hdf5/src/H5Dchunk.c
vchoi-hdfgroup ed31aaca79
Implement selection vector I/O with collective chunk filling (#3826)
* Changes for ECP-344: Implement selection vector I/O with collective chunk filling.
Also fix a bug in H5FD__mpio_write_vector() to account for fixed size optimization
when computing max address.

* Fixes based on PR review comments:
For H5Dchunk.c: fix H5MM_xfree()
For H5FDmpio.c:
1) Revert the fix to H5FD__mpio_write_vector()
2) Apply the patch from Neil on the proper length of s_sizes reported by H5FD__mpio_vector_build_types()

* Put back the logic of dividing up the work among all the mpi ranks similar to the
original H5D__chunk_collective_fill() routine.

* Add a test to verify the fix for the illegal reference problem in H5FD__mpio_write_vector().
2023-11-16 10:12:45 -06:00

8288 lines
363 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* Purpose: Abstract indexed (chunked) I/O functions. The logical
* multi-dimensional dataspace is regularly partitioned into
* same-sized "chunks", the first of which is aligned with the
* logical origin. The chunks are indexed by different methods,
* that map a chunk index to disk address. Each chunk can be
* compressed independently and the chunks may move around in the
* file as their storage requirements change.
*
* Cache: Disk I/O is performed in units of chunks and H5MF_alloc()
* contains code to optionally align chunks on disk block
* boundaries for performance.
*
* The chunk cache is an extendible hash indexed by a function
* of storage B-tree address and chunk N-dimensional offset
* within the dataset. Collisions are not resolved -- one of
* the two chunks competing for the hash slot must be preempted
* from the cache. All entries in the hash also participate in
* a doubly-linked list and entries are penalized by moving them
* toward the front of the list. When a new chunk is about to
* be added to the cache the heap is pruned by preempting
* entries near the front of the list to make room for the new
* entry which is added to the end of the list.
*/
/****************/
/* Module Setup */
/****************/
#include "H5Dmodule.h" /* This source code file is part of the H5D module */
/***********/
/* Headers */
/***********/
#include "H5private.h" /* Generic Functions */
#ifdef H5_HAVE_PARALLEL
#include "H5ACprivate.h" /* Metadata cache */
#endif /* H5_HAVE_PARALLEL */
#include "H5CXprivate.h" /* API Contexts */
#include "H5Dpkg.h" /* Dataset functions */
#include "H5Eprivate.h" /* Error handling */
#include "H5Fprivate.h" /* File functions */
#include "H5FLprivate.h" /* Free Lists */
#include "H5Iprivate.h" /* IDs */
#include "H5MMprivate.h" /* Memory management */
#include "H5MFprivate.h" /* File memory management */
#include "H5PBprivate.h" /* Page Buffer */
#include "H5VMprivate.h" /* Vector and array functions */
/****************/
/* Local Macros */
/****************/
/* Macros for iterating over chunks to operate on */
#define H5D_CHUNK_GET_FIRST_NODE(dinfo) \
(dinfo->layout_io_info.chunk_map->use_single \
? (H5SL_node_t *)(1) \
: H5SL_first(dinfo->layout_io_info.chunk_map->dset_sel_pieces))
#define H5D_CHUNK_GET_NODE_INFO(dinfo, node) \
(dinfo->layout_io_info.chunk_map->use_single ? dinfo->layout_io_info.chunk_map->single_piece_info \
: (H5D_piece_info_t *)H5SL_item(node))
#define H5D_CHUNK_GET_NEXT_NODE(dinfo, node) \
(dinfo->layout_io_info.chunk_map->use_single ? (H5SL_node_t *)NULL : H5SL_next(node))
#define H5D_CHUNK_GET_NODE_COUNT(dinfo) \
(dinfo->layout_io_info.chunk_map->use_single \
? (size_t)1 \
: H5SL_count(dinfo->layout_io_info.chunk_map->dset_sel_pieces))
/* Sanity check on chunk index types: commonly used by a lot of routines in this file */
#define H5D_CHUNK_STORAGE_INDEX_CHK(storage) \
do { \
assert((H5D_CHUNK_IDX_EARRAY == (storage)->idx_type && H5D_COPS_EARRAY == (storage)->ops) || \
(H5D_CHUNK_IDX_FARRAY == (storage)->idx_type && H5D_COPS_FARRAY == (storage)->ops) || \
(H5D_CHUNK_IDX_BT2 == (storage)->idx_type && H5D_COPS_BT2 == (storage)->ops) || \
(H5D_CHUNK_IDX_BTREE == (storage)->idx_type && H5D_COPS_BTREE == (storage)->ops) || \
(H5D_CHUNK_IDX_SINGLE == (storage)->idx_type && H5D_COPS_SINGLE == (storage)->ops) || \
(H5D_CHUNK_IDX_NONE == (storage)->idx_type && H5D_COPS_NONE == (storage)->ops)); \
} while (0)
/*
* Feature: If this constant is defined then every cache preemption and load
* causes a character to be printed on the standard error stream:
*
* `.': Entry was preempted because it has been completely read or
* completely written but not partially read and not partially
* written. This is often a good reason for preemption because such
* a chunk will be unlikely to be referenced in the near future.
*
* `:': Entry was preempted because it hasn't been used recently.
*
* `#': Entry was preempted because another chunk collided with it. This
* is usually a relatively bad thing. If there are too many of
* these then the number of entries in the cache can be increased.
*
* c: Entry was preempted because the file is closing.
*
* w: A chunk read operation was eliminated because the library is
* about to write new values to the entire chunk. This is a good
* thing, especially on files where the chunk size is the same as
* the disk block size, chunks are aligned on disk block boundaries,
* and the operating system can also eliminate a read operation.
*/
/*#define H5D_CHUNK_DEBUG */
/* Flags for the "edge_chunk_state" field below */
#define H5D_RDCC_DISABLE_FILTERS 0x01U /* Disable filters on this chunk */
#define H5D_RDCC_NEWLY_DISABLED_FILTERS \
0x02U /* Filters have been disabled since \
* the last flush */
/******************/
/* Local Typedefs */
/******************/
/* Raw data chunks are cached. Each entry in the cache is: */
typedef struct H5D_rdcc_ent_t {
bool locked; /*entry is locked in cache */
bool dirty; /*needs to be written to disk? */
bool deleted; /*chunk about to be deleted */
unsigned edge_chunk_state; /*states related to edge chunks (see above) */
hsize_t scaled[H5O_LAYOUT_NDIMS]; /*scaled chunk 'name' (coordinates) */
uint32_t rd_count; /*bytes remaining to be read */
uint32_t wr_count; /*bytes remaining to be written */
H5F_block_t chunk_block; /*offset/length of chunk in file */
hsize_t chunk_idx; /*index of chunk in dataset */
uint8_t *chunk; /*the unfiltered chunk data */
unsigned idx; /*index in hash table */
struct H5D_rdcc_ent_t *next; /*next item in doubly-linked list */
struct H5D_rdcc_ent_t *prev; /*previous item in doubly-linked list */
struct H5D_rdcc_ent_t *tmp_next; /*next item in temporary doubly-linked list */
struct H5D_rdcc_ent_t *tmp_prev; /*previous item in temporary doubly-linked list */
} H5D_rdcc_ent_t;
typedef H5D_rdcc_ent_t *H5D_rdcc_ent_ptr_t; /* For free lists */
/* Callback info for iteration to prune chunks */
typedef struct H5D_chunk_it_ud1_t {
H5D_chunk_common_ud_t common; /* Common info for B-tree user data (must be first) */
const H5D_chk_idx_info_t *idx_info; /* Chunked index info */
const H5D_io_info_t *io_info; /* I/O info for dataset operation */
const H5D_dset_io_info_t *dset_info; /* Dataset specific I/O info */
const hsize_t *space_dim; /* New dataset dimensions */
const bool *shrunk_dim; /* Dimensions which have been shrunk */
H5S_t *chunk_space; /* Dataspace for a chunk */
uint32_t elmts_per_chunk; /* Elements in chunk */
hsize_t *hyper_start; /* Starting location of hyperslab */
H5D_fill_buf_info_t fb_info; /* Dataset's fill buffer info */
bool fb_info_init; /* Whether the fill value buffer has been initialized */
} H5D_chunk_it_ud1_t;
/* Callback info for iteration to obtain chunk address and the index of the chunk for all chunks in the
* B-tree. */
typedef struct H5D_chunk_it_ud2_t {
/* down */
H5D_chunk_common_ud_t common; /* Common info for B-tree user data (must be first) */
/* up */
haddr_t *chunk_addr; /* Array of chunk addresses to fill in */
} H5D_chunk_it_ud2_t;
/* Callback info for iteration to copy data */
typedef struct H5D_chunk_it_ud3_t {
H5D_chunk_common_ud_t common; /* Common info for B-tree user data (must be first) */
H5F_t *file_src; /* Source file for copy */
H5D_chk_idx_info_t *idx_info_dst; /* Dest. chunk index info object */
void *buf; /* Buffer to hold chunk data for read/write */
void *bkg; /* Buffer for background information during type conversion */
size_t buf_size; /* Buffer size */
bool do_convert; /* Whether to perform type conversions */
/* needed for converting variable-length data */
hid_t tid_src; /* Datatype ID for source datatype */
hid_t tid_dst; /* Datatype ID for destination datatype */
hid_t tid_mem; /* Datatype ID for memory datatype */
const H5T_t *dt_src; /* Source datatype */
H5T_path_t *tpath_src_mem; /* Datatype conversion path from source file to memory */
H5T_path_t *tpath_mem_dst; /* Datatype conversion path from memory to dest. file */
void *reclaim_buf; /* Buffer for reclaiming data */
size_t reclaim_buf_size; /* Reclaim buffer size */
uint32_t nelmts; /* Number of elements in buffer */
H5S_t *buf_space; /* Dataspace describing buffer */
/* needed for compressed variable-length data */
const H5O_pline_t *pline; /* Filter pipeline */
unsigned dset_ndims; /* Number of dimensions in dataset */
const hsize_t *dset_dims; /* Dataset dimensions */
/* needed for copy object pointed by refs */
H5O_copy_t *cpy_info; /* Copy options */
/* needed for getting raw data from chunk cache */
bool chunk_in_cache;
uint8_t *chunk; /* the unfiltered chunk data */
} H5D_chunk_it_ud3_t;
/* Callback info for iteration to dump index */
typedef struct H5D_chunk_it_ud4_t {
FILE *stream; /* Output stream */
bool header_displayed; /* Node's header is displayed? */
unsigned ndims; /* Number of dimensions for chunk/dataset */
uint32_t *chunk_dim; /* Chunk dimensions */
} H5D_chunk_it_ud4_t;
/* Callback info for iteration to format convert chunks */
typedef struct H5D_chunk_it_ud5_t {
H5D_chk_idx_info_t *new_idx_info; /* Dest. chunk index info object */
unsigned dset_ndims; /* Number of dimensions in dataset */
hsize_t *dset_dims; /* Dataset dimensions */
} H5D_chunk_it_ud5_t;
/* Callback info for nonexistent readvv operation */
typedef struct H5D_chunk_readvv_ud_t {
unsigned char *rbuf; /* Read buffer to initialize */
const H5D_t *dset; /* Dataset to operate on */
} H5D_chunk_readvv_ud_t;
/* Typedef for chunk info iterator callback */
typedef struct H5D_chunk_info_iter_ud_t {
hsize_t scaled[H5O_LAYOUT_NDIMS]; /* Logical offset of the chunk */
hsize_t ndims; /* Number of dimensions in the dataset */
uint32_t nbytes; /* Size of stored data in the chunk */
unsigned filter_mask; /* Excluded filters */
haddr_t chunk_addr; /* Address of the chunk in file */
hsize_t chunk_idx; /* Chunk index, where the iteration needs to stop */
hsize_t curr_idx; /* Current index, where the iteration is */
unsigned idx_hint; /* Index of chunk in cache, if present */
bool found; /* Whether the chunk was found */
} H5D_chunk_info_iter_ud_t;
#ifdef H5_HAVE_PARALLEL
/* information to construct a collective I/O operation for filling chunks */
typedef struct H5D_chunk_coll_fill_info_t {
size_t num_chunks; /* Number of chunks in the write operation */
struct chunk_coll_fill_info {
haddr_t addr; /* File address of the chunk */
size_t chunk_size; /* Size of the chunk in the file */
bool unfiltered_partial_chunk;
} * chunk_info;
} H5D_chunk_coll_fill_info_t;
#endif /* H5_HAVE_PARALLEL */
typedef struct H5D_chunk_iter_ud_t {
H5D_chunk_iter_op_t op; /* User defined callback */
void *op_data; /* User data for user defined callback */
H5O_layout_chunk_t *chunk; /* Chunk layout */
} H5D_chunk_iter_ud_t;
/********************/
/* Local Prototypes */
/********************/
/* Chunked layout operation callbacks */
static herr_t H5D__chunk_construct(H5F_t *f, H5D_t *dset);
static herr_t H5D__chunk_init(H5F_t *f, const H5D_t *dset, hid_t dapl_id);
static herr_t H5D__chunk_io_init(H5D_io_info_t *io_info, H5D_dset_io_info_t *dinfo);
static herr_t H5D__chunk_io_init_selections(H5D_io_info_t *io_info, H5D_dset_io_info_t *dinfo);
static herr_t H5D__chunk_mdio_init(H5D_io_info_t *io_info, H5D_dset_io_info_t *dinfo);
static herr_t H5D__chunk_read(H5D_io_info_t *io_info, H5D_dset_io_info_t *dinfo);
static herr_t H5D__chunk_write(H5D_io_info_t *io_info, H5D_dset_io_info_t *dinfo);
static herr_t H5D__chunk_flush(H5D_t *dset);
static herr_t H5D__chunk_io_term(H5D_io_info_t *io_info, H5D_dset_io_info_t *di);
static herr_t H5D__chunk_dest(H5D_t *dset);
/* Chunk query operation callbacks */
static int H5D__get_num_chunks_cb(const H5D_chunk_rec_t *chunk_rec, void *_udata);
static int H5D__get_chunk_info_cb(const H5D_chunk_rec_t *chunk_rec, void *_udata);
static int H5D__get_chunk_info_by_coord_cb(const H5D_chunk_rec_t *chunk_rec, void *_udata);
static int H5D__chunk_iter_cb(const H5D_chunk_rec_t *chunk_rec, void *udata);
/* "Nonexistent" layout operation callback */
static ssize_t H5D__nonexistent_readvv(const H5D_io_info_t *io_info, const H5D_dset_io_info_t *dset_info,
size_t chunk_max_nseq, size_t *chunk_curr_seq, size_t chunk_len_arr[],
hsize_t chunk_offset_arr[], size_t mem_max_nseq, size_t *mem_curr_seq,
size_t mem_len_arr[], hsize_t mem_offset_arr[]);
/* Format convert cb */
static int H5D__chunk_format_convert_cb(const H5D_chunk_rec_t *chunk_rec, void *_udata);
/* Helper routines */
static herr_t H5D__chunk_set_info_real(H5O_layout_chunk_t *layout, unsigned ndims, const hsize_t *curr_dims,
const hsize_t *max_dims);
static herr_t H5D__chunk_cinfo_cache_reset(H5D_chunk_cached_t *last);
static herr_t H5D__chunk_cinfo_cache_update(H5D_chunk_cached_t *last, const H5D_chunk_ud_t *udata);
static bool H5D__chunk_cinfo_cache_found(const H5D_chunk_cached_t *last, H5D_chunk_ud_t *udata);
static herr_t H5D__create_piece_map_single(H5D_dset_io_info_t *di, H5D_io_info_t *io_info);
static herr_t H5D__create_piece_file_map_all(H5D_dset_io_info_t *di, H5D_io_info_t *io_info);
static herr_t H5D__create_piece_file_map_hyper(H5D_dset_io_info_t *di, H5D_io_info_t *io_info);
static herr_t H5D__create_piece_mem_map_1d(const H5D_dset_io_info_t *di);
static herr_t H5D__create_piece_mem_map_hyper(const H5D_dset_io_info_t *di);
static herr_t H5D__piece_file_cb(void *elem, const H5T_t *type, unsigned ndims, const hsize_t *coords,
void *_opdata);
static herr_t H5D__piece_mem_cb(void *elem, const H5T_t *type, unsigned ndims, const hsize_t *coords,
void *_opdata);
static herr_t H5D__chunk_may_use_select_io(H5D_io_info_t *io_info, const H5D_dset_io_info_t *dset_info);
static unsigned H5D__chunk_hash_val(const H5D_shared_t *shared, const hsize_t *scaled);
static herr_t H5D__chunk_flush_entry(const H5D_t *dset, H5D_rdcc_ent_t *ent, bool reset);
static herr_t H5D__chunk_cache_evict(const H5D_t *dset, H5D_rdcc_ent_t *ent, bool flush);
static void *H5D__chunk_lock(const H5D_io_info_t *io_info, const H5D_dset_io_info_t *dset_info,
H5D_chunk_ud_t *udata, bool relax, bool prev_unfilt_chunk);
static herr_t H5D__chunk_unlock(const H5D_io_info_t *io_info, const H5D_dset_io_info_t *dset_info,
const H5D_chunk_ud_t *udata, bool dirty, void *chunk, uint32_t naccessed);
static herr_t H5D__chunk_cache_prune(const H5D_t *dset, size_t size);
