hdf5/src/H5Fprivate.h
Quincey Koziol 057cbbf96c [svn-r2736] Purpose:
Code optimization
Description:
    Minor tweaks throughout the optimized regular hyperslab code to increase
    speed.  This set of improvements increase the benchmark time from taking
    ~5.46 seconds to ~4.50 seconds, or around a 20% further speedup.
Platforms tested:
    Solaris 2.6 (baldric)
2000-10-25 13:54:24 -05:00

369 lines
14 KiB
C

/****************************************************************************
* NCSA HDF *
* Software Development Group *
* National Center for Supercomputing Applications *
* University of Illinois at Urbana-Champaign *
* 605 E. Springfield, Champaign IL 61820 *
* *
* For conditions of distribution and use, see the accompanying *
* hdf/COPYING file. *
* *
****************************************************************************/
/* $Id$ */
/*
* This file contains macros & information for file access
*/
#ifndef _H5Fprivate_H
#define _H5Fprivate_H
#include <H5Fpublic.h>
/* This is a near top-level header! Try not to include much! */
#include <H5FDpublic.h> /*file drivers */
typedef struct H5F_t H5F_t;
/*
* Encode and decode macros for file meta-data.
* Currently, all file meta-data is little-endian.
*/
/* For non-little-endian platforms, encode each byte by itself */
#ifdef WORDS_BIGENDIAN
# define INT16ENCODE(p, i) { \
*(p) = (uint8_t)( (uintn)(i) & 0xff); (p)++; \
*(p) = (uint8_t)(((uintn)(i) >> 8) & 0xff); (p)++; \
}
# define UINT16ENCODE(p, i) { \
*(p) = (uint8_t)( (i) & 0xff); (p)++; \
*(p) = (uint8_t)(((uintn)(i) >> 8) & 0xff); (p)++; \
}
# define INT32ENCODE(p, i) { \
*(p) = (uint8_t)( (uint32_t)(i) & 0xff); (p)++; \
*(p) = (uint8_t)(((uint32_t)(i) >> 8) & 0xff); (p)++; \
*(p) = (uint8_t)(((uint32_t)(i) >> 16) & 0xff); (p)++; \
*(p) = (uint8_t)(((uint32_t)(i) >> 24) & 0xff); (p)++; \
}
# define UINT32ENCODE(p, i) { \
*(p) = (uint8_t)( (i) & 0xff); (p)++; \
*(p) = (uint8_t)(((i) >> 8) & 0xff); (p)++; \
*(p) = (uint8_t)(((i) >> 16) & 0xff); (p)++; \
*(p) = (uint8_t)(((i) >> 24) & 0xff); (p)++; \
}
# define INT64ENCODE(p, n) { \
int64_t _n = (n); \
size_t _i; \
uint8_t *_p = (uint8_t*)(p); \
for (_i=0; _i<sizeof(int64_t); _i++, _n>>=8) { \
*_p++ = (uint8_t)(_n & 0xff); \
} \
for (/*void*/; _i<8; _i++) { \
*_p++ = (n)<0 ? 0xff : 0; \
} \
(p) = (uint8_t*)(p)+8; \
}
# define UINT64ENCODE(p, n) { \
uint64_t _n = (n); \
size_t _i; \
uint8_t *_p = (uint8_t*)(p); \
for (_i=0; _i<sizeof(uint64_t); _i++, _n>>=8) { \
*_p++ = (uint8_t)(_n & 0xff); \
} \
for (/*void*/; _i<8; _i++) { \
*_p++ = 0; \
} \
(p) = (uint8_t*)(p)+8; \
}
/* DECODE converts little endian bytes pointed by p to integer values and store
* it in i. For signed values, need to do sign-extension when converting
* the last byte which carries the sign bit.
* The macros does not require i be of a certain byte sizes. It just requires
* i be big enough to hold the intended value range. E.g. INT16DECODE works
* correctly even if i is actually a 64bit int like in a Cray.
