_space);
}
H5E_END_TRY;
VERIFY(valid, FAIL, "H5Sselect_valid");
MESSAGE(8, ("Case 3 : in the dimensions\nTry offset (4,4) and size(6,6), the original space is of size "
"(10,10)\n"));
start[0] = start[1] = 4;
size[0] = size[1] = 6;
sub_space = H5Scopy(main_space);
CHECK(sub_space, FAIL, "H5Scopy");
error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size);
CHECK(error, FAIL, "H5Sselect_hyperslab");
valid = H5Sselect_valid(sub_space);
VERIFY(valid, TRUE, "H5Sselect_valid");
error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL);
CHECK(error, FAIL, "H5Sselect_hyperslab");
valid = H5Sselect_valid(sub_space);
VERIFY(valid, TRUE, "H5Sselect_valid");
error = H5Sclose(sub_space);
CHECK(error, FAIL, "H5Sclose");
MESSAGE(8, ("Case 4 : exceed dimensions by 1\nTry offset (5,5) and size(6,6), the original space is of "
"size (10,10)\n"));
start[0] = start[1] = 5;
size[0] = size[1] = 6;
sub_space = H5Scopy(main_space);
CHECK(sub_space, FAIL, "H5Scopy");
error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size);
CHECK(error, FAIL, "H5Sselect_hyperslab");
valid = H5Sselect_valid(sub_space);
VERIFY(valid, FALSE, "H5Sselect_valid");
error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL);
CHECK(error, FAIL, "H5Sselect_hyperslab");
valid = H5Sselect_valid(sub_space);
VERIFY(valid, FALSE, "H5Sselect_valid");
error = H5Sclose(sub_space);
CHECK(error, FAIL, "H5Sclose");
MESSAGE(8, ("Case 5 : exceed dimensions by 2\nTry offset (6,6) and size(6,6), the original space is of "
"size (10,10)\n"));
start[0] = start[1] = 6;
size[0] = size[1] = 6;
sub_space = H5Scopy(main_space);
CHECK(sub_space, FAIL, "H5Scopy");
error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size);
CHECK(error, FAIL, "H5Sselect_hyperslab");
valid = H5Sselect_valid(sub_space);
VERIFY(valid, FALSE, "H5Sselect_valid");
error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL);
CHECK(error, FAIL, "H5Sselect_hyperslab");
valid = H5Sselect_valid(sub_space);
VERIFY(valid, FALSE, "H5Sselect_valid");
error = H5Sclose(sub_space);
CHECK(error, FAIL, "H5Sclose");
error = H5Sclose(main_space);
CHECK(error, FAIL, "H5Sclose");
} /* test_select_valid() */
/****************************************************************
**
** test_select_combine(): Test basic H5S (dataspace) selection code.
** Tests combining "all" and "none" selections with hyperslab
** operations.
**
****************************************************************/
static void
test_select_combine(void)
{
hid_t base_id; /* Base dataspace for test */
hid_t all_id; /* Dataspace for "all" selection */
hid_t none_id; /* Dataspace for "none" selection */
hid_t space1; /* Temporary dataspace #1 */
hsize_t start[SPACE7_RANK]; /* Hyperslab start */
hsize_t stride[SPACE7_RANK]; /* Hyperslab stride */
hsize_t count[SPACE7_RANK]; /* Hyperslab count */
hsize_t block[SPACE7_RANK]; /* Hyperslab block */
hsize_t dims[SPACE7_RANK] = {SPACE7_DIM1, SPACE7_DIM2}; /* Dimensions of dataspace */
H5S_sel_type sel_type; /* Selection type */
hssize_t nblocks; /* Number of hyperslab blocks */
hsize_t blocks[16][2][SPACE7_RANK]; /* List of blocks */
herr_t error;
/* Output message about test being performed */
MESSAGE(5, ("Testing Selection Combinations\n"));
/* Create dataspace for dataset on disk */
base_id = H5Screate_simple(SPACE7_RANK, dims, NULL);
CHECK(base_id, FAIL, "H5Screate_simple");
/* Copy base dataspace and set selection to "all" */
all_id = H5Scopy(base_id);
CHECK(all_id, FAIL, "H5Scopy");
error = H5Sselect_all(all_id);
CHECK(error, FAIL, "H5Sselect_all");
sel_type = H5Sget_select_type(all_id);
VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type");
/* Copy base dataspace and set selection to "none" */
none_id = H5Scopy(base_id);
CHECK(none_id, FAIL, "H5Scopy");
error = H5Sselect_none(none_id);
CHECK(error, FAIL, "H5Sselect_none");
sel_type = H5Sget_select_type(none_id);
VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");
/* Copy "all" selection & space */
space1 = H5Scopy(all_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'OR' "all" selection with another hyperslab */
start[0] = start[1] = 0;
stride[0] = stride[1] = 1;
count[0] = count[1] = 1;
block[0] = block[1] = 5;
error = H5Sselect_hyperslab(space1, H5S_SELECT_OR, start, stride, count, block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that it's still "all" selection */
sel_type = H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type");
/* Close temporary dataspace */
error = H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "all" selection & space */
space1 = H5Scopy(all_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'AND' "all" selection with another hyperslab */
start[0] = start[1] = 0;
stride[0] = stride[1] = 1;
count[0] = count[1] = 1;
block[0] = block[1] = 5;
error = H5Sselect_hyperslab(space1, H5S_SELECT_AND, start, stride, count, block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is the same at the original block */
sel_type = H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
/* Verify that there is only one block */
nblocks = H5Sget_select_hyper_nblocks(space1);
VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");
/* Retrieve the block defined */
memset(blocks, -1, sizeof(blocks)); /* Reset block list */
error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
/* Verify that the correct block is defined */
VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist");
/* Close temporary dataspace */
error = H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "all" selection & space */
space1 = H5Scopy(all_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'XOR' "all" selection with another hyperslab */
start[0] = start[1] = 0;
stride[0] = stride[1] = 1;
count[0] = count[1] = 1;
block[0] = block[1] = 5;
error = H5Sselect_hyperslab(space1, H5S_SELECT_XOR, start, stride, count, block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is an inversion of the original block */
sel_type = H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
/* Verify that there are two blocks */
nblocks = H5Sget_select_hyper_nblocks(space1);
VERIFY(nblocks, 2, "H5Sget_select_hyper_nblocks");
/* Retrieve the block defined */
memset(blocks, -1, sizeof(blocks)); /* Reset block list */
error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
/* Verify that the correct block is defined */
VERIFY(blocks[0][0][0], 0, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][0][1], 5, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][0], 4, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][1], 9, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][0][0], 5, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][0][1], 0, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][1][0], 9, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][1][1], 9, "H5Sget_select_hyper_blocklist");
/* Close temporary dataspace */
error = H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "all" selection & space */
space1 = H5Scopy(all_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'NOTB' "all" selection with another hyperslab */
start[0] = start[1] = 0;
stride[0] = stride[1] = 1;
count[0] = count[1] = 1;
block[0] = block[1] = 5;
error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTB, start, stride, count, block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is an inversion of the original block */
sel_type = H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
/* Verify that there are two blocks */
nblocks = H5Sget_select_hyper_nblocks(space1);
VERIFY(nblocks, 2, "H5Sget_select_hyper_nblocks");
/* Retrieve the block defined */
memset(blocks, -1, sizeof(blocks)); /* Reset block list */
error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
/* Verify that the correct block is defined */
VERIFY(blocks[0][0][0], 0, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][0][1], 5, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][0], 4, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][1], 9, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][0][0], 5, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][0][1], 0, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][1][0], 9, "H5Sget_select_hyper_blocklist");
VERIFY(blocks[1][1][1], 9, "H5Sget_select_hyper_blocklist");
/* Close temporary dataspace */
error = H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "all" selection & space */
space1 = H5Scopy(all_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'NOTA' "all" selection with another hyperslab */
start[0] = start[1] = 0;
stride[0] = stride[1] = 1;
count[0] = count[1] = 1;
block[0] = block[1] = 5;
error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTA, start, stride, count, block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is the "none" selection */
sel_type = H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");
/* Close temporary dataspace */
error = H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "none" selection & space */
space1 = H5Scopy(none_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'OR' "none" selection with another hyperslab */
start[0] = start[1] = 0;
stride[0] = stride[1] = 1;
count[0] = count[1] = 1;
block[0] = block[1] = 5;
error = H5Sselect_hyperslab(space1, H5S_SELECT_OR, start, stride, count, block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is the same as the original hyperslab */
sel_type = H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
/* Verify that there is only one block */
nblocks = H5Sget_select_hyper_nblocks(space1);
VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");
/* Retrieve the block defined */
memset(blocks, -1, sizeof(blocks)); /* Reset block list */
error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
/* Verify that the correct block is defined */
VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist");
/* Close temporary dataspace */
error = H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "none" selection & space */
space1 = H5Scopy(none_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'AND' "none" selection with another hyperslab */
start[0] = start[1] = 0;
stride[0] = stride[1] = 1;
count[0] = count[1] = 1;
block[0] = block[1] = 5;
error = H5Sselect_hyperslab(space1, H5S_SELECT_AND, start, stride, count, block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is the "none" selection */
sel_type = H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");
/* Close temporary dataspace */
error = H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "none" selection & space */
space1 = H5Scopy(none_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'XOR' "none" selection with another hyperslab */
start[0] = start[1] = 0;
stride[0] = stride[1] = 1;
count[0] = count[1] = 1;
block[0] = block[1] = 5;
error = H5Sselect_hyperslab(space1, H5S_SELECT_XOR, start, stride, count, block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is the same as the original hyperslab */
sel_type = H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
/* Verify that there is only one block */
nblocks = H5Sget_select_hyper_nblocks(space1);
VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");
/* Retrieve the block defined */
memset(blocks, -1, sizeof(blocks)); /* Reset block list */
error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
/* Verify that the correct block is defined */
VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist");
/* Close temporary dataspace */
error = H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "none" selection & space */
space1 = H5Scopy(none_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'NOTB' "none" selection with another hyperslab */
start[0] = start[1] = 0;
stride[0] = stride[1] = 1;
count[0] = count[1] = 1;
block[0] = block[1] = 5;
error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTB, start, stride, count, block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is the "none" selection */
sel_type = H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");
/* Close temporary dataspace */
error = H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Copy "none" selection & space */
space1 = H5Scopy(none_id);
CHECK(space1, FAIL, "H5Scopy");
/* 'NOTA' "none" selection with another hyperslab */
start[0] = start[1] = 0;
stride[0] = stride[1] = 1;
count[0] = count[1] = 1;
block[0] = block[1] = 5;
error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTA, start, stride, count, block);
CHECK(error, FAIL, "H5Sselect_hyperslab");
/* Verify that the new selection is the same as the original hyperslab */
sel_type = H5Sget_select_type(space1);
VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
/* Verify that there is only one block */
nblocks = H5Sget_select_hyper_nblocks(space1);
VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");
/* Retrieve the block defined */
memset(blocks, -1, sizeof(blocks)); /* Reset block list */
error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
/* Verify that the correct block is defined */
VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist");
VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist");
/* Close temporary dataspace */
error = H5Sclose(space1);
CHECK(error, FAIL, "H5Sclose");
/* Close dataspaces */
error = H5Sclose(base_id);
CHECK(error, FAIL, "H5Sclose");
error = H5Sclose(all_id);
CHECK(error, FAIL, "H5Sclose");
error = H5Sclose(none_id);
CHECK(error, FAIL, "H5Sclose");
} /* test_select_combine() */
/*
* Typedef for iteration structure used in the fill value tests
*/
typedef struct {
unsigned short fill_value; /* The fill value to check */
size_t curr_coord; /* Current coordinate to examine */
hsize_t *coords; /* Pointer to selection's coordinates */
} fill_iter_info;
/****************************************************************
**
** test_select_hyper_iter3(): Iterator for checking hyperslab iteration
**
****************************************************************/
static herr_t
test_select_hyper_iter3(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned ndim, const hsize_t *point,
void *_operator_data)
{
unsigned *tbuf = (unsigned *)_elem; /* temporary buffer pointer */
fill_iter_info *iter_info =
(fill_iter_info *)_operator_data; /* Get the pointer to the iterator information */
hsize_t *coord_ptr; /* Pointer to the coordinate information for a point*/
/* Check value in current buffer location */
if (*tbuf != iter_info->fill_value)
return (-1);
else {
/* Check number of dimensions */
if (ndim != SPACE7_RANK)
return (-1);
else {
/* Check Coordinates */
coord_ptr = iter_info->coords + (2 * iter_info->curr_coord);
iter_info->curr_coord++;
if (coord_ptr[0] != point[0])
return (-1);
else if (coord_ptr[1] != point[1])
return (-1);
else
return (0);
} /* end else */
} /* end else */
} /* end test_select_hyper_iter3() */
/****************************************************************
**
** test_select_fill_all(): Test basic H5S (dataspace) selection code.
** Tests filling "all" selections
**
****************************************************************/
static void
test_select_fill_all(void)
{
hid_t sid1; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
unsigned fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
hsize_t points[SPACE7_DIM1 * SPACE7_DIM2][SPACE7_RANK]; /* Coordinates of selection */
unsigned *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
unsigned u, v; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling 'all' Selections\n"));
/* Allocate memory buffer */
wbuf = (unsigned *)malloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK_PTR(wbuf, "malloc");
/* Initialize memory buffer */
for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
for (v = 0; v < SPACE7_DIM2; v++)
*tbuf++ = (u * SPACE7_DIM2) + v;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Space defaults to "all" selection */
/* Set fill value */
fill_value = SPACE7_FILL;
/* Fill selection in memory */
ret = H5Dfill(&fill_value, H5T_NATIVE_UINT, wbuf, H5T_NATIVE_UINT, sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
for (v = 0; v < SPACE7_DIM2; v++)
if (*tbuf != fill_value)
TestErrPrintf("Error! v=%d, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, fill_value);
/* Set the coordinates of the selection */
for (u = 0; u < SPACE7_DIM1; u++)
for (v = 0; v < SPACE7_DIM2; v++) {
points[(u * SPACE7_DIM2) + v][0] = u;
points[(u * SPACE7_DIM2) + v][1] = v;
} /* end for */
/* Initialize the iterator structure */
iter_info.fill_value = SPACE7_FILL;
iter_info.curr_coord = 0;
iter_info.coords = (hsize_t *)points;
/* Iterate through selection, verifying correct data */
ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Free memory buffers */
free(wbuf);
} /* test_select_fill_all() */
/****************************************************************
**
** test_select_fill_point(): Test basic H5S (dataspace) selection code.
** Tests filling "point" selections
**
****************************************************************/
static void
test_select_fill_point(hssize_t *offset)
{
hid_t sid1; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
hsize_t points[5][SPACE7_RANK] = {{2, 4}, {3, 8}, {8, 4}, {7, 5}, {7, 7}};
size_t num_points = 5; /* Number of points selected */
int fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
unsigned *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
unsigned u, v, w; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling 'point' Selections\n"));
/* Allocate memory buffer */
wbuf = (unsigned *)malloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK_PTR(wbuf, "malloc");
/* Initialize memory buffer */
for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
for (v = 0; v < SPACE7_DIM2; v++)
*tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Select "point" selection */
ret = H5Sselect_elements(sid1, H5S_SELECT_SET, num_points, (const hsize_t *)points);
CHECK(ret, FAIL, "H5Sselect_elements");
if (offset != NULL) {
memcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));
/* Set offset, if provided */
ret = H5Soffset_simple(sid1, real_offset);
CHECK(ret, FAIL, "H5Soffset_simple");
} /* end if */
else
memset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));
/* Set fill value */
fill_value = SPACE7_FILL;
/* Fill selection in memory */
ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
for (v = 0; v < SPACE7_DIM2; v++, tbuf++) {
for (w = 0; w < (unsigned)num_points; w++) {
if (u == (unsigned)(points[w][0] + (hsize_t)real_offset[0]) &&
v == (unsigned)(points[w][1] + (hsize_t)real_offset[1])) {
if (*tbuf != (unsigned)fill_value)
TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf,
(unsigned)fill_value);
break;
} /* end if */
} /* end for */
if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v))
TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf,
((u * SPACE7_DIM2) + v));
} /* end for */
/* Initialize the iterator structure */
iter_info.fill_value = SPACE7_FILL;
iter_info.curr_coord = 0;
iter_info.coords = (hsize_t *)points;
/* Add in the offset */
for (u = 0; u < (unsigned)num_points; u++) {
points[u][0] = (hsize_t)((hssize_t)points[u][0] + real_offset[0]);
points[u][1] = (hsize_t)((hssize_t)points[u][1] + real_offset[1]);
} /* end for */
/* Iterate through selection, verifying correct data */
ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Free memory buffers */
free(wbuf);
} /* test_select_fill_point() */
/****************************************************************
**
** test_select_fill_hyper_simple(): Test basic H5S (dataspace) selection code.
** Tests filling "simple" (i.e. one block) hyperslab selections
**
****************************************************************/
static void
test_select_fill_hyper_simple(hssize_t *offset)
{
hid_t sid1; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
hsize_t start[SPACE7_RANK]; /* Hyperslab start */
hsize_t count[SPACE7_RANK]; /* Hyperslab block size */
size_t num_points; /* Number of points in selection */
hsize_t points[16][SPACE7_RANK]; /* Coordinates selected */
int fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
unsigned *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
unsigned u, v; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling Simple 'hyperslab' Selections\n"));
/* Allocate memory buffer */
wbuf = (unsigned *)malloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK_PTR(wbuf, "malloc");
/* Initialize memory buffer */
for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
for (v = 0; v < SPACE7_DIM2; v++)
*tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Select "hyperslab" selection */
start[0] = 3;
start[1] = 3;
count[0] = 4;
count[1] = 4;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
if (offset != NULL) {
memcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));
/* Set offset, if provided */
ret = H5Soffset_simple(sid1, real_offset);
CHECK(ret, FAIL, "H5Soffset_simple");
} /* end if */
else
memset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));
/* Set fill value */
fill_value = SPACE7_FILL;
/* Fill selection in memory */
ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
for (v = 0; v < SPACE7_DIM2; v++, tbuf++) {
if ((u >= (unsigned)((hssize_t)start[0] + real_offset[0]) &&
u < (unsigned)((hssize_t)(start[0] + count[0]) + real_offset[0])) &&
(v >= (unsigned)((hssize_t)start[1] + real_offset[1]) &&
v < (unsigned)((hssize_t)(start[1] + count[1]) + real_offset[1]))) {
if (*tbuf != (unsigned)fill_value)
TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf,
(unsigned)fill_value);
} /* end if */
else {
if (*tbuf != ((unsigned)(u * SPACE7_DIM2) + v))
TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf,
((u * SPACE7_DIM2) + v));
} /* end else */
} /* end for */
/* Initialize the iterator structure */
iter_info.fill_value = SPACE7_FILL;
iter_info.curr_coord = 0;
iter_info.coords = (hsize_t *)points;
/* Set the coordinates of the selection (with the offset) */
for (u = 0, num_points = 0; u < (unsigned)count[0]; u++)
for (v = 0; v < (unsigned)count[1]; v++, num_points++) {
points[num_points][0] = (hsize_t)((hssize_t)(u + start[0]) + real_offset[0]);
points[num_points][1] = (hsize_t)((hssize_t)(v + start[1]) + real_offset[1]);
} /* end for */
/* Iterate through selection, verifying correct data */
ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Free memory buffers */
free(wbuf);
} /* test_select_fill_hyper_simple() */
/****************************************************************
**
** test_select_fill_hyper_regular(): Test basic H5S (dataspace) selection code.
** Tests filling "regular" (i.e. strided block) hyperslab selections
**
****************************************************************/
static void
test_select_fill_hyper_regular(hssize_t *offset)
{
hid_t sid1; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
hsize_t start[SPACE7_RANK]; /* Hyperslab start */
hsize_t stride[SPACE7_RANK]; /* Hyperslab stride size */
hsize_t count[SPACE7_RANK]; /* Hyperslab block count */
hsize_t block[SPACE7_RANK]; /* Hyperslab block size */
hsize_t points[16][SPACE7_RANK] = {
{2, 2}, {2, 3}, {2, 6}, {2, 7}, {3, 2}, {3, 3}, {3, 6}, {3, 7},
{6, 2}, {6, 3}, {6, 6}, {6, 7}, {7, 2}, {7, 3}, {7, 6}, {7, 7},
};
size_t num_points = 16; /* Number of points selected */
int fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
unsigned *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
unsigned u, v, w; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling Regular 'hyperslab' Selections\n"));
/* Allocate memory buffer */
wbuf = (unsigned *)malloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK_PTR(wbuf, "malloc");
/* Initialize memory buffer */
for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
for (v = 0; v < SPACE7_DIM2; v++)
*tbuf++ = (u * SPACE7_DIM2) + v;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Select "hyperslab" selection */
start[0] = 2;
start[1] = 2;
stride[0] = 4;
stride[1] = 4;
count[0] = 2;
count[1] = 2;
block[0] = 2;
block[1] = 2;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
if (offset != NULL) {
memcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));
/* Set offset, if provided */
ret = H5Soffset_simple(sid1, real_offset);
CHECK(ret, FAIL, "H5Soffset_simple");
} /* end if */
else
memset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));
/* Set fill value */
fill_value = SPACE7_FILL;
/* Fill selection in memory */
ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
for (v = 0; v < SPACE7_DIM2; v++, tbuf++) {
for (w = 0; w < (unsigned)num_points; w++) {
if (u == (unsigned)((hssize_t)points[w][0] + real_offset[0]) &&
v == (unsigned)((hssize_t)points[w][1] + real_offset[1])) {
if (*tbuf != (unsigned)fill_value)
TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf,
(unsigned)fill_value);
break;
} /* end if */
} /* end for */
if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v))
TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf,
((u * SPACE7_DIM2) + v));
} /* end for */
/* Initialize the iterator structure */
iter_info.fill_value = SPACE7_FILL;
iter_info.curr_coord = 0;
iter_info.coords = (hsize_t *)points;
/* Add in the offset */
for (u = 0; u < (unsigned)num_points; u++) {
points[u][0] = (hsize_t)((hssize_t)points[u][0] + real_offset[0]);
points[u][1] = (hsize_t)((hssize_t)points[u][1] + real_offset[1]);
} /* end for */
/* Iterate through selection, verifying correct data */
ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Free memory buffers */
free(wbuf);
} /* test_select_fill_hyper_regular() */
/****************************************************************
**
** test_select_fill_hyper_irregular(): Test basic H5S (dataspace) selection code.
** Tests filling "irregular" (i.e. combined blocks) hyperslab selections
**
****************************************************************/
static void
test_select_fill_hyper_irregular(hssize_t *offset)
{
hid_t sid1; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
hsize_t start[SPACE7_RANK]; /* Hyperslab start */
hsize_t count[SPACE7_RANK]; /* Hyperslab block count */
hsize_t points[32][SPACE7_RANK] = {
/* Yes, some of the are duplicated.. */
{2, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {4, 2}, {4, 3}, {4, 4},
{4, 5}, {5, 2}, {5, 3}, {5, 4}, {5, 5}, {4, 4}, {4, 5}, {4, 6}, {4, 7}, {5, 4}, {5, 5},
{5, 6}, {5, 7}, {6, 4}, {6, 5}, {6, 6}, {6, 7}, {7, 4}, {7, 5}, {7, 6}, {7, 7},
};
hsize_t iter_points[28][SPACE7_RANK] = {
/* Coordinates, as iterated through */
{2, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {4, 2}, {4, 3},
{4, 4}, {4, 5}, {4, 6}, {4, 7}, {5, 2}, {5, 3}, {5, 4}, {5, 5}, {5, 6}, {5, 7},
{6, 4}, {6, 5}, {6, 6}, {6, 7}, {7, 4}, {7, 5}, {7, 6}, {7, 7},
};
size_t num_points = 32; /* Number of points selected */
size_t num_iter_points = 28; /* Number of resulting points */
int fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
unsigned *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
unsigned u, v, w; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling Irregular 'hyperslab' Selections\n"));
/* Allocate memory buffer */
wbuf = (unsigned *)malloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK_PTR(wbuf, "malloc");
/* Initialize memory buffer */
for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
for (v = 0; v < SPACE7_DIM2; v++)
*tbuf++ = (u * SPACE7_DIM2) + v;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Select first "hyperslab" selection */
start[0] = 2;
start[1] = 2;
count[0] = 4;
count[1] = 4;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Combine with second "hyperslab" selection */
start[0] = 4;
start[1] = 4;
count[0] = 4;
count[1] = 4;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_OR, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
if (offset != NULL) {
memcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));
/* Set offset, if provided */
ret = H5Soffset_simple(sid1, real_offset);
CHECK(ret, FAIL, "H5Soffset_simple");
} /* end if */
else
memset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));
/* Set fill value */
fill_value = SPACE7_FILL;
/* Fill selection in memory */
ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
for (v = 0; v < SPACE7_DIM2; v++, tbuf++) {
for (w = 0; w < (unsigned)num_points; w++) {
if (u == (unsigned)((hssize_t)points[w][0] + real_offset[0]) &&
v == (unsigned)((hssize_t)points[w][1] + real_offset[1])) {
if (*tbuf != (unsigned)fill_value)
TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf,
(unsigned)fill_value);
break;
} /* end if */
} /* end for */
if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v))
TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf,
((u * SPACE7_DIM2) + v));
} /* end for */
/* Initialize the iterator structure */
iter_info.fill_value = SPACE7_FILL;
iter_info.curr_coord = 0;
iter_info.coords = (hsize_t *)iter_points;
/* Add in the offset */
for (u = 0; u < (unsigned)num_iter_points; u++) {
iter_points[u][0] = (hsize_t)((hssize_t)iter_points[u][0] + real_offset[0]);
iter_points[u][1] = (hsize_t)((hssize_t)iter_points[u][1] + real_offset[1]);
} /* end for */
/* Iterate through selection, verifying correct data */
ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Free memory buffers */
free(wbuf);
} /* test_select_fill_hyper_irregular() */
/****************************************************************
**
** test_select_none(): Test basic H5S (dataspace) selection code.
** Tests I/O on 0-sized point selections
**
****************************************************************/
static void
test_select_none(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
uint8_t *wbuf, /* buffer to write to disk */
*rbuf, /* buffer to read from disk */
*tbuf; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing I/O on 0-sized Selections\n"));
/* Allocate write & read buffers */
wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK_PTR(wbuf, "malloc");
rbuf = (uint8_t *)calloc(sizeof(uint8_t), SPACE7_DIM1 * SPACE7_DIM2);
CHECK_PTR(rbuf, "calloc");
/* Initialize write buffer */
for (i = 0, tbuf = wbuf; i < SPACE7_DIM1; i++)
for (j = 0; j < SPACE7_DIM2; j++)
*tbuf++ = (uint8_t)((i * SPACE7_DIM2) + j);
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Create a dataset */
dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Make "none" selection in both disk and memory datasets */
ret = H5Sselect_none(sid1);
CHECK(ret, FAIL, "H5Sselect_none");
ret = H5Sselect_none(sid2);
CHECK(ret, FAIL, "H5Sselect_none");
/* Attempt to read "nothing" from disk (before space is allocated) */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Write "nothing" to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Write "nothing" to disk (with a datatype conversion :-) */
ret = H5Dwrite(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Write "nothing" to disk (with NULL buffer argument) */
ret = H5Dwrite(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, NULL);
CHECK(ret, FAIL, "H5Dwrite");
/* Read "nothing" from disk (with NULL buffer argument) */
ret = H5Dread(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, NULL);
CHECK(ret, FAIL, "H5Dread");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf);
free(rbuf);