static herr_t H5D__chunk_prune_fill(H5D_chunk_it_ud1_t *udata, bool new_unfilt_chunk);
#ifdef H5_HAVE_PARALLEL
static herr_t H5D__chunk_collective_fill(const H5D_t *dset, H5D_chunk_coll_fill_info_t *chunk_fill_info,
const void *fill_buf, const void *partial_chunk_fill_buf);
static int H5D__chunk_cmp_coll_fill_info(const void *_entry1, const void *_entry2);
#endif /* H5_HAVE_PARALLEL */
/* Debugging helper routine callback */
static int H5D__chunk_dump_index_cb(const H5D_chunk_rec_t *chunk_rec, void *_udata);
/*********************/
/* Package Variables */
/*********************/
/* Chunked storage layout I/O ops */
const H5D_layout_ops_t H5D_LOPS_CHUNK[1] = {{
H5D__chunk_construct, /* construct */
H5D__chunk_init, /* init */
H5D__chunk_is_space_alloc, /* is_space_alloc */
H5D__chunk_is_data_cached, /* is_data_cached */
H5D__chunk_io_init, /* io_init */
H5D__chunk_mdio_init, /* mdio_init */
H5D__chunk_read, /* ser_read */
H5D__chunk_write, /* ser_write */
NULL, /* readvv */
NULL, /* writevv */
H5D__chunk_flush, /* flush */
H5D__chunk_io_term, /* io_term */
H5D__chunk_dest /* dest */
}};
/*******************/
/* Local Variables */
/*******************/
/* "nonexistent" storage layout I/O ops */
static const H5D_layout_ops_t H5D_LOPS_NONEXISTENT[1] = {
{NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, H5D__nonexistent_readvv, NULL, NULL, NULL, NULL}};
/* Declare a free list to manage the H5F_rdcc_ent_ptr_t sequence information */
H5FL_SEQ_DEFINE_STATIC(H5D_rdcc_ent_ptr_t);
/* Declare a free list to manage H5D_rdcc_ent_t objects */
H5FL_DEFINE_STATIC(H5D_rdcc_ent_t);
/* Declare a free list to manage the H5D_chunk_info_t struct */
H5FL_DEFINE_STATIC(H5D_chunk_map_t);
/* Declare a free list to manage the H5D_piece_info_t struct */
H5FL_DEFINE(H5D_piece_info_t);
/* Declare a free list to manage the chunk sequence information */
H5FL_BLK_DEFINE_STATIC(chunk);
/* Declare extern free list to manage the H5S_sel_iter_t struct */
H5FL_EXTERN(H5S_sel_iter_t);
/*-------------------------------------------------------------------------
* Function: H5D__chunk_direct_write
*
* Purpose: Internal routine to write a chunk directly into the file.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_direct_write(H5D_t *dset, uint32_t filters, hsize_t *offset, uint32_t data_size, const void *buf)
{
const H5O_layout_t *layout = &(dset->shared->layout); /* Dataset layout */
H5D_chunk_ud_t udata; /* User data for querying chunk info */
H5F_block_t old_chunk; /* Offset/length of old chunk */
H5D_chk_idx_info_t idx_info; /* Chunked index info */
hsize_t scaled[H5S_MAX_RANK]; /* Scaled coordinates for this chunk */
bool need_insert = false; /* Whether the chunk needs to be inserted into the index */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE_TAG(dset->oloc.addr)
/* Sanity checks */
assert(layout->type == H5D_CHUNKED);
/* Allocate dataspace and initialize it if it hasn't been. */
if (!H5D__chunk_is_space_alloc(&layout->storage))
if (H5D__alloc_storage(dset, H5D_ALLOC_WRITE, false, NULL) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to initialize storage");
/* Calculate the index of this chunk */
H5VM_chunk_scaled(dset->shared->ndims, offset, layout->u.chunk.dim, scaled);
scaled[dset->shared->ndims] = 0;
/* Find out the file address of the chunk (if any) */
if (H5D__chunk_lookup(dset, scaled, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "error looking up chunk address");
/* Sanity check */
assert((H5_addr_defined(udata.chunk_block.offset) && udata.chunk_block.length > 0) ||
(!H5_addr_defined(udata.chunk_block.offset) && udata.chunk_block.length == 0));
/* Set the file block information for the old chunk */
/* (Which is only defined when overwriting an existing chunk) */
old_chunk.offset = udata.chunk_block.offset;
old_chunk.length = udata.chunk_block.length;
/* Check if the chunk needs to be inserted (it also could exist already
* and the chunk allocate operation could resize it)
*/
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &(dset->shared->dcpl_cache.pline);
idx_info.layout = &(dset->shared->layout.u.chunk);
idx_info.storage = &(dset->shared->layout.storage.u.chunk);
/* Set up the size of chunk for user data */
udata.chunk_block.length = data_size;
if (0 == idx_info.pline->nused && H5_addr_defined(old_chunk.offset))
/* If there are no filters and we are overwriting the chunk we can just set values */
need_insert = false;
else {
/* Otherwise, create the chunk it if it doesn't exist, or reallocate the chunk
* if its size has changed.
*/
if (H5D__chunk_file_alloc(&idx_info, &old_chunk, &udata.chunk_block, &need_insert, scaled) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "unable to allocate chunk");
/* Cache the new chunk information */
H5D__chunk_cinfo_cache_update(&dset->shared->cache.chunk.last, &udata);
} /* end else */
/* Make sure the address of the chunk is returned. */
if (!H5_addr_defined(udata.chunk_block.offset))
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "chunk address isn't defined");
/* Evict the (old) entry from the cache if present, but do not flush
* it to disk */
if (UINT_MAX != udata.idx_hint) {
const H5D_rdcc_t *rdcc = &(dset->shared->cache.chunk); /*raw data chunk cache */
if (H5D__chunk_cache_evict(dset, rdcc->slot[udata.idx_hint], false) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTREMOVE, FAIL, "unable to evict chunk");
} /* end if */
/* Write the data to the file */
if (H5F_shared_block_write(H5F_SHARED(dset->oloc.file), H5FD_MEM_DRAW, udata.chunk_block.offset,
data_size, buf) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_WRITEERROR, FAIL, "unable to write raw data to file");
/* Insert the chunk record into the index */
if (need_insert && layout->storage.u.chunk.ops->insert) {
/* Set the chunk's filter mask to the new settings */
udata.filter_mask = filters;
if ((layout->storage.u.chunk.ops->insert)(&idx_info, &udata, dset) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINSERT, FAIL, "unable to insert chunk addr into index");
} /* end if */
done:
FUNC_LEAVE_NOAPI_TAG(ret_value)
} /* end H5D__chunk_direct_write() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_direct_read
*
* Purpose: Internal routine to read a chunk directly from the file.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_direct_read(const H5D_t *dset, hsize_t *offset, uint32_t *filters, void *buf)
{
const H5O_layout_t *layout = &(dset->shared->layout); /* Dataset layout */
const H5D_rdcc_t *rdcc = &(dset->shared->cache.chunk); /* raw data chunk cache */
H5D_chunk_ud_t udata; /* User data for querying chunk info */
hsize_t scaled[H5S_MAX_RANK]; /* Scaled coordinates for this chunk */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE_TAG(dset->oloc.addr)
/* Check args */
assert(dset && H5D_CHUNKED == layout->type);
assert(offset);
assert(filters);
assert(buf);
*filters = 0;
/* Allocate dataspace and initialize it if it hasn't been. */
if (!H5D__chunk_is_space_alloc(&layout->storage) && !H5D__chunk_is_data_cached(dset->shared))
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "storage is not initialized");
/* Calculate the index of this chunk */
H5VM_chunk_scaled(dset->shared->ndims, offset, layout->u.chunk.dim, scaled);
scaled[dset->shared->ndims] = 0;
/* Reset fields about the chunk we are looking for */
udata.filter_mask = 0;
udata.chunk_block.offset = HADDR_UNDEF;
udata.chunk_block.length = 0;
udata.idx_hint = UINT_MAX;
/* Find out the file address of the chunk */
if (H5D__chunk_lookup(dset, scaled, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "error looking up chunk address");
/* Sanity check */
assert((H5_addr_defined(udata.chunk_block.offset) && udata.chunk_block.length > 0) ||
(!H5_addr_defined(udata.chunk_block.offset) && udata.chunk_block.length == 0));
/* Check if the requested chunk exists in the chunk cache */
if (UINT_MAX != udata.idx_hint) {
H5D_rdcc_ent_t *ent = rdcc->slot[udata.idx_hint];
bool flush;
/* Sanity checks */
assert(udata.idx_hint < rdcc->nslots);
assert(rdcc->slot[udata.idx_hint]);
flush = (ent->dirty == true) ? true : false;
/* Flush the chunk to disk and clear the cache entry */
if (H5D__chunk_cache_evict(dset, rdcc->slot[udata.idx_hint], flush) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTREMOVE, FAIL, "unable to evict chunk");
/* Reset fields about the chunk we are looking for */
udata.filter_mask = 0;
udata.chunk_block.offset = HADDR_UNDEF;
udata.chunk_block.length = 0;
udata.idx_hint = UINT_MAX;
/* Get the new file address / chunk size after flushing */
if (H5D__chunk_lookup(dset, scaled, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "error looking up chunk address");
}
/* Make sure the address of the chunk is returned. */
if (!H5_addr_defined(udata.chunk_block.offset))
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "chunk address isn't defined");
/* Read the chunk data into the supplied buffer */
if (H5F_shared_block_read(H5F_SHARED(dset->oloc.file), H5FD_MEM_DRAW, udata.chunk_block.offset,
udata.chunk_block.length, buf) < 0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "unable to read raw data chunk");
/* Return the filter mask */
*filters = udata.filter_mask;
done:
FUNC_LEAVE_NOAPI_TAG(ret_value)
} /* end H5D__chunk_direct_read() */
/*-------------------------------------------------------------------------
* Function: H5D__get_chunk_storage_size
*
* Purpose: Internal routine to read the storage size of a chunk on disk.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__get_chunk_storage_size(H5D_t *dset, const hsize_t *offset, hsize_t *storage_size)
{
const H5O_layout_t *layout = &(dset->shared->layout); /* Dataset layout */
const H5D_rdcc_t *rdcc = &(dset->shared->cache.chunk); /* raw data chunk cache */
hsize_t scaled[H5S_MAX_RANK]; /* Scaled coordinates for this chunk */
H5D_chunk_ud_t udata; /* User data for querying chunk info */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE_TAG(dset->oloc.addr)
/* Check args */
assert(dset && H5D_CHUNKED == layout->type);
assert(offset);
assert(storage_size);
/* Allocate dataspace and initialize it if it hasn't been. */
if (!(*layout->ops->is_space_alloc)(&layout->storage))
HGOTO_DONE(SUCCEED);
/* Calculate the index of this chunk */
H5VM_chunk_scaled(dset->shared->ndims, offset, layout->u.chunk.dim, scaled);
scaled[dset->shared->ndims] = 0;
/* Reset fields about the chunk we are looking for */
udata.chunk_block.offset = HADDR_UNDEF;
udata.chunk_block.length = 0;
udata.idx_hint = UINT_MAX;
/* Find out the file address of the chunk */
if (H5D__chunk_lookup(dset, scaled, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "error looking up chunk address");
/* Sanity check */
assert((H5_addr_defined(udata.chunk_block.offset) && udata.chunk_block.length > 0) ||
(!H5_addr_defined(udata.chunk_block.offset) && udata.chunk_block.length == 0));
/* The requested chunk is not in cache or on disk */
if (!H5_addr_defined(udata.chunk_block.offset) && UINT_MAX == udata.idx_hint)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "chunk storage is not allocated");
/* Check if there are filters registered to the dataset */
if (dset->shared->dcpl_cache.pline.nused > 0) {
/* Check if the requested chunk exists in the chunk cache */
if (UINT_MAX != udata.idx_hint) {
H5D_rdcc_ent_t *ent = rdcc->slot[udata.idx_hint];
/* Sanity checks */
assert(udata.idx_hint < rdcc->nslots);
assert(rdcc->slot[udata.idx_hint]);
/* If the cached chunk is dirty, it must be flushed to get accurate size */
if (ent->dirty == true) {
/* Flush the chunk to disk and clear the cache entry */
if (H5D__chunk_cache_evict(dset, rdcc->slot[udata.idx_hint], true) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTREMOVE, FAIL, "unable to evict chunk");
/* Reset fields about the chunk we are looking for */
udata.chunk_block.offset = HADDR_UNDEF;
udata.chunk_block.length = 0;
udata.idx_hint = UINT_MAX;
/* Get the new file address / chunk size after flushing */
if (H5D__chunk_lookup(dset, scaled, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "error looking up chunk address");
}
}
/* Make sure the address of the chunk is returned. */
if (!H5_addr_defined(udata.chunk_block.offset))
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "chunk address isn't defined");
/* Return the chunk size on disk */
*storage_size = udata.chunk_block.length;
}
/* There are no filters registered, return the chunk size from the storage layout */
else
*storage_size = dset->shared->layout.u.chunk.size;
done:
FUNC_LEAVE_NOAPI_TAG(ret_value)
} /* H5D__get_chunk_storage_size */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_set_info_real
*
* Purpose: Internal routine to set the information about chunks for a dataset
*
* Return: SUCCEED/FAIL
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_set_info_real(H5O_layout_chunk_t *layout, unsigned ndims, const hsize_t *curr_dims,
const hsize_t *max_dims)
{
herr_t ret_value = SUCCEED;
FUNC_ENTER_PACKAGE
assert(layout);
assert(curr_dims);
/* Can happen when corrupt files are parsed */
if (ndims == 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "number of dimensions cannot be zero");
/* Compute the # of chunks in dataset dimensions */
layout->nchunks = 1;
layout->max_nchunks = 1;
for (unsigned u = 0; u < ndims; u++) {
/* Round up to the next integer # of chunks, to accommodate partial chunks */
layout->chunks[u] = ((curr_dims[u] + layout->dim[u]) - 1) / layout->dim[u];
if (H5S_UNLIMITED == max_dims[u])
layout->max_chunks[u] = H5S_UNLIMITED;
else {
/* Sanity check */
if (layout->dim[u] == 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "dimension size must be > 0, dim = %u ", u);
layout->max_chunks[u] = ((max_dims[u] + layout->dim[u]) - 1) / layout->dim[u];
}
/* Accumulate the # of chunks */
layout->nchunks *= layout->chunks[u];
layout->max_nchunks *= layout->max_chunks[u];
}
/* Get the "down" sizes for each dimension */
H5VM_array_down(ndims, layout->chunks, layout->down_chunks);
H5VM_array_down(ndims, layout->max_chunks, layout->max_down_chunks);
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_set_info_real() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_set_info
*
* Purpose: Sets the information about chunks for a dataset
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_set_info(const H5D_t *dset)
{
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity checks */
assert(dset);
/* Set the base layout information */
if (H5D__chunk_set_info_real(&dset->shared->layout.u.chunk, dset->shared->ndims, dset->shared->curr_dims,
dset->shared->max_dims) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSET, FAIL, "can't set layout's chunk info");
/* Call the index's "resize" callback */
if (dset->shared->layout.storage.u.chunk.ops->resize &&
(dset->shared->layout.storage.u.chunk.ops->resize)(&dset->shared->layout.u.chunk) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSET, FAIL, "unable to resize chunk index information");
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_set_info() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_set_sizes
*
* Purpose: Sets chunk and type sizes.