*/
# define INT16DECODE(p, i) { \
(i) = (int16_t)((*(p) & 0xff)); (p)++; \
(i) |= (int16_t)(((*(p) & 0xff) << 8) | \
((*(p) & 0x80) ? ~0xffff : 0x0)); (p)++; \
}
# define UINT16DECODE(p, i) { \
(i) = (uint16_t) (*(p) & 0xff); (p)++; \
(i) |= (uint16_t)((*(p) & 0xff) << 8); (p)++; \
}
# define INT32DECODE(p, i) { \
(i) = ( *(p) & 0xff); (p)++; \
(i) |= ((int32_t)(*(p) & 0xff) << 8); (p)++; \
(i) |= ((int32_t)(*(p) & 0xff) << 16); (p)++; \
(i) |= ((int32_t)(((*(p) & 0xff) << 24) | \
((*(p) & 0x80) ? ~0xffffffff : 0x0))); (p)++; \
}
# define UINT32DECODE(p, i) { \
(i) = (uint32_t)(*(p) & 0xff); (p)++; \
(i) |= ((uint32_t)(*(p) & 0xff) << 8); (p)++; \
(i) |= ((uint32_t)(*(p) & 0xff) << 16); (p)++; \
(i) |= ((uint32_t)(*(p) & 0xff) << 24); (p)++; \
}
# define INT64DECODE(p, n) { \
/* WE DON'T CHECK FOR OVERFLOW! */ \
size_t _i; \
n = 0; \
(p) += 8; \
for (_i=0; _i<sizeof(int64_t); _i++) { \
n = (n<<8) | *(--p); \
} \
(p) += 8; \
}
# define UINT64DECODE(p, n) { \
/* WE DON'T CHECK FOR OVERFLOW! */ \
size_t _i; \
n = 0; \
(p) += 8; \
for (_i=0; _i<sizeof(uint64_t); _i++) { \
n = (n<<8) | *(--p); \
} \
(p) += 8; \
}
#else
/* For little-endian platforms, make the compiler do the work */
# define INT16ENCODE(p, i) {*((int16_t*)(p))=(int16_t)(i);(p)+=2;}
# define UINT16ENCODE(p, i) {*((uint16_t*)(p))=(uint16_t)(i);(p)+=2;}
# define INT32ENCODE(p, i) {*((int32_t*)(p))=(int32_t)(i);(p)+=4;}
# define UINT32ENCODE(p, i) {*((uint32_t*)(p))=(uint32_t)(i);(p)+=4;}
# define INT64ENCODE(p, i) { \
*((int64_t *)(p)) = (int64_t)(i); \
(p) += sizeof(int64_t); \
if (4==sizeof(int64_t)) { \
*(p)++ = (i)<0?0xff:0x00; \
*(p)++ = (i)<0?0xff:0x00; \
*(p)++ = (i)<0?0xff:0x00; \
*(p)++ = (i)<0?0xff:0x00; \
} \
}
# define UINT64ENCODE(p, i) { \
*((uint64_t *)(p)) = (uint64_t)(i); \
(p) += sizeof(uint64_t); \
if (4==sizeof(uint64_t)) { \
*(p)++ = 0x00; \
*(p)++ = 0x00; \
*(p)++ = 0x00; \
*(p)++ = 0x00; \
} \
}
# define INT16DECODE(p, i) {(i)=(int16_t)(*(const int16_t*)(p));(p)+=2;}
# define UINT16DECODE(p, i) {(i)=(uint16_t)(*(const uint16_t*)(p));(p)+=2;}
# define INT32DECODE(p, i) {(i)=(int32_t)(*(const int32_t*)(p));(p)+=4;}
# define UINT32DECODE(p, i) {(i)=(uint32_t)(*(const uint32_t*)(p));(p)+=4;}
# define INT64DECODE(p, i) {(i)=(int64_t)(*(const int64_t*)(p));(p)+=8;}
# define UINT64DECODE(p, i) {(i)=(uint64_t)(*(const uint64_t*)(p));(p)+=8;}
#endif
#define NBYTEENCODE(d, s, n) { HDmemcpy(d,s,n); p+=n }
/*
* Note: the NBYTEDECODE macro is backwards from the memcpy() routine, in
* the spirit of the other DECODE macros.