} /* test_select_none() */
/****************************************************************
**
** test_scalar_select(): Test basic H5S (dataspace) selection code.
** Tests selections on scalar dataspaces
**
****************************************************************/
static void
test_scalar_select(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
hsize_t coord1[SPACE7_RANK]; /* Coordinates for point selection */
hsize_t start[SPACE7_RANK]; /* Hyperslab start */
hsize_t count[SPACE7_RANK]; /* Hyperslab block count */
uint8_t *wbuf_uint8, /* buffer to write to disk */
rval_uint8, /* value read back in */
*tbuf_uint8; /* temporary buffer pointer */
unsigned short *wbuf_ushort, /* another buffer to write to disk */
rval_ushort, /* value read back in */
*tbuf_ushort; /* temporary buffer pointer */
int i, j; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing I/O on Selections in Scalar Dataspaces\n"));
/* Allocate write & read buffers */
wbuf_uint8 = (uint8_t *)malloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK_PTR(wbuf_uint8, "malloc");
wbuf_ushort = (unsigned short *)malloc(sizeof(unsigned short) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK_PTR(wbuf_ushort, "malloc");
/* Initialize write buffers */
for (i = 0, tbuf_uint8 = wbuf_uint8, tbuf_ushort = wbuf_ushort; i < SPACE7_DIM1; i++)
for (j = 0; j < SPACE7_DIM2; j++) {
*tbuf_uint8++ = (uint8_t)((i * SPACE7_DIM2) + j);
*tbuf_ushort++ = (unsigned short)((j * SPACE7_DIM2) + i);
} /* end for */
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate(H5S_SCALAR);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Create a dataset */
dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Select one element in memory with a point selection */
coord1[0] = 0;
coord1[1] = 2;
ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Write single point to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8);
CHECK(ret, FAIL, "H5Dwrite");
/* Read scalar element from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid1, sid1, H5P_DEFAULT, &rval_uint8);
CHECK(ret, FAIL, "H5Dread");
/* Check value read back in */
if (rval_uint8 != *(wbuf_uint8 + 2))
TestErrPrintf("Error! rval=%u, should be: *(wbuf+2)=%u\n", (unsigned)rval_uint8,
(unsigned)*(wbuf_uint8 + 2));
/* Write single point to disk (with a datatype conversion) */
ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort);
CHECK(ret, FAIL, "H5Dwrite");
/* Read scalar element from disk */
ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid1, sid1, H5P_DEFAULT, &rval_ushort);
CHECK(ret, FAIL, "H5Dread");
/* Check value read back in */
if (rval_ushort != *(wbuf_ushort + 2))
TestErrPrintf("Error! rval=%u, should be: *(wbuf+2)=%u\n", (unsigned)rval_ushort,
(unsigned)*(wbuf_ushort + 2));
/* Select one element in memory with a hyperslab selection */
start[0] = 4;
start[1] = 3;
count[0] = 1;
count[1] = 1;
ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Write single hyperslab element to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8);
CHECK(ret, FAIL, "H5Dwrite");
/* Read scalar element from disk */
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid1, sid1, H5P_DEFAULT, &rval_uint8);
CHECK(ret, FAIL, "H5Dread");
/* Check value read back in */
if (rval_uint8 != *(wbuf_uint8 + (SPACE7_DIM2 * 4) + 3))
TestErrPrintf("Error! rval=%u, should be: *(wbuf+(SPACE7_DIM2*4)+3)=%u\n", (unsigned)rval_uint8,
(unsigned)*(wbuf_uint8 + (SPACE7_DIM2 * 4) + 3));
/* Write single hyperslab element to disk (with a datatype conversion) */
ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort);
CHECK(ret, FAIL, "H5Dwrite");
/* Read scalar element from disk */
ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid1, sid1, H5P_DEFAULT, &rval_ushort);
CHECK(ret, FAIL, "H5Dread");
/* Check value read back in */
if (rval_ushort != *(wbuf_ushort + (SPACE7_DIM2 * 4) + 3))
TestErrPrintf("Error! rval=%u, should be: *(wbuf+(SPACE7_DIM2*4)+3)=%u\n", (unsigned)rval_ushort,
(unsigned)*(wbuf_ushort + (SPACE7_DIM2 * 4) + 3));
/* Select no elements in memory & file with "none" selections */
ret = H5Sselect_none(sid1);
CHECK(ret, FAIL, "H5Sselect_none");
ret = H5Sselect_none(sid2);
CHECK(ret, FAIL, "H5Sselect_none");
/* Write no data to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8);
CHECK(ret, FAIL, "H5Dwrite");
/* Write no data to disk (with a datatype conversion) */
ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/* Free memory buffers */
free(wbuf_uint8);
free(wbuf_ushort);
} /* test_scalar_select() */
/****************************************************************
**
** test_scalar_select2(): Tests selections on scalar dataspace,
** verify H5Sselect_hyperslab and H5Sselect_elements fails for
** scalar dataspace.
**
****************************************************************/
static void
test_scalar_select2(void)
{
hid_t sid; /* Dataspace ID */
hsize_t coord1[1]; /* Coordinates for point selection */
hsize_t start[1]; /* Hyperslab start */
hsize_t count[1]; /* Hyperslab block count */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(6, ("Testing Selections in Scalar Dataspaces\n"));
/* Create dataspace for dataset */
sid = H5Screate(H5S_SCALAR);
CHECK(sid, FAIL, "H5Screate_simple");
/* Select one element in memory with a point selection */
coord1[0] = 0;
H5E_BEGIN_TRY
{
ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sselect_elements");
/* Select one element in memory with a hyperslab selection */
start[0] = 0;
count[0] = 0;
H5E_BEGIN_TRY
{
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, NULL, count, NULL);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
/* Select no elements in memory & file with "none" selection */
ret = H5Sselect_none(sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Select all elements in memory & file with "all" selection */
ret = H5Sselect_all(sid);
CHECK(ret, FAIL, "H5Sselect_all");
/* Close disk dataspace */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_scalar_select2() */
/****************************************************************
**
** test_scalar_select3(): Test basic H5S (dataspace) selection code.
** Tests selections on scalar dataspaces in memory
**
****************************************************************/
static void
test_scalar_select3(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1, sid2; /* Dataspace ID */
hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
hsize_t coord1[SPACE7_RANK]; /* Coordinates for point selection */
hsize_t start[SPACE7_RANK]; /* Hyperslab start */
hsize_t count[SPACE7_RANK]; /* Hyperslab block count */
uint8_t wval_uint8, /* Value written out */
rval_uint8; /* Value read in */
unsigned short wval_ushort, /* Another value written out */
rval_ushort; /* Another value read in */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing I/O on Selections in Scalar Dataspaces in Memory\n"));
/* Create file */
fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid1 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Create dataspace for writing buffer */
sid2 = H5Screate(H5S_SCALAR);
CHECK(sid2, FAIL, "H5Screate_simple");
/* Create a dataset */
dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Select one element in file with a point selection */
coord1[0] = 0;
coord1[1] = 2;
ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Write single point to disk */
wval_uint8 = 12;
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8);
CHECK(ret, FAIL, "H5Dwrite");
/* Read scalar element from disk */
rval_uint8 = 0;
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &rval_uint8);
CHECK(ret, FAIL, "H5Dread");
/* Check value read back in */
if (rval_uint8 != wval_uint8)
TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_uint8,
(unsigned)wval_uint8);
/* Write single point to disk (with a datatype conversion) */
wval_ushort = 23;
ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort);
CHECK(ret, FAIL, "H5Dwrite");
/* Read scalar element from disk */
rval_ushort = 0;
ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &rval_ushort);
CHECK(ret, FAIL, "H5Dread");
/* Check value read back in */
if (rval_ushort != wval_ushort)
TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_ushort,
(unsigned)wval_ushort);
/* Select one element in file with a hyperslab selection */
start[0] = 4;
start[1] = 3;
count[0] = 1;
count[1] = 1;
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Write single hyperslab element to disk */
wval_uint8 = 92;
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8);
CHECK(ret, FAIL, "H5Dwrite");
/* Read scalar element from disk */
rval_uint8 = 0;
ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &rval_uint8);
CHECK(ret, FAIL, "H5Dread");
/* Check value read back in */
if (rval_uint8 != wval_uint8)
TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_uint8,
(unsigned)wval_uint8);
/* Write single hyperslab element to disk (with a datatype conversion) */
wval_ushort = 107;
ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort);
CHECK(ret, FAIL, "H5Dwrite");
/* Read scalar element from disk */
rval_ushort = 0;
ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &rval_ushort);
CHECK(ret, FAIL, "H5Dread");
/* Check value read back in */
if (rval_ushort != wval_ushort)
TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_ushort,
(unsigned)wval_ushort);
/* Select no elements in memory & file with "none" selections */
ret = H5Sselect_none(sid1);
CHECK(ret, FAIL, "H5Sselect_none");
ret = H5Sselect_none(sid2);
CHECK(ret, FAIL, "H5Sselect_none");
/* Write no data to disk */
ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8);
CHECK(ret, FAIL, "H5Dwrite");
/* Write no data to disk (with a datatype conversion) */
ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort);
CHECK(ret, FAIL, "H5Dwrite");
/* Close memory dataspace */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Close disk dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
} /* test_scalar_select3() */
/****************************************************************
**
** test_shape_same(): Tests selections on dataspace, verify that
** "shape same" routine is working correctly.
**
****************************************************************/
static void
test_shape_same(void)
{
hid_t all_sid; /* Dataspace ID with "all" selection */
hid_t none_sid; /* Dataspace ID with "none" selection */
hid_t single_pt_sid; /* Dataspace ID with single point selection */
hid_t mult_pt_sid; /* Dataspace ID with multiple point selection */
hid_t single_hyper_sid; /* Dataspace ID with single block hyperslab selection */
hid_t single_hyper_all_sid; /* Dataspace ID with single block hyperslab
* selection that is the entire dataspace
*/
hid_t single_hyper_pt_sid; /* Dataspace ID with single block hyperslab
* selection that is the same as the single
* point selection
*/
hid_t regular_hyper_sid; /* Dataspace ID with regular hyperslab selection */
hid_t irreg_hyper_sid; /* Dataspace ID with irregular hyperslab selection */
hid_t none_hyper_sid; /* Dataspace ID with "no hyperslabs" selection */
hid_t scalar_all_sid; /* ID for scalar dataspace with "all" selection */
hid_t scalar_none_sid; /* ID for scalar dataspace with "none" selection */
hid_t tmp_sid; /* Temporary dataspace ID */
hsize_t dims[] = {SPACE9_DIM1, SPACE9_DIM2};
hsize_t coord1[1][SPACE2_RANK]; /* Coordinates for single point selection */
hsize_t coord2[SPACE9_DIM2][SPACE9_RANK]; /* Coordinates for multiple point selection */
hsize_t start[SPACE9_RANK]; /* Hyperslab start */
hsize_t stride[SPACE9_RANK]; /* Hyperslab stride */
hsize_t count[SPACE9_RANK]; /* Hyperslab block count */
hsize_t block[SPACE9_RANK]; /* Hyperslab block size */
unsigned u, v; /* Local index variables */
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(6, ("Testing Same Shape Comparisons\n"));
assert(SPACE9_DIM2 >= POINT1_NPOINTS);
/* Create dataspace for "all" selection */
all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(all_sid, FAIL, "H5Screate_simple");
/* Select entire extent for dataspace */
ret = H5Sselect_all(all_sid);
CHECK(ret, FAIL, "H5Sselect_all");
/* Create dataspace for "none" selection */
none_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(none_sid, FAIL, "H5Screate_simple");
/* Un-Select entire extent for dataspace */
ret = H5Sselect_none(none_sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Create dataspace for single point selection */
single_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(single_pt_sid, FAIL, "H5Screate_simple");
/* Select sequence of ten points for multiple point selection */
coord1[0][0] = 2;
coord1[0][1] = 2;
ret = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Create dataspace for multiple point selection */
mult_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(mult_pt_sid, FAIL, "H5Screate_simple");
/* Select sequence of ten points for multiple point selection */
coord2[0][0] = 2;
coord2[0][1] = 2;
coord2[1][0] = 7;
coord2[1][1] = 2;
coord2[2][0] = 1;
coord2[2][1] = 4;
coord2[3][0] = 2;
coord2[3][1] = 6;
coord2[4][0] = 0;
coord2[4][1] = 8;
coord2[5][0] = 3;
coord2[5][1] = 2;
coord2[6][0] = 4;
coord2[6][1] = 4;
coord2[7][0] = 1;
coord2[7][1] = 0;
coord2[8][0] = 5;
coord2[8][1] = 1;
coord2[9][0] = 9;
coord2[9][1] = 3;
ret = H5Sselect_elements(mult_pt_sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Create dataspace for single hyperslab selection */
single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(single_hyper_sid, FAIL, "H5Screate_simple");
/* Select 10x10 hyperslab for single hyperslab selection */
start[0] = 1;
start[1] = 1;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = (SPACE9_DIM1 - 2);
block[1] = (SPACE9_DIM2 - 2);
ret = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for single hyperslab selection with entire extent selected */
single_hyper_all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(single_hyper_all_sid, FAIL, "H5Screate_simple");
/* Select entire extent for hyperslab selection */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = SPACE9_DIM1;
block[1] = SPACE9_DIM2;
ret = H5Sselect_hyperslab(single_hyper_all_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for single hyperslab selection with single point selected */
single_hyper_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(single_hyper_pt_sid, FAIL, "H5Screate_simple");
/* Select entire extent for hyperslab selection */
start[0] = 2;
start[1] = 2;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(single_hyper_pt_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for regular hyperslab selection */
regular_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(regular_hyper_sid, FAIL, "H5Screate_simple");
/* Select regular, strided hyperslab selection */
start[0] = 2;
start[1] = 2;
stride[0] = 2;
stride[1] = 2;
count[0] = 5;
count[1] = 2;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for irregular hyperslab selection */
irreg_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(irreg_hyper_sid, FAIL, "H5Screate_simple");
/* Create irregular hyperslab selection by OR'ing two blocks together */
start[0] = 2;
start[1] = 2;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 4;
start[1] = 4;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = 3;
block[1] = 3;
ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for "no" hyperslab selection */
none_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(none_hyper_sid, FAIL, "H5Screate_simple");
/* Create "no" hyperslab selection by XOR'ing same blocks together */
start[0] = 2;
start[1] = 2;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_XOR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create scalar dataspace for "all" selection */
scalar_all_sid = H5Screate(H5S_SCALAR);
CHECK(scalar_all_sid, FAIL, "H5Screate");
/* Create scalar dataspace for "none" selection */
scalar_none_sid = H5Screate(H5S_SCALAR);
CHECK(scalar_none_sid, FAIL, "H5Screate");
/* Un-Select entire extent for dataspace */
ret = H5Sselect_none(scalar_none_sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Compare "all" selection to all the selections created */
/* Compare against itself */
check = H5Sselect_shape_same(all_sid, all_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against copy of itself */
tmp_sid = H5Scopy(all_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check = H5Sselect_shape_same(all_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "none" selection */
check = H5Sselect_shape_same(all_sid, none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against single point selection */
check = H5Sselect_shape_same(all_sid, single_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against multiple point selection */
check = H5Sselect_shape_same(all_sid, mult_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "plain" single hyperslab selection */
check = H5Sselect_shape_same(all_sid, single_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "all" single hyperslab selection */
check = H5Sselect_shape_same(all_sid, single_hyper_all_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against "single point" single hyperslab selection */
check = H5Sselect_shape_same(all_sid, single_hyper_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against regular, strided hyperslab selection */
check = H5Sselect_shape_same(all_sid, regular_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against irregular hyperslab selection */
check = H5Sselect_shape_same(all_sid, irreg_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "no" hyperslab selection */
check = H5Sselect_shape_same(all_sid, none_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against scalar "all" hyperslab selection */
check = H5Sselect_shape_same(all_sid, scalar_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against scalar "none" hyperslab selection */
check = H5Sselect_shape_same(all_sid, scalar_none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare "none" selection to all the selections created */
/* Compare against itself */
check = H5Sselect_shape_same(none_sid, none_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against copy of itself */
tmp_sid = H5Scopy(none_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check = H5Sselect_shape_same(none_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check = H5Sselect_shape_same(none_sid, all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against single point selection */
check = H5Sselect_shape_same(none_sid, single_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against multiple point selection */
check = H5Sselect_shape_same(none_sid, mult_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "plain" single hyperslab selection */
check = H5Sselect_shape_same(none_sid, single_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "all" single hyperslab selection */
check = H5Sselect_shape_same(none_sid, single_hyper_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "single point" single hyperslab selection */
check = H5Sselect_shape_same(none_sid, single_hyper_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against regular, strided hyperslab selection */
check = H5Sselect_shape_same(none_sid, regular_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against irregular hyperslab selection */
check = H5Sselect_shape_same(none_sid, irreg_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "no" hyperslab selection */
check = H5Sselect_shape_same(none_sid, none_hyper_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against scalar "all" hyperslab selection */
check = H5Sselect_shape_same(none_sid, scalar_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against scalar "none" hyperslab selection */
check = H5Sselect_shape_same(none_sid, scalar_none_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare single point selection to all the selections created */
/* Compare against itself */
check = H5Sselect_shape_same(single_pt_sid, single_pt_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against copy of itself */
tmp_sid = H5Scopy(single_pt_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check = H5Sselect_shape_same(single_pt_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check = H5Sselect_shape_same(single_pt_sid, all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "none" selection */
check = H5Sselect_shape_same(single_pt_sid, none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against multiple point selection */
check = H5Sselect_shape_same(single_pt_sid, mult_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "plain" single hyperslab selection */
check = H5Sselect_shape_same(single_pt_sid, single_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "all" single hyperslab selection */
check = H5Sselect_shape_same(single_pt_sid, single_hyper_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "single point" single hyperslab selection */
check = H5Sselect_shape_same(single_pt_sid, single_hyper_pt_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against regular, strided hyperslab selection */
check = H5Sselect_shape_same(single_pt_sid, regular_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against irregular hyperslab selection */
check = H5Sselect_shape_same(single_pt_sid, irreg_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "no" hyperslab selection */
check = H5Sselect_shape_same(single_pt_sid, none_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against scalar "all" hyperslab selection */
check = H5Sselect_shape_same(single_pt_sid, scalar_all_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against scalar "none" hyperslab selection */
check = H5Sselect_shape_same(single_pt_sid, scalar_none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare multiple point selection to all the selections created */
/* Compare against itself */
check = H5Sselect_shape_same(mult_pt_sid, mult_pt_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against copy of itself */
tmp_sid = H5Scopy(mult_pt_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check = H5Sselect_shape_same(mult_pt_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check = H5Sselect_shape_same(mult_pt_sid, all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "none" selection */
check = H5Sselect_shape_same(mult_pt_sid, none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against single point selection */
check = H5Sselect_shape_same(mult_pt_sid, single_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "plain" single hyperslab selection */
check = H5Sselect_shape_same(mult_pt_sid, single_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "all" single hyperslab selection */
check = H5Sselect_shape_same(mult_pt_sid, single_hyper_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "single point" single hyperslab selection */
check = H5Sselect_shape_same(mult_pt_sid, single_hyper_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against regular, strided hyperslab selection */
check = H5Sselect_shape_same(mult_pt_sid, regular_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against irregular hyperslab selection */
check = H5Sselect_shape_same(mult_pt_sid, irreg_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "no" hyperslab selection */
check = H5Sselect_shape_same(mult_pt_sid, none_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against scalar "all" hyperslab selection */
check = H5Sselect_shape_same(mult_pt_sid, scalar_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against scalar "none" hyperslab selection */
check = H5Sselect_shape_same(mult_pt_sid, scalar_none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare single "normal" hyperslab selection to all the selections created */
/* Compare against itself */
check = H5Sselect_shape_same(single_hyper_sid, single_hyper_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against copy of itself */
tmp_sid = H5Scopy(single_hyper_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check = H5Sselect_shape_same(single_hyper_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check = H5Sselect_shape_same(single_hyper_sid, all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "none" selection */
check = H5Sselect_shape_same(single_hyper_sid, none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against single point selection */
check = H5Sselect_shape_same(single_hyper_sid, single_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against multiple point selection */
check = H5Sselect_shape_same(single_hyper_sid, mult_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "all" single hyperslab selection */
check = H5Sselect_shape_same(single_hyper_sid, single_hyper_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "single point" single hyperslab selection */
check = H5Sselect_shape_same(single_hyper_sid, single_hyper_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against regular, strided hyperslab selection */
check = H5Sselect_shape_same(single_hyper_sid, regular_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against irregular hyperslab selection */
check = H5Sselect_shape_same(single_hyper_sid, irreg_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "no" hyperslab selection */
check = H5Sselect_shape_same(single_hyper_sid, none_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
#ifdef NOT_YET
/* In theory, these two selections are the same shape, but the
* H5Sselect_shape_same() routine is just not this sophisticated yet and it
* would take too much effort to make this work. The worst case is that the
* non-optimized chunk mapping routines will be invoked instead of the more
* optimized routines, so this only hurts performance, not correctness
*/
/* Construct point selection which matches "plain" hyperslab selection */
/* Create dataspace for point selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
/* Select sequence of points for point selection */
for (u = 1; u < (SPACE9_DIM1 - 1); u++) {
for (v = 1; v < (SPACE9_DIM2 - 1); v++) {
coord2[v - 1][0] = u;
coord2[v - 1][1] = v;
} /* end for */
ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, (SPACE9_DIM2 - 2), coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
} /* end for */
/* Compare against hyperslab selection */
check = H5Sselect_shape_same(single_hyper_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
#endif /* NOT_YET */
/* Construct hyperslab selection which matches "plain" hyperslab selection */
/* Create dataspace for hyperslab selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
/* Un-select entire extent */
ret = H5Sselect_none(tmp_sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Select sequence of rows for hyperslab selection */
for (u = 1; u < (SPACE9_DIM1 - 1); u++) {
start[0] = u;
start[1] = 1;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = 1;
block[1] = (SPACE9_DIM2 - 2);
ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end for */
/* Compare against hyperslab selection */
check = H5Sselect_shape_same(single_hyper_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against scalar "all" hyperslab selection */
check = H5Sselect_shape_same(single_hyper_sid, scalar_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against scalar "none" hyperslab selection */
check = H5Sselect_shape_same(single_hyper_sid, scalar_none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare single "all" hyperslab selection to all the selections created */
/* Compare against itself */
check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_all_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against copy of itself */
tmp_sid = H5Scopy(single_hyper_all_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check = H5Sselect_shape_same(single_hyper_all_sid, all_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against "none" selection */
check = H5Sselect_shape_same(single_hyper_all_sid, none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against single point selection */
check = H5Sselect_shape_same(single_hyper_all_sid, single_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against multiple point selection */
check = H5Sselect_shape_same(single_hyper_all_sid, mult_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "plain" single hyperslab selection */
check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "single point" single hyperslab selection */
check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against regular, strided hyperslab selection */
check = H5Sselect_shape_same(single_hyper_all_sid, regular_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against irregular hyperslab selection */
check = H5Sselect_shape_same(single_hyper_all_sid, irreg_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "no" hyperslab selection */
check = H5Sselect_shape_same(single_hyper_all_sid, none_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
#ifdef NOT_YET
/* In theory, these two selections are the same shape, but the
* H5S_select_shape_same() routine is just not this sophisticated yet and it
* would take too much effort to make this work. The worst case is that the
* non-optimized chunk mapping routines will be invoked instead of the more
* optimized routines, so this only hurts performance, not correctness
*/
/* Construct point selection which matches "all" hyperslab selection */
/* Create dataspace for point selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
/* Select sequence of points for point selection */
for (u = 0; u < SPACE9_DIM1; u++) {
for (v = 0; v < SPACE9_DIM2; v++) {
coord2[v][0] = u;
coord2[v][1] = v;
} /* end for */
ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, SPACE9_DIM2, coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
} /* end for */
/* Compare against hyperslab selection */
check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
#endif /* NOT_YET */
/* Construct hyperslab selection which matches "all" hyperslab selection */
/* Create dataspace for hyperslab selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
/* Un-select entire extent */
ret = H5Sselect_none(tmp_sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Select sequence of rows for hyperslab selection */
for (u = 0; u < SPACE9_DIM2; u++) {
start[0] = u;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = 1;
block[1] = SPACE9_DIM2;
ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end for */
/* Compare against hyperslab selection */
check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against scalar "all" hyperslab selection */
check = H5Sselect_shape_same(single_hyper_all_sid, scalar_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against scalar "none" hyperslab selection */
check = H5Sselect_shape_same(single_hyper_all_sid, scalar_none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare single "point" hyperslab selection to all the selections created */
/* Compare against itself */
check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_pt_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against copy of itself */
tmp_sid = H5Scopy(single_hyper_pt_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check = H5Sselect_shape_same(single_hyper_pt_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check = H5Sselect_shape_same(single_hyper_pt_sid, all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "none" selection */
check = H5Sselect_shape_same(single_hyper_pt_sid, none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against single point selection */
check = H5Sselect_shape_same(single_hyper_pt_sid, single_pt_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against multiple point selection */
check = H5Sselect_shape_same(single_hyper_pt_sid, mult_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "plain" single hyperslab selection */
check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "all" single hyperslab selection */
check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against regular, strided hyperslab selection */
check = H5Sselect_shape_same(single_hyper_pt_sid, regular_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against irregular hyperslab selection */
check = H5Sselect_shape_same(single_hyper_pt_sid, irreg_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "no" hyperslab selection */
check = H5Sselect_shape_same(single_hyper_pt_sid, none_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against scalar "all" hyperslab selection */
check = H5Sselect_shape_same(single_hyper_pt_sid, scalar_all_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against scalar "none" hyperslab selection */
check = H5Sselect_shape_same(single_hyper_pt_sid, scalar_none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare regular, strided hyperslab selection to all the selections created */
/* Compare against itself */
check = H5Sselect_shape_same(regular_hyper_sid, regular_hyper_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against copy of itself */
tmp_sid = H5Scopy(regular_hyper_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check = H5Sselect_shape_same(regular_hyper_sid, all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "none" selection */
check = H5Sselect_shape_same(regular_hyper_sid, none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against single point selection */
check = H5Sselect_shape_same(regular_hyper_sid, single_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against multiple point selection */
check = H5Sselect_shape_same(regular_hyper_sid, mult_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "plain" single hyperslab selection */
check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "all" single hyperslab selection */
check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "single point" single hyperslab selection */
check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against irregular hyperslab selection */
check = H5Sselect_shape_same(regular_hyper_sid, irreg_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "no" hyperslab selection */
check = H5Sselect_shape_same(regular_hyper_sid, none_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Construct point selection which matches regular, strided hyperslab selection */
/* Create dataspace for point selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
/* Select sequence of points for point selection */
for (u = 2; u < 11; u += 2) {
for (v = 0; v < 2; v++) {
coord2[v][0] = u;
coord2[v][1] = (v * 2) + 2;
} /* end for */
ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, (size_t)2, (const hsize_t *)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
} /* end for */
/* Compare against hyperslab selection */
check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Construct hyperslab selection which matches regular, strided hyperslab selection */
/* Create dataspace for hyperslab selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
/* Un-select entire extent */
ret = H5Sselect_none(tmp_sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Select sequence of rows for hyperslab selection */
for (u = 2; u < 11; u += 2) {
start[0] = u;
start[1] = 3;
stride[0] = 1;
stride[1] = 2;
count[0] = 1;
count[1] = 2;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end for */
/* Compare against hyperslab selection */
check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Construct regular hyperslab selection with an offset which matches regular, strided hyperslab selection
*/
/* Create dataspace for hyperslab selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
/* Select regular, strided hyperslab selection at an offset */
start[0] = 1;
start[1] = 1;
stride[0] = 2;
stride[1] = 2;
count[0] = 5;
count[1] = 2;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Compare against hyperslab selection */
check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against scalar "all" hyperslab selection */
check = H5Sselect_shape_same(regular_hyper_sid, scalar_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against scalar "none" hyperslab selection */
check = H5Sselect_shape_same(regular_hyper_sid, scalar_none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare irregular hyperslab selection to all the selections created */
/* Compare against itself */
check = H5Sselect_shape_same(irreg_hyper_sid, irreg_hyper_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against copy of itself */
tmp_sid = H5Scopy(irreg_hyper_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check = H5Sselect_shape_same(irreg_hyper_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check = H5Sselect_shape_same(irreg_hyper_sid, all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "none" selection */
check = H5Sselect_shape_same(irreg_hyper_sid, none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against single point selection */
check = H5Sselect_shape_same(irreg_hyper_sid, single_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against multiple point selection */
check = H5Sselect_shape_same(irreg_hyper_sid, mult_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "plain" single hyperslab selection */
check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "all" single hyperslab selection */
check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "single point" single hyperslab selection */
check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against regular, strided hyperslab selection */
check = H5Sselect_shape_same(irreg_hyper_sid, regular_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "no" hyperslab selection */
check = H5Sselect_shape_same(irreg_hyper_sid, none_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Construct hyperslab selection which matches irregular hyperslab selection */
/* Create dataspace for hyperslab selection */
tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(tmp_sid, FAIL, "H5Screate_simple");
start[0] = 2;
start[1] = 2;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Select sequence of columns for hyperslab selection */
for (u = 0; u < 3; u++) {
start[0] = 4;
start[1] = u + 4;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = 3;
block[1] = 1;
ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end for */
/* Compare against hyperslab selection */
check = H5Sselect_shape_same(irreg_hyper_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against scalar "all" hyperslab selection */
check = H5Sselect_shape_same(irreg_hyper_sid, scalar_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against scalar "none" hyperslab selection */
check = H5Sselect_shape_same(irreg_hyper_sid, scalar_none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare scalar "all" dataspace with all selections created */
/* Compare against itself */
check = H5Sselect_shape_same(scalar_all_sid, scalar_all_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against copy of itself */
tmp_sid = H5Scopy(scalar_all_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check = H5Sselect_shape_same(scalar_all_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check = H5Sselect_shape_same(scalar_all_sid, all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "none" selection */
check = H5Sselect_shape_same(scalar_all_sid, none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against single point selection */
check = H5Sselect_shape_same(scalar_all_sid, single_pt_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against multiple point selection */
check = H5Sselect_shape_same(scalar_all_sid, mult_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "plain" single hyperslab selection */
check = H5Sselect_shape_same(scalar_all_sid, single_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "all" single hyperslab selection */
check = H5Sselect_shape_same(scalar_all_sid, single_hyper_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "single point" single hyperslab selection */
check = H5Sselect_shape_same(scalar_all_sid, single_hyper_pt_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against regular, strided hyperslab selection */
check = H5Sselect_shape_same(scalar_all_sid, regular_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against irregular hyperslab selection */
check = H5Sselect_shape_same(scalar_all_sid, irreg_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "no" hyperslab selection */
check = H5Sselect_shape_same(scalar_all_sid, none_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against scalar "none" hyperslab selection */
check = H5Sselect_shape_same(scalar_all_sid, scalar_none_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare scalar "none" dataspace with all selections created */
/* Compare against itself */
check = H5Sselect_shape_same(scalar_none_sid, scalar_none_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against copy of itself */
tmp_sid = H5Scopy(scalar_none_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
check = H5Sselect_shape_same(scalar_none_sid, tmp_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Compare against "all" selection */
check = H5Sselect_shape_same(scalar_none_sid, all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "none" selection */
check = H5Sselect_shape_same(scalar_none_sid, none_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against single point selection */
check = H5Sselect_shape_same(scalar_none_sid, single_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against multiple point selection */
check = H5Sselect_shape_same(scalar_none_sid, mult_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "plain" single hyperslab selection */
check = H5Sselect_shape_same(scalar_none_sid, single_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "all" single hyperslab selection */
check = H5Sselect_shape_same(scalar_none_sid, single_hyper_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "single point" single hyperslab selection */
check = H5Sselect_shape_same(scalar_none_sid, single_hyper_pt_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against regular, strided hyperslab selection */
check = H5Sselect_shape_same(scalar_none_sid, regular_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against irregular hyperslab selection */
check = H5Sselect_shape_same(scalar_none_sid, irreg_hyper_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "no" hyperslab selection */
check = H5Sselect_shape_same(scalar_none_sid, none_hyper_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare against scalar "all" hyperslab selection */
check = H5Sselect_shape_same(scalar_none_sid, scalar_all_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Close dataspaces */
ret = H5Sclose(all_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(none_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(single_pt_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(mult_pt_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(single_hyper_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(single_hyper_all_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(single_hyper_pt_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(regular_hyper_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(irreg_hyper_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(none_hyper_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(scalar_all_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(scalar_none_sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same() */