*
* Return: SUCCEED/FAIL
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_set_sizes(H5D_t *dset)
{
uint64_t chunk_size; /* Size of chunk in bytes */
unsigned max_enc_bytes_per_dim; /* Max. number of bytes required to encode this dimension */
unsigned u; /* Iterator */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(FAIL)
/* Sanity checks */
assert(dset);
/* Increment # of chunk dimensions, to account for datatype size as last element */
dset->shared->layout.u.chunk.ndims++;
/* Set the last dimension of the chunk size to the size of the datatype */
dset->shared->layout.u.chunk.dim[dset->shared->layout.u.chunk.ndims - 1] =
(uint32_t)H5T_GET_SIZE(dset->shared->type);
/* Compute number of bytes to use for encoding chunk dimensions */
max_enc_bytes_per_dim = 0;
for (u = 0; u < (unsigned)dset->shared->layout.u.chunk.ndims; u++) {
unsigned enc_bytes_per_dim; /* Number of bytes required to encode this dimension */
/* Get encoded size of dim, in bytes */
enc_bytes_per_dim = (H5VM_log2_gen(dset->shared->layout.u.chunk.dim[u]) + 8) / 8;
/* Check if this is the largest value so far */
if (enc_bytes_per_dim > max_enc_bytes_per_dim)
max_enc_bytes_per_dim = enc_bytes_per_dim;
} /* end for */
assert(max_enc_bytes_per_dim > 0 && max_enc_bytes_per_dim <= 8);
dset->shared->layout.u.chunk.enc_bytes_per_dim = max_enc_bytes_per_dim;
/* Compute and store the total size of a chunk */
/* (Use 64-bit value to ensure that we can detect >4GB chunks) */
for (u = 1, chunk_size = (uint64_t)dset->shared->layout.u.chunk.dim[0];
u < dset->shared->layout.u.chunk.ndims; u++)
chunk_size *= (uint64_t)dset->shared->layout.u.chunk.dim[u];
/* Check for chunk larger than can be represented in 32-bits */
/* (Chunk size is encoded in 32-bit value in v1 B-tree records) */
if (chunk_size > (uint64_t)0xffffffff)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "chunk size must be < 4GB");
H5_CHECKED_ASSIGN(dset->shared->layout.u.chunk.size, uint32_t, chunk_size, uint64_t);
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_set_sizes */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_construct
*
* Purpose: Constructs new chunked layout information for dataset
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_construct(H5F_t H5_ATTR_UNUSED *f, H5D_t *dset)
{
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity checks */
assert(f);
assert(dset);
/* Check for invalid chunk dimension rank */
if (0 == dset->shared->layout.u.chunk.ndims)
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "no chunk information set?");
if (dset->shared->layout.u.chunk.ndims != dset->shared->ndims)
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "dimensionality of chunks doesn't match the dataspace");
/* Set chunk sizes */
if (H5D__chunk_set_sizes(dset) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "unable to set chunk sizes");
assert((unsigned)(dset->shared->layout.u.chunk.ndims) <= NELMTS(dset->shared->layout.u.chunk.dim));
/* Chunked storage is not compatible with external storage (currently) */
if (dset->shared->dcpl_cache.efl.nused > 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "external storage not supported with chunked layout");
/* Sanity check dimensions */
for (u = 0; u < dset->shared->layout.u.chunk.ndims - 1; u++) {
/* Don't allow zero-sized chunk dimensions */
if (0 == dset->shared->layout.u.chunk.dim[u])
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "chunk size must be > 0, dim = %u ", u);
/*
* The chunk size of a dimension with a fixed size cannot exceed
* the maximum dimension size. If any dimension size is zero, there
* will be no such restriction.
*/
if (dset->shared->curr_dims[u] && dset->shared->max_dims[u] != H5S_UNLIMITED &&
dset->shared->max_dims[u] < dset->shared->layout.u.chunk.dim[u])
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL,
"chunk size must be <= maximum dimension size for fixed-sized dimensions");
} /* end for */
/* Reset address and pointer of the array struct for the chunked storage index */
if (H5D_chunk_idx_reset(&dset->shared->layout.storage.u.chunk, true) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to reset chunked storage index");
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_construct() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_init
*
* Purpose: Initialize the raw data chunk cache for a dataset. This is
* called when the dataset is initialized.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_init(H5F_t *f, const H5D_t *const dset, hid_t dapl_id)
{
H5D_chk_idx_info_t idx_info; /* Chunked index info */
H5D_rdcc_t *rdcc = &(dset->shared->cache.chunk); /* Convenience pointer to dataset's chunk cache */
H5P_genplist_t *dapl; /* Data access property list object pointer */
H5O_storage_chunk_t *sc = &(dset->shared->layout.storage.u.chunk);
bool idx_init = false;
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity check */
assert(f);
assert(dset);
H5D_CHUNK_STORAGE_INDEX_CHK(sc);
if (NULL == (dapl = (H5P_genplist_t *)H5I_object(dapl_id)))
HGOTO_ERROR(H5E_ID, H5E_BADID, FAIL, "can't find object for fapl ID");
/* Use the properties in dapl_id if they have been set, otherwise use the properties from the file */
if (H5P_get(dapl, H5D_ACS_DATA_CACHE_NUM_SLOTS_NAME, &rdcc->nslots) < 0)
HGOTO_ERROR(H5E_PLIST, H5E_CANTGET, FAIL, "can't get data cache number of slots");
if (rdcc->nslots == H5D_CHUNK_CACHE_NSLOTS_DEFAULT)
rdcc->nslots = H5F_RDCC_NSLOTS(f);
if (H5P_get(dapl, H5D_ACS_DATA_CACHE_BYTE_SIZE_NAME, &rdcc->nbytes_max) < 0)
HGOTO_ERROR(H5E_PLIST, H5E_CANTGET, FAIL, "can't get data cache byte size");
if (rdcc->nbytes_max == H5D_CHUNK_CACHE_NBYTES_DEFAULT)
rdcc->nbytes_max = H5F_RDCC_NBYTES(f);
if (H5P_get(dapl, H5D_ACS_PREEMPT_READ_CHUNKS_NAME, &rdcc->w0) < 0)
HGOTO_ERROR(H5E_PLIST, H5E_CANTGET, FAIL, "can't get preempt read chunks");
if (rdcc->w0 < 0)
rdcc->w0 = H5F_RDCC_W0(f);
/* If nbytes_max or nslots is 0, set them both to 0 and avoid allocating space */
if (!rdcc->nbytes_max || !rdcc->nslots)
rdcc->nbytes_max = rdcc->nslots = 0;
else {
rdcc->slot = H5FL_SEQ_CALLOC(H5D_rdcc_ent_ptr_t, rdcc->nslots);
if (NULL == rdcc->slot)
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed");
/* Reset any cached chunk info for this dataset */
H5D__chunk_cinfo_cache_reset(&(rdcc->last));
} /* end else */
/* Compute scaled dimension info, if dataset dims > 1 */
if (dset->shared->ndims > 1) {
unsigned u; /* Local index value */
for (u = 0; u < dset->shared->ndims; u++) {
hsize_t scaled_power2up; /* Scaled value, rounded to next power of 2 */
/* Initial scaled dimension sizes */
if (dset->shared->layout.u.chunk.dim[u] == 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "chunk size must be > 0, dim = %u ", u);
/* Round up to the next integer # of chunks, to accommodate partial chunks */
rdcc->scaled_dims[u] = (dset->shared->curr_dims[u] + dset->shared->layout.u.chunk.dim[u] - 1) /
dset->shared->layout.u.chunk.dim[u];
if (!(scaled_power2up = H5VM_power2up(rdcc->scaled_dims[u])))
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "unable to get the next power of 2");
/* Initial 'power2up' values for scaled dimensions */
rdcc->scaled_power2up[u] = scaled_power2up;
/* Number of bits required to encode scaled dimension size */
rdcc->scaled_encode_bits[u] = H5VM_log2_gen(rdcc->scaled_power2up[u]);
} /* end for */
} /* end if */
/* Compose chunked index info struct */
idx_info.f = f;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &dset->shared->layout.u.chunk;
idx_info.storage = sc;
/* Allocate any indexing structures */
if (sc->ops->init && (sc->ops->init)(&idx_info, dset->shared->space, dset->oloc.addr) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "can't initialize indexing information");
idx_init = true;
/* Set the number of chunks in dataset, etc. */
if (H5D__chunk_set_info(dset) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to set # of chunks for dataset");
done:
if (FAIL == ret_value) {
if (rdcc->slot)
rdcc->slot = H5FL_SEQ_FREE(H5D_rdcc_ent_ptr_t, rdcc->slot);
if (idx_init && sc->ops->dest && (sc->ops->dest)(&idx_info) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTFREE, FAIL, "unable to release chunk index info");
}
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_init() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_is_space_alloc
*
* Purpose: Query if space is allocated for layout
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
bool
H5D__chunk_is_space_alloc(const H5O_storage_t *storage)
{
const H5O_storage_chunk_t *sc = &(storage->u.chunk);
bool ret_value = false; /* Return value */
FUNC_ENTER_PACKAGE_NOERR
/* Sanity checks */
assert(storage);
H5D_CHUNK_STORAGE_INDEX_CHK(sc);
/* Query index layer */
ret_value = (sc->ops->is_space_alloc)(sc);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_is_space_alloc() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_is_data_cached
*
* Purpose: Query if raw data is cached for dataset
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
bool
H5D__chunk_is_data_cached(const H5D_shared_t *shared_dset)
{
FUNC_ENTER_PACKAGE_NOERR
/* Sanity checks */
assert(shared_dset);
FUNC_LEAVE_NOAPI(shared_dset->cache.chunk.nused > 0)
} /* end H5D__chunk_is_data_cached() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_io_init
*
* Purpose: Performs initialization before any sort of I/O on the raw data
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_io_init(H5D_io_info_t *io_info, H5D_dset_io_info_t *dinfo)
{
const H5D_t *dataset = dinfo->dset; /* Local pointer to dataset info */
H5D_chunk_map_t *fm; /* Convenience pointer to chunk map */
hssize_t old_offset[H5O_LAYOUT_NDIMS]; /* Old selection offset */
htri_t file_space_normalized = false; /* File dataspace was normalized */
unsigned f_ndims; /* The number of dimensions of the file's dataspace */
int sm_ndims; /* The number of dimensions of the memory buffer's dataspace (signed) */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Allocate chunk map */
if (NULL == (dinfo->layout_io_info.chunk_map = H5FL_MALLOC(H5D_chunk_map_t)))
HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "unable to allocate chunk map");
fm = dinfo->layout_io_info.chunk_map;
/* Get layout for dataset */
dinfo->layout = &(dataset->shared->layout);
/* Initialize "last chunk" information */
fm->last_index = (hsize_t)-1;
fm->last_piece_info = NULL;
/* Clear other fields */
fm->mchunk_tmpl = NULL;
fm->dset_sel_pieces = NULL;
fm->single_space = NULL;
fm->single_piece_info = NULL;
/* Check if the memory space is scalar & make equivalent memory space */
if ((sm_ndims = H5S_GET_EXTENT_NDIMS(dinfo->mem_space)) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get dimension number");
/* Set the number of dimensions for the memory dataspace */
H5_CHECKED_ASSIGN(fm->m_ndims, unsigned, sm_ndims, int);
/* Get rank for file dataspace */
fm->f_ndims = f_ndims = dataset->shared->layout.u.chunk.ndims - 1;
/* Normalize hyperslab selections by adjusting them by the offset */
/* (It might be worthwhile to normalize both the file and memory dataspaces
* before any (contiguous, chunked, etc) file I/O operation, in order to
* speed up hyperslab calculations by removing the extra checks and/or
* additions involving the offset and the hyperslab selection -QAK)
*/
if ((file_space_normalized = H5S_hyper_normalize_offset(dinfo->file_space, old_offset)) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSET, FAIL, "unable to normalize selection");
/* Decide the number of chunks in each dimension */
for (u = 0; u < f_ndims; u++)
/* Keep the size of the chunk dimensions as hsize_t for various routines */
fm->chunk_dim[u] = dinfo->layout->u.chunk.dim[u];
if (H5D__chunk_io_init_selections(io_info, dinfo) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to create file and memory chunk selections");
/* Check if we're performing selection I/O and save the result if it hasn't
* been disabled already */
if (io_info->use_select_io != H5D_SELECTION_IO_MODE_OFF)
if (H5D__chunk_may_use_select_io(io_info, dinfo) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't check if selection I/O is possible");
/* Calculate type conversion buffer size if necessary. Currently only implemented for selection I/O. */
if (io_info->use_select_io != H5D_SELECTION_IO_MODE_OFF &&
!(dinfo->type_info.is_xform_noop && dinfo->type_info.is_conv_noop)) {
H5SL_node_t *chunk_node; /* Current node in chunk skip list */
/* Iterate through nodes in chunk skip list */
chunk_node = H5D_CHUNK_GET_FIRST_NODE(dinfo);
while (chunk_node) {
H5D_piece_info_t *piece_info; /* Chunk information */
/* Get the actual chunk information from the skip list node */
piece_info = H5D_CHUNK_GET_NODE_INFO(dinfo, chunk_node);
/* Handle type conversion buffer */
H5D_INIT_PIECE_TCONV(io_info, dinfo, piece_info)
/* Advance to next chunk in list */
chunk_node = H5D_CHUNK_GET_NEXT_NODE(dinfo, chunk_node);
}
}
#ifdef H5_HAVE_PARALLEL
/*
* If collective metadata reads are enabled, ensure all ranks
* have the dataset's chunk index open (if it was created) to
* prevent possible metadata inconsistency issues or unintentional
* independent metadata reads later on.