*/
#define NBYTEDECODE(s, d, n) { HDmemcpy(d,s,n); p+=n }
/* Address-related macros */
#define H5F_addr_overflow(X,Z) (HADDR_UNDEF==(X) || \
HADDR_UNDEF==(X)+(haddr_t)(Z) || \
(X)+(haddr_t)(Z)<(X))
#define H5F_addr_hash(X,M) ((unsigned)((X)%(M)))
#define H5F_addr_defined(X) (X!=HADDR_UNDEF)
#define H5F_addr_eq(X,Y) ((X)!=HADDR_UNDEF && \
(Y)!=HADDR_UNDEF && \
(X)==(Y))
#define H5F_addr_ne(X,Y) (!H5F_addr_eq((X),(Y)))
#define H5F_addr_lt(X,Y) ((X)!=HADDR_UNDEF && \
(Y)!=HADDR_UNDEF && \
(X)<(Y))
#define H5F_addr_le(X,Y) ((X)!=HADDR_UNDEF && \
(Y)!=HADDR_UNDEF && \
(X)<=(Y))
#define H5F_addr_gt(X,Y) ((X)!=HADDR_UNDEF && \
(Y)!=HADDR_UNDEF && \
(X)>(Y))
#define H5F_addr_ge(X,Y) ((X)!=HADDR_UNDEF && \
(Y)!=HADDR_UNDEF && \
(X)>=(Y))
#define H5F_addr_cmp(X,Y) (H5F_addr_eq(X,Y)?0: \
(H5F_addr_lt(X, Y)?-1:1))
#define H5F_addr_pow2(N) ((haddr_t)1<<(N))
/* size of size_t and off_t as they exist on disk */
#ifdef H5F_PACKAGE
#define H5F_SIZEOF_ADDR(F) ((F)->shared->fcpl->sizeof_addr)
#define H5F_SIZEOF_SIZE(F) ((F)->shared->fcpl->sizeof_size)
#else /* H5F_PACKAGE */
#define H5F_SIZEOF_ADDR(F) (H5F_sizeof_addr(F))
#define H5F_SIZEOF_SIZE(F) (H5F_sizeof_size(F))
#endif /* H5F_PACKAGE */
__DLL__ size_t H5F_sizeof_addr(H5F_t *f);
__DLL__ size_t H5F_sizeof_size(H5F_t *f);
/* Macros to encode/decode offset/length's for storing in the file */
#ifdef NOT_YET
#define H5F_ENCODE_OFFSET(f,p,o) (H5F_SIZEOF_ADDR(f)==4 ? UINT32ENCODE(p,o) \
: H5F_SIZEOF_ADDR(f)==8 ? UINT64ENCODE(p,o) \
: H5F_SIZEOF_ADDR(f)==2 ? UINT16ENCODE(p,o) \
: H5FPencode_unusual_offset(f,&(p),(uint8_t*)&(o)))
#else /* NOT_YET */
#define H5F_ENCODE_OFFSET(f,p,o) switch(H5F_SIZEOF_ADDR(f)) { \
case 4: UINT32ENCODE(p,o); break; \
case 8: UINT64ENCODE(p,o); break; \
case 2: UINT16ENCODE(p,o); break; \
}
#endif /* NOT_YET */
#define H5F_DECODE_OFFSET(f,p,o) switch (H5F_SIZEOF_ADDR (f)) { \
case 4: UINT32DECODE (p, o); break; \
case 8: UINT64DECODE (p, o); break; \
case 2: UINT16DECODE (p, o); break; \
}
#define H5F_ENCODE_LENGTH(f,p,l) switch(H5F_SIZEOF_SIZE(f)) { \
case 4: UINT32ENCODE(p,l); break; \
case 8: UINT64ENCODE(p,l); break; \
case 2: UINT16ENCODE(p,l); break; \
}
#define H5F_DECODE_LENGTH(f,p,l) switch(H5F_SIZEOF_SIZE(f)) { \
case 4: UINT32DECODE(p,l); break; \
case 8: UINT64DECODE(p,l); break; \
case 2: UINT16DECODE(p,l); break; \
}
/*
* File-creation property list.
*/
typedef struct H5F_create_t {
hsize_t userblock_size; /* Size of the file user block in bytes */
intn sym_leaf_k; /* 1/2 rank for symbol table leaf nodes */
intn btree_k[8]; /* 1/2 rank for btree internal nodes */
size_t sizeof_addr; /* Number of bytes in an address */
size_t sizeof_size; /* Number of bytes for obj sizes */
intn bootblock_ver; /* Version # of the bootblock */
intn freespace_ver; /* Version # of the free-space information*/
intn objectdir_ver; /* Version # of the object directory format*/
intn sharedheader_ver;/* Version # of the shared header format */
} H5F_create_t;
/*
* File-access property list.