/****************************************************************
**
** test_shape_same_dr__smoke_check_1():
**
** Create a square, 2-D dataspace (10 X 10), and select
** all of it.
**
** Similarly, create nine, 3-D dataspaces (10 X 10 X 10),
** and select (10 X 10 X 1) hyperslabs in each, three with
** the slab parallel to the xy plane, three parallel to the
** xz plane, and three parallel to the yz plane.
**
** Assuming that z is the fastest changing dimension,
** H5Sselect_shape_same() should return TRUE when comparing
** the full 2-D space against any hyperslab parallel to the
** yz plane in the 3-D space, and FALSE when comparing the
** full 2-D space against the other two hyperslabs.
**
** Also create two additional 3-D dataspaces (10 X 10 X 10),
** and select a (10 X 10 X 2) hyperslab parallel to the yz
** axis in one of them, and two parallel (10 X 10 X 1) hyper
** slabs parallel to the yz axis in the other.
** H5Sselect_shape_same() should return FALSE when comparing
** each to the 2-D selection.
**
****************************************************************/
static void
test_shape_same_dr__smoke_check_1(void)
{
hid_t small_square_sid;
hid_t small_cube_xy_slice_0_sid;
hid_t small_cube_xy_slice_1_sid;
hid_t small_cube_xy_slice_2_sid;
hid_t small_cube_xz_slice_0_sid;
hid_t small_cube_xz_slice_1_sid;
hid_t small_cube_xz_slice_2_sid;
hid_t small_cube_yz_slice_0_sid;
hid_t small_cube_yz_slice_1_sid;
hid_t small_cube_yz_slice_2_sid;
hid_t small_cube_yz_slice_3_sid;
hid_t small_cube_yz_slice_4_sid;
hsize_t small_cube_dims[] = {10, 10, 10};
hsize_t start[3];
hsize_t stride[3];
hsize_t count[3];
hsize_t block[3];
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
MESSAGE(7, (" Smoke check 1: Slices through a cube.\n"));
/* Create the 10 x 10 dataspace */
small_square_sid = H5Screate_simple(2, small_cube_dims, NULL);
CHECK(small_square_sid, FAIL, "H5Screate_simple");
/* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */
small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple");
small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple");
small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple");
start[0] = 0; /* x */
start[1] = 0; /* y */
start[2] = 0; /* z */
/* stride is a bit silly here, since we are only selecting a single */
/* contiguous plane, but include it anyway, with values large enough */
/* to ensure that we will only get the single block selected. */
stride[0] = 20; /* x */
stride[1] = 20; /* y */
stride[2] = 20; /* z */
count[0] = 1; /* x */
count[1] = 1; /* y */
count[2] = 1; /* z */
block[0] = 10; /* x */
block[1] = 10; /* y */
block[2] = 1; /* z */
ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[2] = 5;
ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[2] = 9;
ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */
small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple");
small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple");
small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple");
start[0] = 0; /* x */
start[1] = 0; /* y */
start[2] = 0; /* z */
/* stride is a bit silly here, since we are only selecting a single */
/* contiguous chunk, but include it anyway, with values large enough */
/* to ensure that we will only get the single chunk. */
stride[0] = 20; /* x */
stride[1] = 20; /* y */
stride[2] = 20; /* z */
count[0] = 1; /* x */
count[1] = 1; /* y */
count[2] = 1; /* z */
block[0] = 10; /* x */
block[1] = 1; /* y */
block[2] = 10; /* z */
ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[1] = 4;
ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[1] = 9;
ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */
small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple");
small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple");
small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple");
small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple");
small_cube_yz_slice_4_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_yz_slice_4_sid, FAIL, "H5Screate_simple");
start[0] = 0; /* x */
start[1] = 0; /* y */
start[2] = 0; /* z */
/* stride is a bit silly here, since we are only selecting a single */
/* contiguous chunk, but include it anyway, with values large enough */
/* to ensure that we will only get the single chunk. */
stride[0] = 20; /* x */
stride[1] = 20; /* y */
stride[2] = 20; /* z */
count[0] = 1; /* x */
count[1] = 1; /* y */
count[2] = 1; /* z */
block[0] = 1; /* x */
block[1] = 10; /* y */
block[2] = 10; /* z */
ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 4;
ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 9;
ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 4;
block[0] = 2;
ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 3;
block[0] = 1;
ret = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 6;
ret = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* setup is done -- run the tests: */
/* Compare against "xy" selection */
check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "xz" selection */
check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "yz" selection */
check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_yz_slice_3_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_yz_slice_4_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Close dataspaces */
ret = H5Sclose(small_square_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xy_slice_0_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xy_slice_1_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xy_slice_2_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xz_slice_0_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xz_slice_1_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xz_slice_2_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_yz_slice_0_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_yz_slice_1_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_yz_slice_2_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_yz_slice_3_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_yz_slice_4_sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same_dr__smoke_check_1() */
/****************************************************************
**
** test_shape_same_dr__smoke_check_2():
**
** Create a square, 2-D dataspace (10 X 10), and select
** a "checker board" hyperslab as follows:
**
** * * - - * * - - * *
** * * - - * * - - * *
** - - * * - - * * - -
** - - * * - - * * - -
** * * - - * * - - * *
** * * - - * * - - * *
** - - * * - - * * - -
** - - * * - - * * - -
** * * - - * * - - * *
** * * - - * * - - * *
**
** where asterisks indicate selected elements, and dashes
** indicate unselected elements.
**
** Similarly, create nine, 3-D dataspaces (10 X 10 X 10),
** and select similar (10 X 10 X 1) checker board hyper
** slabs in each, three with the slab parallel to the xy
** plane, three parallel to the xz plane, and three parallel
** to the yz plane.
**
** Assuming that z is the fastest changing dimension,
** H5Sselect_shape_same() should return TRUE when comparing
** the 2-D space checker board selection against a checker
** board hyperslab parallel to the yz plane in the 3-D
** space, and FALSE when comparing the 2-D checkerboard
** selection against two hyperslabs parallel to the xy
** or xz planes.
**
** Also create an additional 3-D dataspaces (10 X 10 X 10),
** and select a checker board parallel with the yz axis,
** save with some squares being on different planes.
** H5Sselect_shape_same() should return FALSE when
** comparing this selection to the 2-D selection.
**
****************************************************************/
static void
test_shape_same_dr__smoke_check_2(void)
{
hid_t small_square_sid;
hid_t small_cube_xy_slice_0_sid;
hid_t small_cube_xy_slice_1_sid;
hid_t small_cube_xy_slice_2_sid;
hid_t small_cube_xz_slice_0_sid;
hid_t small_cube_xz_slice_1_sid;
hid_t small_cube_xz_slice_2_sid;
hid_t small_cube_yz_slice_0_sid;
hid_t small_cube_yz_slice_1_sid;
hid_t small_cube_yz_slice_2_sid;
hid_t small_cube_yz_slice_3_sid;
hsize_t small_cube_dims[] = {10, 10, 10};
hsize_t start[3];
hsize_t stride[3];
hsize_t count[3];
hsize_t block[3];
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
MESSAGE(7, (" Smoke check 2: Checker board slices through a cube.\n"));
/* Create the 10 x 10 dataspace */
small_square_sid = H5Screate_simple(2, small_cube_dims, NULL);
CHECK(small_square_sid, FAIL, "H5Screate_simple");
start[0] = 0; /* x */
start[1] = 0; /* y */
stride[0] = 4; /* x */
stride[1] = 4; /* y */
count[0] = 3; /* x */
count[1] = 3; /* y */
block[0] = 2; /* x */
block[1] = 2; /* y */
ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 2; /* x */
start[1] = 2; /* y */
stride[0] = 4; /* x */
stride[1] = 4; /* y */
count[0] = 2; /* x */
count[1] = 2; /* y */
block[0] = 2; /* x */
block[1] = 2; /* y */
ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */
small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple");
small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple");
small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple");
start[0] = 0; /* x */
start[1] = 0; /* y */
start[2] = 0; /* z */
stride[0] = 4; /* x */
stride[1] = 4; /* y */
stride[2] = 20; /* z -- large enough that there will only be one slice */
count[0] = 3; /* x */
count[1] = 3; /* y */
count[2] = 1; /* z */
block[0] = 2; /* x */
block[1] = 2; /* y */
block[2] = 1; /* z */
ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[2] = 3;
ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[2] = 9;
ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 2; /* x */
start[1] = 2; /* y */
start[2] = 0; /* z */
stride[0] = 4; /* x */
stride[1] = 4; /* y */
stride[2] = 20; /* z -- large enough that there will only be one slice */
count[0] = 2; /* x */
count[1] = 2; /* y */
count[2] = 1; /* z */
block[0] = 2; /* x */
block[1] = 2; /* y */
block[2] = 1; /* z */
ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[2] = 3;
ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[2] = 9;
ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */
small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple");
small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple");
small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple");
start[0] = 0; /* x */
start[1] = 0; /* y */
start[2] = 0; /* z */
stride[0] = 4; /* x */
stride[1] = 20; /* y -- large enough that there will only be one slice */
stride[2] = 4; /* z */
count[0] = 3; /* x */
count[1] = 1; /* y */
count[2] = 3; /* z */
block[0] = 2; /* x */
block[1] = 1; /* y */
block[2] = 2; /* z */
ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[1] = 5;
ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[1] = 9;
ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 2; /* x */
start[1] = 0; /* y */
start[2] = 2; /* z */
stride[0] = 4; /* x */
stride[1] = 20; /* y -- large enough that there will only be one slice */
stride[2] = 4; /* z */
count[0] = 2; /* x */
count[1] = 1; /* y */
count[2] = 2; /* z */
block[0] = 2; /* x */
block[1] = 1; /* y */
block[2] = 2; /* z */
ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[1] = 5;
ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[1] = 9;
ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */
small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple");
small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple");
small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple");
small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple");
start[0] = 0; /* x */
start[1] = 0; /* y */
start[2] = 0; /* z */
stride[0] = 20; /* x -- large enough that there will only be one slice */
stride[1] = 4; /* y */
stride[2] = 4; /* z */
count[0] = 1; /* x */
count[1] = 3; /* y */
count[2] = 3; /* z */
block[0] = 1; /* x */
block[1] = 2; /* y */
block[2] = 2; /* z */
ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 8;
ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 9;
ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 3;
ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 0; /* x */
start[1] = 2; /* y */
start[2] = 2; /* z */
stride[0] = 20; /* x -- large enough that there will only be one slice */
stride[1] = 4; /* y */
stride[2] = 4; /* z */
count[0] = 1; /* x */
count[1] = 2; /* y */
count[2] = 2; /* z */
block[0] = 1; /* x */
block[1] = 2; /* y */
block[2] = 2; /* z */
ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 8;
ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 9;
ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 4;
/* This test gets the right answer, but it fails the shape same
* test in an unexpected point. Bring this up with Quincey, as
* the oddness looks like it is not related to my code.
* -- JRM
*/
ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* setup is done -- run the tests: */
/* Compare against "xy" selection */
check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "xz" selection */
check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "yz" selection */
check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_yz_slice_3_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Close dataspaces */
ret = H5Sclose(small_square_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xy_slice_0_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xy_slice_1_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xy_slice_2_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xz_slice_0_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xz_slice_1_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xz_slice_2_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_yz_slice_0_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_yz_slice_1_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_yz_slice_2_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_yz_slice_3_sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same_dr__smoke_check_2() */
/****************************************************************
**
** test_shape_same_dr__smoke_check_3():
**
** Create a square, 2-D dataspace (10 X 10), and select an
** irregular hyperslab as follows:
**
** y
** 9 - - - - - - - - - -
** 8 - - - - - - - - - -
** 7 - - - * * * * - - -
** 6 - - * * * * * - - -
** 5 - - * * - - - - - -
** 4 - - * * - * * - - -
** 3 - - * * - * * - - -
** 2 - - - - - - - - - -
** 1 - - - - - - - - - -
** 0 - - - - - - - - - -
** 0 1 2 3 4 5 6 7 8 9 x
**
** where asterisks indicate selected elements, and dashes
** indicate unselected elements.
**
** Similarly, create nine, 3-D dataspaces (10 X 10 X 10),
** and select similar irregular hyperslabs in each, three
** with the slab parallel to the xy plane, three parallel
** to the xz plane, and three parallel to the yz plane.
** Further, translate the irregular slab in 2/3rds of the
** cases.
**
** Assuming that z is the fastest changing dimension,
** H5Sselect_shape_same() should return TRUE when
** comparing the 2-D irregular hyperslab selection
** against the irregular hyperslab selections parallel
** to the yz plane in the 3-D space, and FALSE when
** comparing it against the irregular hyperslabs
** selections parallel to the xy or xz planes.
**
****************************************************************/
static void
test_shape_same_dr__smoke_check_3(void)
{
hid_t small_square_sid;
hid_t small_cube_xy_slice_0_sid;
hid_t small_cube_xy_slice_1_sid;
hid_t small_cube_xy_slice_2_sid;
hid_t small_cube_xz_slice_0_sid;
hid_t small_cube_xz_slice_1_sid;
hid_t small_cube_xz_slice_2_sid;
hid_t small_cube_yz_slice_0_sid;
hid_t small_cube_yz_slice_1_sid;
hid_t small_cube_yz_slice_2_sid;
hsize_t small_cube_dims[] = {10, 10, 10};
hsize_t start[3];
hsize_t stride[3];
hsize_t count[3];
hsize_t block[3];
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
MESSAGE(7, (" Smoke check 3: Offset subsets of slices through a cube.\n"));
/* Create the 10 x 10 dataspace */
small_square_sid = H5Screate_simple(2, small_cube_dims, NULL);
CHECK(small_square_sid, FAIL, "H5Screate_simple");
start[0] = 2; /* x */
start[1] = 3; /* y */
stride[0] = 20; /* x */
stride[1] = 20; /* y */
count[0] = 1; /* x */
count[1] = 1; /* y */
block[0] = 2; /* x */
block[1] = 4; /* y */
ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 3; /* x */
start[1] = 6; /* y */
stride[0] = 20; /* x */
stride[1] = 20; /* y */
count[0] = 1; /* x */
count[1] = 1; /* y */
block[0] = 4; /* x */
block[1] = 2; /* y */
ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 5; /* x */
start[1] = 3; /* y */
stride[0] = 20; /* x */
stride[1] = 20; /* y */
count[0] = 1; /* x */
count[1] = 1; /* y */
block[0] = 2; /* x */
block[1] = 2; /* y */
ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */
small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple");
small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple");
small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple");
start[0] = 2; /* x */
start[1] = 3; /* y */
start[2] = 5; /* z */
stride[0] = 20; /* x */
stride[1] = 20; /* y */
stride[2] = 20; /* z */
count[0] = 1; /* x */
count[1] = 1; /* y */
count[2] = 1; /* z */
block[0] = 2; /* x */
block[1] = 4; /* y */
block[2] = 1; /* z */
ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the starting point to the origin */
start[0] -= 1; /* x */
start[1] -= 2; /* y */
ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the irregular selection to the upper right hand corner */
start[0] += 5; /* x */
start[1] += 5; /* y */
ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 3; /* x */
start[1] = 6; /* y */
start[2] = 5; /* z */
stride[0] = 20; /* x */
stride[1] = 20; /* y */
stride[2] = 20; /* z */
count[0] = 1; /* x */
count[1] = 1; /* y */
count[2] = 1; /* z */
block[0] = 4; /* x */
block[1] = 2; /* y */
block[2] = 1; /* z */
ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the starting point to the origin */
start[0] -= 1; /* x */
start[1] -= 2; /* y */
ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the irregular selection to the upper right hand corner */
start[0] += 5; /* x */
start[1] += 5; /* y */
ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 5; /* x */
start[1] = 3; /* y */
start[2] = 5; /* z */
stride[0] = 20; /* x */
stride[1] = 20; /* y */
stride[2] = 20; /* z */
count[0] = 1; /* x */
count[1] = 1; /* y */
count[2] = 1; /* z */
block[0] = 2; /* x */
block[1] = 2; /* y */
block[2] = 1; /* z */
ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the starting point to the origin */
start[0] -= 1; /* x */
start[1] -= 2; /* y */
ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the irregular selection to the upper right hand corner */
start[0] += 5; /* x */
start[1] += 5; /* y */
ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */
small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple");
small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple");
small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple");
start[0] = 2; /* x */
start[1] = 5; /* y */
start[2] = 3; /* z */
stride[0] = 20; /* x */
stride[1] = 20; /* y */
stride[2] = 20; /* z */
count[0] = 1; /* x */
count[1] = 1; /* y */
count[2] = 1; /* z */
block[0] = 2; /* x */
block[1] = 1; /* y */
block[2] = 4; /* z */
ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the starting point to the origin */
start[0] -= 1; /* x */
start[2] -= 2; /* y */
ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the irregular selection to the upper right hand corner */
start[0] += 5; /* x */
start[2] += 5; /* y */
ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 3; /* x */
start[1] = 5; /* y */
start[2] = 6; /* z */
stride[0] = 20; /* x */
stride[1] = 20; /* y */
stride[2] = 20; /* z */
count[0] = 1; /* x */
count[1] = 1; /* y */
count[2] = 1; /* z */
block[0] = 4; /* x */
block[1] = 1; /* y */
block[2] = 2; /* z */
ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the starting point to the origin */
start[0] -= 1; /* x */
start[2] -= 2; /* y */
ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the irregular selection to the upper right hand corner */
start[0] += 5; /* x */
start[2] += 5; /* y */
ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 5; /* x */
start[1] = 5; /* y */
start[2] = 3; /* z */
stride[0] = 20; /* x */
stride[1] = 20; /* y */
stride[2] = 20; /* z */
count[0] = 1; /* x */
count[1] = 1; /* y */
count[2] = 1; /* z */
block[0] = 2; /* x */
block[1] = 1; /* y */
block[2] = 2; /* z */
ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the starting point to the origin */
start[0] -= 1; /* x */
start[2] -= 2; /* y */
ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the irregular selection to the upper right hand corner */
start[0] += 5; /* x */
start[2] += 5; /* y */
ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* QAK: Start here.
*/
/* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */
small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple");
small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple");
small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple");
start[0] = 8; /* x */
start[1] = 2; /* y */
start[2] = 3; /* z */
stride[0] = 20; /* x -- large enough that there will only be one slice */
stride[1] = 20; /* y */
stride[2] = 20; /* z */
count[0] = 1; /* x */
count[1] = 1; /* y */
count[2] = 1; /* z */
block[0] = 1; /* x */
block[1] = 2; /* y */
block[2] = 4; /* z */
ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the starting point to the origin */
start[1] -= 1; /* x */
start[2] -= 2; /* y */
ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the irregular selection to the upper right hand corner */
start[0] += 5; /* x */
start[2] += 5; /* y */
ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 8; /* x */
start[1] = 3; /* y */
start[2] = 6; /* z */
stride[0] = 20; /* x */
stride[1] = 20; /* y */
stride[2] = 20; /* z */
count[0] = 1; /* x */
count[1] = 1; /* y */
count[2] = 1; /* z */
block[0] = 1; /* x */
block[1] = 4; /* y */
block[2] = 2; /* z */
ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the starting point to the origin */
start[1] -= 1; /* x */
start[2] -= 2; /* y */
ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the irregular selection to the upper right hand corner */
start[0] += 5; /* x */
start[2] += 5; /* y */
ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 8; /* x */
start[1] = 5; /* y */
start[2] = 3; /* z */
stride[0] = 20; /* x */
stride[1] = 20; /* y */
stride[2] = 20; /* z */
count[0] = 1; /* x */
count[1] = 1; /* y */
count[2] = 1; /* z */
block[0] = 1; /* x */
block[1] = 2; /* y */
block[2] = 2; /* z */
ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the starting point to the origin */
start[1] -= 1; /* x */
start[2] -= 2; /* y */
ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* move the irregular selection to the upper right hand corner */
start[0] += 5; /* x */
start[2] += 5; /* y */
ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* setup is done -- run the tests: */
/* Compare against "xy" selection */
check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "xz" selection */
check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Compare against "yz" selection */
check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Close dataspaces */
ret = H5Sclose(small_square_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xy_slice_0_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xy_slice_1_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xy_slice_2_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xz_slice_0_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xz_slice_1_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_xz_slice_2_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_yz_slice_0_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_yz_slice_1_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(small_cube_yz_slice_2_sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same_dr__smoke_check_3() */
/****************************************************************
**
** test_shape_same_dr__smoke_check_4():
**
** Create a square, 2-D dataspace (10 X 10), and select
** the entire space.
**
** Similarly, create 3-D and 4-D dataspaces:
**
** (1 X 10 X 10)
** (10 X 1 X 10)
** (10 X 10 X 1)
** (10 X 10 X 10)
**
** (1 X 1 X 10 X 10)
** (1 X 10 X 1 X 10)
** (1 X 10 X 10 X 1)
** (10 X 1 X 1 X 10)
** (10 X 1 X 10 X 1)
** (10 X 10 X 1 X 1)
** (10 X 1 X 10 X 10)
**
** And select these entire spaces as well.
**
** Compare the 2-D space against all the other spaces
** with H5Sselect_shape_same(). The (1 X 10 X 10) &
** (1 X 1 X 10 X 10) should return TRUE. All others
** should return FALSE.
**
****************************************************************/
static void
test_shape_same_dr__smoke_check_4(void)
{
hid_t square_sid;
hid_t three_d_space_0_sid;
hid_t three_d_space_1_sid;
hid_t three_d_space_2_sid;
hid_t three_d_space_3_sid;
hid_t four_d_space_0_sid;
hid_t four_d_space_1_sid;
hid_t four_d_space_2_sid;
hid_t four_d_space_3_sid;
hid_t four_d_space_4_sid;
hid_t four_d_space_5_sid;
hid_t four_d_space_6_sid;
hsize_t dims[] = {10, 10, 10, 10};
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
MESSAGE(7, (" Smoke check 4: Spaces of different dimension but same size.\n"));
/* Create the 10 x 10 dataspace */
square_sid = H5Screate_simple(2, dims, NULL);
CHECK(square_sid, FAIL, "H5Screate_simple");
/* create (1 X 10 X 10) dataspace */
dims[0] = 1;
dims[1] = 10;
dims[2] = 10;
three_d_space_0_sid = H5Screate_simple(3, dims, NULL);
CHECK(three_d_space_0_sid, FAIL, "H5Screate_simple");
/* create (10 X 1 X 10) dataspace */
dims[0] = 10;
dims[1] = 1;
dims[2] = 10;
three_d_space_1_sid = H5Screate_simple(3, dims, NULL);
CHECK(three_d_space_1_sid, FAIL, "H5Screate_simple");
/* create (10 X 10 X 1) dataspace */
dims[0] = 10;
dims[1] = 10;
dims[2] = 1;
three_d_space_2_sid = H5Screate_simple(3, dims, NULL);
CHECK(three_d_space_2_sid, FAIL, "H5Screate_simple");
/* create (10 X 10 X 10) dataspace */
dims[0] = 10;
dims[1] = 10;
dims[2] = 10;
three_d_space_3_sid = H5Screate_simple(3, dims, NULL);
CHECK(three_d_space_3_sid, FAIL, "H5Screate_simple");
/* create (1 X 1 X 10 X 10) dataspace */
dims[0] = 1;
dims[1] = 1;
dims[2] = 10;
dims[3] = 10;
four_d_space_0_sid = H5Screate_simple(4, dims, NULL);
CHECK(four_d_space_0_sid, FAIL, "H5Screate_simple");
/* create (1 X 10 X 1 X 10) dataspace */
dims[0] = 1;
dims[1] = 10;
dims[2] = 1;
dims[3] = 10;
four_d_space_1_sid = H5Screate_simple(4, dims, NULL);
CHECK(four_d_space_1_sid, FAIL, "H5Screate_simple");
/* create (1 X 10 X 10 X 1) dataspace */
dims[0] = 1;
dims[1] = 10;
dims[2] = 10;
dims[3] = 1;
four_d_space_2_sid = H5Screate_simple(4, dims, NULL);
CHECK(four_d_space_2_sid, FAIL, "H5Screate_simple");
/* create (10 X 1 X 1 X 10) dataspace */
dims[0] = 10;
dims[1] = 1;
dims[2] = 1;
dims[3] = 10;
four_d_space_3_sid = H5Screate_simple(4, dims, NULL);
CHECK(four_d_space_3_sid, FAIL, "H5Screate_simple");
/* create (10 X 1 X 10 X 1) dataspace */
dims[0] = 10;
dims[1] = 1;
dims[2] = 10;
dims[3] = 1;
four_d_space_4_sid = H5Screate_simple(4, dims, NULL);
CHECK(four_d_space_4_sid, FAIL, "H5Screate_simple");
/* create (10 X 10 X 1 X 1) dataspace */
dims[0] = 10;
dims[1] = 10;
dims[2] = 1;
dims[3] = 1;
four_d_space_5_sid = H5Screate_simple(4, dims, NULL);
CHECK(four_d_space_5_sid, FAIL, "H5Screate_simple");
/* create (10 X 1 X 10 X 10) dataspace */
dims[0] = 10;
dims[1] = 1;
dims[2] = 10;
dims[3] = 10;
four_d_space_6_sid = H5Screate_simple(4, dims, NULL);
CHECK(four_d_space_6_sid, FAIL, "H5Screate_simple");
/* setup is done -- run the tests: */
check = H5Sselect_shape_same(three_d_space_0_sid, square_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(three_d_space_1_sid, square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(three_d_space_2_sid, square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(three_d_space_3_sid, square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(four_d_space_0_sid, square_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(four_d_space_1_sid, square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(four_d_space_2_sid, square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(four_d_space_3_sid, square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(four_d_space_4_sid, square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(four_d_space_5_sid, square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
check = H5Sselect_shape_same(four_d_space_6_sid, square_sid);
VERIFY(check, FALSE, "H5Sselect_shape_same");
/* Close dataspaces */
ret = H5Sclose(square_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(three_d_space_0_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(three_d_space_1_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(three_d_space_2_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(three_d_space_3_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(four_d_space_0_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(four_d_space_1_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(four_d_space_2_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(four_d_space_3_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(four_d_space_4_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(four_d_space_5_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(four_d_space_6_sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same_dr__smoke_check_4() */
/****************************************************************
**
** test_shape_same_dr__full_space_vs_slice(): Tests selection
** of a full n-cube dataspace vs an n-dimensional slice of
** of an m-cube (m > n) in a call to H5Sselect_shape_same().
** Note that this test does not require the n-cube and the
** n-dimensional slice to have the same rank (although
** H5Sselect_shape_same() should always return FALSE if
** they don't).
**
** Per Quincey's suggestion, only test up to 5 dimensional
** spaces.
**
****************************************************************/
static void
test_shape_same_dr__full_space_vs_slice(int test_num, int small_rank, int large_rank, int offset,
hsize_t edge_size, hbool_t dim_selected[], hbool_t expected_result)
{
char test_desc_0[128];
char test_desc_1[256];
int i;
hid_t n_cube_0_sid; /* the fully selected hyper cube */
hid_t n_cube_1_sid; /* the hyper cube in which a slice is selected */
hsize_t dims[SS_DR_MAX_RANK];
hsize_t start[SS_DR_MAX_RANK];
hsize_t *start_ptr;
hsize_t stride[SS_DR_MAX_RANK];
hsize_t *stride_ptr;
hsize_t count[SS_DR_MAX_RANK];
hsize_t *count_ptr;
hsize_t block[SS_DR_MAX_RANK];
hsize_t *block_ptr;
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
assert(0 < small_rank);
assert(small_rank <= large_rank);
assert(large_rank <= SS_DR_MAX_RANK);
assert(0 <= offset);
assert(offset < large_rank);
assert(edge_size > 0);
assert(edge_size <= 1000);
HDsnprintf(test_desc_0, sizeof(test_desc_0), "\tn-cube slice through m-cube (n <= m) test %d.\n",
test_num);
MESSAGE(7, ("%s", test_desc_0));
/* This statement must be updated if SS_DR_MAX_RANK is changed */
HDsnprintf(test_desc_1, sizeof(test_desc_1),
"\t\tranks: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d.\n", small_rank, large_rank, offset,
(int)dim_selected[0], (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3],
(int)dim_selected[4]);
MESSAGE(7, ("%s", test_desc_1));
/* copy the edge size into the dims array */
for (i = 0; i < SS_DR_MAX_RANK; i++)
dims[i] = edge_size;
/* Create the small n-cube */
n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL);
CHECK(n_cube_0_sid, FAIL, "H5Screate_simple");
/* Create the large n-cube */
n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL);
CHECK(n_cube_1_sid, FAIL, "H5Screate_simple");
/* set up start, stride, count, and block for the hyperslab selection */
for (i = 0; i < SS_DR_MAX_RANK; i++) {
stride[i] = 2 * edge_size; /* a bit silly in this case */
count[i] = 1;
if (dim_selected[i]) {
start[i] = 0;
block[i] = edge_size;
}
else {
start[i] = (hsize_t)offset;
block[i] = 1;
}
}
/* since large rank may be less than SS_DR_MAX_RANK, we may not
* use the entire start, stride, count, and block arrays. This
* is a problem, since it is inconvenient to set up the dim_selected
* array to reflect the large rank, and thus if large_rank <
* SS_DR_MAX_RANK, we need to hide the lower index entries
* from H5Sselect_hyperslab().