*/
if (H5F_SHARED_HAS_FEATURE(io_info->f_sh, H5FD_FEAT_HAS_MPI) &&
H5F_shared_get_coll_metadata_reads(io_info->f_sh) &&
H5D__chunk_is_space_alloc(&dataset->shared->layout.storage)) {
H5O_storage_chunk_t *sc = &(dataset->shared->layout.storage.u.chunk);
H5D_chk_idx_info_t idx_info;
bool index_is_open;
idx_info.f = dataset->oloc.file;
idx_info.pline = &dataset->shared->dcpl_cache.pline;
idx_info.layout = &dataset->shared->layout.u.chunk;
idx_info.storage = sc;
assert(sc && sc->ops && sc->ops->is_open);
if (sc->ops->is_open(&idx_info, &index_is_open) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "unable to check if dataset chunk index is open");
if (!index_is_open) {
assert(sc->ops->open);
if (sc->ops->open(&idx_info) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to open dataset chunk index");
}
/*
* Load any other chunk index metadata that we can,
* such as fixed array data blocks, while we know all
* MPI ranks will do so with collective metadata reads
* enabled
*/
if (sc->ops->load_metadata && sc->ops->load_metadata(&idx_info) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to load additional chunk index metadata");
}
#endif
done:
if (file_space_normalized == true)
if (H5S_hyper_denormalize_offset(dinfo->file_space, old_offset) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTSET, FAIL, "can't denormalize selection");
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_io_init() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_io_init_selections
*
* Purpose: Initialize the chunk mappings
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_io_init_selections(H5D_io_info_t *io_info, H5D_dset_io_info_t *dinfo)
{
H5D_chunk_map_t *fm; /* Convenience pointer to chunk map */
const H5D_t *dataset; /* Local pointer to dataset info */
const H5T_t *mem_type; /* Local pointer to memory datatype */
H5S_t *tmp_mspace = NULL; /* Temporary memory dataspace */
H5T_t *file_type = NULL; /* Temporary copy of file datatype for iteration */
bool iter_init = false; /* Selection iteration info has been initialized */
char bogus; /* "bogus" buffer to pass to selection iterator */
H5D_io_info_wrap_t io_info_wrap;
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
assert(io_info);
assert(dinfo);
/* Set convenience pointers */
fm = dinfo->layout_io_info.chunk_map;
assert(fm);
dataset = dinfo->dset;
mem_type = dinfo->type_info.mem_type;
/* Special case for only one element in selection */
/* (usually appending a record) */
if (dinfo->nelmts == 1
#ifdef H5_HAVE_PARALLEL
&& !(io_info->using_mpi_vfd)
#endif /* H5_HAVE_PARALLEL */
&& H5S_SEL_ALL != H5S_GET_SELECT_TYPE(dinfo->file_space)) {
/* Initialize skip list for chunk selections */
fm->use_single = true;
/* Initialize single chunk dataspace */
if (NULL == dataset->shared->cache.chunk.single_space) {
/* Make a copy of the dataspace for the dataset */
if ((dataset->shared->cache.chunk.single_space = H5S_copy(dinfo->file_space, true, false)) ==
NULL)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "unable to copy file space");
/* Resize chunk's dataspace dimensions to size of chunk */
if (H5S_set_extent_real(dataset->shared->cache.chunk.single_space, fm->chunk_dim) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't adjust chunk dimensions");
/* Set the single chunk dataspace to 'all' selection */
if (H5S_select_all(dataset->shared->cache.chunk.single_space, true) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSELECT, FAIL, "unable to set all selection");
} /* end if */
fm->single_space = dataset->shared->cache.chunk.single_space;
assert(fm->single_space);
/* Allocate the single chunk information */
if (NULL == dataset->shared->cache.chunk.single_piece_info)
if (NULL == (dataset->shared->cache.chunk.single_piece_info = H5FL_MALLOC(H5D_piece_info_t)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate chunk info");
fm->single_piece_info = dataset->shared->cache.chunk.single_piece_info;
assert(fm->single_piece_info);
/* Reset chunk template information */
fm->mchunk_tmpl = NULL;
/* Set up chunk mapping for single element */
if (H5D__create_piece_map_single(dinfo, io_info) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL,
"unable to create chunk selections for single element");
} /* end if */
else {
bool sel_hyper_flag; /* Whether file selection is a hyperslab */
/* Initialize skip list for chunk selections */
if (NULL == dataset->shared->cache.chunk.sel_chunks)
if (NULL == (dataset->shared->cache.chunk.sel_chunks = H5SL_create(H5SL_TYPE_HSIZE, NULL)))
HGOTO_ERROR(H5E_DATASET, H5E_CANTCREATE, FAIL, "can't create skip list for chunk selections");
fm->dset_sel_pieces = dataset->shared->cache.chunk.sel_chunks;
assert(fm->dset_sel_pieces);
/* We are not using single element mode */
fm->use_single = false;
/* Get type of selection on disk & in memory */
if ((fm->fsel_type = H5S_GET_SELECT_TYPE(dinfo->file_space)) < H5S_SEL_NONE)
HGOTO_ERROR(H5E_DATASET, H5E_BADSELECT, FAIL, "unable to get type of selection");
if ((fm->msel_type = H5S_GET_SELECT_TYPE(dinfo->mem_space)) < H5S_SEL_NONE)
HGOTO_ERROR(H5E_DATASET, H5E_BADSELECT, FAIL, "unable to get type of selection");
/* If the selection is NONE or POINTS, set the flag to false */
if (fm->fsel_type == H5S_SEL_POINTS || fm->fsel_type == H5S_SEL_NONE)
sel_hyper_flag = false;
else
sel_hyper_flag = true;
/* Check if file selection is a not a hyperslab selection */
if (sel_hyper_flag) {
/* Build the file selection for each chunk */
if (H5S_SEL_ALL == fm->fsel_type) {
if (H5D__create_piece_file_map_all(dinfo, io_info) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to create file chunk selections");
} /* end if */
else {
/* Sanity check */
assert(fm->fsel_type == H5S_SEL_HYPERSLABS);
if (H5D__create_piece_file_map_hyper(dinfo, io_info) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to create file chunk selections");
} /* end else */
} /* end if */
else {
H5S_sel_iter_op_t iter_op; /* Operator for iteration */
/* Create temporary datatypes for selection iteration */
if (NULL == (file_type = H5T_copy(dataset->shared->type, H5T_COPY_ALL)))
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTCOPY, FAIL, "unable to copy file datatype");
/* set opdata for H5D__piece_mem_cb */
io_info_wrap.io_info = io_info;
io_info_wrap.dinfo = dinfo;
iter_op.op_type = H5S_SEL_ITER_OP_LIB;
iter_op.u.lib_op = H5D__piece_file_cb;
/* Spaces might not be the same shape, iterate over the file selection directly */
if (H5S_select_iterate(&bogus, file_type, dinfo->file_space, &iter_op, &io_info_wrap) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to create file chunk selections");
/* Reset "last piece" info */
fm->last_index = (hsize_t)-1;
fm->last_piece_info = NULL;
} /* end else */
/* Build the memory selection for each chunk */
if (sel_hyper_flag && H5S_SELECT_SHAPE_SAME(dinfo->file_space, dinfo->mem_space) == true) {
/* Reset chunk template information */
fm->mchunk_tmpl = NULL;
/* If the selections are the same shape, use the file chunk
* information to generate the memory chunk information quickly.
*/
if (H5D__create_piece_mem_map_hyper(dinfo) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to create memory chunk selections");
} /* end if */
else if (sel_hyper_flag && fm->f_ndims == 1 && fm->m_ndims == 1 &&
H5S_SELECT_IS_REGULAR(dinfo->mem_space) && H5S_SELECT_IS_SINGLE(dinfo->mem_space)) {
if (H5D__create_piece_mem_map_1d(dinfo) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to create file chunk selections");
} /* end else-if */
else {
H5S_sel_iter_op_t iter_op; /* Operator for iteration */
size_t elmt_size; /* Memory datatype size */
/* Make a copy of equivalent memory space */
if ((tmp_mspace = H5S_copy(dinfo->mem_space, true, false)) == NULL)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "unable to copy memory space");
/* De-select the mem space copy */
if (H5S_select_none(tmp_mspace) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to de-select memory space");
/* Save chunk template information */
fm->mchunk_tmpl = tmp_mspace;
/* Create temporary datatypes for selection iteration */
if (!file_type)
if (NULL == (file_type = H5T_copy(dataset->shared->type, H5T_COPY_ALL)))
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTCOPY, FAIL, "unable to copy file datatype");
/* Create selection iterator for memory selection */
if (0 == (elmt_size = H5T_get_size(mem_type)))
HGOTO_ERROR(H5E_DATATYPE, H5E_BADSIZE, FAIL, "datatype size invalid");
if (H5S_select_iter_init(&(fm->mem_iter), dinfo->mem_space, elmt_size, 0) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator");
iter_init = true; /* Selection iteration info has been initialized */
/* set opdata for H5D__piece_mem_cb */
io_info_wrap.io_info = io_info;
io_info_wrap.dinfo = dinfo;
iter_op.op_type = H5S_SEL_ITER_OP_LIB;
iter_op.u.lib_op = H5D__piece_mem_cb;
/* Spaces aren't the same shape, iterate over the memory selection directly */
if (H5S_select_iterate(&bogus, file_type, dinfo->file_space, &iter_op, &io_info_wrap) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to create memory chunk selections");
} /* end else */
} /* end else */
done:
/* Release the [potentially partially built] chunk mapping information if an error occurs */
if (ret_value < 0) {
if (tmp_mspace && !fm->mchunk_tmpl)
if (H5S_close(tmp_mspace) < 0)
HDONE_ERROR(H5E_DATASPACE, H5E_CANTRELEASE, FAIL,
"can't release memory chunk dataspace template");
if (H5D__chunk_io_term(io_info, dinfo) < 0)
HDONE_ERROR(H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release chunk mapping");
} /* end if */
if (iter_init && H5S_SELECT_ITER_RELEASE(&(fm->mem_iter)) < 0)
HDONE_ERROR(H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release selection iterator");
if (file_type && (H5T_close_real(file_type) < 0))
HDONE_ERROR(H5E_DATATYPE, H5E_CANTFREE, FAIL, "Can't free temporary datatype");
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_io_init_selections() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_mem_alloc
*
* Purpose: Allocate space for a chunk in memory. This routine allocates
* memory space for non-filtered chunks from a block free list
* and uses malloc()/free() for filtered chunks.
*
* Return: Pointer to memory for chunk on success/NULL on failure
*
*-------------------------------------------------------------------------
*/
void *
H5D__chunk_mem_alloc(size_t size, void *pline)
{
H5O_pline_t *_pline = (H5O_pline_t *)pline;
void *ret_value = NULL; /* Return value */
FUNC_ENTER_PACKAGE_NOERR
assert(size);
if (_pline && _pline->nused)
ret_value = H5MM_malloc(size);
else
ret_value = H5FL_BLK_MALLOC(chunk, size);
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__chunk_mem_alloc() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_mem_xfree
*
* Purpose: Free space for a chunk in memory. This routine releases
* memory space for non-filtered chunks from a block free list
* and uses malloc()/free() for filtered chunks.
*
* Return: NULL (never fails)
*
*-------------------------------------------------------------------------
*/
void *
H5D__chunk_mem_xfree(void *chk, const void *pline)
{
const H5O_pline_t *_pline = (const H5O_pline_t *)pline;
FUNC_ENTER_PACKAGE_NOERR
if (chk) {
if (_pline && _pline->nused)
H5MM_xfree(chk);
else
chk = H5FL_BLK_FREE(chunk, chk);
} /* end if */
FUNC_LEAVE_NOAPI(NULL)
} /* H5D__chunk_mem_xfree() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_mem_free
*
* Purpose: Wrapper with H5MM_free_t-compatible signature that just
* calls H5D__chunk_mem_xfree and discards the return value.
*-------------------------------------------------------------------------
*/
void
H5D__chunk_mem_free(void *chk, void *pline)
{
(void)H5D__chunk_mem_xfree(chk, pline);
}
/*-------------------------------------------------------------------------
* Function: H5D__chunk_mem_realloc
*
* Purpose: Reallocate space for a chunk in memory. This routine allocates
* memory space for non-filtered chunks from a block free list
* and uses malloc()/free() for filtered chunks.
*
* Return: Pointer to memory for chunk on success/NULL on failure
*
*-------------------------------------------------------------------------
*/
void *
H5D__chunk_mem_realloc(void *chk, size_t size, const H5O_pline_t *pline)
{
void *ret_value = NULL; /* Return value */
FUNC_ENTER_PACKAGE_NOERR
assert(size);
assert(pline);
if (pline->nused > 0)
ret_value = H5MM_realloc(chk, size);
else
ret_value = H5FL_BLK_REALLOC(chunk, chk, size);
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__chunk_mem_realloc() */
/*--------------------------------------------------------------------------
NAME
H5D__free_piece_info
PURPOSE
Performs initialization before any sort of I/O on the raw data
This was derived from H5D__free_chunk_info for multi-dset work.