*/
typedef struct H5F_access_t {
intn mdc_nelmts; /* Size of meta data cache (elements) */
intn rdcc_nelmts; /* Size of raw data chunk cache (elmts) */
size_t rdcc_nbytes; /* Size of raw data chunk cache (bytes) */
double rdcc_w0; /* Preempt read chunks first? [0.0..1.0]*/
hsize_t threshold; /* Threshold for alignment */
hsize_t alignment; /* Alignment */
size_t meta_block_size; /* Minimum metadata allocation block size (when aggregating metadata allocations) */
hsize_t sieve_buf_size; /* Maximum sieve buffer size (when data sieving is allowed by file driver) */
uintn gc_ref; /* Garbage-collect references? */
hid_t driver_id; /* File driver ID */
void *driver_info; /* File driver specific information */
} H5F_access_t;
/* Mount property list */
typedef struct H5F_mprop_t {
hbool_t local; /* Are absolute symlinks local to file? */
} H5F_mprop_t;
/* library variables */
__DLLVAR__ const H5F_create_t H5F_create_dflt;
__DLLVAR__ H5F_access_t H5F_access_dflt;
__DLLVAR__ const H5F_mprop_t H5F_mount_dflt;
/* Forward declarations for prototypes arguments */
struct H5O_layout_t;
struct H5O_efl_t;
struct H5O_pline_t;
struct H5O_fill_t;
struct H5G_entry_t;
struct H5S_t;
/* Private functions, not part of the publicly documented API */
__DLL__ herr_t H5F_init(void);
__DLL__ uintn H5F_get_intent(H5F_t *f);
__DLL__ hid_t H5F_get_driver_id(H5F_t *f);
/* Functions that operate on array storage */
__DLL__ herr_t H5F_arr_create(H5F_t *f,
struct H5O_layout_t *layout /*in,out*/);
__DLL__ herr_t H5F_arr_read (H5F_t *f, hid_t dxpl_id,
const struct H5O_layout_t *layout,
const struct H5O_pline_t *pline,
const struct H5O_fill_t *fill,
const struct H5O_efl_t *efl,
const hsize_t _hslab_size[],
const hsize_t mem_size[],
const hssize_t mem_offset[],
const hssize_t file_offset[], void *_buf/*out*/);
__DLL__ herr_t H5F_arr_write (H5F_t *f, hid_t dxpl_id,
const struct H5O_layout_t *layout,
const struct H5O_pline_t *pline,
const struct H5O_fill_t *fill,
const struct H5O_efl_t *efl,
const hsize_t _hslab_size[],
const hsize_t mem_size[],
const hssize_t mem_offset[],
const hssize_t file_offset[], const void *_buf);
/* Functions that operate on blocks of bytes wrt boot block */
__DLL__ herr_t H5F_block_read(H5F_t *f, H5FD_mem_t type, haddr_t addr, hsize_t size,
hid_t dxpl_id, void *buf/*out*/);
__DLL__ herr_t H5F_block_write(H5F_t *f, H5FD_mem_t type, haddr_t addr,
hsize_t size, hid_t dxpl_id, const void *buf);
/* Functions that operate on byte sequences */
__DLL__ herr_t H5F_seq_read(H5F_t *f, hid_t dxpl_id,
const struct H5O_layout_t *layout, const struct H5O_pline_t *pline,
const struct H5O_fill_t *fill, const struct H5O_efl_t *efl,
const struct H5S_t *file_space, size_t elmt_size, hsize_t seq_len,
hssize_t file_offset, void *_buf/*out*/);
__DLL__ herr_t H5F_seq_write (H5F_t *f, hid_t dxpl_id,
const struct H5O_layout_t *layout, const struct H5O_pline_t *pline,
const struct H5O_fill_t *fill, const struct H5O_efl_t *efl,
const struct H5S_t *file_space, size_t elmt_size, hsize_t seq_len,
hssize_t file_offset, const void *_buf);
/* Functions that operate on indexed storage */
__DLL__ hsize_t H5F_istore_allocated(H5F_t *f, int ndims, haddr_t addr);
__DLL__ herr_t H5F_istore_dump_btree(H5F_t *f, FILE *stream, int ndims,
haddr_t addr);
/* Functions for allocation/releasing chunks */
__DLL__ void * H5F_istore_chunk_free(void *chunk);
/* Address-related functions */
__DLL__ void H5F_addr_encode(H5F_t *, uint8_t**/*in,out*/, haddr_t);
__DLL__ void H5F_addr_decode(H5F_t *, const uint8_t**/*in,out*/,
haddr_t*/*out*/);
__DLL__ herr_t H5F_addr_pack(H5F_t UNUSED *f, haddr_t *addr_p/*out*/,
const unsigned long objno[2]);
#endif