*
* Do this by setting up pointers to the first valid entry in start,
* stride, count, and block below, and pass these pointers in
* to H5Sselect_hyperslab() instead of the array base addresses.
*/
i = SS_DR_MAX_RANK - large_rank;
assert(i >= 0);
start_ptr = &(start[i]);
stride_ptr = &(stride[i]);
count_ptr = &(count[i]);
block_ptr = &(block[i]);
/* select the hyperslab */
ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* setup is done -- run the test: */
check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid);
VERIFY(check, expected_result, "H5Sselect_shape_same");
/* Close dataspaces */
ret = H5Sclose(n_cube_0_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(n_cube_1_sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same_dr__full_space_vs_slice() */
/****************************************************************
**
** test_shape_same_dr__run_full_space_vs_slice_tests():
**
** Run the test_shape_same_dr__full_space_vs_slice() test
** over a variety of ranks and offsets.
**
** At present, we test H5Sselect_shape_same() with
** fully selected 1, 2, 3, and 4 cubes as one parameter, and
** 1, 2, 3, and 4 dimensional slices through a n-cube of rank
** no more than 5 (and at least the rank of the slice).
** We stop at rank 5, as Quincey suggested that it would be
** sufficient.
**
** All the n-cubes will have lengths of the same size, so
** H5Sselect_shape_same() should return true iff:
**
** 1) the rank for the fully selected n cube equals the
** number of dimensions selected in the slice through the
** m-cube (m >= n).
**
** 2) The dimensions selected in the slice through the m-cube
** are the dimensions with the most quickly changing
** indices.
**
****************************************************************/
static void
test_shape_same_dr__run_full_space_vs_slice_tests(void)
{
hbool_t dim_selected[5];
hbool_t expected_result;
int i, j;
int v, w, x, y, z;
int test_num = 0;
int small_rank;
int large_rank;
hsize_t edge_size = 10;
for (large_rank = 1; large_rank <= 5; large_rank++) {
for (small_rank = 1; small_rank <= large_rank; small_rank++) {
v = 0;
do {
if (v == 0)
dim_selected[0] = FALSE;
else
dim_selected[0] = TRUE;
w = 0;
do {
if (w == 0)
dim_selected[1] = FALSE;
else
dim_selected[1] = TRUE;
x = 0;
do {
if (x == 0)
dim_selected[2] = FALSE;
else
dim_selected[2] = TRUE;
y = 0;
do {
if (y == 0)
dim_selected[3] = FALSE;
else
dim_selected[3] = TRUE;
z = 0;
do {
if (z == 0)
dim_selected[4] = FALSE;
else
dim_selected[4] = TRUE;
/* compute the expected result: */
i = 0;
j = 4;
expected_result = TRUE;
while ((i < small_rank) && expected_result) {
if (!dim_selected[j])
expected_result = FALSE;
i++;
j--;
}
while ((i < large_rank) && expected_result) {
if (dim_selected[j])
expected_result = FALSE;
i++;
j--;
}
/* everything is set up -- run the tests */
test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank, 0,
edge_size, dim_selected,
expected_result);
test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank,
large_rank / 2, edge_size,
dim_selected, expected_result);
test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank,
large_rank - 1, edge_size,
dim_selected, expected_result);
z++;
} while ((z < 2) && (large_rank >= 1));
y++;
} while ((y < 2) && (large_rank >= 2));
x++;
} while ((x < 2) && (large_rank >= 3));
w++;
} while ((w < 2) && (large_rank >= 4));
v++;
} while ((v < 2) && (large_rank >= 5));
} /* end for */
} /* end for */
} /* test_shape_same_dr__run_full_space_vs_slice_tests() */
/****************************************************************
**
** test_shape_same_dr__checkerboard(): Tests selection of a
** "checker board" subset of a full n-cube dataspace vs
** a "checker board" n-dimensional slice of an m-cube (m > n).
** in a call to H5Sselect_shape_same().
**
** Note that this test does not require the n-cube and the
** n-dimensional slice to have the same rank (although
** H5Sselect_shape_same() should always return FALSE if
** they don't).
**
** Per Quincey's suggestion, only test up to 5 dimensional
** spaces.
**
****************************************************************/
static void
test_shape_same_dr__checkerboard(int test_num, int small_rank, int large_rank, int offset, hsize_t edge_size,
hsize_t checker_size, hbool_t dim_selected[], hbool_t expected_result)
{
char test_desc_0[128];
char test_desc_1[256];
int i;
int dims_selected = 0;
hid_t n_cube_0_sid; /* the checker board selected
* hyper cube
*/
hid_t n_cube_1_sid; /* the hyper cube in which a
* checkerboard slice is selected
*/
hsize_t dims[SS_DR_MAX_RANK];
hsize_t base_start[2];
hsize_t start[SS_DR_MAX_RANK];
hsize_t *start_ptr;
hsize_t base_stride[2];
hsize_t stride[SS_DR_MAX_RANK];
hsize_t *stride_ptr;
hsize_t base_count[2];
hsize_t count[SS_DR_MAX_RANK];
hsize_t *count_ptr;
hsize_t base_block[2];
hsize_t block[SS_DR_MAX_RANK];
hsize_t *block_ptr;
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
assert(0 < small_rank);
assert(small_rank <= large_rank);
assert(large_rank <= SS_DR_MAX_RANK);
assert(0 < checker_size);
assert(checker_size <= edge_size);
assert(edge_size <= 1000);
assert(0 <= offset);
assert(offset < (int)edge_size);
for (i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++)
if (dim_selected[i] == TRUE)
dims_selected++;
assert(dims_selected >= 0);
assert(dims_selected <= large_rank);
HDsnprintf(test_desc_0, sizeof(test_desc_0),
"\tcheckerboard n-cube slice through m-cube (n <= m) test %d.\n", test_num);
MESSAGE(7, ("%s", test_desc_0));
/* This statement must be updated if SS_DR_MAX_RANK is changed */
HDsnprintf(test_desc_1, sizeof(test_desc_1),
"\tranks: %d/%d edge/chkr size: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d:%d.\n",
small_rank, large_rank, (int)edge_size, (int)checker_size, offset, (int)dim_selected[0],
(int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], (int)dim_selected[4],
dims_selected);
MESSAGE(7, ("%s", test_desc_1));
/* copy the edge size into the dims array */
for (i = 0; i < SS_DR_MAX_RANK; i++)
dims[i] = edge_size;
/* Create the small n-cube */
n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL);
CHECK(n_cube_0_sid, FAIL, "H5Screate_simple");
/* Select a "checkerboard" pattern in the small n-cube.
*
* In the 1-D case, the "checkerboard" would look like this:
*
* * * - - * * - - * *
*
* and in the 2-D case, it would look like this:
*
* * * - - * * - - * *
* * * - - * * - - * *
* - - * * - - * * - -
* - - * * - - * * - -
* * * - - * * - - * *
* * * - - * * - - * *
* - - * * - - * * - -
* - - * * - - * * - -
* * * - - * * - - * *
* * * - - * * - - * *
*
* In both cases, asterisks indicate selected elements,
* and dashes indicate unselected elements.
*
* 3-D and 4-D ascii art is somewhat painful, so I'll
* leave those selections to your imagination. :-)
*
* Note, that since the edge_size and checker_size are
* parameters that are passed in, the selection need
* not look exactly like the selection shown above.
* At present, the function allows checker sizes that
* are not even divisors of the edge size -- thus
* something like the following is also possible:
*
* * * * - - - * * * -
* * * * - - - * * * -
* * * * - - - * * * -
* - - - * * * - - - *
* - - - * * * - - - *
* - - - * * * - - - *
* * * * - - - * * * -
* * * * - - - * * * -
* * * * - - - * * * -
* - - - * * * - - - *
*
* As the above pattern can't be selected in one
* call to H5Sselect_hyperslab(), and since the
* values in the start, stride, count, and block
* arrays will be repeated over all entries in
* the selected space case, and over all selected
* dimensions in the selected hyperslab case, we
* compute these values first and store them in
* in the base_start, base_stride, base_count,
* and base_block arrays.
*/
base_start[0] = 0;
base_start[1] = checker_size;
base_stride[0] = 2 * checker_size;
base_stride[1] = 2 * checker_size;
/* Note that the following computation depends on the C99
* requirement that integer division discard any fraction
* (truncation towards zero) to function correctly. As we
* now require C99, this shouldn't be a problem, but noting
* it may save us some pain if we are ever obliged to support
* pre-C99 compilers again.
*/
base_count[0] = edge_size / (checker_size * 2);
if ((edge_size % (checker_size * 2)) > 0)
base_count[0]++;
base_count[1] = (edge_size - checker_size) / (checker_size * 2);
if (((edge_size - checker_size) % (checker_size * 2)) > 0)
base_count[1]++;
base_block[0] = checker_size;
base_block[1] = checker_size;
/* now setup start, stride, count, and block arrays for
* the first call to H5Sselect_hyperslab().
*/
for (i = 0; i < SS_DR_MAX_RANK; i++) {
start[i] = base_start[0];
stride[i] = base_stride[0];
count[i] = base_count[0];
block[i] = base_block[0];
} /* end for */
ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* if small_rank == 1, or if edge_size == checker_size, we
* are done, as either there is no added dimension in which
* to place offset selected "checkers".
*
* Otherwise, set up start, stride, count and block, and
* make the additional selection.
*/
if ((small_rank > 1) && (checker_size < edge_size)) {
for (i = 0; i < SS_DR_MAX_RANK; i++) {
start[i] = base_start[1];
stride[i] = base_stride[1];
count[i] = base_count[1];
block[i] = base_block[1];
} /* end for */
ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end if */
/* Weirdness alert:
*
* Some how, it seems that selections can extend beyond the
* boundaries of the target dataspace -- hence the following
* code to manually clip the selection back to the dataspace
* proper.
*/
for (i = 0; i < SS_DR_MAX_RANK; i++) {
start[i] = 0;
stride[i] = edge_size;
count[i] = 1;
block[i] = edge_size;
} /* end for */
ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create the large n-cube */
n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL);
CHECK(n_cube_1_sid, FAIL, "H5Screate_simple");
/* Now select the checkerboard selection in the (possibly larger) n-cube.
*
* Since we have already calculated the base start, stride, count,
* and block, re-use the values in setting up start, stride, count,
* and block.
*/
for (i = 0; i < SS_DR_MAX_RANK; i++) {
if (dim_selected[i]) {
start[i] = base_start[0];
stride[i] = base_stride[0];
count[i] = base_count[0];
block[i] = base_block[0];
} /* end if */
else {
start[i] = (hsize_t)offset;
stride[i] = (hsize_t)(2 * edge_size);
count[i] = 1;
block[i] = 1;
} /* end else */
} /* end for */
/* Since large rank may be less than SS_DR_MAX_RANK, we may not
* use the entire start, stride, count, and block arrays. This
* is a problem, since it is inconvenient to set up the dim_selected
* array to reflect the large rank, and thus if large_rank <
* SS_DR_MAX_RANK, we need to hide the lower index entries
* from H5Sselect_hyperslab().
*
* Do this by setting up pointers to the first valid entry in start,
* stride, count, and block below, and pass these pointers in
* to H5Sselect_hyperslab() instead of the array base addresses.
*/
i = SS_DR_MAX_RANK - large_rank;
assert(i >= 0);
start_ptr = &(start[i]);
stride_ptr = &(stride[i]);
count_ptr = &(count[i]);
block_ptr = &(block[i]);
/* select the hyperslab */
ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* As before, if the number of dimensions selected is less than or
* equal to 1, or if edge_size == checker_size, we are done, as
* either there is no added dimension in which to place offset selected
* "checkers", or the hyperslab is completely occupied by one
* "checker".
*
* Otherwise, set up start, stride, count and block, and
* make the additional selection.
*/
if ((dims_selected > 1) && (checker_size < edge_size)) {
for (i = 0; i < SS_DR_MAX_RANK; i++) {
if (dim_selected[i]) {
start[i] = base_start[1];
stride[i] = base_stride[1];
count[i] = base_count[1];
block[i] = base_block[1];
} /* end if */
else {
start[i] = (hsize_t)offset;
stride[i] = (hsize_t)(2 * edge_size);
count[i] = 1;
block[i] = 1;
} /* end else */
} /* end for */
ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, start_ptr, stride_ptr, count_ptr, block_ptr);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end if */
/* Weirdness alert:
*
* Again, it seems that selections can extend beyond the
* boundaries of the target dataspace -- hence the following
* code to manually clip the selection back to the dataspace
* proper.
*/
for (i = 0; i < SS_DR_MAX_RANK; i++) {
start[i] = 0;
stride[i] = edge_size;
count[i] = 1;
block[i] = edge_size;
} /* end for */
ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* setup is done -- run the test: */
check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid);
VERIFY(check, expected_result, "H5Sselect_shape_same");
/* Close dataspaces */
ret = H5Sclose(n_cube_0_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(n_cube_1_sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same_dr__checkerboard() */
/****************************************************************
**
** test_shape_same_dr__run_checkerboard_tests():
**
** In this set of tests, we test H5Sselect_shape_same()
** with a "checkerboard" selection of 1, 2, 3, and 4 cubes as
** one parameter, and 1, 2, 3, and 4 dimensional checkerboard
** slices through a n-cube of rank no more than 5 (and at
** least the rank of the slice).
**
** All the n-cubes will have lengths of the same size, so
** H5Sselect_shape_same() should return true iff:
**
** 1) the rank of the n cube equals the number of dimensions
** selected in the checker board slice through the m-cube
** (m >= n).
**
** 2) The dimensions selected in the checkerboard slice
** through the m-cube are the dimensions with the most
** quickly changing indices.
**
****************************************************************/
static void
test_shape_same_dr__run_checkerboard_tests(void)
{
hbool_t dim_selected[5];
hbool_t expected_result;
int i, j;
int v, w, x, y, z;
int test_num = 0;
int small_rank;
int large_rank;
for (large_rank = 1; large_rank <= 5; large_rank++) {
for (small_rank = 1; small_rank <= large_rank; small_rank++) {
v = 0;
do {
if (v == 0)
dim_selected[0] = FALSE;
else
dim_selected[0] = TRUE;
w = 0;
do {
if (w == 0)
dim_selected[1] = FALSE;
else
dim_selected[1] = TRUE;
x = 0;
do {
if (x == 0)
dim_selected[2] = FALSE;
else
dim_selected[2] = TRUE;
y = 0;
do {
if (y == 0)
dim_selected[3] = FALSE;
else
dim_selected[3] = TRUE;
z = 0;
do {
if (z == 0)
dim_selected[4] = FALSE;
else
dim_selected[4] = TRUE;
/* compute the expected result: */
i = 0;
j = 4;
expected_result = TRUE;
while ((i < small_rank) && expected_result) {
if (!dim_selected[j])
expected_result = FALSE;
i++;
j--;
} /* end while */
while ((i < large_rank) && expected_result) {
if (dim_selected[j])
expected_result = FALSE;
i++;
j--;
} /* end while */
/* everything is set up -- run the tests */
/* run test with edge size 16, checker
* size 1, and a variety of offsets
*/
test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
/* offset */ 0,
/* edge_size */ 16,
/* checker_size */ 1, dim_selected,
expected_result);
test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
/* offset */ 5,
/* edge_size */ 16,
/* checker_size */ 1, dim_selected,
expected_result);
test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
/* offset */ 15,
/* edge_size */ 16,
/* checker_size */ 1, dim_selected,
expected_result);
/* run test with edge size 10, checker
* size 2, and a variety of offsets
*/
test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
/* offset */ 0,
/* edge_size */ 10,
/* checker_size */ 2, dim_selected,
expected_result);
test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
/* offset */ 5,
/* edge_size */ 10,
/* checker_size */ 2, dim_selected,
expected_result);
test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
/* offset */ 9,
/* edge_size */ 10,
/* checker_size */ 2, dim_selected,
expected_result);
/* run test with edge size 10, checker
* size 3, and a variety of offsets
*/
test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
/* offset */ 0,
/* edge_size */ 10,
/* checker_size */ 3, dim_selected,
expected_result);
test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
/* offset */ 5,
/* edge_size */ 10,
/* checker_size */ 3, dim_selected,
expected_result);
test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
/* offset */ 9,
/* edge_size */ 10,
/* checker_size */ 3, dim_selected,
expected_result);
/* run test with edge size 8, checker
* size 8, and a variety of offsets
*/
test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
/* offset */ 0,
/* edge_size */ 8,
/* checker_size */ 8, dim_selected,
expected_result);
test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
/* offset */ 4,
/* edge_size */ 8,
/* checker_size */ 8, dim_selected,
expected_result);
test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
/* offset */ 7,
/* edge_size */ 8,
/* checker_size */ 8, dim_selected,
expected_result);
z++;
} while ((z < 2) && (large_rank >= 1));
y++;
} while ((y < 2) && (large_rank >= 2));
x++;
} while ((x < 2) && (large_rank >= 3));
w++;
} while ((w < 2) && (large_rank >= 4));
v++;
} while ((v < 2) && (large_rank >= 5));
} /* end for */
} /* end for */
} /* test_shape_same_dr__run_checkerboard_tests() */
/****************************************************************
**
** test_shape_same_dr__irregular():
**
** Tests selection of an "irregular" subset of a full
** n-cube dataspace vs an identical "irregular" subset
** of an n-dimensional slice of an m-cube (m > n).
** in a call to H5Sselect_shape_same().
**
** Note that this test does not require the n-cube and the
** n-dimensional slice to have the same rank (although
** H5Sselect_shape_same() should always return FALSE if
** they don't).
**
****************************************************************/
static void
test_shape_same_dr__irregular(int test_num, int small_rank, int large_rank, int pattern_offset,
int slice_offset, hbool_t dim_selected[], hbool_t expected_result)
{
char test_desc_0[128];
char test_desc_1[256];
int edge_size = 10;
int i;
int j;
int k;
int dims_selected = 0;
hid_t n_cube_0_sid; /* the hyper cube containing
* an irregular selection
*/
hid_t n_cube_1_sid; /* the hyper cube in which a
* slice contains an irregular
* selection.
*/
hsize_t dims[SS_DR_MAX_RANK];
hsize_t start_0[SS_DR_MAX_RANK] = {2, 2, 2, 2, 5};
hsize_t stride_0[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
hsize_t count_0[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1};
hsize_t block_0[SS_DR_MAX_RANK] = {2, 2, 2, 2, 3};
hsize_t start_1[SS_DR_MAX_RANK] = {2, 2, 2, 5, 2};
hsize_t stride_1[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
hsize_t count_1[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1};
hsize_t block_1[SS_DR_MAX_RANK] = {2, 2, 2, 3, 2};
hsize_t start_2[SS_DR_MAX_RANK] = {2, 2, 5, 2, 2};
hsize_t stride_2[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
hsize_t count_2[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1};
hsize_t block_2[SS_DR_MAX_RANK] = {2, 2, 3, 2, 2};
hsize_t start_3[SS_DR_MAX_RANK] = {2, 5, 2, 2, 2};
hsize_t stride_3[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
hsize_t count_3[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1};
hsize_t block_3[SS_DR_MAX_RANK] = {2, 3, 2, 2, 2};
hsize_t start_4[SS_DR_MAX_RANK] = {5, 2, 2, 2, 2};
hsize_t stride_4[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
hsize_t count_4[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1};
hsize_t block_4[SS_DR_MAX_RANK] = {3, 2, 2, 2, 2};
hsize_t clip_start[SS_DR_MAX_RANK] = {0, 0, 0, 0, 0};
hsize_t clip_stride[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
hsize_t clip_count[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1};
hsize_t clip_block[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
hsize_t *(starts[SS_DR_MAX_RANK]) = {start_0, start_1, start_2, start_3, start_4};
hsize_t *(strides[SS_DR_MAX_RANK]) = {stride_0, stride_1, stride_2, stride_3, stride_4};
hsize_t *(counts[SS_DR_MAX_RANK]) = {count_0, count_1, count_2, count_3, count_4};
hsize_t *(blocks[SS_DR_MAX_RANK]) = {block_0, block_1, block_2, block_3, block_4};
hsize_t start[SS_DR_MAX_RANK];
hsize_t *start_ptr;
hsize_t stride[SS_DR_MAX_RANK];
hsize_t *stride_ptr;
hsize_t count[SS_DR_MAX_RANK];
hsize_t *count_ptr;
hsize_t block[SS_DR_MAX_RANK];
hsize_t *block_ptr;
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
assert(0 < small_rank);
assert(small_rank <= large_rank);
assert(large_rank <= SS_DR_MAX_RANK);
assert(9 <= edge_size);
assert(edge_size <= 1000);
assert(0 <= slice_offset);
assert(slice_offset < edge_size);
assert(-2 <= pattern_offset);
assert(pattern_offset <= 2);
for (i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++)
if (dim_selected[i] == TRUE)
dims_selected++;
assert(dims_selected >= 0);
assert(dims_selected <= large_rank);
HDsnprintf(test_desc_0, sizeof(test_desc_0),
"\tirregular sub set of n-cube slice through m-cube (n <= m) test %d.\n", test_num);
MESSAGE(7, ("%s", test_desc_0));
/* This statement must be updated if SS_DR_MAX_RANK is changed */
HDsnprintf(test_desc_1, sizeof(test_desc_1),
"\tranks: %d/%d edge: %d s/p offset: %d/%d dim_selected: %d/%d/%d/%d/%d:%d.\n", small_rank,
large_rank, edge_size, slice_offset, pattern_offset, (int)dim_selected[0],
(int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], (int)dim_selected[4],
dims_selected);
MESSAGE(7, ("%s", test_desc_1));
/* copy the edge size into the dims array */
for (i = 0; i < SS_DR_MAX_RANK; i++)
dims[i] = (hsize_t)edge_size;
/* Create the small n-cube */
n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL);
CHECK(n_cube_0_sid, FAIL, "H5Screate_simple");
/* Select an "irregular" pattern in the small n-cube. This
* pattern can be though of a set of four 3 x 2 x 2 X 2
* four dimensional prisims, each parallel to one of the
* axies and none of them intersecting with the other.
*
* In the lesser dimensional cases, this 4D pattern is
* projected onto the lower dimensional space.
*
* In the 1-D case, the projection of the pattern looks
* like this:
*
* - - * * - * * * - -
* 0 1 2 3 4 5 6 7 8 9 x
*
* and in the 2-D case, it would look like this:
*
*
* y
* 9 - - - - - - - - - -
* 8 - - - - - - - - - -
* 7 - - * * - - - - - -
* 6 - - * * - - - - - -
* 5 - - * * - - - - - -
* 4 - - - - - - - - - -
* 3 - - * * - * * * - -
* 2 - - * * - * * * - -
* 1 - - - - - - - - - -
* 0 - - - - - - - - - -
* 0 1 2 3 4 5 6 7 8 9 x
*
* In both cases, asterisks indicate selected elements,
* and dashes indicate unselected elements.
*
* Note that is this case, since the edge size is fixed,
* the pattern does not change. However, we do use the
* displacement parameter to allow it to be moved around
* within the n-cube or hyperslab.
*/
/* first, ensure that the small n-cube has no selection */
ret = H5Sselect_none(n_cube_0_sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* now, select the irregular pattern */
for (i = 0; i < SS_DR_MAX_RANK; i++) {
ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, starts[i], strides[i], counts[i], blocks[i]);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end for */
/* finally, clip the selection to ensure that it lies fully
* within the n-cube.
*/
ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, clip_start, clip_stride, clip_count, clip_block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create the large n-cube */
n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL);
CHECK(n_cube_1_sid, FAIL, "H5Screate_simple");
/* Ensure that the large n-cube has no selection */
H5Sselect_none(n_cube_1_sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Since large rank may be less than SS_DR_MAX_RANK, we may not
* use the entire start, stride, count, and block arrays. This
* is a problem, since it is inconvenient to set up the dim_selected
* array to reflect the large rank, and thus if large_rank <
* SS_DR_MAX_RANK, we need to hide the lower index entries
* from H5Sselect_hyperslab().
*
* Do this by setting up pointers to the first valid entry in start,
* stride, count, and block below, and pass these pointers in
* to H5Sselect_hyperslab() instead of the array base addresses.
*/
i = SS_DR_MAX_RANK - large_rank;
assert(i >= 0);
start_ptr = &(start[i]);
stride_ptr = &(stride[i]);
count_ptr = &(count[i]);
block_ptr = &(block[i]);
/* Now select the irregular selection in the (possibly larger) n-cube.
*
* Basic idea is to project the pattern used in the smaller n-cube
* onto the dimensions selected in the larger n-cube, with the displacement
* specified.
*/
for (i = 0; i < SS_DR_MAX_RANK; i++) {
j = 0;
for (k = 0; k < SS_DR_MAX_RANK; k++) {
if (dim_selected[k]) {
start[k] = (starts[i])[j] + (hsize_t)pattern_offset;
stride[k] = (strides[i])[j];
count[k] = (counts[i])[j];
block[k] = (blocks[i])[j];
j++;
} /* end if */
else {
start[k] = (hsize_t)slice_offset;
stride[k] = (hsize_t)(2 * edge_size);
count[k] = 1;
block[k] = 1;
} /* end else */
} /* end for */
/* select the hyperslab */
ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, start_ptr, stride_ptr, count_ptr, block_ptr);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end for */
/* it is possible that the selection extends beyond the dataspace.
* clip the selection to ensure that it doesn't.