USAGE
herr_t H5D__free_piece_info(chunk_info, key, opdata)
void *chunk_info; IN: Pointer to chunk info to destroy
void *key; Unused
void *opdata; Unused
RETURNS
Non-negative on success, negative on failure
DESCRIPTION
Releases all the memory for a chunk info node. Called by H5SL_free
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5D__free_piece_info(void *item, void H5_ATTR_UNUSED *key, void H5_ATTR_UNUSED *opdata)
{
H5D_piece_info_t *piece_info = (H5D_piece_info_t *)item;
FUNC_ENTER_PACKAGE_NOERR
assert(piece_info);
/* Close the piece's file dataspace, if it's not shared */
if (!piece_info->fspace_shared)
(void)H5S_close(piece_info->fspace);
else
H5S_select_all(piece_info->fspace, true);
/* Close the piece's memory dataspace, if it's not shared */
if (!piece_info->mspace_shared && piece_info->mspace)
(void)H5S_close((H5S_t *)piece_info->mspace);
/* Free the actual piece info */
piece_info = H5FL_FREE(H5D_piece_info_t, piece_info);
FUNC_LEAVE_NOAPI(0)
} /* H5D__free_piece_info() */
/*-------------------------------------------------------------------------
* Function: H5D__create_piece_map_single
*
* Purpose: Create piece selections when appending a single record
* This was derived from H5D__create_chunk_map_single for
* multi-dset work.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__create_piece_map_single(H5D_dset_io_info_t *di, H5D_io_info_t *io_info)
{
H5D_chunk_map_t *fm; /* Convenience pointer to chunk map */
H5D_piece_info_t *piece_info; /* Piece information to insert into skip list */
hsize_t coords[H5O_LAYOUT_NDIMS]; /* Coordinates of chunk */
hsize_t sel_start[H5O_LAYOUT_NDIMS]; /* Offset of low bound of file selection */
hsize_t sel_end[H5O_LAYOUT_NDIMS]; /* Offset of high bound of file selection */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Set convenience pointer */
fm = di->layout_io_info.chunk_map;
/* Sanity checks */
assert(fm);
assert(fm->f_ndims > 0);
/* Get coordinate for selection */
if (H5S_SELECT_BOUNDS(di->file_space, sel_start, sel_end) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "can't get file selection bound info");
/* Initialize the 'single piece' file & memory piece information */
piece_info = fm->single_piece_info;
piece_info->piece_points = 1;
/* Set chunk location & hyperslab size */
for (u = 0; u < fm->f_ndims; u++) {
/* Validate this chunk dimension */
if (di->layout->u.chunk.dim[u] == 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "chunk size must be > 0, dim = %u ", u);
assert(sel_start[u] == sel_end[u]);
piece_info->scaled[u] = sel_start[u] / di->layout->u.chunk.dim[u];
coords[u] = piece_info->scaled[u] * di->layout->u.chunk.dim[u];
} /* end for */
piece_info->scaled[fm->f_ndims] = 0;
/* Calculate the index of this chunk */
piece_info->index =
H5VM_array_offset_pre(fm->f_ndims, di->layout->u.chunk.down_chunks, piece_info->scaled);
/* Copy selection for file's dataspace into chunk dataspace */
if (H5S_select_copy(fm->single_space, di->file_space, false) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "unable to copy file selection");
/* Move selection back to have correct offset in chunk */
if (H5S_SELECT_ADJUST_U(fm->single_space, coords) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't adjust chunk selection");
/* Set the file dataspace for the chunk to the shared 'single' dataspace */
piece_info->fspace = fm->single_space;
/* Indicate that the chunk's file dataspace is shared */
piece_info->fspace_shared = true;
/* Just point at the memory dataspace & selection */
piece_info->mspace = di->mem_space;
/* Indicate that the chunk's memory dataspace is shared */
piece_info->mspace_shared = true;
/* Initialize in-place type conversion info. Start with it disabled. */
piece_info->in_place_tconv = false;
piece_info->buf_off = 0;
/* Check if chunk is in a dataset with filters applied */
piece_info->filtered_dset = di->dset->shared->dcpl_cache.pline.nused > 0;
/* make connection to related dset info from this piece_info */
piece_info->dset_info = di;
/* Add piece to global piece_count */
io_info->piece_count++;
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__create_piece_map_single() */
/*-------------------------------------------------------------------------
* Function: H5D__create_piece_file_map_all
*
* Purpose: Create all chunk selections in file, for an "all" selection.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__create_piece_file_map_all(H5D_dset_io_info_t *di, H5D_io_info_t *io_info)
{
H5D_chunk_map_t *fm; /* Convenience pointer to chunk map */
H5S_t *tmp_fchunk = NULL; /* Temporary file dataspace */
hsize_t file_dims[H5S_MAX_RANK]; /* File dataspace dims */
hsize_t sel_points; /* Number of elements in file selection */
hsize_t zeros[H5S_MAX_RANK]; /* All zero vector (for start parameter to setting hyperslab on partial
chunks) */
hsize_t coords[H5S_MAX_RANK]; /* Current coordinates of chunk */
hsize_t end[H5S_MAX_RANK]; /* Final coordinates of chunk */
hsize_t scaled[H5S_MAX_RANK]; /* Scaled coordinates for this chunk */
hsize_t chunk_index; /* "Index" of chunk */
hsize_t curr_partial_clip[H5S_MAX_RANK]; /* Current partial dimension sizes to clip against */
hsize_t partial_dim_size[H5S_MAX_RANK]; /* Size of a partial dimension */
bool is_partial_dim[H5S_MAX_RANK]; /* Whether a dimension is currently a partial chunk */
bool filtered_dataset; /* Whether the dataset in question has filters applied */
unsigned num_partial_dims; /* Current number of partial dimensions */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Set convenience pointer */
fm = di->layout_io_info.chunk_map;
/* Sanity checks */
assert(fm);
assert(fm->f_ndims > 0);
/* Get number of elements selected in file */
sel_points = di->nelmts;
/* Get dataspace dimensions */
if (H5S_get_simple_extent_dims(di->file_space, file_dims, NULL) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "can't get file selection bound info");
/* Set initial chunk location, partial dimensions, etc */
num_partial_dims = 0;
memset(zeros, 0, sizeof(zeros));
for (u = 0; u < fm->f_ndims; u++) {
/* Validate this chunk dimension */
if (di->layout->u.chunk.dim[u] == 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "chunk size must be > 0, dim = %u ", u);
/* Set up start / end coordinates for first chunk */
scaled[u] = 0;
coords[u] = 0;
end[u] = fm->chunk_dim[u] - 1;
/* Initialize partial chunk dimension information */
partial_dim_size[u] = file_dims[u] % fm->chunk_dim[u];
if (file_dims[u] < fm->chunk_dim[u]) {
curr_partial_clip[u] = partial_dim_size[u];
is_partial_dim[u] = true;
num_partial_dims++;
} /* end if */
else {
curr_partial_clip[u] = fm->chunk_dim[u];
is_partial_dim[u] = false;
} /* end else */
} /* end for */
/* Set the index of this chunk */
chunk_index = 0;
/* Check whether dataset has filters applied */
filtered_dataset = di->dset->shared->dcpl_cache.pline.nused > 0;
/* Create "temporary" chunk for selection operations (copy file space) */
if (NULL == (tmp_fchunk = H5S_create_simple(fm->f_ndims, fm->chunk_dim, NULL)))
HGOTO_ERROR(H5E_DATASET, H5E_CANTCREATE, FAIL, "unable to create dataspace for chunk");
/* Iterate through each chunk in the dataset */
while (sel_points) {
H5D_piece_info_t *new_piece_info; /* Piece information to insert into skip list */
hsize_t chunk_points; /* Number of elements in chunk selection */
/* Add temporary chunk to the list of pieces */
/* Allocate the file & memory chunk information */
if (NULL == (new_piece_info = H5FL_MALLOC(H5D_piece_info_t)))
HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "can't allocate piece info");
/* Initialize the chunk information */
/* Set the chunk index */
new_piece_info->index = chunk_index;
/* Set the file chunk dataspace */
if (NULL == (new_piece_info->fspace = H5S_copy(tmp_fchunk, true, false)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "unable to copy chunk dataspace");
new_piece_info->fspace_shared = false;
/* If there are partial dimensions for this chunk, set the hyperslab for them */
if (num_partial_dims > 0)
if (H5S_select_hyperslab(new_piece_info->fspace, H5S_SELECT_SET, zeros, NULL, curr_partial_clip,
NULL) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSELECT, FAIL, "can't create chunk selection");
/* Set the memory chunk dataspace */
new_piece_info->mspace = NULL;
new_piece_info->mspace_shared = false;
/* Copy the chunk's scaled coordinates */
H5MM_memcpy(new_piece_info->scaled, scaled, sizeof(hsize_t) * fm->f_ndims);
new_piece_info->scaled[fm->f_ndims] = 0;
/* make connection to related dset info from this piece_info */
new_piece_info->dset_info = di;
/* Initialize in-place type conversion info. Start with it disabled. */
new_piece_info->in_place_tconv = false;
new_piece_info->buf_off = 0;
new_piece_info->filtered_dset = filtered_dataset;
/* Insert the new chunk into the skip list */
if (H5SL_insert(fm->dset_sel_pieces, new_piece_info, &new_piece_info->index) < 0) {
H5D__free_piece_info(new_piece_info, NULL, NULL);
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert chunk into skip list");
} /* end if */
/* Add piece to global piece_count*/
io_info->piece_count++;
/* Get number of elements selected in chunk */
chunk_points = H5S_GET_SELECT_NPOINTS(new_piece_info->fspace);
new_piece_info->piece_points = chunk_points;
/* Decrement # of points left in file selection */
sel_points -= chunk_points;
/* Advance to next chunk if we are not done */
if (sel_points > 0) {
int curr_dim; /* Current dimension to increment */
/* Increment chunk index */
chunk_index++;
/* Set current increment dimension */
curr_dim = (int)fm->f_ndims - 1;
/* Increment chunk location in fastest changing dimension */
coords[curr_dim] += fm->chunk_dim[curr_dim];
scaled[curr_dim]++;
end[curr_dim] += fm->chunk_dim[curr_dim];
/* Bring chunk location back into bounds, if necessary */
if (coords[curr_dim] >= file_dims[curr_dim]) {
do {
/* Reset current dimension's location to 0 */
coords[curr_dim] = 0;
scaled[curr_dim] = 0;
end[curr_dim] = fm->chunk_dim[curr_dim] - 1;
/* Check for previous partial chunk in this dimension */
if (is_partial_dim[curr_dim] && end[curr_dim] < file_dims[curr_dim]) {
/* Sanity check */
assert(num_partial_dims > 0);
/* Reset partial chunk information for this dimension */
curr_partial_clip[curr_dim] = fm->chunk_dim[curr_dim];
is_partial_dim[curr_dim] = false;
num_partial_dims--;
} /* end if */
/* Decrement current dimension */
curr_dim--;
/* Check for valid current dim */
if (curr_dim >= 0) {
/* Increment chunk location in current dimension */
coords[curr_dim] += fm->chunk_dim[curr_dim];
scaled[curr_dim]++;
end[curr_dim] = (coords[curr_dim] + fm->chunk_dim[curr_dim]) - 1;
} /* end if */
} while (curr_dim >= 0 && (coords[curr_dim] >= file_dims[curr_dim]));
} /* end if */
/* Check for valid current dim */
if (curr_dim >= 0) {
/* Check for partial chunk in this dimension */
if (!is_partial_dim[curr_dim] && file_dims[curr_dim] <= end[curr_dim]) {
/* Set partial chunk information for this dimension */
curr_partial_clip[curr_dim] = partial_dim_size[curr_dim];
is_partial_dim[curr_dim] = true;
num_partial_dims++;
/* Sanity check */
assert(num_partial_dims <= fm->f_ndims);
} /* end if */
} /* end if */
} /* end if */
} /* end while */
done:
/* Clean up */
if (tmp_fchunk && H5S_close(tmp_fchunk) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTRELEASE, FAIL, "can't release temporary dataspace");
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__create_chunk_file_map_all() */
/*-------------------------------------------------------------------------
* Function: H5D__create_piece_file_map_hyper
*
* Purpose: Create all chunk selections in file.
* This was derived from H5D__create_chunk_file_map_hyper for
* multi-dset work.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__create_piece_file_map_hyper(H5D_dset_io_info_t *dinfo, H5D_io_info_t *io_info)
{
H5D_chunk_map_t *fm; /* Convenience pointer to chunk map */
H5S_t *tmp_fchunk = NULL; /* Temporary file dataspace */
hsize_t sel_start[H5O_LAYOUT_NDIMS]; /* Offset of low bound of file selection */
hsize_t sel_end[H5O_LAYOUT_NDIMS]; /* Offset of high bound of file selection */
hsize_t sel_points; /* Number of elements in file selection */
hsize_t start_coords[H5O_LAYOUT_NDIMS]; /* Starting coordinates of selection */
hsize_t coords[H5O_LAYOUT_NDIMS]; /* Current coordinates of chunk */
hsize_t end[H5O_LAYOUT_NDIMS]; /* Final coordinates of chunk */
hsize_t chunk_index; /* Index of chunk */
hsize_t start_scaled[H5S_MAX_RANK]; /* Starting scaled coordinates of selection */
hsize_t scaled[H5S_MAX_RANK]; /* Scaled coordinates for this chunk */
bool filtered_dataset; /* Whether the dataset in question has filters applied */
int curr_dim; /* Current dimension to increment */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Set convenience pointer */
fm = dinfo->layout_io_info.chunk_map;
/* Sanity checks */
assert(fm);
assert(fm->f_ndims > 0);
/* Get number of elements selected in file */
sel_points = dinfo->nelmts;
/* Get bounding box for selection (to reduce the number of chunks to iterate over) */
if (H5S_SELECT_BOUNDS(dinfo->file_space, sel_start, sel_end) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "can't get file selection bound info");
/* Set initial chunk location & hyperslab size */
for (u = 0; u < fm->f_ndims; u++) {
/* Validate this chunk dimension */
if (dinfo->layout->u.chunk.dim[u] == 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "chunk size must be > 0, dim = %u ", u);
scaled[u] = start_scaled[u] = sel_start[u] / dinfo->layout->u.chunk.dim[u];
coords[u] = start_coords[u] = scaled[u] * dinfo->layout->u.chunk.dim[u];
end[u] = (coords[u] + fm->chunk_dim[u]) - 1;
} /* end for */
/* Calculate the index of this chunk */
chunk_index = H5VM_array_offset_pre(fm->f_ndims, dinfo->layout->u.chunk.down_chunks, scaled);
/* Check whether dataset has filters applied */
filtered_dataset = dinfo->dset->shared->dcpl_cache.pline.nused > 0;
/* Iterate through each chunk in the dataset */
while (sel_points) {
/* Check for intersection of current chunk and file selection */
if (true == H5S_SELECT_INTERSECT_BLOCK(dinfo->file_space, coords, end)) {
H5D_piece_info_t *new_piece_info; /* chunk information to insert into skip list */
hsize_t chunk_points; /* Number of elements in chunk selection */
/* Create dataspace for chunk, 'AND'ing the overall selection with
* the current chunk.
*/
if (H5S_combine_hyperslab(dinfo->file_space, H5S_SELECT_AND, coords, NULL, fm->chunk_dim, NULL,
&tmp_fchunk) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL,
"unable to combine file space selection with chunk block");
/* Resize chunk's dataspace dimensions to size of chunk */
if (H5S_set_extent_real(tmp_fchunk, fm->chunk_dim) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSELECT, FAIL, "can't adjust chunk dimensions");
/* Move selection back to have correct offset in chunk */
if (H5S_SELECT_ADJUST_U(tmp_fchunk, coords) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSELECT, FAIL, "can't adjust chunk selection");
/* Add temporary chunk to the list of chunks */
/* Allocate the file & memory chunk information */
if (NULL == (new_piece_info = H5FL_MALLOC(H5D_piece_info_t)))
HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "can't allocate chunk info");
/* Initialize the chunk information */
/* Set the chunk index */
new_piece_info->index = chunk_index;
/* Set the file chunk dataspace */
new_piece_info->fspace = tmp_fchunk;
new_piece_info->fspace_shared = false;
tmp_fchunk = NULL;
/* Set the memory chunk dataspace */
new_piece_info->mspace = NULL;
new_piece_info->mspace_shared = false;
/* Copy the chunk's scaled coordinates */
H5MM_memcpy(new_piece_info->scaled, scaled, sizeof(hsize_t) * fm->f_ndims);
new_piece_info->scaled[fm->f_ndims] = 0;
/* make connection to related dset info from this piece_info */
new_piece_info->dset_info = dinfo;
/* Initialize in-place type conversion info. Start with it disabled. */
new_piece_info->in_place_tconv = false;
new_piece_info->buf_off = 0;
new_piece_info->filtered_dset = filtered_dataset;
/* Add piece to global piece_count */
io_info->piece_count++;
/* Insert the new piece into the skip list */
if (H5SL_insert(fm->dset_sel_pieces, new_piece_info, &new_piece_info->index) < 0) {
H5D__free_piece_info(new_piece_info, NULL, NULL);
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert piece into skip list");
} /* end if */
/* Get number of elements selected in chunk */
chunk_points = H5S_GET_SELECT_NPOINTS(new_piece_info->fspace);
new_piece_info->piece_points = chunk_points;
/* Decrement # of points left in file selection */
sel_points -= chunk_points;
/* Leave if we are done */
if (sel_points == 0)
HGOTO_DONE(SUCCEED);
} /* end if */
/* Increment chunk index */
chunk_index++;
/* Set current increment dimension */
curr_dim = (int)fm->f_ndims - 1;
/* Increment chunk location in fastest changing dimension */
coords[curr_dim] += fm->chunk_dim[curr_dim];
end[curr_dim] += fm->chunk_dim[curr_dim];
scaled[curr_dim]++;
/* Bring chunk location back into bounds, if necessary */
if (coords[curr_dim] > sel_end[curr_dim]) {
do {
/* Reset current dimension's location to 0 */
scaled[curr_dim] = start_scaled[curr_dim];
coords[curr_dim] =
start_coords[curr_dim]; /*lint !e771 The start_coords will always be initialized */
end[curr_dim] = (coords[curr_dim] + fm->chunk_dim[curr_dim]) - 1;
/* Decrement current dimension */
curr_dim--;
/* Check for valid current dim */
if (curr_dim >= 0) {
/* Increment chunk location in current dimension */
scaled[curr_dim]++;
coords[curr_dim] += fm->chunk_dim[curr_dim];
end[curr_dim] = (coords[curr_dim] + fm->chunk_dim[curr_dim]) - 1;
} /* end if */
} while (curr_dim >= 0 && (coords[curr_dim] > sel_end[curr_dim]));
/* Re-calculate the index of this chunk */
chunk_index = H5VM_array_offset_pre(fm->f_ndims, dinfo->layout->u.chunk.down_chunks, scaled);
} /* end if */
} /* end while */
done:
/* Clean up on failure */
if (ret_value < 0)
if (tmp_fchunk && H5S_close(tmp_fchunk) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTRELEASE, FAIL, "can't release temporary dataspace");
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__create_piece_file_map_hyper() */
/*-------------------------------------------------------------------------
* Function: H5D__create_piece_mem_map_hyper
*
* Purpose: Create all chunk selections in memory by copying the file
* chunk selections and adjusting their offsets to be correct
* or the memory.