*/
ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, clip_start, clip_stride, clip_count, clip_block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* setup is done -- run the test: */
check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid);
VERIFY(check, expected_result, "H5Sselect_shape_same");
/* Close dataspaces */
ret = H5Sclose(n_cube_0_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(n_cube_1_sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same_dr__irregular() */
/****************************************************************
**
** test_shape_same_dr__run_irregular_tests():
**
** In this set of tests, we test H5Sselect_shape_same()
** with an "irregular" subselection of 1, 2, 3, and 4 cubes as
** one parameter, and irregular subselections of 1, 2, 3,
** and 4 dimensional slices through a n-cube of rank no more
** than 5 (and at least the rank of the slice) as the other.
** Note that the "irregular" selection may be offset between
** the n-cube and the slice.
**
** All the irregular selections will be identical (modulo rank)
** so H5Sselect_shape_same() should return true iff:
**
** 1) the rank of the n cube equals the number of dimensions
** selected in the irregular slice through the m-cube
** (m >= n).
**
** 2) The dimensions selected in the irregular slice
** through the m-cube are the dimensions with the most
** quickly changing indices.
**
****************************************************************/
static void
test_shape_same_dr__run_irregular_tests(void)
{
hbool_t dim_selected[5];
hbool_t expected_result;
int i, j;
int v, w, x, y, z;
int test_num = 0;
int small_rank;
int large_rank;
for (large_rank = 1; large_rank <= 5; large_rank++) {
for (small_rank = 1; small_rank <= large_rank; small_rank++) {
v = 0;
do {
if (v == 0)
dim_selected[0] = FALSE;
else
dim_selected[0] = TRUE;
w = 0;
do {
if (w == 0)
dim_selected[1] = FALSE;
else
dim_selected[1] = TRUE;
x = 0;
do {
if (x == 0)
dim_selected[2] = FALSE;
else
dim_selected[2] = TRUE;
y = 0;
do {
if (y == 0)
dim_selected[3] = FALSE;
else
dim_selected[3] = TRUE;
z = 0;
do {
if (z == 0)
dim_selected[4] = FALSE;
else
dim_selected[4] = TRUE;
/* compute the expected result: */
i = 0;
j = 4;
expected_result = TRUE;
while ((i < small_rank) && expected_result) {
if (!dim_selected[j])
expected_result = FALSE;
i++;
j--;
} /* end while */
while ((i < large_rank) && expected_result) {
if (dim_selected[j])
expected_result = FALSE;
i++;
j--;
} /* end while */
/* everything is set up -- run the tests */
test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
/* pattern_offset */ -2,
/* slice_offset */ 0, dim_selected,
expected_result);
test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
/* pattern_offset */ -2,
/* slice_offset */ 4, dim_selected,
expected_result);
test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
/* pattern_offset */ -2,
/* slice_offset */ 9, dim_selected,
expected_result);
test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
/* pattern_offset */ 0,
/* slice_offset */ 0, dim_selected,
expected_result);
test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
/* pattern_offset */ 0,
/* slice_offset */ 6, dim_selected,
expected_result);
test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
/* pattern_offset */ 0,
/* slice_offset */ 9, dim_selected,
expected_result);
test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
/* pattern_offset */ 2,
/* slice_offset */ 0, dim_selected,
expected_result);
test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
/* pattern_offset */ 2,
/* slice_offset */ 5, dim_selected,
expected_result);
test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
/* pattern_offset */ 2,
/* slice_offset */ 9, dim_selected,
expected_result);
z++;
} while ((z < 2) && (large_rank >= 1));
y++;
} while ((y < 2) && (large_rank >= 2));
x++;
} while ((x < 2) && (large_rank >= 3));
w++;
} while ((w < 2) && (large_rank >= 4));
v++;
} while ((v < 2) && (large_rank >= 5));
} /* end for */
} /* end for */
} /* test_shape_same_dr__run_irregular_tests() */
/****************************************************************
**
** test_shape_same_dr(): Tests selections on dataspace with
** different ranks, to verify that "shape same" routine
** is now handling this case correctly.
**
****************************************************************/
static void
test_shape_same_dr(void)
{
/* Output message about test being performed */
MESSAGE(6, ("Testing Same Shape/Different Rank Comparisons\n"));
/* first run some smoke checks */
test_shape_same_dr__smoke_check_1();
test_shape_same_dr__smoke_check_2();
test_shape_same_dr__smoke_check_3();
test_shape_same_dr__smoke_check_4();
/* now run more intensive tests. */
test_shape_same_dr__run_full_space_vs_slice_tests();
test_shape_same_dr__run_checkerboard_tests();
test_shape_same_dr__run_irregular_tests();
} /* test_shape_same_dr() */
/****************************************************************
**
** test_space_rebuild(): Tests selection rebuild routine,
** We will test whether selection in span-tree form can be rebuilt
** into a regular selection.
**
**
****************************************************************/
static void
test_space_rebuild(void)
{
/* regular space IDs in span-tree form */
hid_t sid_reg1, sid_reg2, sid_reg3, sid_reg4, sid_reg5;
/* Original regular Space IDs */
hid_t sid_reg_ori1, sid_reg_ori2, sid_reg_ori3, sid_reg_ori4, sid_reg_ori5;
/* Irregular space IDs */
hid_t sid_irreg1, sid_irreg2, sid_irreg3, sid_irreg4, sid_irreg5;
/* rebuild status state */
#if 0
H5S_diminfo_valid_t rebuild_stat1, rebuild_stat2;
htri_t rebuild_check;
#endif
herr_t ret;
/* dimensions of rank 1 to rank 5 */
hsize_t dims1[] = {SPACERE1_DIM0};
hsize_t dims2[] = {SPACERE2_DIM0, SPACERE2_DIM1};
hsize_t dims3[] = {SPACERE3_DIM0, SPACERE3_DIM1, SPACERE3_DIM2};
hsize_t dims4[] = {SPACERE4_DIM0, SPACERE4_DIM1, SPACERE4_DIM2, SPACERE4_DIM3};
hsize_t dims5[] = {SPACERE5_DIM0, SPACERE5_DIM1, SPACERE5_DIM2, SPACERE5_DIM3, SPACERE5_DIM4};
/* The start of the hyperslab */
hsize_t start1[SPACERE1_RANK], start2[SPACERE2_RANK], start3[SPACERE3_RANK], start4[SPACERE4_RANK],
start5[SPACERE5_RANK];
/* The stride of the hyperslab */
hsize_t stride1[SPACERE1_RANK], stride2[SPACERE2_RANK], stride3[SPACERE3_RANK], stride4[SPACERE4_RANK],
stride5[SPACERE5_RANK];
/* The number of blocks for the hyperslab */
hsize_t count1[SPACERE1_RANK], count2[SPACERE2_RANK], count3[SPACERE3_RANK], count4[SPACERE4_RANK],
count5[SPACERE5_RANK];
/* The size of each block for the hyperslab */
hsize_t block1[SPACERE1_RANK], block2[SPACERE2_RANK], block3[SPACERE3_RANK], block4[SPACERE4_RANK],
block5[SPACERE5_RANK];
/* Declarations for special test of rebuild */
hid_t sid_spec;
/* Output message about test being performed */
MESSAGE(6, ("Testing functionality to rebuild regular hyperslab selection\n"));
MESSAGE(7, ("Testing functionality to rebuild 1-D hyperslab selection\n"));
/* Create 1-D dataspace */
sid_reg1 = H5Screate_simple(SPACERE1_RANK, dims1, NULL);
sid_reg_ori1 = H5Screate_simple(SPACERE1_RANK, dims1, NULL);
/* Build up the original one dimensional regular selection */
start1[0] = 1;
count1[0] = 3;
stride1[0] = 5;
block1[0] = 4;
ret = H5Sselect_hyperslab(sid_reg_ori1, H5S_SELECT_SET, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Build up one dimensional regular selection with H5_SELECT_OR,
inside HDF5, it will be treated as an irregular selection. */
start1[0] = 1;
count1[0] = 2;
stride1[0] = 5;
block1[0] = 4;
ret = H5Sselect_hyperslab(sid_reg1, H5S_SELECT_SET, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start1[0] = 11;
count1[0] = 1;
stride1[0] = 5;
block1[0] = 4;
ret = H5Sselect_hyperslab(sid_reg1, H5S_SELECT_OR, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
ret = H5S__get_rebuild_status_test(sid_reg1, &rebuild_stat1, &rebuild_stat2);
CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
/* In this case, rebuild_stat1 and rebuild_stat2 should be
* H5S_DIMINFO_VALID_YES. */
if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (ret != FAIL) {
/* In this case, rebuild_check should be TRUE. */
rebuild_check = H5Sselect_shape_same(sid_reg1, sid_reg_ori1);
CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
}
#endif
/* For irregular hyperslab */
sid_irreg1 = H5Screate_simple(SPACERE1_RANK, dims1, NULL);
/* Build up one dimensional irregular selection with H5_SELECT_OR */
start1[0] = 1;
count1[0] = 2;
stride1[0] = 5;
block1[0] = 4;
ret = H5Sselect_hyperslab(sid_irreg1, H5S_SELECT_SET, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start1[0] = 12; /* Just one position switch */
count1[0] = 1;
stride1[0] = 5;
block1[0] = 4;
ret = H5Sselect_hyperslab(sid_irreg1, H5S_SELECT_OR, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
ret = H5S__get_rebuild_status_test(sid_irreg1, &rebuild_stat1, &rebuild_stat2);
CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
/* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
* rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
/* No need to do shape comparison */
#endif
MESSAGE(7, ("Testing functionality to rebuild 2-D hyperslab selection\n"));
/* Create 2-D dataspace */
sid_reg2 = H5Screate_simple(SPACERE2_RANK, dims2, NULL);
sid_reg_ori2 = H5Screate_simple(SPACERE2_RANK, dims2, NULL);
/* Build up the original two dimensional regular selection */
start2[0] = 2;
count2[0] = 2;
stride2[0] = 7;
block2[0] = 5;
start2[1] = 1;
count2[1] = 3;
stride2[1] = 3;
block2[1] = 2;
ret = H5Sselect_hyperslab(sid_reg_ori2, H5S_SELECT_SET, start2, stride2, count2, block2);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Build up two dimensional regular selection with H5_SELECT_OR, inside HDF5,
it will be treated as an irregular selection. */
start2[1] = 1;
count2[1] = 2;
stride2[1] = 3;
block2[1] = 2;
ret = H5Sselect_hyperslab(sid_reg2, H5S_SELECT_SET, start2, stride2, count2, block2);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start2[1] = 7; /* 7 = start(1) + count(2) * stride(3) */
count2[1] = 1;
stride2[1] = 3;
block2[1] = 2;
ret = H5Sselect_hyperslab(sid_reg2, H5S_SELECT_OR, start2, stride2, count2, block2);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
ret = H5S__get_rebuild_status_test(sid_reg2, &rebuild_stat1, &rebuild_stat2);
CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
/* In this case, rebuild_stat1 and rebuild_stat2 should be
* H5S_DIMINFO_VALID_YES. */
if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
} /* end if */
if (ret != FAIL) {
/* In this case, rebuild_check should be TRUE. */
rebuild_check = H5Sselect_shape_same(sid_reg2, sid_reg_ori2);
CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
}
#endif
/* 2-D irregular case */
sid_irreg2 = H5Screate_simple(SPACERE2_RANK, dims2, NULL);
/* Build up two dimensional irregular selection with H5_SELECT_OR */
start2[0] = 2;
count2[0] = 2;
stride2[0] = 7;
block2[0] = 5;
start2[1] = 1;
count2[1] = 1;
stride2[1] = 3;
block2[1] = 2;
ret = H5Sselect_hyperslab(sid_irreg2, H5S_SELECT_SET, start2, stride2, count2, block2);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start2[1] = 4;
count2[1] = 2;
stride2[1] = 4;
block2[1] = 3; /* Just add one element for the block */
ret = H5Sselect_hyperslab(sid_irreg2, H5S_SELECT_OR, start2, stride2, count2, block2);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
ret = H5S__get_rebuild_status_test(sid_irreg2, &rebuild_stat1, &rebuild_stat2);
CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
/* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
* rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
/* No need to do shape comparison */
#endif
MESSAGE(7, ("Testing functionality to rebuild 3-D hyperslab selection\n"));
/* Create 3-D dataspace */
sid_reg3 = H5Screate_simple(SPACERE3_RANK, dims3, NULL);
sid_reg_ori3 = H5Screate_simple(SPACERE3_RANK, dims3, NULL);
/* Build up the original three dimensional regular selection */
start3[0] = 2;
count3[0] = 2;
stride3[0] = 3;
block3[0] = 2;
start3[1] = 1;
count3[1] = 3;
stride3[1] = 3;
block3[1] = 2;
start3[2] = 1;
count3[2] = 2;
stride3[2] = 4;
block3[2] = 2;
ret = H5Sselect_hyperslab(sid_reg_ori3, H5S_SELECT_SET, start3, stride3, count3, block3);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Build up three dimensional regular selection with H5_SELECT_OR, inside HDF5,
it will be treated as an irregular selection. */
start3[2] = 1;
count3[2] = 1;
stride3[2] = 4;
block3[2] = 2;
ret = H5Sselect_hyperslab(sid_reg3, H5S_SELECT_SET, start3, stride3, count3, block3);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start3[2] = 5;
count3[2] = 1;
stride3[2] = 4;
block3[2] = 2;
ret = H5Sselect_hyperslab(sid_reg3, H5S_SELECT_OR, start3, stride3, count3, block3);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
ret = H5S__get_rebuild_status_test(sid_reg3, &rebuild_stat1, &rebuild_stat2);
CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
/* In this case, rebuild_stat1 and rebuild_stat2 should be
* H5S_DIMINFO_VALID_YES. */
if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (ret != FAIL) {
/* In this case, rebuild_check should be TRUE. */
rebuild_check = H5Sselect_shape_same(sid_reg3, sid_reg_ori3);
CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
}
#endif
sid_irreg3 = H5Screate_simple(SPACERE3_RANK, dims3, NULL);
/* Build up three dimensional irregular selection with H5_SELECT_OR */
start3[0] = 2;
count3[0] = 2;
stride3[0] = 3;
block3[0] = 2;
start3[1] = 1;
count3[1] = 3;
stride3[1] = 3;
block3[1] = 2;
start3[2] = 1;
count3[2] = 2;
stride3[2] = 2;
block3[2] = 1;
ret = H5Sselect_hyperslab(sid_irreg3, H5S_SELECT_SET, start3, stride3, count3, block3);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start3[2] = 3;
count3[2] = 2;
stride3[2] = 3; /* Just add one element for the stride */
block3[2] = 1;
ret = H5Sselect_hyperslab(sid_irreg3, H5S_SELECT_OR, start3, stride3, count3, block3);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
ret = H5S__get_rebuild_status_test(sid_irreg3, &rebuild_stat1, &rebuild_stat2);
CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
/* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
* rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
/* No need to do shape comparison */
#endif
MESSAGE(7, ("Testing functionality to rebuild 4-D hyperslab selection\n"));
/* Create 4-D dataspace */
sid_reg4 = H5Screate_simple(SPACERE4_RANK, dims4, NULL);
sid_reg_ori4 = H5Screate_simple(SPACERE4_RANK, dims4, NULL);
/* Build up the original four dimensional regular selection */
start4[0] = 2;
count4[0] = 2;
stride4[0] = 3;
block4[0] = 2;
start4[1] = 1;
count4[1] = 3;
stride4[1] = 3;
block4[1] = 2;
start4[2] = 1;
count4[2] = 2;
stride4[2] = 4;
block4[2] = 2;
start4[3] = 1;
count4[3] = 2;
stride4[3] = 4;
block4[3] = 2;
ret = H5Sselect_hyperslab(sid_reg_ori4, H5S_SELECT_SET, start4, stride4, count4, block4);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Build up four dimensional regular selection with H5_SELECT_OR, inside HDF5,
it will be treated as an irregular selection. */
start4[3] = 1;
count4[3] = 1;
stride4[3] = 4;
block4[3] = 2;
ret = H5Sselect_hyperslab(sid_reg4, H5S_SELECT_SET, start4, stride4, count4, block4);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start4[3] = 5;
count4[3] = 1;
stride4[3] = 4;
block4[3] = 2;
ret = H5Sselect_hyperslab(sid_reg4, H5S_SELECT_OR, start4, stride4, count4, block4);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
ret = H5S__get_rebuild_status_test(sid_reg4, &rebuild_stat1, &rebuild_stat2);
CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
/* In this case, rebuild_stat1 and rebuild_stat2 should be
* H5S_DIMINFO_VALID_YES. */
if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (ret != FAIL) {
/* In this case, rebuild_check should be TRUE. */
rebuild_check = H5Sselect_shape_same(sid_reg4, sid_reg_ori4);
CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
}
#endif
/* Testing irregular selection */
sid_irreg4 = H5Screate_simple(SPACERE4_RANK, dims4, NULL);
/* Build up four dimensional irregular selection with H5_SELECT_OR */
start4[0] = 2;
count4[0] = 2;
stride4[0] = 3;
block4[0] = 2;
start4[1] = 1;
count4[1] = 3;
stride4[1] = 3;
block4[1] = 2;
start4[2] = 1;
count4[2] = 1;
stride4[2] = 4;
block4[2] = 2;
start4[3] = 1;
count4[3] = 2;
stride4[3] = 4;
block4[3] = 2; /* sub-block is one element difference */
ret = H5Sselect_hyperslab(sid_irreg4, H5S_SELECT_SET, start4, stride4, count4, block4);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start4[2] = 5;
count4[2] = 1;
stride4[2] = 4;
block4[2] = 2;
start4[3] = 1;
count4[3] = 2;
stride4[3] = 4;
block4[3] = 3; /* sub-block is one element difference */
ret = H5Sselect_hyperslab(sid_irreg4, H5S_SELECT_OR, start4, stride4, count4, block4);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
ret = H5S__get_rebuild_status_test(sid_irreg4, &rebuild_stat1, &rebuild_stat2);
CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
/* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
* rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
/* No need to do shape comparison */
#endif
MESSAGE(7, ("Testing functionality to rebuild 5-D hyperslab selection\n"));
/* Create 5-D dataspace */
sid_reg5 = H5Screate_simple(SPACERE5_RANK, dims5, NULL);
sid_reg_ori5 = H5Screate_simple(SPACERE5_RANK, dims5, NULL);
/* Build up the original five dimensional regular selection */
start5[0] = 2;
count5[0] = 2;
stride5[0] = 3;
block5[0] = 2;
start5[1] = 1;
count5[1] = 3;
stride5[1] = 3;
block5[1] = 2;
start5[2] = 1;
count5[2] = 2;
stride5[2] = 4;
block5[2] = 2;
start5[3] = 1;
count5[3] = 2;
stride5[3] = 4;
block5[3] = 2;
start5[4] = 1;
count5[4] = 2;
stride5[4] = 4;
block5[4] = 2;
ret = H5Sselect_hyperslab(sid_reg_ori5, H5S_SELECT_SET, start5, stride5, count5, block5);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Build up five dimensional regular selection with H5_SELECT_OR, inside HDF5,
it will be treated as an irregular selection. */
start5[4] = 1;
count5[4] = 1;
stride5[4] = 4;
block5[4] = 2;
ret = H5Sselect_hyperslab(sid_reg5, H5S_SELECT_SET, start5, stride5, count5, block5);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start5[4] = 5;
count5[4] = 1;
stride5[4] = 4;
block5[4] = 2;
ret = H5Sselect_hyperslab(sid_reg5, H5S_SELECT_OR, start5, stride5, count5, block5);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
ret = H5S__get_rebuild_status_test(sid_reg5, &rebuild_stat1, &rebuild_stat2);
CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
/* In this case, rebuild_stat1 and rebuild_stat2 should be
* H5S_DIMINFO_VALID_YES. */
if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (ret != FAIL) {
/* In this case, rebuild_check should be TRUE. */
rebuild_check = H5Sselect_shape_same(sid_reg5, sid_reg_ori5);
CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
}
#endif
sid_irreg5 = H5Screate_simple(SPACERE5_RANK, dims5, NULL);
/* Build up five dimensional irregular selection with H5_SELECT_OR */
start5[0] = 2;
count5[0] = 2;
stride5[0] = 3;
block5[0] = 2;
start5[1] = 1;
count5[1] = 3;
stride5[1] = 3;
block5[1] = 2;
start5[2] = 1;
count5[2] = 2;
stride5[2] = 4;
block5[2] = 2;
start5[3] = 1;
count5[3] = 1;
stride5[3] = 4;
block5[3] = 2;
start5[4] = 2; /* One element difference */
count5[4] = 1;
stride5[4] = 4;
block5[4] = 2;
ret = H5Sselect_hyperslab(sid_irreg5, H5S_SELECT_SET, start5, stride5, count5, block5);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start5[3] = 5;
count5[3] = 1;
stride5[3] = 4;
block5[3] = 2;
start5[4] = 1; /* One element difference */
count5[4] = 2;
stride5[4] = 4;
block5[4] = 2;
ret = H5Sselect_hyperslab(sid_irreg5, H5S_SELECT_OR, start5, stride5, count5, block5);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
ret = H5S__get_rebuild_status_test(sid_irreg5, &rebuild_stat1, &rebuild_stat2);
CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
/* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
* rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
/* No need to do shape comparison */
#endif
/* We use 5-D to test a special case with
rebuilding routine TRUE, FALSE and TRUE */
sid_spec = H5Screate_simple(SPACERE5_RANK, dims5, NULL);
/* Build up the original five dimensional regular selection */
start5[0] = 2;
count5[0] = 2;
stride5[0] = 3;
block5[0] = 2;
start5[1] = 1;
count5[1] = 3;
stride5[1] = 3;
block5[1] = 2;
start5[2] = 1;
count5[2] = 2;
stride5[2] = 4;
block5[2] = 2;
start5[3] = 1;
count5[3] = 2;
stride5[3] = 4;
block5[3] = 2;
start5[4] = 1;
count5[4] = 1;
stride5[4] = 4;
block5[4] = 2;
ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_SET, start5, stride5, count5, block5);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2);
CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
/* In this case, rebuild_stat1 and rebuild_stat2 should both be
* H5S_DIMINFO_VALID_YES. */
if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
/* No need to do shape comparison */
#endif
/* Adding some selections to make it real irregular */
start5[3] = 1;
count5[3] = 1;
stride5[3] = 4;
block5[3] = 2;
start5[4] = 5;
count5[4] = 1;
stride5[4] = 4;
block5[4] = 2;
ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_OR, start5, stride5, count5, block5);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2);
CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
/* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
* rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
/* No need to do shape comparison */
#endif
/* Add more selections to make it regular again */
start5[3] = 5;
count5[3] = 1;
stride5[3] = 4;
block5[3] = 2;
start5[4] = 5;
count5[4] = 1;
stride5[4] = 4;
block5[4] = 2;
ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_OR, start5, stride5, count5, block5);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2);
CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
/* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
* rebuild_stat2 should be H5S_DIMINFO_VALID_YES. */
if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
}
/* No need to do shape comparison */
#endif
H5Sclose(sid_reg1);
CHECK(ret, FAIL, "H5Sclose");
H5Sclose(sid_irreg1);
CHECK(ret, FAIL, "H5Sclose");
H5Sclose(sid_reg2);
CHECK(ret, FAIL, "H5Sclose");
H5Sclose(sid_irreg2);
CHECK(ret, FAIL, "H5Sclose");
H5Sclose(sid_reg3);
CHECK(ret, FAIL, "H5Sclose");
H5Sclose(sid_irreg3);
CHECK(ret, FAIL, "H5Sclose");
H5Sclose(sid_reg4);
CHECK(ret, FAIL, "H5Sclose");
H5Sclose(sid_irreg4);
CHECK(ret, FAIL, "H5Sclose");
H5Sclose(sid_reg5);
CHECK(ret, FAIL, "H5Sclose");
H5Sclose(sid_irreg5);
CHECK(ret, FAIL, "H5Sclose");
H5Sclose(sid_spec);
CHECK(ret, FAIL, "H5Sclose");
}
/****************************************************************
**
** test_space_update_diminfo(): Tests selection diminfo update
** routine. We will test whether regular selections can be
** quickly updated when the selection is modified.
**
**
****************************************************************/
static void
test_space_update_diminfo(void)
{
hid_t space_id; /* Dataspace id */
#if 0
H5S_diminfo_valid_t diminfo_valid; /* Diminfo status */
H5S_diminfo_valid_t rebuild_status; /* Diminfo status after rebuid */
#endif
H5S_sel_type sel_type; /* Selection type */
herr_t ret; /* Return value */
/* dimensions of rank 1 to rank 5 */
hsize_t dims1[] = {SPACEUD1_DIM0};
hsize_t dims3[] = {SPACEUD3_DIM0, SPACEUD3_DIM1, SPACEUD3_DIM2};
/* The start of the hyperslab */
hsize_t start1[1], start3[3];
/* The stride of the hyperslab */
hsize_t stride1[1], stride3[3];
/* The number of blocks for the hyperslab */
hsize_t count1[1], count3[3];
/* The size of each block for the hyperslab */
hsize_t block1[1], block3[3];
/* Output message about test being performed */
MESSAGE(6, ("Testing functionality to update hyperslab dimension info\n"));
MESSAGE(7, ("Testing functionality to update 1-D hyperslab dimension info\n"));
/*
* Test adding regularly spaced distinct blocks
*/
/* Create 1-D dataspace */
space_id = H5Screate_simple(1, dims1, NULL);
/* Create single block */
start1[0] = 3;
count1[0] = 1;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add block after first, with OR */
start1[0] = 6;
count1[0] = 1;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add block before first, this time with XOR */
start1[0] = 0;
count1[0] = 1;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add two blocks after current block */
start1[0] = 9;
stride1[0] = 3;
count1[0] = 2;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add two blocks overlapping current block, with OR */
start1[0] = 9;
stride1[0] = 3;
count1[0] = 2;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add two blocks partially overlapping current block, with OR */
start1[0] = 12;
stride1[0] = 3;
count1[0] = 2;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add two blocks partially overlapping current block, with XOR */
start1[0] = 15;
stride1[0] = 3;
count1[0] = 2;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be NO, after rebuild it should be IMPOSSIBLE */
ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
if (rebuild_status != H5S_DIMINFO_VALID_IMPOSSIBLE) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
} /* end if */
#endif
/* Fill in missing block */
start1[0] = 15;
count1[0] = 1;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be NO, after rebuild it should be YES */
ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
if (rebuild_status != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
} /* end if */
#endif
/*
* Test adding contiguous blocks
*/
/* Create single block */
start1[0] = 3;
count1[0] = 1;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add block immediately after first, with OR */
start1[0] = 5;
count1[0] = 1;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add block immediately before first, with XOR */
start1[0] = 1;
count1[0] = 1;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add differently size block immediately after current, with OR */
start1[0] = 7;
count1[0] = 1;
block1[0] = 7;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/*
* Test adding overlapping blocks
*/
/* Create single block */
start1[0] = 3;
count1[0] = 1;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add block completely overlapping first, with OR */
start1[0] = 3;
count1[0] = 1;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add block partially overlapping first, with OR */
start1[0] = 4;
count1[0] = 1;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add block completely enclosing current, with OR */
start1[0] = 2;
count1[0] = 1;
block1[0] = 5;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add block completely enclosed by current, with OR */
start1[0] = 3;
count1[0] = 1;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add equally sized block partially overlapping current, with XOR */
start1[0] = 3;
count1[0] = 1;
block1[0] = 5;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Fill in hole in block */
start1[0] = 3;
count1[0] = 1;
block1[0] = 4;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be NO, after rebuild it should be YES */
ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
if (rebuild_status != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
} /* end if */
#endif
/* Add differently sized block partially overlapping current, with XOR */
start1[0] = 4;
count1[0] = 1;
block1[0] = 5;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be NO */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Fill in hole in block */
start1[0] = 4;
count1[0] = 1;
block1[0] = 4;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be NO, after rebuild it should be YES */
ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status);
CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
if (rebuild_status != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_rebuild");
} /* end if */
#endif
/* Add block completely overlapping current, with XOR */
start1[0] = 2;
count1[0] = 1;
block1[0] = 7;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
sel_type = H5Sget_select_type(space_id);
VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");
/*
* Test various conditions that break the fast algorithm
*/
/* Create multiple blocks */
start1[0] = 3;
stride1[0] = 3;
count1[0] = 2;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create single block with start out of phase */
start1[0] = 8;
count1[0] = 1;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be NO */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create multiple blocks */
start1[0] = 3;
stride1[0] = 3;
count1[0] = 2;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create multiple blocks with start out of phase */
start1[0] = 8;
stride1[0] = 3;
count1[0] = 2;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be NO */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create multiple blocks */
start1[0] = 3;
stride1[0] = 3;
count1[0] = 2;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create multiple blocks with wrong stride */
start1[0] = 9;
stride1[0] = 4;
count1[0] = 2;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be NO */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create single block */
start1[0] = 3;
count1[0] = 1;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create single block with wrong size */
start1[0] = 6;
count1[0] = 1;
block1[0] = 1;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be NO */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create single block */
start1[0] = 3;
count1[0] = 1;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create multiple blocks with wrong size */
start1[0] = 6;
stride1[0] = 3;
count1[0] = 2;
block1[0] = 1;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be NO */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create multiple blocks */
start1[0] = 3;
stride1[0] = 3;
count1[0] = 2;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create single block with wrong size */
start1[0] = 9;
count1[0] = 1;
block1[0] = 1;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be NO */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create multiple blocks */
start1[0] = 3;
stride1[0] = 3;
count1[0] = 2;
block1[0] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create multiple blocks with wrong size */
start1[0] = 9;
stride1[0] = 3;
count1[0] = 2;
block1[0] = 1;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be NO */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
ret = H5Sclose(space_id);
CHECK(ret, FAIL, "H5Sclose");
MESSAGE(7, ("Testing functionality to update 3-D hyperslab dimension info\n"));
/* Create 3-D dataspace */
space_id = H5Screate_simple(3, dims3, NULL);
/* Create multiple blocks */
start3[0] = 0;
start3[1] = 1;
start3[2] = 2;
stride3[0] = 2;
stride3[1] = 3;
stride3[2] = 4;
count3[0] = 4;
count3[1] = 3;
count3[2] = 2;
block3[0] = 1;
block3[1] = 2;
block3[2] = 3;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add blocks with same values in all dimensions */
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add blocks with same values in two dimensions */
start3[0] = 8;
stride3[0] = 1;
count3[0] = 1;
block3[0] = 1;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create multiple blocks */
start3[0] = 0;
start3[1] = 1;
start3[2] = 2;
stride3[0] = 2;
stride3[1] = 3;
stride3[2] = 4;
count3[0] = 4;
count3[1] = 3;
count3[2] = 2;
block3[0] = 1;
block3[1] = 2;
block3[2] = 3;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add blocks with same values in one dimension */
start3[0] = 8;
start3[1] = 10;
stride3[0] = 1;
stride3[1] = 1;
count3[0] = 1;
count3[1] = 1;
block3[0] = 1;
block3[1] = 2;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be NO */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Create multiple blocks */
start3[0] = 0;
start3[1] = 1;
start3[2] = 2;
stride3[0] = 2;
stride3[1] = 3;
stride3[2] = 4;
count3[0] = 4;
count3[1] = 3;
count3[2] = 2;
block3[0] = 1;
block3[1] = 2;
block3[2] = 3;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be YES */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
/* Add blocks with same values in no dimensions */
start3[0] = 8;
start3[1] = 10;
start3[2] = 10;
stride3[0] = 1;
stride3[1] = 1;
stride3[2] = 1;
count3[0] = 1;
count3[1] = 1;
count3[2] = 1;
block3[0] = 1;
block3[1] = 2;
block3[2] = 3;
ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
#if 0
/* diminfo_valid should be NO */
ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
ret = FAIL;
CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
} /* end if */
#endif
ret = H5Sclose(space_id);
CHECK(ret, FAIL, "H5Sclose");
} /* end test_space_update_diminfo() */
/****************************************************************
**
** test_select_hyper_chunk_offset(): Tests selections on dataspace,
** verify that offsets for hyperslab selections are working in
** chunked datasets.
**
****************************************************************/
#if 0
static void
test_select_hyper_chunk_offset(void)
{
hid_t fid; /* File ID */
hid_t sid; /* Dataspace ID */
hid_t msid; /* Memory dataspace ID */
hid_t did; /* Dataset ID */
const hsize_t mem_dims[1] = {SPACE10_DIM1}; /* Dataspace dimensions for memory */
const hsize_t dims[1] = {0}; /* Dataspace initial dimensions */
const hsize_t maxdims[1] = {H5S_UNLIMITED}; /* Dataspace mam dims */
int *wbuf; /* Buffer for writing data */
int *rbuf; /* Buffer for reading data */
hid_t dcpl; /* Dataset creation property list ID */
hsize_t chunks[1] = {SPACE10_CHUNK_SIZE}; /* Chunk size */
hsize_t start[1] = {0}; /* The start of the hyperslab */
hsize_t count[1] = {SPACE10_CHUNK_SIZE}; /* The size of the hyperslab */
int i, j; /* Local index */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(6, ("Testing hyperslab selections using offsets in chunked datasets\n"));
/* Allocate buffers */
wbuf = (int *)malloc(sizeof(int) * SPACE10_DIM1);
CHECK_PTR(wbuf, "malloc");
rbuf = (int *)calloc(sizeof(int), SPACE10_DIM1);
CHECK_PTR(rbuf, "calloc");
/* Initialize the write buffer */
for (i = 0; i < SPACE10_DIM1; i++)
wbuf[i] = i;
/* Create file */
fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid, FAIL, "H5Fcreate");
/* Create a dataset creation property list */
dcpl = H5Pcreate(H5P_DATASET_CREATE);
CHECK(dcpl, FAIL, "H5Pcreate");
/* Set to chunked storage layout */
ret = H5Pset_layout(dcpl, H5D_CHUNKED);
CHECK(ret, FAIL, "H5Pset_layout");
/* Set the chunk size */
ret = H5Pset_chunk(dcpl, 1, chunks);
CHECK(ret, FAIL, "H5Pset_chunk");
/* Create dataspace for memory */
msid = H5Screate_simple(1, mem_dims, NULL);
CHECK(msid, FAIL, "H5Screate_simple");
/* Select the correct chunk in the memory dataspace */
ret = H5Sselect_hyperslab(msid, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for dataset */
sid = H5Screate_simple(1, dims, maxdims);
CHECK(sid, FAIL, "H5Screate_simple");
/* Create the dataset */
did = H5Dcreate2(fid, "fooData", H5T_NATIVE_INT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT);
CHECK(did, FAIL, "H5Dcreate2");
/* Close the dataspace */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
/* Close the dataset creation property list */
ret = H5Pclose(dcpl);
CHECK(ret, FAIL, "H5Pclose");
/* Loop over writing out each chunk */
for (i = SPACE10_CHUNK_SIZE; i <= SPACE10_DIM1; i += SPACE10_CHUNK_SIZE) {
hssize_t offset[1]; /* Offset of selection */
hid_t fsid; /* File dataspace ID */
hsize_t size[1]; /* The size to extend the dataset to */
/* Extend the dataset */
size[0] = (hsize_t)i; /* The size to extend the dataset to */
ret = H5Dset_extent(did, size);
CHECK(ret, FAIL, "H5Dset_extent");
/* Get the (extended) dataspace from the dataset */
fsid = H5Dget_space(did);
CHECK(fsid, FAIL, "H5Dget_space");
/* Select the correct chunk in the dataset */
ret = H5Sselect_hyperslab(fsid, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Set the selection offset for the file dataspace */
offset[0] = i - SPACE10_CHUNK_SIZE;
ret = H5Soffset_simple(fsid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Set the selection offset for the memory dataspace */
offset[0] = SPACE10_DIM1 - i;
ret = H5Soffset_simple(msid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Write the data to the chunk */
ret = H5Dwrite(did, H5T_NATIVE_INT, msid, fsid, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close the file dataspace copy */
ret = H5Sclose(fsid);
CHECK(ret, FAIL, "H5Sclose");
}
/* Read the data back in */
ret = H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Verify the information read in */
for (i = 0; i < SPACE10_DIM1; i += SPACE10_CHUNK_SIZE)
for (j = 0; j < SPACE10_CHUNK_SIZE; j++)
if (wbuf[i + j] != rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j])
TestErrPrintf("Line: %d - Error! i=%d, j=%d, rbuf=%d, wbuf=%d\n", __LINE__, i, j,
rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j], wbuf[i + j]);
/* Check with 'OR'ed set of hyperslab selections, which makes certain the
* hyperslab spanlist code gets tested. -QAK
*/
/* Re-initialize the write buffer */
for (i = 0; i < SPACE10_DIM1; i++)
wbuf[i] = i * 2;
/* Change the selected the region in the memory dataspace */
start[0] = 0;
count[0] = SPACE10_CHUNK_SIZE / 3;
ret = H5Sselect_hyperslab(msid, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = (2 * SPACE10_CHUNK_SIZE) / 3;
ret = H5Sselect_hyperslab(msid, H5S_SELECT_OR, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Loop over writing out each chunk */
for (i = SPACE10_CHUNK_SIZE; i <= SPACE10_DIM1; i += SPACE10_CHUNK_SIZE) {
hssize_t offset[1]; /* Offset of selection */
hid_t fsid; /* File dataspace ID */
hsize_t size[1]; /* The size to extend the dataset to */
/* Extend the dataset */
size[0] = (hsize_t)i; /* The size to extend the dataset to */
ret = H5Dset_extent(did, size);
CHECK(ret, FAIL, "H5Dset_extent");
/* Get the (extended) dataspace from the dataset */
fsid = H5Dget_space(did);
CHECK(fsid, FAIL, "H5Dget_space");
/* Select the correct region in the dataset */
start[0] = 0;
ret = H5Sselect_hyperslab(fsid, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = (2 * SPACE10_CHUNK_SIZE) / 3;
ret = H5Sselect_hyperslab(fsid, H5S_SELECT_OR, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Set the selection offset for the file dataspace */
offset[0] = i - SPACE10_CHUNK_SIZE;
ret = H5Soffset_simple(fsid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Set the selection offset for the memory dataspace */
offset[0] = SPACE10_DIM1 - i;
ret = H5Soffset_simple(msid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Write the data to the chunk */
ret = H5Dwrite(did, H5T_NATIVE_INT, msid, fsid, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Close the file dataspace copy */
ret = H5Sclose(fsid);
CHECK(ret, FAIL, "H5Sclose");
}
/* Read the data back in */
ret = H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Verify the information read in */
for (i = 0; i < SPACE10_DIM1; i += SPACE10_CHUNK_SIZE)
for (j = 0; j < SPACE10_CHUNK_SIZE; j++)
/* We're not writing out the "middle" of each chunk, so don't check that */
if (j < (SPACE10_CHUNK_SIZE / 3) || j >= ((2 * SPACE10_CHUNK_SIZE) / 3))
if (wbuf[i + j] != rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j])
TestErrPrintf("Line: %d - Error! i=%d, j=%d, rbuf=%d, wbuf=%d\n", __LINE__, i, j,
rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j], wbuf[i + j]);
/* Close the memory dataspace */
ret = H5Sclose(msid);
CHECK(ret, FAIL, "H5Sclose");
/* Close the dataset */
ret = H5Dclose(did);
CHECK(ret, FAIL, "H5Dclose");
/* Close the file */
ret = H5Fclose(fid);
CHECK(ret, FAIL, "H5Fclose");
/* Free the buffers */
free(wbuf);
free(rbuf);
} /* test_select_hyper_chunk_offset() */
#endif
/****************************************************************
**
** test_select_hyper_chunk_offset2(): Tests selections on dataspace,
** another test to verify that offsets for hyperslab selections are
** working in chunked datasets.
**
****************************************************************/
#if 0
static void
test_select_hyper_chunk_offset2(void)
{
hid_t file, dataset; /* handles */
hid_t dataspace;
hid_t memspace;
hid_t dcpl; /* Dataset creation property list */
herr_t status;
unsigned data_out[SPACE12_DIM0]; /* output buffer */
unsigned data_in[SPACE12_CHUNK_DIM0]; /* input buffer */
hsize_t dims[SPACE12_RANK] = {SPACE12_DIM0}; /* Dimension size */
hsize_t chunk_dims[SPACE12_RANK] = {SPACE12_CHUNK_DIM0}; /* Chunk size */
hsize_t start[SPACE12_RANK]; /* Start of hyperslab */
hsize_t count[SPACE12_RANK]; /* Size of hyperslab */
hssize_t offset[SPACE12_RANK]; /* hyperslab offset in the file */
unsigned u, v; /* Local index variables */
/* Output message about test being performed */
MESSAGE(6, ("Testing more hyperslab selections using offsets in chunked datasets\n"));
/* Initialize data to write out */
for (u = 0; u < SPACE12_DIM0; u++)
data_out[u] = u;
/* Create the file */
file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(file, FAIL, "H5Fcreate");
/* Create dataspace */
dataspace = H5Screate_simple(SPACE12_RANK, dims, NULL);
CHECK(dataspace, FAIL, "H5Screate_simple");
/* Create dataset creation property list */
dcpl = H5Pcreate(H5P_DATASET_CREATE);
CHECK(dcpl, FAIL, "H5Pcreate");
/* Set chunk sizes */
status = H5Pset_chunk(dcpl, SPACE12_RANK, chunk_dims);
CHECK(status, FAIL, "H5Pset_chunk");
/* Create dataset */
dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UINT, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Close DCPL */
status = H5Pclose(dcpl);
CHECK(status, FAIL, "H5Pclose");
/* Write out entire dataset */
status = H5Dwrite(dataset, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_out);
CHECK(status, FAIL, "H5Dclose");
/* Create memory dataspace (same size as a chunk) */
memspace = H5Screate_simple(SPACE12_RANK, chunk_dims, NULL);
CHECK(dataspace, FAIL, "H5Screate_simple");
/*
* Define hyperslab in the file dataspace.
*/
start[0] = 0;
count[0] = SPACE12_CHUNK_DIM0;
status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(status, FAIL, "H5Sselect_hyperslab");
/* Loop through retrieving data from file, checking it against data written */
for (u = 0; u < SPACE12_DIM0; u += SPACE12_CHUNK_DIM0) {
/* Set the offset of the file selection */
offset[0] = u;
status = H5Soffset_simple(dataspace, offset);
CHECK(status, FAIL, "H5Soffset_simple");
/* Read in buffer of data */
status = H5Dread(dataset, H5T_NATIVE_UINT, memspace, dataspace, H5P_DEFAULT, data_in);
CHECK(status, FAIL, "H5Dread");
/* Check data read in */
for (v = 0; v < SPACE12_CHUNK_DIM0; v++)
if (data_out[u + v] != data_in[v])
TestErrPrintf("Error! data_out[%u]=%u, data_in[%u]=%u\n", (unsigned)(u + v), data_out[u + v],
v, data_in[v]);
} /* end for */
status = H5Dclose(dataset);
CHECK(status, FAIL, "H5Dclose");
status = H5Sclose(dataspace);
CHECK(status, FAIL, "H5Sclose");
status = H5Sclose(memspace);
CHECK(status, FAIL, "H5Sclose");
status = H5Fclose(file);
CHECK(status, FAIL, "H5Fclose");
} /* test_select_hyper_chunk_offset2() */
#endif
/****************************************************************
**
** test_select_bounds(): Tests selection bounds on dataspaces,
** both with and without offsets.
**
****************************************************************/
static void
test_select_bounds(void)
{
hid_t sid; /* Dataspace ID */
const hsize_t dims[SPACE11_RANK] = {SPACE11_DIM1, SPACE11_DIM2}; /* Dataspace dimensions */
hsize_t coord[SPACE11_NPOINTS][SPACE11_RANK]; /* Coordinates for point selection */
hsize_t start[SPACE11_RANK]; /* The start of the hyperslab */
hsize_t stride[SPACE11_RANK]; /* The stride between block starts for the hyperslab */
hsize_t count[SPACE11_RANK]; /* The number of blocks for the hyperslab */
hsize_t block[SPACE11_RANK]; /* The size of each block for the hyperslab */
hssize_t offset[SPACE11_RANK]; /* Offset amount for selection */
hsize_t low_bounds[SPACE11_RANK]; /* The low bounds for the selection */
hsize_t high_bounds[SPACE11_RANK]; /* The high bounds for the selection */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(6, ("Testing selection bounds\n"));
/* Create dataspace */
sid = H5Screate_simple(SPACE11_RANK, dims, NULL);
CHECK(sid, FAIL, "H5Screate_simple");
/* Get bounds for 'all' selection */
ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0], 0, "H5Sget_select_bounds");
VERIFY(low_bounds[1], 0, "H5Sget_select_bounds");
VERIFY(high_bounds[0], SPACE11_DIM1 - 1, "H5Sget_select_bounds");
VERIFY(high_bounds[1], SPACE11_DIM2 - 1, "H5Sget_select_bounds");
/* Set offset for selection */
offset[0] = 1;
offset[1] = 1;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Get bounds for 'all' selection with offset (which should be ignored) */
ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0], 0, "H5Sget_select_bounds");
VERIFY(low_bounds[1], 0, "H5Sget_select_bounds");
VERIFY(high_bounds[0], SPACE11_DIM1 - 1, "H5Sget_select_bounds");
VERIFY(high_bounds[1], SPACE11_DIM2 - 1, "H5Sget_select_bounds");
/* Reset offset for selection */
offset[0] = 0;
offset[1] = 0;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Set 'none' selection */
ret = H5Sselect_none(sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Get bounds for 'none' selection */
H5E_BEGIN_TRY
{
ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sget_select_bounds");
/* Set point selection */
coord[0][0] = 3;
coord[0][1] = 3;
coord[1][0] = 3;
coord[1][1] = 96;
coord[2][0] = 96;
coord[2][1] = 3;
coord[3][0] = 96;
coord[3][1] = 96;
ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)SPACE11_NPOINTS, (const hsize_t *)coord);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Get bounds for point selection */
ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0], 3, "H5Sget_select_bounds");
VERIFY(low_bounds[1], 3, "H5Sget_select_bounds");
VERIFY(high_bounds[0], SPACE11_DIM1 - 4, "H5Sget_select_bounds");
VERIFY(high_bounds[1], SPACE11_DIM2 - 4, "H5Sget_select_bounds");
/* Set bad offset for selection */
offset[0] = 5;
offset[1] = -5;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Get bounds for hyperslab selection with negative offset */
H5E_BEGIN_TRY
{
ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sget_select_bounds");
/* Set valid offset for selection */
offset[0] = 2;
offset[1] = -2;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Get bounds for point selection with offset */
ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0], 5, "H5Sget_select_bounds");
VERIFY(low_bounds[1], 1, "H5Sget_select_bounds");
VERIFY(high_bounds[0], SPACE11_DIM1 - 2, "H5Sget_select_bounds");
VERIFY(high_bounds[1], SPACE11_DIM2 - 6, "H5Sget_select_bounds");
/* Reset offset for selection */
offset[0] = 0;
offset[1] = 0;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Set "regular" hyperslab selection */
start[0] = 2;
start[1] = 2;
stride[0] = 10;
stride[1] = 10;
count[0] = 4;
count[1] = 4;
block[0] = 5;
block[1] = 5;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Get bounds for hyperslab selection */
ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0], 2, "H5Sget_select_bounds");
VERIFY(low_bounds[1], 2, "H5Sget_select_bounds");
VERIFY(high_bounds[0], 36, "H5Sget_select_bounds");
VERIFY(high_bounds[1], 36, "H5Sget_select_bounds");
/* Set bad offset for selection */
offset[0] = 5;
offset[1] = -5;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Get bounds for hyperslab selection with negative offset */
H5E_BEGIN_TRY
{
ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sget_select_bounds");
/* Set valid offset for selection */
offset[0] = 5;
offset[1] = -2;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Get bounds for hyperslab selection with offset */
ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0], 7, "H5Sget_select_bounds");
VERIFY(low_bounds[1], 0, "H5Sget_select_bounds");
VERIFY(high_bounds[0], 41, "H5Sget_select_bounds");
VERIFY(high_bounds[1], 34, "H5Sget_select_bounds");
/* Reset offset for selection */
offset[0] = 0;
offset[1] = 0;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Make "irregular" hyperslab selection */
start[0] = 20;
start[1] = 20;
stride[0] = 20;
stride[1] = 20;
count[0] = 2;
count[1] = 2;
block[0] = 10;
block[1] = 10;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Get bounds for hyperslab selection */
ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0], 2, "H5Sget_select_bounds");
VERIFY(low_bounds[1], 2, "H5Sget_select_bounds");
VERIFY(high_bounds[0], 49, "H5Sget_select_bounds");
VERIFY(high_bounds[1], 49, "H5Sget_select_bounds");
/* Set bad offset for selection */
offset[0] = 5;
offset[1] = -5;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Get bounds for hyperslab selection with negative offset */
H5E_BEGIN_TRY
{
ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sget_select_bounds");
/* Set valid offset for selection */
offset[0] = 5;
offset[1] = -2;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Get bounds for hyperslab selection with offset */
ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(low_bounds[0], 7, "H5Sget_select_bounds");
VERIFY(low_bounds[1], 0, "H5Sget_select_bounds");
VERIFY(high_bounds[0], 54, "H5Sget_select_bounds");
VERIFY(high_bounds[1], 47, "H5Sget_select_bounds");
/* Reset offset for selection */
offset[0] = 0;
offset[1] = 0;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Close the dataspace */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_select_bounds() */
/****************************************************************
**
** test_hyper_regular(): Tests query operations on regular hyperslabs
**
****************************************************************/
static void
test_hyper_regular(void)
{
hid_t sid; /* Dataspace ID */
const hsize_t dims[SPACE13_RANK] = {SPACE13_DIM1, SPACE13_DIM2, SPACE13_DIM3}; /* Dataspace dimensions */
hsize_t coord[SPACE13_NPOINTS][SPACE13_RANK]; /* Coordinates for point selection */
hsize_t start[SPACE13_RANK]; /* The start of the hyperslab */
hsize_t stride[SPACE13_RANK]; /* The stride between block starts for the hyperslab */
hsize_t count[SPACE13_RANK]; /* The number of blocks for the hyperslab */
hsize_t block[SPACE13_RANK]; /* The size of each block for the hyperslab */
hsize_t t_start[SPACE13_RANK]; /* Temporary start of the hyperslab */
hsize_t t_count[SPACE13_RANK]; /* Temporary number of blocks for the hyperslab */
hsize_t q_start[SPACE13_RANK]; /* The queried start of the hyperslab */
hsize_t q_stride[SPACE13_RANK]; /* The queried stride between block starts for the hyperslab */
hsize_t q_count[SPACE13_RANK]; /* The queried number of blocks for the hyperslab */
hsize_t q_block[SPACE13_RANK]; /* The queried size of each block for the hyperslab */
htri_t is_regular; /* Whether a hyperslab selection is regular */
unsigned u; /* Local index variable */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(6, ("Testing queries on regular hyperslabs\n"));
/* Create dataspace */
sid = H5Screate_simple(SPACE13_RANK, dims, NULL);
CHECK(sid, FAIL, "H5Screate_simple");
/* Query if 'all' selection is regular hyperslab (should fail) */
H5E_BEGIN_TRY
{
is_regular = H5Sis_regular_hyperslab(sid);
}
H5E_END_TRY;
VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab");
/* Query regular hyperslab selection info (should fail) */
H5E_BEGIN_TRY
{
ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sget_regular_hyperslab");
/* Set 'none' selection */
ret = H5Sselect_none(sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Query if 'none' selection is regular hyperslab (should fail) */
H5E_BEGIN_TRY
{
is_regular = H5Sis_regular_hyperslab(sid);
}
H5E_END_TRY;
VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab");
/* Query regular hyperslab selection info (should fail) */
H5E_BEGIN_TRY
{
ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sget_regular_hyperslab");
/* Set point selection */
coord[0][0] = 3;
coord[0][1] = 3;
coord[0][2] = 3;
coord[1][0] = 3;
coord[1][1] = 48;
coord[1][2] = 48;
coord[2][0] = 48;
coord[2][1] = 3;
coord[2][2] = 3;
coord[3][0] = 48;
coord[3][1] = 48;
coord[3][2] = 48;
ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)SPACE13_NPOINTS, (const hsize_t *)coord);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Query if 'point' selection is regular hyperslab (should fail) */
H5E_BEGIN_TRY
{
is_regular = H5Sis_regular_hyperslab(sid);
}
H5E_END_TRY;
VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab");
/* Query regular hyperslab selection info (should fail) */
H5E_BEGIN_TRY
{
ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sget_regular_hyperslab");
/* Set "regular" hyperslab selection */
start[0] = 2;
start[1] = 2;
start[2] = 2;
stride[0] = 5;
stride[1] = 5;
stride[2] = 5;
count[0] = 3;
count[1] = 3;
count[2] = 3;
block[0] = 4;
block[1] = 4;
block[2] = 4;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Query if 'hyperslab' selection is regular hyperslab (should be TRUE) */
is_regular = H5Sis_regular_hyperslab(sid);
VERIFY(is_regular, TRUE, "H5Sis_regular_hyperslab");
/* Retrieve the hyperslab parameters */
ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block);
CHECK(ret, FAIL, "H5Sget_regular_hyperslab");
/* Verify the hyperslab parameters */
for (u = 0; u < SPACE13_RANK; u++) {
if (start[u] != q_start[u])
ERROR("H5Sget_regular_hyperslab, start");
if (stride[u] != q_stride[u])
ERROR("H5Sget_regular_hyperslab, stride");
if (count[u] != q_count[u])
ERROR("H5Sget_regular_hyperslab, count");
if (block[u] != q_block[u])
ERROR("H5Sget_regular_hyperslab, block");
} /* end for */
/* 'OR' in another point */
t_start[0] = 0;
t_start[1] = 0;
t_start[2] = 0;
t_count[0] = 1;
t_count[1] = 1;
t_count[2] = 1;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, t_start, NULL, t_count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Query if 'hyperslab' selection is regular hyperslab (should be FALSE) */
is_regular = H5Sis_regular_hyperslab(sid);
VERIFY(is_regular, FALSE, "H5Sis_regular_hyperslab");
/* Query regular hyperslab selection info (should fail) */
H5E_BEGIN_TRY
{
ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sget_regular_hyperslab");
/* 'XOR' in the point again, to remove it, which should make it regular again */
t_start[0] = 0;
t_start[1] = 0;
t_start[2] = 0;
t_count[0] = 1;
t_count[1] = 1;
t_count[2] = 1;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, t_start, NULL, t_count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Query if 'hyperslab' selection is regular hyperslab (should be TRUE) */
is_regular = H5Sis_regular_hyperslab(sid);
VERIFY(is_regular, TRUE, "H5Sis_regular_hyperslab");
/* Retrieve the hyperslab parameters */
ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block);
CHECK(ret, FAIL, "H5Sget_regular_hyperslab");
/* Verify the hyperslab parameters */
for (u = 0; u < SPACE13_RANK; u++) {
if (start[u] != q_start[u])
ERROR("H5Sget_regular_hyperslab, start");
if (stride[u] != q_stride[u])
ERROR("H5Sget_regular_hyperslab, stride");
if (count[u] != q_count[u])
ERROR("H5Sget_regular_hyperslab, count");
if (block[u] != q_block[u])
ERROR("H5Sget_regular_hyperslab, block");
} /* end for */
/* Close the dataspace */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_hyper_regular() */
/****************************************************************
**
** test_hyper_unlim(): Tests unlimited hyperslab selections
**
****************************************************************/
static void
test_hyper_unlim_check(hid_t sid, hsize_t *dims, hssize_t endpoints, hssize_t enblocks, hsize_t *eblock1,
hsize_t *eblock2)
{
hid_t lim_sid;
hsize_t start[3];
H5S_sel_type sel_type;
hssize_t npoints;
hssize_t nblocks;
hsize_t blocklist[12];
herr_t ret;
assert(enblocks <= 2);
/* Copy sid to lim_sid */
lim_sid = H5Scopy(sid);
CHECK(lim_sid, FAIL, "H5Scopy");
/* "And" lim_sid with dims to create limited selection */
memset(start, 0, sizeof(start));
ret = H5Sselect_hyperslab(lim_sid, H5S_SELECT_AND, start, NULL, dims, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Check number of elements */
npoints = H5Sget_select_npoints(lim_sid);
CHECK(npoints, FAIL, "H5Sget_select_npoints");
VERIFY(npoints, endpoints, "H5Sget_select_npoints");
/* Get selection type */
sel_type = H5Sget_select_type(lim_sid);
CHECK(sel_type, H5S_SEL_ERROR, "H5Sget_select_type");
/* Only examine blocks for hyperslab selection */
if (sel_type == H5S_SEL_HYPERSLABS) {
/* Get number of blocks */
nblocks = H5Sget_select_hyper_nblocks(lim_sid);
CHECK(nblocks, FAIL, "H5Sget_select_hyper_nblocks");
VERIFY(nblocks, enblocks, "H5Sget_select_hyper_nblocks");
if (nblocks > 0) {
/* Get blocklist */
ret = H5Sget_select_hyper_blocklist(lim_sid, (hsize_t)0, (hsize_t)nblocks, blocklist);
CHECK(ret, FAIL, "H5Sget_select_hyper_blocklist");
/* Verify blocklist */
if (nblocks == (hssize_t)1) {
if (memcmp(blocklist, eblock1, 6 * sizeof(eblock1[0])) != 0)
ERROR("H5Sget_select_hyper_blocklist");
} /* end if */
else {
assert(nblocks == (hssize_t)2);
if (memcmp(blocklist, eblock1, 6 * sizeof(eblock1[0])) != 0) {
if (memcmp(blocklist, eblock2, 6 * sizeof(eblock2[0])) != 0)
ERROR("H5Sget_select_hyper_blocklist");
if (memcmp(&blocklist[6], eblock1, 6 * sizeof(eblock1[0])) != 0)
ERROR("H5Sget_select_hyper_blocklist");
} /* end if */
else if (memcmp(&blocklist[6], eblock2, 6 * sizeof(eblock2[0])) != 0)
ERROR("H5Sget_select_hyper_blocklist");
} /* end else */
} /* end if */
} /* end if */
else if (sel_type != H5S_SEL_NONE)
ERROR("H5Sget_select_type");
/* Close the limited dataspace */
ret = H5Sclose(lim_sid);
CHECK(ret, FAIL, "H5Sclose");
} /* end test_hyper_unlim_check() */
static void
test_hyper_unlim(void)
{
hid_t sid;
hsize_t dims[3] = {4, 4, 7};
hsize_t mdims[3] = {4, H5S_UNLIMITED, 7};
hsize_t start[3] = {1, 2, 1};
hsize_t stride[3] = {1, 1, 3};
hsize_t count[3] = {1, 1, 2};
hsize_t block[3] = {2, H5S_UNLIMITED, 2};
hsize_t start2[3];
hsize_t count2[3];
hsize_t eblock1[6] = {1, 2, 1, 2, 3, 2};
hsize_t eblock2[6] = {1, 2, 4, 2, 3, 5};
hssize_t offset[3] = {0, -1, 0};
hssize_t ssize_out;
herr_t ret;
/* Output message about test being performed */
MESSAGE(6, ("Testing unlimited hyperslab selections\n"));
/* Create dataspace */
sid = H5Screate_simple(3, dims, mdims);
CHECK(sid, FAIL, "H5Screate_simple");
/* Select unlimited hyperslab */
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Check with unlimited dimension clipped to 4 */
test_hyper_unlim_check(sid, dims, (hssize_t)16, (hssize_t)2, eblock1, eblock2);
/* Check with unlimited dimension clipped to 3 */
dims[1] = 3;
eblock1[4] = 2;
eblock2[4] = 2;
test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)2, eblock1, eblock2);
/* Check with unlimited dimension clipped to 2 */
dims[1] = 2;
test_hyper_unlim_check(sid, dims, (hssize_t)0, (hssize_t)0, eblock1, eblock2);
/* Check with unlimited dimension clipped to 1 */
dims[1] = 1;
test_hyper_unlim_check(sid, dims, (hssize_t)0, (hssize_t)0, eblock1, eblock2);
/* Check with unlimited dimension clipped to 7 */
dims[1] = 7;
eblock1[4] = 6;
eblock2[4] = 6;
test_hyper_unlim_check(sid, dims, (hssize_t)40, (hssize_t)2, eblock1, eblock2);
/* Set offset of selection */
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Check with adjusted offset (should not affect result) */
test_hyper_unlim_check(sid, dims, (hssize_t)40, (hssize_t)2, eblock1, eblock2);
/* Reset offset of selection */
offset[1] = (hssize_t)0;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/*
* Now try with multiple blocks in unlimited dimension
*/
stride[1] = 3;
stride[2] = 1;
count[1] = H5S_UNLIMITED;
count[2] = 1;
block[1] = 2;
/* Select unlimited hyperslab */
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Check with new selection */
eblock1[1] = 2;
eblock1[4] = 3;
eblock2[1] = 5;
eblock2[2] = 1;
eblock2[4] = 6;
eblock2[5] = 2;
test_hyper_unlim_check(sid, dims, (hssize_t)16, (hssize_t)2, eblock1, eblock2);
/* Check with unlimited dimension clipped to 3 */
dims[1] = 3;
eblock1[4] = 2;
test_hyper_unlim_check(sid, dims, (hssize_t)4, (hssize_t)1, eblock1, eblock2);
/* Check with unlimited dimension clipped to 4 */
dims[1] = 4;
eblock1[4] = 3;
test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)1, eblock1, eblock2);
/* Check with unlimited dimension clipped to 5 */
dims[1] = 5;
eblock1[4] = 3;
test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)1, eblock1, eblock2);
/* Check with unlimited dimension clipped to 6 */
dims[1] = 6;
eblock1[4] = 3;
eblock2[4] = 5;
test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);
/* Set offset of selection */
offset[1] = (hssize_t)-1;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Check with adjusted offset (should not affect result) */
test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);
/* Set offset of selection */
offset[1] = (hssize_t)3;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/* Check with adjusted offset (should not affect result) */
test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);
/* Reset offset of selection */
offset[1] = (hssize_t)0;
ret = H5Soffset_simple(sid, offset);
CHECK(ret, FAIL, "H5Soffset_simple");
/*
* Now try invalid operations
*/
H5E_BEGIN_TRY
{
/* Try multiple unlimited dimensions */
start[0] = 1;
start[1] = 2;
start[2] = 1;
stride[0] = 1;
stride[1] = 3;
stride[2] = 3;
count[0] = 1;
count[1] = H5S_UNLIMITED;
count[2] = H5S_UNLIMITED;
block[0] = 2;
block[1] = 2;
block[2] = 2;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
/* Try unlimited count and block */
count[2] = 2;
block[1] = H5S_UNLIMITED;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
}
H5E_END_TRY
/* Try operations with two unlimited selections */
block[1] = 2;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
H5E_BEGIN_TRY
{
ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, NULL, count, NULL);
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
ret = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start, NULL, count, NULL);
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, NULL, count, NULL);
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, NULL, count, NULL);
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start, NULL, count, NULL);
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