* This was derived from H5D__create_chunk_mem_map_hyper for
* multi-dset work.
*
* Return: Non-negative on success/Negative on failure
*
* Assumptions: That the file and memory selections are the same shape.
*-------------------------------------------------------------------------
*/
static herr_t
H5D__create_piece_mem_map_hyper(const H5D_dset_io_info_t *dinfo)
{
H5D_chunk_map_t *fm; /* Convenience pointer to chunk map */
H5D_piece_info_t *piece_info; /* Pointer to piece information */
H5SL_node_t *curr_node; /* Current node in skip list */
hsize_t file_sel_start[H5S_MAX_RANK]; /* Offset of low bound of file selection */
hsize_t file_sel_end[H5S_MAX_RANK]; /* Offset of high bound of file selection */
hsize_t mem_sel_start[H5S_MAX_RANK]; /* Offset of low bound of file selection */
hsize_t mem_sel_end[H5S_MAX_RANK]; /* Offset of high bound of file selection */
hssize_t adjust[H5S_MAX_RANK]; /* Adjustment to make to all file chunks */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity check */
assert(dinfo->layout_io_info.chunk_map->f_ndims > 0);
/* Set convenience pointer */
fm = dinfo->layout_io_info.chunk_map;
/* Check for all I/O going to a single chunk */
if (H5SL_count(fm->dset_sel_pieces) == 1) {
/* Get the node */
curr_node = H5SL_first(fm->dset_sel_pieces);
/* Get pointer to piece's information */
piece_info = (H5D_piece_info_t *)H5SL_item(curr_node);
assert(piece_info);
/* Just point at the memory dataspace & selection */
piece_info->mspace = dinfo->mem_space;
/* Indicate that the piece's memory space is shared */
piece_info->mspace_shared = true;
} /* end if */
else {
/* Get bounding box for file selection */
if (H5S_SELECT_BOUNDS(dinfo->file_space, file_sel_start, file_sel_end) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "can't get file selection bound info");
/* Get bounding box for memory selection */
if (H5S_SELECT_BOUNDS(dinfo->mem_space, mem_sel_start, mem_sel_end) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "can't get file selection bound info");
/* Calculate the adjustment for memory selection from file selection */
assert(fm->m_ndims == fm->f_ndims);
for (u = 0; u < fm->f_ndims; u++) {
H5_CHECK_OVERFLOW(file_sel_start[u], hsize_t, hssize_t);
H5_CHECK_OVERFLOW(mem_sel_start[u], hsize_t, hssize_t);
adjust[u] = (hssize_t)file_sel_start[u] - (hssize_t)mem_sel_start[u];
} /* end for */
/* Iterate over each chunk in the chunk list */
assert(fm->dset_sel_pieces);
curr_node = H5SL_first(fm->dset_sel_pieces);
while (curr_node) {
hsize_t coords[H5S_MAX_RANK]; /* Current coordinates of chunk */
hssize_t piece_adjust[H5S_MAX_RANK]; /* Adjustment to make to a particular chunk */
H5S_sel_type chunk_sel_type; /* Chunk's selection type */
/* Get pointer to piece's information */
piece_info = (H5D_piece_info_t *)H5SL_item(curr_node);
assert(piece_info);
/* Compute the chunk coordinates from the scaled coordinates */
for (u = 0; u < fm->f_ndims; u++)
coords[u] = piece_info->scaled[u] * dinfo->layout->u.chunk.dim[u];
/* Copy the information */
/* Copy the memory dataspace */
if ((piece_info->mspace = H5S_copy(dinfo->mem_space, true, false)) == NULL)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "unable to copy memory space");
/* Get the chunk's selection type */
if ((chunk_sel_type = H5S_GET_SELECT_TYPE(piece_info->fspace)) < H5S_SEL_NONE)
HGOTO_ERROR(H5E_DATASET, H5E_BADSELECT, FAIL, "unable to get type of selection");
/* Set memory selection for "all" chunk selections */
if (H5S_SEL_ALL == chunk_sel_type) {
/* Adjust the chunk coordinates */
for (u = 0; u < fm->f_ndims; u++)
coords[u] = (hsize_t)((hssize_t)coords[u] - adjust[u]);
/* Set to same shape as chunk */
if (H5S_select_hyperslab(piece_info->mspace, H5S_SELECT_SET, coords, NULL, fm->chunk_dim,
NULL) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSELECT, FAIL, "can't create chunk memory selection");
} /* end if */
else {
/* Sanity check */
assert(H5S_SEL_HYPERSLABS == chunk_sel_type);
/* Copy the file chunk's selection */
if (H5S_SELECT_COPY(piece_info->mspace, piece_info->fspace, false) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "unable to copy selection");
/* Compute the adjustment for this chunk */
for (u = 0; u < fm->f_ndims; u++) {
/* Compensate for the chunk offset */
H5_CHECK_OVERFLOW(coords[u], hsize_t, hssize_t);
piece_adjust[u] = adjust[u] - (hssize_t)coords[u];
} /* end for */
/* Adjust the selection */
if (H5S_SELECT_ADJUST_S(piece_info->mspace, piece_adjust) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSET, FAIL, "unable to adjust selection");
} /* end else */
/* Get the next piece node in the skip list */
curr_node = H5SL_next(curr_node);
} /* end while */
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__create_piece_mem_map_hyper() */
/*-------------------------------------------------------------------------
* Function: H5D__create_piece_mem_map_1d
*
* Purpose: Create all chunk selections for 1-dimensional regular memory space
* that has only one single block in the selection
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__create_piece_mem_map_1d(const H5D_dset_io_info_t *dinfo)
{
H5D_chunk_map_t *fm; /* Convenience pointer to chunk map */
H5D_piece_info_t *piece_info; /* Pointer to chunk information */
H5SL_node_t *curr_node; /* Current node in skip list */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity check */
assert(dinfo->layout_io_info.chunk_map->f_ndims > 0);
/* Set convenience pointer */
fm = dinfo->layout_io_info.chunk_map;
assert(fm);
/* Check for all I/O going to a single chunk */
if (H5SL_count(fm->dset_sel_pieces) == 1) {
/* Get the node */
curr_node = H5SL_first(fm->dset_sel_pieces);
/* Get pointer to chunk's information */
piece_info = (H5D_piece_info_t *)H5SL_item(curr_node);
assert(piece_info);
/* Just point at the memory dataspace & selection */
piece_info->mspace = dinfo->mem_space;
/* Indicate that the chunk's memory space is shared */
piece_info->mspace_shared = true;
} /* end if */
else {
hsize_t mem_sel_start[H5S_MAX_RANK]; /* Offset of low bound of file selection */
hsize_t mem_sel_end[H5S_MAX_RANK]; /* Offset of high bound of file selection */
assert(fm->m_ndims == 1);
if (H5S_SELECT_BOUNDS(dinfo->mem_space, mem_sel_start, mem_sel_end) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "can't get file selection bound info");
/* Iterate over each chunk in the chunk list */
curr_node = H5SL_first(fm->dset_sel_pieces);
while (curr_node) {
hsize_t chunk_points; /* Number of elements in chunk selection */
hsize_t tmp_count = 1;
/* Get pointer to chunk's information */
piece_info = (H5D_piece_info_t *)H5SL_item(curr_node);
assert(piece_info);
/* Copy the memory dataspace */
if ((piece_info->mspace = H5S_copy(dinfo->mem_space, true, false)) == NULL)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "unable to copy memory space");
chunk_points = H5S_GET_SELECT_NPOINTS(piece_info->fspace);
if (H5S_select_hyperslab(piece_info->mspace, H5S_SELECT_SET, mem_sel_start, NULL, &tmp_count,
&chunk_points) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSELECT, FAIL, "can't create chunk memory selection");
mem_sel_start[0] += chunk_points;
/* Get the next chunk node in the skip list */
curr_node = H5SL_next(curr_node);
} /* end while */
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__create_piece_mem_map_1d() */
/*-------------------------------------------------------------------------
* Function: H5D__piece_file_cb
*
* Purpose: Callback routine for file selection iterator. Used when
* creating selections in file for each point selected.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__piece_file_cb(void H5_ATTR_UNUSED *elem, const H5T_t H5_ATTR_UNUSED *type, unsigned ndims,
const hsize_t *coords, void *_opdata)
{
H5D_io_info_wrap_t *opdata = (H5D_io_info_wrap_t *)_opdata;
H5D_io_info_t *io_info = (H5D_io_info_t *)opdata->io_info; /* io info for multi dset */
H5D_dset_io_info_t *dinfo = (H5D_dset_io_info_t *)opdata->dinfo; /* File<->memory piece mapping info */
H5D_chunk_map_t *fm; /* Convenience pointer to chunk map */
H5D_piece_info_t *piece_info; /* Chunk information for current piece */
hsize_t coords_in_chunk[H5O_LAYOUT_NDIMS]; /* Coordinates of element in chunk */
hsize_t chunk_index; /* Chunk index */
hsize_t scaled[H5S_MAX_RANK]; /* Scaled coordinates for this chunk */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Set convenience pointer */
fm = dinfo->layout_io_info.chunk_map;
/* Calculate the index of this chunk */
chunk_index = H5VM_chunk_index_scaled(ndims, coords, dinfo->layout->u.chunk.dim,
dinfo->layout->u.chunk.down_chunks, scaled);
/* Find correct chunk in file & memory skip list */
if (chunk_index == fm->last_index) {
/* If the chunk index is the same as the last chunk index we used,
* get the cached info to operate on.
*/
piece_info = fm->last_piece_info;
} /* end if */
else {
/* If the chunk index is not the same as the last chunk index we used,
* find the chunk in the skip list. If we do not find it, create
* a new node. */
if (NULL == (piece_info = (H5D_piece_info_t *)H5SL_search(fm->dset_sel_pieces, &chunk_index))) {
H5S_t *fspace; /* Memory chunk's dataspace */
/* Allocate the file & memory chunk information */
if (NULL == (piece_info = H5FL_MALLOC(H5D_piece_info_t)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate chunk info");
/* Initialize the chunk information */
/* Set the chunk index */
piece_info->index = chunk_index;
/* Create a dataspace for the chunk */
if ((fspace = H5S_create_simple(fm->f_ndims, fm->chunk_dim, NULL)) == NULL) {
piece_info = H5FL_FREE(H5D_piece_info_t, piece_info);
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCREATE, FAIL, "unable to create dataspace for chunk");
} /* end if */
/* De-select the chunk space */
if (H5S_select_none(fspace) < 0) {
(void)H5S_close(fspace);
piece_info = H5FL_FREE(H5D_piece_info_t, piece_info);
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to de-select dataspace");
} /* end if */
/* Set the file chunk dataspace */
piece_info->fspace = fspace;
piece_info->fspace_shared = false;
/* Set the memory chunk dataspace */
piece_info->mspace = NULL;
piece_info->mspace_shared = false;
/* Set the number of selected elements in chunk to zero */
piece_info->piece_points = 0;
/* Set the chunk's scaled coordinates */
H5MM_memcpy(piece_info->scaled, scaled, sizeof(hsize_t) * fm->f_ndims);
piece_info->scaled[fm->f_ndims] = 0;
/* Initialize in-place type conversion info. Start with it disabled. */
piece_info->in_place_tconv = false;
piece_info->buf_off = 0;
piece_info->filtered_dset = dinfo->dset->shared->dcpl_cache.pline.nused > 0;
/* Make connection to related dset info from this piece_info */
piece_info->dset_info = dinfo;
/* Insert the new chunk into the skip list */
if (H5SL_insert(fm->dset_sel_pieces, piece_info, &piece_info->index) < 0) {
H5D__free_piece_info(piece_info, NULL, NULL);
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert chunk into dataset skip list");
} /* end if */
/* Add piece to global piece_count */
io_info->piece_count++;
} /* end if */
/* Update the "last chunk seen" information */
fm->last_index = chunk_index;
fm->last_piece_info = piece_info;
} /* end else */
/* Get the offset of the element within the chunk */
for (u = 0; u < fm->f_ndims; u++)
coords_in_chunk[u] = coords[u] - (scaled[u] * dinfo->layout->u.chunk.dim[u]);
/* Add point to file selection for chunk */
if (H5S_select_elements(piece_info->fspace, H5S_SELECT_APPEND, (size_t)1, coords_in_chunk) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "unable to select element");
/* Increment the number of elemented selected in chunk */
piece_info->piece_points++;
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__piece_file_cb */
/*-------------------------------------------------------------------------
* Function: H5D__piece_mem_cb
*
* Purpose: Callback routine for file selection iterator. Used when
* creating selections in memory for each piece.
* This was derived from H5D__chunk_mem_cb for multi-dset
* work.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__piece_mem_cb(void H5_ATTR_UNUSED *elem, const H5T_t H5_ATTR_UNUSED *type, unsigned ndims,
const hsize_t *coords, void *_opdata)
{
H5D_io_info_wrap_t *opdata = (H5D_io_info_wrap_t *)_opdata;
H5D_dset_io_info_t *dinfo = (H5D_dset_io_info_t *)opdata->dinfo; /* File<->memory chunk mapping info */
H5D_piece_info_t *piece_info; /* Chunk information for current chunk */
H5D_chunk_map_t *fm; /* Convenience pointer to chunk map */
hsize_t coords_in_mem[H5S_MAX_RANK]; /* Coordinates of element in memory */
hsize_t chunk_index; /* Chunk index */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Set convenience pointer */
fm = dinfo->layout_io_info.chunk_map;
/* Calculate the index of this chunk */
chunk_index =
H5VM_chunk_index(ndims, coords, dinfo->layout->u.chunk.dim, dinfo->layout->u.chunk.down_chunks);
/* Find correct chunk in file & memory skip list */
if (chunk_index == fm->last_index) {
/* If the chunk index is the same as the last chunk index we used,
* get the cached spaces to operate on.
*/
piece_info = fm->last_piece_info;
} /* end if */
else {
/* If the chunk index is not the same as the last chunk index we used,
* find the chunk in the dataset skip list.
*/
/* Get the chunk node from the skip list */
if (NULL == (piece_info = (H5D_piece_info_t *)H5SL_search(fm->dset_sel_pieces, &chunk_index)))
HGOTO_ERROR(H5E_DATASPACE, H5E_NOTFOUND, H5_ITER_ERROR,
"can't locate piece in dataset skip list");
/* Check if the chunk already has a memory space */
if (NULL == piece_info->mspace)
/* Copy the template memory chunk dataspace */
if (NULL == (piece_info->mspace = H5S_copy(fm->mchunk_tmpl, false, false)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, H5_ITER_ERROR, "unable to copy file space");
/* Update the "last chunk seen" information */
fm->last_index = chunk_index;
fm->last_piece_info = piece_info;
} /* end else */
/* Get coordinates of selection iterator for memory */
if (H5S_SELECT_ITER_COORDS(&fm->mem_iter, coords_in_mem) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, H5_ITER_ERROR, "unable to get iterator coordinates");
/* Add point to memory selection for chunk */
if (fm->msel_type == H5S_SEL_POINTS) {
if (H5S_select_elements(piece_info->mspace, H5S_SELECT_APPEND, (size_t)1, coords_in_mem) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, H5_ITER_ERROR, "unable to select element");
} /* end if */
else {
if (H5S_hyper_add_span_element(piece_info->mspace, fm->m_ndims, coords_in_mem) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, H5_ITER_ERROR, "unable to select element");
} /* end else */
/* Move memory selection iterator to next element in selection */
if (H5S_SELECT_ITER_NEXT(&fm->mem_iter, (size_t)1) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTNEXT, H5_ITER_ERROR, "unable to move to next iterator location");
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__piece_mem_cb() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_mdio_init
*
* Purpose: Performs second phase of initialization for multi-dataset
* I/O. Currently looks up chunk addresses and adds chunks to
* sel_pieces.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_mdio_init(H5D_io_info_t *io_info, H5D_dset_io_info_t *dinfo)
{
H5SL_node_t *piece_node; /* Current node in chunk skip list */
H5D_piece_info_t *piece_info; /* Piece information for current piece */
H5D_chunk_ud_t udata; /* Chunk data from index */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Get first node in skip list. Note we don't check for failure since NULL
* simply indicates an empty skip list. */
piece_node = H5D_CHUNK_GET_FIRST_NODE(dinfo);
/* Iterate over skip list */
while (piece_node) {
/* Get piece info */
if (NULL == (piece_info = (H5D_piece_info_t *)H5D_CHUNK_GET_NODE_INFO(dinfo, piece_node)))
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "couldn't get piece info from list");
/* Get the info for the chunk in the file */
if (H5D__chunk_lookup(dinfo->dset, piece_info->scaled, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "error looking up chunk address");
/* Save chunk file address */
piece_info->faddr = udata.chunk_block.offset;
/* Add piece to MDIO operation if it has a file address */
if (H5_addr_defined(piece_info->faddr)) {
assert(io_info->sel_pieces);
assert(io_info->pieces_added < io_info->piece_count);
/* Add to sel_pieces and update pieces_added */
io_info->sel_pieces[io_info->pieces_added++] = piece_info;
if (piece_info->filtered_dset)
io_info->filtered_pieces_added++;
}
/* Advance to next skip list node */
piece_node = H5D_CHUNK_GET_NEXT_NODE(dinfo, piece_node);
}
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_mdio_init() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_cacheable
*
* Purpose: A small internal function to if it's possible to load the
* chunk into cache.
*
* Return: true or false
*
*-------------------------------------------------------------------------
*/
htri_t
H5D__chunk_cacheable(const H5D_io_info_t H5_ATTR_PARALLEL_USED *io_info, H5D_dset_io_info_t *dset_info,
haddr_t caddr, bool write_op)
{
const H5D_t *dataset = NULL; /* Local pointer to dataset info */
bool has_filters = false; /* Whether there are filters on the chunk or not */
htri_t ret_value = FAIL; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity check */
assert(dset_info);
dataset = dset_info->dset;
assert(dataset);
/* Must bring the whole chunk in if there are any filters on the chunk.
* Make sure to check if filters are on the dataset but disabled for the
* chunk because it is a partial edge chunk. */
if (dataset->shared->dcpl_cache.pline.nused > 0) {
if (dataset->shared->layout.u.chunk.flags & H5O_LAYOUT_CHUNK_DONT_FILTER_PARTIAL_BOUND_CHUNKS) {
has_filters =
!H5D__chunk_is_partial_edge_chunk(dataset->shared->ndims, dataset->shared->layout.u.chunk.dim,
dset_info->store->chunk.scaled, dataset->shared->curr_dims);
} /* end if */
else
has_filters = true;
} /* end if */
if (has_filters)
ret_value = true;
else {
#ifdef H5_HAVE_PARALLEL
/* If MPI based VFD is used and the file is opened for write access, must
* bypass the chunk-cache scheme because other MPI processes could
* be writing to other elements in the same chunk. Do a direct
* write-through of only the elements requested.
*/
if (io_info->using_mpi_vfd && (H5F_ACC_RDWR & H5F_INTENT(dataset->oloc.file)))
ret_value = false;
else {
#endif /* H5_HAVE_PARALLEL */
/* If the chunk is too large to keep in the cache and if we don't
* need to write the fill value, then don't load the chunk into the
* cache, just write the data to it directly.
*/
H5_CHECK_OVERFLOW(dataset->shared->layout.u.chunk.size, uint32_t, size_t);
if ((size_t)dataset->shared->layout.u.chunk.size > dataset->shared->cache.chunk.nbytes_max) {
if (write_op && !H5_addr_defined(caddr)) {
const H5O_fill_t *fill = &(dataset->shared->dcpl_cache.fill); /* Fill value info */
H5D_fill_value_t fill_status; /* Fill value status */
/* Revtrieve the fill value status */
if (H5P_is_fill_value_defined(fill, &fill_status) < 0)
HGOTO_ERROR(H5E_PLIST, H5E_CANTGET, FAIL, "can't tell if fill value defined");
/* If the fill value needs to be written then we will need
* to use the cache to write the fill value */
if (fill->fill_time == H5D_FILL_TIME_ALLOC ||
(fill->fill_time == H5D_FILL_TIME_IFSET &&
(fill_status == H5D_FILL_VALUE_USER_DEFINED ||
fill_status == H5D_FILL_VALUE_DEFAULT)))
ret_value = true;
else
ret_value = false;
}
else
ret_value = false;
}
else
ret_value = true;
#ifdef H5_HAVE_PARALLEL
} /* end else */
#endif /* H5_HAVE_PARALLEL */
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_cacheable() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_may_use_select_io
*
* Purpose: A small internal function to if it may be possible to use
* selection I/O.
*
* Return: true or false
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_may_use_select_io(H5D_io_info_t *io_info, const H5D_dset_io_info_t *dset_info)
{
const H5D_t *dataset = NULL; /* Local pointer to dataset info */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity check */
assert(io_info);
assert(dset_info);
dataset = dset_info->dset;
assert(dataset);
/* Don't use selection I/O if there are filters on the dataset (for now) */
if (dataset->shared->dcpl_cache.pline.nused > 0) {
io_info->use_select_io = H5D_SELECTION_IO_MODE_OFF;
io_info->no_selection_io_cause |= H5D_SEL_IO_DATASET_FILTER;
}
else {
bool page_buf_enabled;
/* Check if the page buffer is enabled */
if (H5PB_enabled(io_info->f_sh, H5FD_MEM_DRAW, &page_buf_enabled) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't check if page buffer is enabled");
if (page_buf_enabled) {
/* Note that page buffer is disabled in parallel */
io_info->use_select_io = H5D_SELECTION_IO_MODE_OFF;
io_info->no_selection_io_cause |= H5D_SEL_IO_PAGE_BUFFER;
}
else {
/* Check if chunks in this dataset may be cached, if so don't use
* selection I/O (for now). Note that chunks temporarily cached for
* the purpose of writing the fill value don't count, since they are
* immediately evicted. */
#ifdef H5_HAVE_PARALLEL
/* If MPI based VFD is used and the file is opened for write access,
* must bypass the chunk-cache scheme because other MPI processes
* could be writing to other elements in the same chunk.
*/
if (!(io_info->using_mpi_vfd && (H5F_ACC_RDWR & H5F_INTENT(dataset->oloc.file)))) {
#endif /* H5_HAVE_PARALLEL */
/* Check if the chunk is too large to keep in the cache */
H5_CHECK_OVERFLOW(dataset->shared->layout.u.chunk.size, uint32_t, size_t);
if ((size_t)dataset->shared->layout.u.chunk.size <= dataset->shared->cache.chunk.nbytes_max) {
io_info->use_select_io = H5D_SELECTION_IO_MODE_OFF;
io_info->no_selection_io_cause |= H5D_SEL_IO_CHUNK_CACHE;
}
#ifdef H5_HAVE_PARALLEL
} /* end else */
#endif /* H5_HAVE_PARALLEL */
} /* end else */
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_may_use_select_io() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_read
*
* Purpose: Read from a chunked dataset.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_read(H5D_io_info_t *io_info, H5D_dset_io_info_t *dset_info)
{
H5SL_node_t *chunk_node; /* Current node in chunk skip list */
H5D_io_info_t nonexistent_io_info; /* "nonexistent" I/O info object */
H5D_dset_io_info_t nonexistent_dset_info; /* "nonexistent" I/O dset info object */
H5D_dset_io_info_t ctg_dset_info; /* Contiguous I/O dset info object */
H5D_dset_io_info_t cpt_dset_info; /* Compact I/O dset info object */
uint32_t src_accessed_bytes = 0; /* Total accessed size in a chunk */
bool skip_missing_chunks = false; /* Whether to skip missing chunks */
H5S_t **chunk_mem_spaces = NULL; /* Array of chunk memory spaces */
H5S_t *chunk_mem_spaces_local[8]; /* Local buffer for chunk_mem_spaces */
H5S_t **chunk_file_spaces = NULL; /* Array of chunk file spaces */
H5S_t *chunk_file_spaces_local[8]; /* Local buffer for chunk_file_spaces */
haddr_t *chunk_addrs = NULL; /* Array of chunk addresses */
haddr_t chunk_addrs_local[8]; /* Local buffer for chunk_addrs */
herr_t ret_value = SUCCEED; /*return value */
FUNC_ENTER_PACKAGE
/* Sanity check */
assert(io_info);
assert(dset_info);
assert(dset_info->buf.vp);
/* Set up "nonexistent" I/O info object */
H5MM_memcpy(&nonexistent_io_info, io_info, sizeof(nonexistent_io_info));
H5MM_memcpy(&nonexistent_dset_info, dset_info, sizeof(nonexistent_dset_info));
nonexistent_dset_info.layout_ops = *H5D_LOPS_NONEXISTENT;
nonexistent_io_info.dsets_info = &nonexistent_dset_info;
nonexistent_io_info.count = 1;
{
const H5O_fill_t *fill = &(dset_info->dset->shared->dcpl_cache.fill); /* Fill value info */
H5D_fill_value_t fill_status; /* Fill value status */
/* Check the fill value status */
if (H5P_is_fill_value_defined(fill, &fill_status) < 0)
HGOTO_ERROR(H5E_PLIST, H5E_CANTGET, FAIL, "can't tell if fill value defined");
/* If we are never to return fill values, or if we would return them
* but they aren't set, set the flag to skip missing chunks.
*/
if (fill->fill_time == H5D_FILL_TIME_NEVER ||
(fill->fill_time == H5D_FILL_TIME_IFSET && fill_status != H5D_FILL_VALUE_USER_DEFINED &&
fill_status != H5D_FILL_VALUE_DEFAULT))
skip_missing_chunks = true;
}
/* Different blocks depending on whether we're using selection I/O */
if (io_info->use_select_io == H5D_SELECTION_IO_MODE_ON) {
size_t num_chunks = 0;
size_t element_sizes[2] = {dset_info->type_info.src_type_size, 0};
void *bufs[2] = {dset_info->buf.vp, NULL};
/* Only create selection I/O arrays if not performing multi dataset I/O,
* otherwise the higher level will handle it */
if (H5D_LAYOUT_CB_PERFORM_IO(io_info)) {
/* Cache number of chunks */
num_chunks = H5D_CHUNK_GET_NODE_COUNT(dset_info);
/* Allocate arrays of dataspaces and offsets for use with selection I/O,
* or point to local buffers */
assert(sizeof(chunk_mem_spaces_local) / sizeof(chunk_mem_spaces_local[0]) ==
sizeof(chunk_file_spaces_local) / sizeof(chunk_file_spaces_local[0]));
assert(sizeof(chunk_mem_spaces_local) / sizeof(chunk_mem_spaces_local[0]) ==
sizeof(chunk_addrs_local) / sizeof(chunk_addrs_local[0]));
if (num_chunks > (sizeof(chunk_mem_spaces_local) / sizeof(chunk_mem_spaces_local[0]))) {
if (NULL == (chunk_mem_spaces = H5MM_malloc(num_chunks * sizeof(H5S_t *))))
HGOTO_ERROR(H5E_RESOURCE, H5E_CANTALLOC, FAIL,
"memory allocation failed for memory space list");
if (NULL == (chunk_file_spaces = H5MM_malloc(num_chunks * sizeof(H5S_t *))))
HGOTO_ERROR(H5E_RESOURCE, H5E_CANTALLOC, FAIL,
"memory allocation failed for file space list");
if (NULL == (chunk_addrs = H5MM_malloc(num_chunks * sizeof(haddr_t))))
HGOTO_ERROR(H5E_RESOURCE, H5E_CANTALLOC, FAIL,
"memory allocation failed for chunk address list");
} /* end if */
else {
chunk_mem_spaces = chunk_mem_spaces_local;
chunk_file_spaces = chunk_file_spaces_local;
chunk_addrs = chunk_addrs_local;
} /* end else */
/* Reset num_chunks */
num_chunks = 0;
} /* end if */
/* Iterate through nodes in chunk skip list */
chunk_node = H5D_CHUNK_GET_FIRST_NODE(dset_info);
while (chunk_node) {
H5D_piece_info_t *chunk_info; /* Chunk information */
H5D_chunk_ud_t udata; /* Chunk index pass-through */
/* Get the actual chunk information from the skip list node */
chunk_info = H5D_CHUNK_GET_NODE_INFO(dset_info, chunk_node);
/* Get the info for the chunk in the file */
if (H5D__chunk_lookup(dset_info->dset, chunk_info->scaled, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "error looking up chunk address");
/* There should be no chunks cached */
assert(UINT_MAX == udata.idx_hint);
/* Sanity check */
assert((H5_addr_defined(udata.chunk_block.offset) && udata.chunk_block.length > 0) ||
(!H5_addr_defined(udata.chunk_block.offset) && udata.chunk_block.length == 0));
/* Check for non-existent chunk & skip it if appropriate */
if (H5_addr_defined(udata.chunk_block.offset)) {
/* Add chunk to list for selection I/O, if not performing multi dataset I/O */
if (H5D_LAYOUT_CB_PERFORM_IO(io_info)) {
chunk_mem_spaces[num_chunks] = chunk_info->mspace;
chunk_file_spaces[num_chunks] = chunk_info->fspace;
chunk_addrs[num_chunks] = udata.chunk_block.offset;
num_chunks++;
} /* end if */
else {
/* Add to mdset selection I/O arrays */
assert(io_info->mem_spaces);
assert(io_info->file_spaces);
assert(io_info->addrs);
assert(io_info->element_sizes);
assert(io_info->rbufs);
assert(io_info->pieces_added < io_info->piece_count);
io_info->mem_spaces[io_info->pieces_added] = chunk_info->mspace;
io_info->file_spaces[io_info->pieces_added] = chunk_info->fspace;