}
H5E_END_TRY
/* Try invalid combination operations */
H5E_BEGIN_TRY
{
ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, NULL, block, NULL);
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, NULL, block, NULL);
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, NULL, block, NULL);
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
}
H5E_END_TRY
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, NULL, block, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
H5E_BEGIN_TRY
{
ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, stride, count, block);
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start, stride, count, block);
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
}
H5E_END_TRY
/*
* Now test valid combination operations
*/
/* unlim AND non-unlim */
count[0] = 1;
count[1] = H5S_UNLIMITED;
count[2] = 2;
block[0] = 2;
block[1] = 2;
block[2] = 2;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start2[0] = 2;
start2[1] = 2;
start2[2] = 0;
count2[0] = 5;
count2[1] = 4;
count2[2] = 2;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start2, NULL, count2, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
eblock1[0] = 2;
eblock1[3] = 2;
eblock1[1] = 2;
eblock1[4] = 3;
eblock1[2] = 1;
eblock1[5] = 1;
eblock2[0] = 2;
eblock2[3] = 2;
eblock2[1] = 5;
eblock2[4] = 5;
eblock2[2] = 1;
eblock2[5] = 1;
dims[0] = 50;
dims[1] = 50;
dims[2] = 50;
test_hyper_unlim_check(sid, dims, (hssize_t)3, (hssize_t)2, eblock1, eblock2);
/* unlim NOTA non-unlim */
count[0] = 1;
count[1] = H5S_UNLIMITED;
count[2] = 2;
block[0] = 2;
block[1] = 2;
block[2] = 2;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start2[0] = 1;
start2[1] = 5;
start2[2] = 2;
count2[0] = 2;
count2[1] = 2;
count2[2] = 6;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start2, NULL, count2, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
eblock1[0] = 1;
eblock1[3] = 2;
eblock1[1] = 5;
eblock1[4] = 6;
eblock1[2] = 3;
eblock1[5] = 3;
eblock2[0] = 1;
eblock2[3] = 2;
eblock2[1] = 5;
eblock2[4] = 6;
eblock2[2] = 6;
eblock2[5] = 7;
dims[0] = 50;
dims[1] = 50;
dims[2] = 50;
test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);
/* non-unlim AND unlim */
start2[0] = 2;
start2[1] = 2;
start2[2] = 0;
count2[0] = 5;
count2[1] = 4;
count2[2] = 2;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start2, NULL, count2, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
count[0] = 1;
count[1] = H5S_UNLIMITED;
count[2] = 2;
block[0] = 2;
block[1] = 2;
block[2] = 2;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
eblock1[0] = 2;
eblock1[3] = 2;
eblock1[1] = 2;
eblock1[4] = 3;
eblock1[2] = 1;
eblock1[5] = 1;
eblock2[0] = 2;
eblock2[3] = 2;
eblock2[1] = 5;
eblock2[4] = 5;
eblock2[2] = 1;
eblock2[5] = 1;
dims[0] = 50;
dims[1] = 50;
dims[2] = 50;
test_hyper_unlim_check(sid, dims, (hssize_t)3, (hssize_t)2, eblock1, eblock2);
/* non-unlim NOTB unlim */
start2[0] = 1;
start2[1] = 5;
start2[2] = 2;
count2[0] = 2;
count2[1] = 2;
count2[2] = 6;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start2, NULL, count2, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
count[0] = 1;
count[1] = H5S_UNLIMITED;
count[2] = 2;
block[0] = 2;
block[1] = 2;
block[2] = 2;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
eblock1[0] = 1;
eblock1[3] = 2;
eblock1[1] = 5;
eblock1[4] = 6;
eblock1[2] = 3;
eblock1[5] = 3;
eblock2[0] = 1;
eblock2[3] = 2;
eblock2[1] = 5;
eblock2[4] = 6;
eblock2[2] = 6;
eblock2[5] = 7;
dims[0] = 50;
dims[1] = 50;
dims[2] = 50;
test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);
/* Test H5Sget_select_npoints() */
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
ssize_out = H5Sget_select_npoints(sid);
VERIFY(ssize_out, (hssize_t)H5S_UNLIMITED, "H5Sget_select_npoints");
/* Test H5Sget_select_hyper_nblocks() */
H5E_BEGIN_TRY
{
ssize_out = H5Sget_select_hyper_nblocks(sid);
}
H5E_END_TRY;
VERIFY(ssize_out, (hssize_t)H5S_UNLIMITED, "H5Sget_select_hyper_nblocks");
/* Test H5Sget_select_bounds() */
ret = H5Sget_select_bounds(sid, start2, count2);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(start2[0], start[0], "H5Sget_select_bounds");
VERIFY(start2[1], start[1], "H5Sget_select_bounds");
VERIFY(start2[2], start[2], "H5Sget_select_bounds");
VERIFY(count2[0], (long)(start[0] + (stride[0] * (count[0] - 1)) + block[0] - 1), "H5Sget_select_bounds");
VERIFY(count2[1], H5S_UNLIMITED, "H5Sget_select_bounds");
VERIFY(count2[2], (long)(start[2] + (stride[2] * (count[2] - 1)) + block[2] - 1), "H5Sget_select_bounds");
/* Close the dataspace */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
} /* end test_hyper_unlim() */
/****************************************************************
**
** test_internal_consistency(): Tests selections on dataspace, then
** verify that internal states of data structures of selections are
** consistent.
**
****************************************************************/
static void
test_internal_consistency(void)
{
hid_t all_sid; /* Dataspace ID with "all" selection */
hid_t none_sid; /* Dataspace ID with "none" selection */
hid_t single_pt_sid; /* Dataspace ID with single point selection */
hid_t mult_pt_sid; /* Dataspace ID with multiple point selection */
hid_t single_hyper_sid; /* Dataspace ID with single block hyperslab selection */
hid_t single_hyper_all_sid; /* Dataspace ID with single block hyperslab
* selection that is the entire dataspace
*/
hid_t single_hyper_pt_sid; /* Dataspace ID with single block hyperslab
* selection that is the same as the single
* point selection
*/
hid_t regular_hyper_sid; /* Dataspace ID with regular hyperslab selection */
hid_t irreg_hyper_sid; /* Dataspace ID with irregular hyperslab selection */
hid_t none_hyper_sid; /* Dataspace ID with "no hyperslabs" selection */
hid_t scalar_all_sid; /* ID for scalar dataspace with "all" selection */
hid_t scalar_none_sid; /* ID for scalar dataspace with "none" selection */
hid_t tmp_sid; /* Temporary dataspace ID */
hsize_t dims[] = {SPACE9_DIM1, SPACE9_DIM2};
hsize_t coord1[1][SPACE2_RANK]; /* Coordinates for single point selection */
hsize_t coord2[SPACE9_DIM2][SPACE9_RANK]; /* Coordinates for multiple point selection */
hsize_t start[SPACE9_RANK]; /* Hyperslab start */
hsize_t stride[SPACE9_RANK]; /* Hyperslab stride */
hsize_t count[SPACE9_RANK]; /* Hyperslab block count */
hsize_t block[SPACE9_RANK]; /* Hyperslab block size */
#if 0
htri_t check; /* Shape comparison return value */
#endif
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(6, ("Testing Consistency of Internal States\n"));
assert(SPACE9_DIM2 >= POINT1_NPOINTS);
/* Create dataspace for "all" selection */
all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(all_sid, FAIL, "H5Screate_simple");
/* Select entire extent for dataspace */
ret = H5Sselect_all(all_sid);
CHECK(ret, FAIL, "H5Sselect_all");
/* Create dataspace for "none" selection */
none_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(none_sid, FAIL, "H5Screate_simple");
/* Un-Select entire extent for dataspace */
ret = H5Sselect_none(none_sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Create dataspace for single point selection */
single_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(single_pt_sid, FAIL, "H5Screate_simple");
/* Select sequence of ten points for multiple point selection */
coord1[0][0] = 2;
coord1[0][1] = 2;
ret = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Create dataspace for multiple point selection */
mult_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(mult_pt_sid, FAIL, "H5Screate_simple");
/* Select sequence of ten points for multiple point selection */
coord2[0][0] = 2;
coord2[0][1] = 2;
coord2[1][0] = 7;
coord2[1][1] = 2;
coord2[2][0] = 1;
coord2[2][1] = 4;
coord2[3][0] = 2;
coord2[3][1] = 6;
coord2[4][0] = 0;
coord2[4][1] = 8;
coord2[5][0] = 3;
coord2[5][1] = 2;
coord2[6][0] = 4;
coord2[6][1] = 4;
coord2[7][0] = 1;
coord2[7][1] = 0;
coord2[8][0] = 5;
coord2[8][1] = 1;
coord2[9][0] = 9;
coord2[9][1] = 3;
ret = H5Sselect_elements(mult_pt_sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Create dataspace for single hyperslab selection */
single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(single_hyper_sid, FAIL, "H5Screate_simple");
/* Select 10x10 hyperslab for single hyperslab selection */
start[0] = 1;
start[1] = 1;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = (SPACE9_DIM1 - 2);
block[1] = (SPACE9_DIM2 - 2);
ret = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for single hyperslab selection with entire extent selected */
single_hyper_all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(single_hyper_all_sid, FAIL, "H5Screate_simple");
/* Select entire extent for hyperslab selection */
start[0] = 0;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = SPACE9_DIM1;
block[1] = SPACE9_DIM2;
ret = H5Sselect_hyperslab(single_hyper_all_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for single hyperslab selection with single point selected */
single_hyper_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(single_hyper_pt_sid, FAIL, "H5Screate_simple");
/* Select entire extent for hyperslab selection */
start[0] = 2;
start[1] = 2;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(single_hyper_pt_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for regular hyperslab selection */
regular_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(regular_hyper_sid, FAIL, "H5Screate_simple");
/* Select regular, strided hyperslab selection */
start[0] = 2;
start[1] = 2;
stride[0] = 2;
stride[1] = 2;
count[0] = 5;
count[1] = 2;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for irregular hyperslab selection */
irreg_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(irreg_hyper_sid, FAIL, "H5Screate_simple");
/* Create irregular hyperslab selection by OR'ing two blocks together */
start[0] = 2;
start[1] = 2;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 4;
start[1] = 4;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = 3;
block[1] = 3;
ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create dataspace for "no" hyperslab selection */
none_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
CHECK(none_hyper_sid, FAIL, "H5Screate_simple");
/* Create "no" hyperslab selection by XOR'ing same blocks together */
start[0] = 2;
start[1] = 2;
stride[0] = 1;
stride[1] = 1;
count[0] = 1;
count[1] = 1;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_XOR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create scalar dataspace for "all" selection */
scalar_all_sid = H5Screate(H5S_SCALAR);
CHECK(scalar_all_sid, FAIL, "H5Screate");
/* Create scalar dataspace for "none" selection */
scalar_none_sid = H5Screate(H5S_SCALAR);
CHECK(scalar_none_sid, FAIL, "H5Screate");
/* Un-Select entire extent for dataspace */
ret = H5Sselect_none(scalar_none_sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Test all the selections created */
/* Test the copy of itself */
tmp_sid = H5Scopy(all_sid);
CHECK(tmp_sid, FAIL, "H5Scopy");
#if 0
check = H5S__internal_consistency_test(tmp_sid);
VERIFY(check, TRUE, "H5S__internal_consistency_test");
#endif
ret = H5Sclose(tmp_sid);
CHECK(ret, FAIL, "H5Sclose");
#if 0
/* Test "none" selection */
check = H5S__internal_consistency_test(none_sid);
VERIFY(check, TRUE, "H5S__internal_consistency_test");
/* Test single point selection */
check = H5S__internal_consistency_test(single_pt_sid);
VERIFY(check, TRUE, "H5S__internal_consistency_test");
/* Test multiple point selection */
check = H5S__internal_consistency_test(mult_pt_sid);
VERIFY(check, TRUE, "H5S__internal_consistency_test");
/* Test "plain" single hyperslab selection */
check = H5S__internal_consistency_test(single_hyper_sid);
VERIFY(check, TRUE, "H5S__internal_consistency_test");
/* Test "all" single hyperslab selection */
check = H5S__internal_consistency_test(single_hyper_all_sid);
VERIFY(check, TRUE, "H5S__internal_consistency_test");
/* Test "single point" single hyperslab selection */
check = H5S__internal_consistency_test(single_hyper_pt_sid);
VERIFY(check, TRUE, "H5S__internal_consistency_test");
/* Test regular, strided hyperslab selection */
check = H5S__internal_consistency_test(regular_hyper_sid);
VERIFY(check, TRUE, "H5S__internal_consistency_test");
/* Test irregular hyperslab selection */
check = H5S__internal_consistency_test(irreg_hyper_sid);
VERIFY(check, TRUE, "H5S__internal_consistency_test");
/* Test "no" hyperslab selection */
check = H5S__internal_consistency_test(none_hyper_sid);
VERIFY(check, TRUE, "H5S__internal_consistency_test");
/* Test scalar "all" hyperslab selection */
check = H5S__internal_consistency_test(scalar_all_sid);
VERIFY(check, TRUE, "H5S__internal_consistency_test");
/* Test scalar "none" hyperslab selection */
check = H5S__internal_consistency_test(scalar_none_sid);
VERIFY(check, TRUE, "H5S__internal_consistency_test");
#endif
/* Close dataspaces */
ret = H5Sclose(all_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(none_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(single_pt_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(mult_pt_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(single_hyper_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(single_hyper_all_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(single_hyper_pt_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(regular_hyper_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(irreg_hyper_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(none_hyper_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(scalar_all_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(scalar_none_sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_internal_consistency() */
/****************************************************************
**
** test_irreg_io(): Tests unusual selections on datasets, to stress the
** new hyperslab code.
**
****************************************************************/
static void
test_irreg_io(void)
{
hid_t fid; /* File ID */
hid_t did; /* Dataset ID */
hid_t dcpl_id; /* Dataset creation property list ID */
hid_t sid; /* File dataspace ID */
hid_t mem_sid; /* Memory dataspace ID */
hsize_t dims[] = {6, 12}; /* Dataspace dimensions */
hsize_t chunk_dims[] = {2, 2}; /* Chunk dimensions */
hsize_t mem_dims[] = {32}; /* Memory dataspace dimensions */
hsize_t start[2]; /* Hyperslab start */
hsize_t stride[2]; /* Hyperslab stride */
hsize_t count[2]; /* Hyperslab block count */
hsize_t block[2]; /* Hyperslab block size */
unsigned char wbuf[72]; /* Write buffer */
unsigned char rbuf[32]; /* Read buffer */
unsigned u; /* Local index variable */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(6, ("Testing Irregular Hyperslab I/O\n"));
/* Create file */
fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid, FAIL, "H5Fcreate");
/* Create dataspace for dataset */
sid = H5Screate_simple(2, dims, NULL);
CHECK(sid, FAIL, "H5Screate_simple");
/* Set chunk dimensions for dataset */
dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
CHECK(dcpl_id, FAIL, "H5Pcreate");
ret = H5Pset_chunk(dcpl_id, 2, chunk_dims);
CHECK(ret, FAIL, "H5Pset_chunk");
/* Create a dataset */
did = H5Dcreate2(fid, SPACE1_NAME, H5T_NATIVE_UCHAR, sid, H5P_DEFAULT, dcpl_id, H5P_DEFAULT);
CHECK(did, FAIL, "H5Dcreate2");
/* Initialize the write buffer */
for (u = 0; u < 72; u++)
wbuf[u] = (unsigned char)u;
/* Write entire dataset to disk */
ret = H5Dwrite(did, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, wbuf);
CHECK(ret, FAIL, "H5Dwrite");
/* Close the DCPL */
ret = H5Pclose(dcpl_id);
CHECK(ret, FAIL, "H5Pclose");
/* Create dataspace for memory selection */
mem_sid = H5Screate_simple(1, mem_dims, NULL);
CHECK(mem_sid, FAIL, "H5Screate_simple");
/* Select 'L'-shaped region within dataset */
start[0] = 0;
start[1] = 10;
stride[0] = 1;
stride[1] = 1;
count[0] = 4;
count[1] = 2;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 4;
start[1] = 0;
stride[0] = 1;
stride[1] = 1;
count[0] = 2;
count[1] = 12;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Reset the buffer */
memset(rbuf, 0, sizeof(rbuf));
/* Read selection from disk */
ret = H5Dread(did, H5T_NATIVE_UCHAR, mem_sid, sid, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Close everything */
ret = H5Sclose(mem_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Dclose(did);
CHECK(ret, FAIL, "H5Dclose");
ret = H5Fclose(fid);
CHECK(ret, FAIL, "H5Fclose");
} /* test_irreg_io() */
/****************************************************************
**
** test_sel_iter(): Test selection iterator API routines.
**
****************************************************************/
static void
test_sel_iter(void)
{
hid_t sid; /* Dataspace ID */
hid_t iter_id; /* Dataspace selection iterator ID */
hsize_t dims1[] = {6, 12}; /* 2-D Dataspace dimensions */
hsize_t coord1[POINT1_NPOINTS][2]; /* Coordinates for point selection */
hsize_t start[2]; /* Hyperslab start */
hsize_t stride[2]; /* Hyperslab stride */
hsize_t count[2]; /* Hyperslab block count */
hsize_t block[2]; /* Hyperslab block size */
size_t nseq; /* # of sequences retrieved */
size_t nbytes; /* # of bytes retrieved */
hsize_t off[SEL_ITER_MAX_SEQ]; /* Offsets for retrieved sequences */
size_t len[SEL_ITER_MAX_SEQ]; /* Lengths for retrieved sequences */
H5S_sel_type sel_type; /* Selection type */
unsigned sel_share; /* Whether to share selection with dataspace */
unsigned sel_iter_flags; /* Flags for selection iterator creation */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(6, ("Testing Dataspace Selection Iterators\n"));
/* Create dataspace */
sid = H5Screate_simple(2, dims1, NULL);
CHECK(sid, FAIL, "H5Screate_simple");
/* Try creating selection iterator object with bad parameters */
H5E_BEGIN_TRY
{ /* Bad dataspace ID */
iter_id = H5Ssel_iter_create(H5I_INVALID_HID, (size_t)1, (unsigned)0);
}
H5E_END_TRY;
VERIFY(iter_id, FAIL, "H5Ssel_iter_create");
H5E_BEGIN_TRY
{ /* Bad element size */
iter_id = H5Ssel_iter_create(sid, (size_t)0, (unsigned)0);
}
H5E_END_TRY;
VERIFY(iter_id, FAIL, "H5Ssel_iter_create");
H5E_BEGIN_TRY
{ /* Bad flag(s) */
iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)0xffff);
}
H5E_END_TRY;
VERIFY(iter_id, FAIL, "H5Ssel_iter_create");
/* Try closing selection iterator, with bad parameters */
H5E_BEGIN_TRY
{ /* Invalid ID */
ret = H5Ssel_iter_close(H5I_INVALID_HID);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Ssel_iter_close");
H5E_BEGIN_TRY
{ /* Not a selection iterator ID */
ret = H5Ssel_iter_close(sid);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Ssel_iter_close");
/* Try with no selection sharing, and with sharing */
for (sel_share = 0; sel_share < 2; sel_share++) {
/* Set selection iterator sharing flags */
if (sel_share)
sel_iter_flags = H5S_SEL_ITER_SHARE_WITH_DATASPACE;
else
sel_iter_flags = 0;
/* Create selection iterator object */
iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
CHECK(iter_id, FAIL, "H5Ssel_iter_create");
/* Close selection iterator */
ret = H5Ssel_iter_close(iter_id);
CHECK(ret, FAIL, "H5Ssel_iter_close");
/* Try closing selection iterator twice */
H5E_BEGIN_TRY
{ /* Invalid ID */
ret = H5Ssel_iter_close(iter_id);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Ssel_iter_close");
/* Create selection iterator object */
iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
CHECK(iter_id, FAIL, "H5Ssel_iter_create");
/* Try resetting selection iterator with bad parameters */
H5E_BEGIN_TRY
{
ret = H5Ssel_iter_reset(H5I_INVALID_HID, sid);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Ssel_iter_reset");
H5E_BEGIN_TRY
{
ret = H5Ssel_iter_reset(iter_id, H5I_INVALID_HID);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Ssel_iter_reset");
/* Try retrieving sequences, with bad parameters */
H5E_BEGIN_TRY
{ /* Invalid ID */
ret = H5Ssel_iter_get_seq_list(H5I_INVALID_HID, (size_t)1, (size_t)1, &nseq, &nbytes, off, len);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");
H5E_BEGIN_TRY
{ /* Invalid nseq pointer */
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, NULL, &nbytes, off, len);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");
H5E_BEGIN_TRY
{ /* Invalid nbytes pointer */
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, NULL, off, len);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");
H5E_BEGIN_TRY
{ /* Invalid offset array */
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, &nbytes, NULL, len);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");
H5E_BEGIN_TRY
{ /* Invalid length array */
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, &nbytes, off, NULL);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");
/* Close selection iterator */
ret = H5Ssel_iter_close(iter_id);
CHECK(ret, FAIL, "H5Ssel_iter_close");
/* Test iterators on various basic selection types */
for (sel_type = H5S_SEL_NONE; sel_type <= H5S_SEL_ALL; sel_type = (H5S_sel_type)(sel_type + 1)) {
switch (sel_type) {
case H5S_SEL_NONE: /* "None" selection */
ret = H5Sselect_none(sid);
CHECK(ret, FAIL, "H5Sselect_none");
break;
case H5S_SEL_POINTS: /* Point selection */
/* Select sequence of ten points */
coord1[0][0] = 0;
coord1[0][1] = 9;
coord1[1][0] = 1;
coord1[1][1] = 2;
coord1[2][0] = 2;
coord1[2][1] = 4;
coord1[3][0] = 0;
coord1[3][1] = 6;
coord1[4][0] = 1;
coord1[4][1] = 8;
coord1[5][0] = 2;
coord1[5][1] = 10;
coord1[6][0] = 0;
coord1[6][1] = 11;
coord1[7][0] = 1;
coord1[7][1] = 4;
coord1[8][0] = 2;
coord1[8][1] = 1;
coord1[9][0] = 0;
coord1[9][1] = 3;
ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS,
(const hsize_t *)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
break;
case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
/* Select regular hyperslab */
start[0] = 3;
start[1] = 0;
stride[0] = 2;
stride[1] = 2;
count[0] = 2;
count[1] = 5;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
break;
case H5S_SEL_ALL: /* "All" selection */
ret = H5Sselect_all(sid);
CHECK(ret, FAIL, "H5Sselect_all");
break;
case H5S_SEL_ERROR:
case H5S_SEL_N:
default:
assert(0 && "Can't occur");
break;
} /* end switch */
/* Create selection iterator object */
iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
CHECK(iter_id, FAIL, "H5Ssel_iter_create");
/* Try retrieving no sequences, with 0 for maxseq & maxbytes */
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)0, (size_t)1, &nseq, &nbytes, off, len);
CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)0, &nseq, &nbytes, off, len);
CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
/* Try retrieving all sequences */
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
&nbytes, off, len);
CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
/* Check results from retrieving sequence list */
switch (sel_type) {
case H5S_SEL_NONE: /* "None" selection */
VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
break;
case H5S_SEL_POINTS: /* Point selection */
VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
break;
case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
break;
case H5S_SEL_ALL: /* "All" selection */
VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list");
break;
case H5S_SEL_ERROR:
case H5S_SEL_N:
default:
assert(0 && "Can't occur");
break;
} /* end switch */
/* Close selection iterator */
ret = H5Ssel_iter_close(iter_id);
CHECK(ret, FAIL, "H5Ssel_iter_close");
} /* end for */
/* Create selection iterator object */
iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
CHECK(iter_id, FAIL, "H5Ssel_iter_create");
/* Test iterators on various basic selection types using
* H5Ssel_iter_reset instead of creating multiple iterators */
for (sel_type = H5S_SEL_NONE; sel_type <= H5S_SEL_ALL; sel_type = (H5S_sel_type)(sel_type + 1)) {
switch (sel_type) {
case H5S_SEL_NONE: /* "None" selection */
ret = H5Sselect_none(sid);
CHECK(ret, FAIL, "H5Sselect_none");
break;
case H5S_SEL_POINTS: /* Point selection */
/* Select sequence of ten points */
coord1[0][0] = 0;
coord1[0][1] = 9;
coord1[1][0] = 1;
coord1[1][1] = 2;
coord1[2][0] = 2;
coord1[2][1] = 4;
coord1[3][0] = 0;
coord1[3][1] = 6;
coord1[4][0] = 1;
coord1[4][1] = 8;
coord1[5][0] = 2;
coord1[5][1] = 10;
coord1[6][0] = 0;
coord1[6][1] = 11;
coord1[7][0] = 1;
coord1[7][1] = 4;
coord1[8][0] = 2;
coord1[8][1] = 1;
coord1[9][0] = 0;
coord1[9][1] = 3;
ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS,
(const hsize_t *)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
break;
case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
/* Select regular hyperslab */
start[0] = 3;
start[1] = 0;
stride[0] = 2;
stride[1] = 2;
count[0] = 2;
count[1] = 5;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
break;
case H5S_SEL_ALL: /* "All" selection */
ret = H5Sselect_all(sid);
CHECK(ret, FAIL, "H5Sselect_all");
break;
case H5S_SEL_ERROR:
case H5S_SEL_N:
default:
assert(0 && "Can't occur");
break;
} /* end switch */
/* Try retrieving no sequences, with 0 for maxseq & maxbytes */
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)0, (size_t)1, &nseq, &nbytes, off, len);
CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)0, &nseq, &nbytes, off, len);
CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
/* Reset iterator */
ret = H5Ssel_iter_reset(iter_id, sid);
CHECK(ret, FAIL, "H5Ssel_iter_reset");
/* Try retrieving all sequences */
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
&nbytes, off, len);
CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
/* Check results from retrieving sequence list */
switch (sel_type) {
case H5S_SEL_NONE: /* "None" selection */
VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
break;
case H5S_SEL_POINTS: /* Point selection */
VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
break;
case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
break;
case H5S_SEL_ALL: /* "All" selection */
VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list");
break;
case H5S_SEL_ERROR:
case H5S_SEL_N:
default:
assert(0 && "Can't occur");
break;
} /* end switch */
/* Reset iterator */
ret = H5Ssel_iter_reset(iter_id, sid);
CHECK(ret, FAIL, "H5Ssel_iter_reset");
/* Try retrieving all sequences again */
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
&nbytes, off, len);
CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
/* Check results from retrieving sequence list */
switch (sel_type) {
case H5S_SEL_NONE: /* "None" selection */
VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
break;
case H5S_SEL_POINTS: /* Point selection */
VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
break;
case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
break;
case H5S_SEL_ALL: /* "All" selection */
VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list");
break;
case H5S_SEL_ERROR:
case H5S_SEL_N:
default:
assert(0 && "Can't occur");
break;
} /* end switch */
/* Reset iterator */
ret = H5Ssel_iter_reset(iter_id, sid);
CHECK(ret, FAIL, "H5Ssel_iter_reset");
} /* end for */
/* Close selection iterator */
ret = H5Ssel_iter_close(iter_id);
CHECK(ret, FAIL, "H5Ssel_iter_close");
/* Point selection which will merge into smaller # of sequences */
coord1[0][0] = 0;
coord1[0][1] = 9;
coord1[1][0] = 0;
coord1[1][1] = 10;
coord1[2][0] = 0;
coord1[2][1] = 11;
coord1[3][0] = 0;
coord1[3][1] = 6;
coord1[4][0] = 1;
coord1[4][1] = 8;
coord1[5][0] = 2;
coord1[5][1] = 10;
coord1[6][0] = 0;
coord1[6][1] = 11;
coord1[7][0] = 1;
coord1[7][1] = 4;
coord1[8][0] = 1;
coord1[8][1] = 5;
coord1[9][0] = 1;
coord1[9][1] = 6;
ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Create selection iterator object */
iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
CHECK(iter_id, FAIL, "H5Ssel_iter_create");
/* Try retrieving all sequences */
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
&nbytes, off, len);
CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
/* Reset iterator */
ret = H5Ssel_iter_reset(iter_id, sid);
CHECK(ret, FAIL, "H5Ssel_iter_reset");
/* Try retrieving all sequences again */
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
&nbytes, off, len);
CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
/* Close selection iterator */
ret = H5Ssel_iter_close(iter_id);
CHECK(ret, FAIL, "H5Ssel_iter_close");
/* Select irregular hyperslab, which will merge into smaller # of sequences */
start[0] = 3;
start[1] = 0;
stride[0] = 2;
stride[1] = 2;
count[0] = 2;
count[1] = 5;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start[0] = 3;
start[1] = 3;
stride[0] = 2;
stride[1] = 2;
count[0] = 2;
count[1] = 5;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Create selection iterator object */
iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
CHECK(iter_id, FAIL, "H5Ssel_iter_create");
/* Try retrieving all sequences */
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
&nbytes, off, len);
CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 20, "H5Ssel_iter_get_seq_list");
/* Reset iterator */
ret = H5Ssel_iter_reset(iter_id, sid);
CHECK(ret, FAIL, "H5Ssel_iter_reset");
/* Try retrieving all sequences again */
ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
&nbytes, off, len);
CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list");
VERIFY(nbytes, 20, "H5Ssel_iter_get_seq_list");
/* Close selection iterator */
ret = H5Ssel_iter_close(iter_id);
CHECK(ret, FAIL, "H5Ssel_iter_close");
} /* end for */
/* Close dataspace */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_sel_iter() */
/****************************************************************
**
** test_select_intersect_block(): Test selections on dataspace,
** verify that "intersect block" routine is working correctly.
**
****************************************************************/
static void
test_select_intersect_block(void)
{
hid_t sid; /* Dataspace ID */
hsize_t dims1[] = {6, 12}; /* 2-D Dataspace dimensions */
hsize_t block_start[] = {1, 3}; /* Start offset for block */
hsize_t block_end[] = {2, 5}; /* End offset for block */
hsize_t block_end2[] = {0, 5}; /* Bad end offset for block */
hsize_t block_end3[] = {2, 2}; /* Another bad end offset for block */
hsize_t block_end4[] = {1, 3}; /* End offset that makes a single element block */
hsize_t coord[10][2]; /* Coordinates for point selection */
hsize_t start[2]; /* Starting location of hyperslab */
hsize_t stride[2]; /* Stride of hyperslab */
hsize_t count[2]; /* Element count of hyperslab */
hsize_t block[2]; /* Block size of hyperslab */
htri_t status; /* Intersection status */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(6, ("Testing Dataspace Selection Block Intersection\n"));
/* Create dataspace */
sid = H5Screate_simple(2, dims1, NULL);
CHECK(sid, FAIL, "H5Screate_simple");
/* Try intersection calls with bad parameters */
H5E_BEGIN_TRY
{ /* Bad dataspace ID */
status = H5Sselect_intersect_block(H5I_INVALID_HID, block_start, block_end);
}
H5E_END_TRY;
VERIFY(status, FAIL, "H5Sselect_intersect_block");
H5E_BEGIN_TRY
{ /* Bad start pointer */
status = H5Sselect_intersect_block(sid, NULL, block_end);
}
H5E_END_TRY;
VERIFY(status, FAIL, "H5Sselect_intersect_block");
H5E_BEGIN_TRY
{ /* Bad end pointer */
status = H5Sselect_intersect_block(sid, block_start, NULL);
}
H5E_END_TRY;
VERIFY(status, FAIL, "H5Sselect_intersect_block");
H5E_BEGIN_TRY
{ /* Invalid block */
status = H5Sselect_intersect_block(sid, block_start, block_end2);
}
H5E_END_TRY;
VERIFY(status, FAIL, "H5Sselect_intersect_block");
H5E_BEGIN_TRY
{ /* Another invalid block */
status = H5Sselect_intersect_block(sid, block_start, block_end3);
}
H5E_END_TRY;
VERIFY(status, FAIL, "H5Sselect_intersect_block");
/* Set selection to 'none' */
ret = H5Sselect_none(sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Test block intersection with 'none' selection (always false) */
status = H5Sselect_intersect_block(sid, block_start, block_end);
VERIFY(status, FALSE, "H5Sselect_intersect_block");
/* Set selection to 'all' */
ret = H5Sselect_all(sid);
CHECK(ret, FAIL, "H5Sselect_all");
/* Test block intersection with 'all' selection (always true) */
status = H5Sselect_intersect_block(sid, block_start, block_end);
VERIFY(status, TRUE, "H5Sselect_intersect_block");
/* Select sequence of ten points */
coord[0][0] = 0;
coord[0][1] = 10;
coord[1][0] = 1;
coord[1][1] = 2;
coord[2][0] = 2;
coord[2][1] = 4;
coord[3][0] = 0;
coord[3][1] = 6;
coord[4][0] = 1;
coord[4][1] = 8;
coord[5][0] = 2;
coord[5][1] = 11;
coord[6][0] = 0;
coord[6][1] = 4;
coord[7][0] = 1;
coord[7][1] = 0;
coord[8][0] = 2;
coord[8][1] = 1;
coord[9][0] = 0;
coord[9][1] = 3;
ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)10, (const hsize_t *)coord);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Test block intersection with 'point' selection */
status = H5Sselect_intersect_block(sid, block_start, block_end);
VERIFY(status, TRUE, "H5Sselect_intersect_block");
status = H5Sselect_intersect_block(sid, block_start, block_end4);
VERIFY(status, FALSE, "H5Sselect_intersect_block");
/* Select single 4x6 hyperslab block at (2,1) */
start[0] = 2;
start[1] = 1;
stride[0] = 1;
stride[1] = 1;
count[0] = 4;
count[1] = 6;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Test block intersection with single 'hyperslab' selection */
status = H5Sselect_intersect_block(sid, block_start, block_end);
VERIFY(status, TRUE, "H5Sselect_intersect_block");
status = H5Sselect_intersect_block(sid, block_start, block_end4);
VERIFY(status, FALSE, "H5Sselect_intersect_block");
/* 'OR' another hyperslab block in, making an irregular hyperslab selection */
start[0] = 3;
start[1] = 2;
stride[0] = 1;
stride[1] = 1;
count[0] = 4;
count[1] = 6;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Test block intersection with 'hyperslab' selection */
status = H5Sselect_intersect_block(sid, block_start, block_end);
VERIFY(status, TRUE, "H5Sselect_intersect_block");
status = H5Sselect_intersect_block(sid, block_start, block_end4);
VERIFY(status, FALSE, "H5Sselect_intersect_block");
/* Select regular, strided hyperslab selection */
start[0] = 2;
start[1] = 1;
stride[0] = 2;
stride[1] = 2;
count[0] = 2;
count[1] = 4;
block[0] = 1;
block[1] = 1;
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Test block intersection with single 'hyperslab' selection */
status = H5Sselect_intersect_block(sid, block_start, block_end);
VERIFY(status, TRUE, "H5Sselect_intersect_block");
status = H5Sselect_intersect_block(sid, block_start, block_end4);
VERIFY(status, FALSE, "H5Sselect_intersect_block");
/* Close dataspace */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_select_intersect_block() */
/****************************************************************
**
** test_hyper_io_1d():
** Test to verify all the selected 10th element in the 1-d file
** dataspace is read correctly into the 1-d contiguous memory space.
** This is modeled after the test scenario described in HDFFV-10585
** that demonstrated the hyperslab slowness. A fix to speed up
** performance is in place to handle the special case for 1-d disjoint
** file dataspace into 1-d single block contiguous memory space.
**
****************************************************************/
static void
test_hyper_io_1d(void)
{
hid_t fid; /* File ID */
hid_t did; /* Dataset ID */
hid_t sid, mid; /* Dataspace IDs */
hid_t dcpl; /* Dataset creation property list ID */
hsize_t dims[1], maxdims[1], dimsm[1]; /* Dataset dimension sizes */
hsize_t chunk_dims[1]; /* Chunk dimension size */
hsize_t offset[1]; /* Starting offset for hyperslab */
hsize_t stride[1]; /* Distance between blocks in the hyperslab selection */
hsize_t count[1]; /* # of blocks in the the hyperslab selection */
hsize_t block[1]; /* Size of block in the hyperslab selection */
unsigned int wdata[CHUNKSZ]; /* Data to be written */
unsigned int rdata[NUM_ELEMENTS / 10]; /* Data to be read */
herr_t ret; /* Generic return value */
unsigned i; /* Local index variable */
/* Output message about test being performed */
MESSAGE(6, ("Testing Hyperslab I/O for 1-d single block memory space\n"));
for (i = 0; i < CHUNKSZ; i++)
wdata[i] = i;
/* Create the file file */
fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid, H5I_INVALID_HID, "H5Fcreate");
/* Create file dataspace */
dims[0] = CHUNKSZ;
maxdims[0] = H5S_UNLIMITED;
sid = H5Screate_simple(RANK, dims, maxdims);
CHECK(sid, H5I_INVALID_HID, "H5Pcreate");
/* Create memory dataspace */
dimsm[0] = CHUNKSZ;
mid = H5Screate_simple(RANK, dimsm, NULL);
CHECK(mid, H5I_INVALID_HID, "H5Pcreate");
/* Set up to create a chunked dataset */
dcpl = H5Pcreate(H5P_DATASET_CREATE);
CHECK(dcpl, H5I_INVALID_HID, "H5Pcreate");
chunk_dims[0] = CHUNKSZ;
ret = H5Pset_chunk(dcpl, RANK, chunk_dims);
CHECK(ret, FAIL, "H5Pset_chunk");
/* Create a chunked dataset */
did = H5Dcreate2(fid, DNAME, H5T_NATIVE_INT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT);
CHECK(did, H5I_INVALID_HID, "H5Dcreate2");
/* Set up hyperslab selection for file dataspace */
offset[0] = 0;
stride[0] = 1;
count[0] = 1;
block[0] = CHUNKSZ;
/* Write to each chunk in the dataset */
for (i = 0; i < NUMCHUNKS; i++) {
/* Set the hyperslab selection */
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Write to the dataset */
ret = H5Dwrite(did, H5T_NATIVE_INT, mid, sid, H5P_DEFAULT, wdata);
CHECK(ret, FAIL, "H5Dwrite");
/* Extend the dataset's dataspace */
if (i < (NUMCHUNKS - 1)) {
offset[0] = offset[0] + CHUNKSZ;
dims[0] = dims[0] + CHUNKSZ;
ret = H5Dset_extent(did, dims);
CHECK(ret, FAIL, "H5Dset_extent");
/* Get the dataset's current dataspace */
sid = H5Dget_space(did);
CHECK(sid, H5I_INVALID_HID, "H5Dget_space");
}
}
/* Closing */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(mid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Dclose(did);
CHECK(ret, FAIL, "H5Dclose");
ret = H5Pclose(dcpl);
CHECK(ret, FAIL, "H5Pclose");
ret = H5Fclose(fid);
CHECK(ret, FAIL, "H5Fclose");
/* Open the file */
fid = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT);
CHECK(fid, H5I_INVALID_HID, "H5Fopen");
/* Open the dataset */
did = H5Dopen2(fid, DNAME, H5P_DEFAULT);
CHECK(did, H5I_INVALID_HID, "H5Dopen");
/* Set up to read every 10th element in file dataspace */
offset[0] = 1;
stride[0] = 10;
count[0] = NUM_ELEMENTS / 10;
block[0] = 1;
/* Get the dataset's dataspace */
sid = H5Dget_space(did);
CHECK(sid, H5I_INVALID_HID, "H5Dget_space");
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Set up contiguous memory dataspace for the selected elements */
dimsm[0] = count[0];
mid = H5Screate_simple(RANK, dimsm, NULL);
CHECK(mid, H5I_INVALID_HID, "H5Screate_simple");
/* Read all the selected 10th elements in the dataset into "rdata" */
ret = H5Dread(did, H5T_NATIVE_INT, mid, sid, H5P_DEFAULT, rdata);
CHECK(ret, FAIL, "H5Dread");
/* Verify data read is correct */
for (i = 0; i < 6; i += 2) {
VERIFY(rdata[i], 1, "H5Dread\n");
VERIFY(rdata[i + 1], 11, "H5Dread\n");
}
/* Closing */
ret = H5Sclose(mid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Dclose(did);
CHECK(ret, FAIL, "H5Dclose");
ret = H5Fclose(fid);
CHECK(ret, FAIL, "H5Fclose");
} /* test_hyper_io_1d() */
/****************************************************************
**
** test_h5s_set_extent_none:
** Test to verify the behavior of dataspace code when passed
** a dataspace modified by H5Sset_extent_none().
**
****************************************************************/
static void
test_h5s_set_extent_none(void)
{
hid_t sid = H5I_INVALID_HID;
hid_t dst_sid = H5I_INVALID_HID;
hid_t null_sid = H5I_INVALID_HID;
int rank = 1;
hsize_t current_dims = 123;
H5S_class_t cls;
int out_rank;
hsize_t out_dims;
hsize_t out_maxdims;
hssize_t out_points;
htri_t equal;
herr_t ret;
/* Specific values here don't matter as we're just going to reset */
sid = H5Screate_simple(rank, &current_dims, NULL);
CHECK(sid, H5I_INVALID_HID, "H5Screate_simple");
/* Dataspace class will be H5S_NULL after this.
* In versions prior to 1.10.7 / 1.12.1 this would produce a
* dataspace with the internal H5S_NO_CLASS class.
*/
ret = H5Sset_extent_none(sid);
CHECK(ret, FAIL, "H5Sset_extent_none");
cls = H5Sget_simple_extent_type(sid);
VERIFY(cls, H5S_NULL, "H5Sget_simple_extent_type");
/* Extent getters should generate normal results and not segfault.
*/
out_rank = H5Sget_simple_extent_dims(sid, &out_dims, &out_maxdims);
VERIFY(out_rank, 0, "H5Sget_simple_extent_dims");
out_rank = H5Sget_simple_extent_ndims(sid);
VERIFY(out_rank, 0, "H5Sget_simple_extent_ndims");
out_points = H5Sget_simple_extent_npoints(sid);
VERIFY(out_points, 0, "H5Sget_simple_extent_npoints");
/* Check that copying the new (non-)extent works.
*/
dst_sid = H5Screate_simple(rank, &current_dims, NULL);
CHECK(dst_sid, H5I_INVALID_HID, "H5Screate_simple");
ret = H5Sextent_copy(dst_sid, sid);
CHECK(ret, FAIL, "H5Sextent_copy");
/* Check that H5Sset_extent_none() produces the same extent as
* H5Screate(H5S_NULL).
*/
null_sid = H5Screate(H5S_NULL);
CHECK(null_sid, H5I_INVALID_HID, "H5Screate");
equal = H5Sextent_equal(sid, null_sid);
VERIFY(equal, TRUE, "H5Sextent_equal");
/* Close */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(dst_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(null_sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_h5s_set_extent_none() */
/****************************************************************
**
** test_select(): Main H5S selection testing routine.
**
****************************************************************/
void
test_select(void)
{
hid_t plist_id; /* Property list for reading random hyperslabs */
hid_t fapl; /* Property list accessing the file */
int mdc_nelmts; /* Metadata number of elements */
size_t rdcc_nelmts; /* Raw data number of elements */
size_t rdcc_nbytes; /* Raw data number of bytes */
double rdcc_w0; /* Raw data write percentage */
hssize_t offset[SPACE7_RANK] = {1, 1}; /* Offset for testing selection offsets */
const char *env_h5_drvr; /* File Driver value from environment */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Selections\n"));
/* Get the VFD to use */
env_h5_drvr = HDgetenv(HDF5_DRIVER);
if (env_h5_drvr == NULL)
env_h5_drvr = "nomatch";
/* Create a dataset transfer property list */
plist_id = H5Pcreate(H5P_DATASET_XFER);
CHECK(plist_id, FAIL, "H5Pcreate");
/* test I/O with a very small buffer for reads */
ret = H5Pset_buffer(plist_id, (size_t)59, NULL, NULL);
CHECK(ret, FAIL, "H5Pset_buffer");
/* These next tests use the same file */
test_select_hyper(H5P_DEFAULT); /* Test basic H5S hyperslab selection code */
test_select_hyper(plist_id); /* Test basic H5S hyperslab selection code */
test_select_point(H5P_DEFAULT); /* Test basic H5S element selection code, also tests appending to existing
element selections */
test_select_point(plist_id); /* Test basic H5S element selection code, also tests appending to existing
element selections */
test_select_all(H5P_DEFAULT); /* Test basic all & none selection code */
test_select_all(plist_id); /* Test basic all & none selection code */
test_select_all_hyper(H5P_DEFAULT); /* Test basic all & none selection code */
test_select_all_hyper(plist_id); /* Test basic all & none selection code */
/* These next tests use the same file */
test_select_combo(); /* Test combined hyperslab & element selection code */
test_select_hyper_stride(H5P_DEFAULT); /* Test strided hyperslab selection code */
test_select_hyper_stride(plist_id); /* Test strided hyperslab selection code */
test_select_hyper_contig(H5T_STD_U16LE, H5P_DEFAULT); /* Test contiguous hyperslab selection code */
test_select_hyper_contig(H5T_STD_U16LE, plist_id); /* Test contiguous hyperslab selection code */
test_select_hyper_contig(H5T_STD_U16BE, H5P_DEFAULT); /* Test contiguous hyperslab selection code */
test_select_hyper_contig(H5T_STD_U16BE, plist_id); /* Test contiguous hyperslab selection code */
test_select_hyper_contig2(H5T_STD_U16LE,
H5P_DEFAULT); /* Test more contiguous hyperslab selection cases */
test_select_hyper_contig2(H5T_STD_U16LE, plist_id); /* Test more contiguous hyperslab selection cases */
test_select_hyper_contig2(H5T_STD_U16BE,
H5P_DEFAULT); /* Test more contiguous hyperslab selection cases */
test_select_hyper_contig2(H5T_STD_U16BE, plist_id); /* Test more contiguous hyperslab selection cases */
test_select_hyper_contig3(H5T_STD_U16LE,
H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */
test_select_hyper_contig3(H5T_STD_U16LE,
plist_id); /* Test yet more contiguous hyperslab selection cases */
test_select_hyper_contig3(H5T_STD_U16BE,
H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */
test_select_hyper_contig3(H5T_STD_U16BE,
plist_id); /* Test yet more contiguous hyperslab selection cases */
#if 0
test_select_hyper_contig_dr(H5T_STD_U16LE, H5P_DEFAULT);
test_select_hyper_contig_dr(H5T_STD_U16LE, plist_id);
test_select_hyper_contig_dr(H5T_STD_U16BE, H5P_DEFAULT);
test_select_hyper_contig_dr(H5T_STD_U16BE, plist_id);
#else
printf("** SKIPPED a test due to file creation issues\n");
#endif
#if 0
test_select_hyper_checker_board_dr(H5T_STD_U16LE, H5P_DEFAULT);
test_select_hyper_checker_board_dr(H5T_STD_U16LE, plist_id);
test_select_hyper_checker_board_dr(H5T_STD_U16BE, H5P_DEFAULT);
test_select_hyper_checker_board_dr(H5T_STD_U16BE, plist_id);
#else
printf("** SKIPPED a test due to assertion in HDF5\n");
#endif
test_select_hyper_copy(); /* Test hyperslab selection copying code */
test_select_point_copy(); /* Test point selection copying code */
test_select_hyper_offset(); /* Test selection offset code with hyperslabs */
test_select_hyper_offset2(); /* Test more selection offset code with hyperslabs */
test_select_point_offset(); /* Test selection offset code with elements */
test_select_hyper_union(); /* Test hyperslab union code */
/* Fancy hyperslab API tests */
test_select_hyper_union_stagger(); /* Test hyperslab union code for staggered slabs */
test_select_hyper_union_3d(); /* Test hyperslab union code for 3-D dataset */
test_select_hyper_valid_combination(); /* Test different input combinations */
/* The following tests are currently broken with the Direct VFD */
if (HDstrcmp(env_h5_drvr, "direct") != 0) {
test_select_hyper_and_2d(); /* Test hyperslab intersection (AND) code for 2-D dataset */
test_select_hyper_xor_2d(); /* Test hyperslab XOR code for 2-D dataset */
test_select_hyper_notb_2d(); /* Test hyperslab NOTB code for 2-D dataset */
test_select_hyper_nota_2d(); /* Test hyperslab NOTA code for 2-D dataset */
}
/* test the random hyperslab I/O with the default property list for reading */
test_select_hyper_union_random_5d(H5P_DEFAULT); /* Test hyperslab union code for random 5-D hyperslabs */
/* test random hyperslab I/O with a small buffer for reads */
test_select_hyper_union_random_5d(plist_id); /* Test hyperslab union code for random 5-D hyperslabs */
/* Create a dataset transfer property list */
fapl = H5Pcreate(H5P_FILE_ACCESS);
CHECK(fapl, FAIL, "H5Pcreate");
/* Get the default file access properties for caching */
ret = H5Pget_cache(fapl, &mdc_nelmts, &rdcc_nelmts, &rdcc_nbytes, &rdcc_w0);
CHECK(ret, FAIL, "H5Pget_cache");
/* Increase the size of the raw data cache */
rdcc_nbytes = 10 * 1024 * 1024;
/* Set the file access properties for caching */
ret = H5Pset_cache(fapl, mdc_nelmts, rdcc_nelmts, rdcc_nbytes, rdcc_w0);
CHECK(ret, FAIL, "H5Pset_cache");
/* Test reading in a large hyperslab with a chunked dataset */
test_select_hyper_chunk(fapl, H5P_DEFAULT);
/* Test reading in a large hyperslab with a chunked dataset a small amount at a time */
test_select_hyper_chunk(fapl, plist_id);
/* Close file access property list */
ret = H5Pclose(fapl);
CHECK(ret, FAIL, "H5Pclose");
/* Close dataset transfer property list */
ret = H5Pclose(plist_id);
CHECK(ret, FAIL, "H5Pclose");
/* More tests for checking validity of selections */
test_select_valid();
/* Tests for combining "all" and "none" selections with hyperslabs */
test_select_combine();
/* Test filling selections */
/* (Also tests iterating through each selection */
test_select_fill_all();
test_select_fill_point(NULL);
test_select_fill_point(offset);
test_select_fill_hyper_simple(NULL);
test_select_fill_hyper_simple(offset);
test_select_fill_hyper_regular(NULL);
test_select_fill_hyper_regular(offset);
test_select_fill_hyper_irregular(NULL);
test_select_fill_hyper_irregular(offset);
/* Test 0-sized selections */
test_select_none();
/* Test selections on scalar dataspaces */
test_scalar_select();
test_scalar_select2();
test_scalar_select3();
/* Test "same shape" routine */
test_shape_same();
/* Test "same shape" routine for selections of different rank */
test_shape_same_dr();
/* Test "re-build" routine */
test_space_rebuild();
/* Test "update diminfo" routine */
test_space_update_diminfo();
/* Test point selections in chunked datasets */
test_select_point_chunk();
/* Test scalar dataspaces in chunked datasets */
test_select_scalar_chunk();
#if 0
/* Test using selection offset on hyperslab in chunked dataset */
test_select_hyper_chunk_offset();
test_select_hyper_chunk_offset2();
#else
printf("** SKIPPED a test due to assertion in HDF5\n");
#endif
/* Test selection bounds with & without offsets */
test_select_bounds();
/* Test 'regular' hyperslab query routines */
test_hyper_regular();
/* Test unlimited hyperslab selections */
test_hyper_unlim();
/* Test the consistency of internal data structures of selection */
test_internal_consistency();
/* Test irregular selection I/O */
test_irreg_io();
/* Test selection iterators */
test_sel_iter();
/* Test selection intersection with block */
test_select_intersect_block();
/* Test reading of 1-d disjoint file space to 1-d single block memory space */
test_hyper_io_1d();
/* Test H5Sset_extent_none() functionality after we updated it to set
* the class to H5S_NULL instead of H5S_NO_CLASS.
*/
test_h5s_set_extent_none();
} /* test_select() */
/*-------------------------------------------------------------------------
* Function: cleanup_select
*
* Purpose: Cleanup temporary test files
*
* Return: none
*
*-------------------------------------------------------------------------
*/
void
cleanup_select(void)
{
H5Fdelete(FILENAME, H5P_DEFAULT);
}