io_info->addrs[io_info->pieces_added] = udata.chunk_block.offset;
io_info->element_sizes[io_info->pieces_added] = element_sizes[0];
io_info->rbufs[io_info->pieces_added] = bufs[0];
if (io_info->sel_pieces)
io_info->sel_pieces[io_info->pieces_added] = chunk_info;
io_info->pieces_added++;
if (io_info->sel_pieces && chunk_info->filtered_dset)
io_info->filtered_pieces_added++;
}
} /* end if */
else if (!skip_missing_chunks) {
/* Set up nonexistent dataset info for (fill value) read from nonexistent chunk */
nonexistent_dset_info.layout_io_info.contig_piece_info = chunk_info;
nonexistent_dset_info.file_space = chunk_info->fspace;
nonexistent_dset_info.mem_space = chunk_info->mspace;
nonexistent_dset_info.nelmts = chunk_info->piece_points;
/* Set request_nelmts. This is not normally set by the upper layers because selection I/O
* usually does not use strip mining (H5D__scatgath_write), and instead allocates buffers
* large enough for the entire I/O. Set request_nelmts to be large enough for all selected
* elements in this chunk because it must be at least that large */
nonexistent_dset_info.type_info.request_nelmts = nonexistent_dset_info.nelmts;
/* Perform the actual read operation from the nonexistent chunk
*/
if ((dset_info->io_ops.single_read)(&nonexistent_io_info, &nonexistent_dset_info) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_READERROR, FAIL, "chunked read failed");
} /* end if */
/* Advance to next chunk in list */
chunk_node = H5D_CHUNK_GET_NEXT_NODE(dset_info, chunk_node);
} /* end while */
/* Only perform I/O if not performing multi dataset I/O or type conversion, otherwise the
* higher level will handle it after all datasets have been processed */
if (H5D_LAYOUT_CB_PERFORM_IO(io_info)) {
/* Issue selection I/O call (we can skip the page buffer because we've
* already verified it won't be used, and the metadata accumulator
* because this is raw data) */
H5_CHECK_OVERFLOW(num_chunks, size_t, uint32_t);
if (H5F_shared_select_read(H5F_SHARED(dset_info->dset->oloc.file), H5FD_MEM_DRAW,
(uint32_t)num_chunks, chunk_mem_spaces, chunk_file_spaces, chunk_addrs,
element_sizes, bufs) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_READERROR, FAIL, "chunk selection read failed");
/* Clean up memory */
if (chunk_mem_spaces != chunk_mem_spaces_local) {
assert(chunk_file_spaces != chunk_file_spaces_local);
assert(chunk_addrs != chunk_addrs_local);
chunk_mem_spaces = H5MM_xfree(chunk_mem_spaces);
chunk_file_spaces = H5MM_xfree(chunk_file_spaces);
chunk_addrs = H5MM_xfree(chunk_addrs);
} /* end if */
} /* end if */
#ifdef H5_HAVE_PARALLEL
/* Report that collective chunk I/O was used (will only be set on the DXPL if collective I/O was
* requested) */
io_info->actual_io_mode |= H5D_MPIO_CHUNK_COLLECTIVE;
#endif /* H5_HAVE_PARALLEL */
} /* end if */
else {
H5D_io_info_t ctg_io_info; /* Contiguous I/O info object */
H5D_storage_t ctg_store; /* Chunk storage information as contiguous dataset */
H5D_io_info_t cpt_io_info; /* Compact I/O info object */
H5D_storage_t cpt_store; /* Chunk storage information as compact dataset */
bool cpt_dirty; /* Temporary placeholder for compact storage "dirty" flag */
/* Set up contiguous I/O info object */
H5MM_memcpy(&ctg_io_info, io_info, sizeof(ctg_io_info));
H5MM_memcpy(&ctg_dset_info, dset_info, sizeof(ctg_dset_info));
ctg_dset_info.store = &ctg_store;
ctg_dset_info.layout_ops = *H5D_LOPS_CONTIG;
ctg_io_info.dsets_info = &ctg_dset_info;
ctg_io_info.count = 1;
/* Initialize temporary contiguous storage info */
H5_CHECKED_ASSIGN(ctg_store.contig.dset_size, hsize_t, dset_info->dset->shared->layout.u.chunk.size,
uint32_t);
/* Set up compact I/O info object */
H5MM_memcpy(&cpt_io_info, io_info, sizeof(cpt_io_info));
H5MM_memcpy(&cpt_dset_info, dset_info, sizeof(cpt_dset_info));
cpt_dset_info.store = &cpt_store;
cpt_dset_info.layout_ops = *H5D_LOPS_COMPACT;
cpt_io_info.dsets_info = &cpt_dset_info;
cpt_io_info.count = 1;
/* Initialize temporary compact storage info */
cpt_store.compact.dirty = &cpt_dirty;
/* Iterate through nodes in chunk skip list */
chunk_node = H5D_CHUNK_GET_FIRST_NODE(dset_info);
while (chunk_node) {
H5D_piece_info_t *chunk_info; /* Chunk information */
H5D_chunk_ud_t udata; /* Chunk index pass-through */
htri_t cacheable; /* Whether the chunk is cacheable */
/* Get the actual chunk information from the skip list node */
chunk_info = H5D_CHUNK_GET_NODE_INFO(dset_info, chunk_node);
/* Get the info for the chunk in the file */
if (H5D__chunk_lookup(dset_info->dset, chunk_info->scaled, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "error looking up chunk address");
/* Sanity check */
assert((H5_addr_defined(udata.chunk_block.offset) && udata.chunk_block.length > 0) ||
(!H5_addr_defined(udata.chunk_block.offset) && udata.chunk_block.length == 0));
/* Check for non-existent chunk & skip it if appropriate */
if (H5_addr_defined(udata.chunk_block.offset) || UINT_MAX != udata.idx_hint ||
!skip_missing_chunks) {
H5D_io_info_t *chk_io_info; /* Pointer to I/O info object for this chunk */
void *chunk = NULL; /* Pointer to locked chunk buffer */
/* Set chunk's [scaled] coordinates */
dset_info->store->chunk.scaled = chunk_info->scaled;
/* Determine if we should use the chunk cache */
if ((cacheable = H5D__chunk_cacheable(io_info, dset_info, udata.chunk_block.offset, false)) <
0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't tell if chunk is cacheable");
if (cacheable) {
/* Load the chunk into cache and lock it. */
/* Compute # of bytes accessed in chunk */
H5_CHECK_OVERFLOW(dset_info->type_info.src_type_size, /*From:*/ size_t, /*To:*/ uint32_t);
H5_CHECK_OVERFLOW(chunk_info->piece_points, /*From:*/ size_t, /*To:*/ uint32_t);
src_accessed_bytes =
(uint32_t)chunk_info->piece_points * (uint32_t)dset_info->type_info.src_type_size;
/* Lock the chunk into the cache */
if (NULL == (chunk = H5D__chunk_lock(io_info, dset_info, &udata, false, false)))
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "unable to read raw data chunk");
/* Set up the storage buffer information for this chunk */
cpt_store.compact.buf = chunk;
/* Point I/O info at contiguous I/O info for this chunk */
chk_io_info = &cpt_io_info;
} /* end if */
else if (H5_addr_defined(udata.chunk_block.offset)) {
/* Set up the storage address information for this chunk */
ctg_store.contig.dset_addr = udata.chunk_block.offset;
/* Point I/O info at temporary I/O info for this chunk */
chk_io_info = &ctg_io_info;
} /* end else if */
else {
/* Point I/O info at "nonexistent" I/O info for this chunk */
chk_io_info = &nonexistent_io_info;
} /* end else */
/* Perform the actual read operation */
assert(chk_io_info->count == 1);
chk_io_info->dsets_info[0].layout_io_info.contig_piece_info = chunk_info;
chk_io_info->dsets_info[0].file_space = chunk_info->fspace;
chk_io_info->dsets_info[0].mem_space = chunk_info->mspace;
chk_io_info->dsets_info[0].nelmts = chunk_info->piece_points;
if ((dset_info->io_ops.single_read)(chk_io_info, &chk_io_info->dsets_info[0]) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_READERROR, FAIL, "chunked read failed");
/* Release the cache lock on the chunk. */
if (chunk &&
H5D__chunk_unlock(io_info, dset_info, &udata, false, chunk, src_accessed_bytes) < 0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "unable to unlock raw data chunk");
} /* end if */
/* Advance to next chunk in list */
chunk_node = H5D_CHUNK_GET_NEXT_NODE(dset_info, chunk_node);
} /* end while */
} /* end else */
done:
/* Cleanup on failure */
if (ret_value < 0) {
if (chunk_mem_spaces != chunk_mem_spaces_local)
chunk_mem_spaces = H5MM_xfree(chunk_mem_spaces);
if (chunk_file_spaces != chunk_file_spaces_local)
chunk_file_spaces = H5MM_xfree(chunk_file_spaces);
if (chunk_addrs != chunk_addrs_local)
chunk_addrs = H5MM_xfree(chunk_addrs);
} /* end if */
/* Make sure we cleaned up */
assert(!chunk_mem_spaces || chunk_mem_spaces == chunk_mem_spaces_local);
assert(!chunk_file_spaces || chunk_file_spaces == chunk_file_spaces_local);
assert(!chunk_addrs || chunk_addrs == chunk_addrs_local);
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__chunk_read() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_write
*
* Purpose: Writes to a chunked dataset.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_write(H5D_io_info_t *io_info, H5D_dset_io_info_t *dset_info)
{
H5SL_node_t *chunk_node; /* Current node in chunk skip list */
H5D_io_info_t ctg_io_info; /* Contiguous I/O info object */
H5D_dset_io_info_t ctg_dset_info; /* Contiguous I/O dset info object */
H5D_storage_t ctg_store; /* Chunk storage information as contiguous dataset */
H5D_io_info_t cpt_io_info; /* Compact I/O info object */
H5D_dset_io_info_t cpt_dset_info; /* Compact I/O dset info object */
H5D_storage_t cpt_store; /* Chunk storage information as compact dataset */
bool cpt_dirty; /* Temporary placeholder for compact storage "dirty" flag */
uint32_t dst_accessed_bytes = 0; /* Total accessed size in a chunk */
H5S_t **chunk_mem_spaces = NULL; /* Array of chunk memory spaces */
H5S_t *chunk_mem_spaces_local[8]; /* Local buffer for chunk_mem_spaces */
H5S_t **chunk_file_spaces = NULL; /* Array of chunk file spaces */
H5S_t *chunk_file_spaces_local[8]; /* Local buffer for chunk_file_spaces */
haddr_t *chunk_addrs = NULL; /* Array of chunk addresses */
haddr_t chunk_addrs_local[8]; /* Local buffer for chunk_addrs */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity check */
assert(io_info);
assert(dset_info);
assert(dset_info->buf.cvp);
/* Set up contiguous I/O info object */
H5MM_memcpy(&ctg_io_info, io_info, sizeof(ctg_io_info));
H5MM_memcpy(&ctg_dset_info, dset_info, sizeof(ctg_dset_info));
ctg_dset_info.store = &ctg_store;
ctg_dset_info.layout_ops = *H5D_LOPS_CONTIG;
ctg_io_info.dsets_info = &ctg_dset_info;
ctg_io_info.count = 1;
/* Initialize temporary contiguous storage info */
H5_CHECKED_ASSIGN(ctg_store.contig.dset_size, hsize_t, dset_info->dset->shared->layout.u.chunk.size,
uint32_t);
/* Set up compact I/O info object */
H5MM_memcpy(&cpt_io_info, io_info, sizeof(cpt_io_info));
H5MM_memcpy(&cpt_dset_info, dset_info, sizeof(cpt_dset_info));
cpt_dset_info.store = &cpt_store;
cpt_dset_info.layout_ops = *H5D_LOPS_COMPACT;
cpt_io_info.dsets_info = &cpt_dset_info;
cpt_io_info.count = 1;
/* Initialize temporary compact storage info */
cpt_store.compact.dirty = &cpt_dirty;
/* Different blocks depending on whether we're using selection I/O */
if (io_info->use_select_io == H5D_SELECTION_IO_MODE_ON) {
size_t num_chunks = 0;
size_t element_sizes[2] = {dset_info->type_info.dst_type_size, 0};
const void *bufs[2] = {dset_info->buf.cvp, NULL};
/* Only create selection I/O arrays if not performing multi dataset I/O,
* otherwise the higher level will handle it */
if (H5D_LAYOUT_CB_PERFORM_IO(io_info)) {
/* Cache number of chunks */
num_chunks = H5D_CHUNK_GET_NODE_COUNT(dset_info);
/* Allocate arrays of dataspaces and offsets for use with selection I/O,
* or point to local buffers */
assert(sizeof(chunk_mem_spaces_local) / sizeof(chunk_mem_spaces_local[0]) ==
sizeof(chunk_file_spaces_local) / sizeof(chunk_file_spaces_local[0]));
assert(sizeof(chunk_mem_spaces_local) / sizeof(chunk_mem_spaces_local[0]) ==
sizeof(chunk_addrs_local) / sizeof(chunk_addrs_local[0]));
if (num_chunks > (sizeof(chunk_mem_spaces_local) / sizeof(chunk_mem_spaces_local[0]))) {
if (NULL == (chunk_mem_spaces = H5MM_malloc(num_chunks * sizeof(H5S_t *))))
HGOTO_ERROR(H5E_RESOURCE, H5E_CANTALLOC, FAIL,
"memory allocation failed for memory space list");
if (NULL == (chunk_file_spaces = H5MM_malloc(num_chunks * sizeof(H5S_t *))))
HGOTO_ERROR(H5E_RESOURCE, H5E_CANTALLOC, FAIL,
"memory allocation failed for file space list");
if (NULL == (chunk_addrs = H5MM_malloc(num_chunks * sizeof(haddr_t))))
HGOTO_ERROR(H5E_RESOURCE, H5E_CANTALLOC, FAIL,
"memory allocation failed for chunk address list");
} /* end if */
else {
chunk_mem_spaces = chunk_mem_spaces_local;
chunk_file_spaces = chunk_file_spaces_local;
chunk_addrs = chunk_addrs_local;
} /* end else */
/* Reset num_chunks */
num_chunks = 0;
} /* end if */
/* Iterate through nodes in chunk skip list */
chunk_node = H5D_CHUNK_GET_FIRST_NODE(dset_info);
while (chunk_node) {
H5D_piece_info_t *chunk_info; /* Chunk information */
H5D_chk_idx_info_t idx_info; /* Chunked index info */
H5D_chunk_ud_t udata; /* Index pass-through */
htri_t cacheable; /* Whether the chunk is cacheable */
bool need_insert = false; /* Whether the chunk needs to be inserted into the index */
/* Get the actual chunk information from the skip list node */
chunk_info = H5D_CHUNK_GET_NODE_INFO(dset_info, chunk_node);
/* Get the info for the chunk in the file */
if (H5D__chunk_lookup(dset_info->dset, chunk_info->scaled, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "error looking up chunk address");
/* There should be no chunks cached */
assert(UINT_MAX == udata.idx_hint);
/* Sanity check */
assert((H5_addr_defined(udata.chunk_block.offset) && udata.chunk_block.length > 0) ||
(!H5_addr_defined(udata.chunk_block.offset) && udata.chunk_block.length == 0));
/* Set chunk's [scaled] coordinates */
dset_info->store->chunk.scaled = chunk_info->scaled;
/* Determine if we should use the chunk cache */
if ((cacheable = H5D__chunk_cacheable(io_info, dset_info, udata.chunk_block.offset, true)) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't tell if chunk is cacheable");
if (cacheable) {
/* Load the chunk into cache. But if the whole chunk is written,
* simply allocate space instead of load the chunk. */
void *chunk; /* Pointer to locked chunk buffer */
bool entire_chunk = true; /* Whether whole chunk is selected */
/* Compute # of bytes accessed in chunk */
H5_CHECK_OVERFLOW(dset_info->type_info.dst_type_size, /*From:*/ size_t, /*To:*/ uint32_t);
H5_CHECK_OVERFLOW(chunk_info->piece_points, /*From:*/ size_t, /*To:*/ uint32_t);
dst_accessed_bytes =
(uint32_t)chunk_info->piece_points * (uint32_t)dset_info->type_info.dst_type_size;
/* Determine if we will access all the data in the chunk */
if (dst_accessed_bytes != ctg_store.contig.dset_size ||
(chunk_info->piece_points * dset_info->type_info.src_type_size) !=
ctg_store.contig.dset_size ||
dset_info->layout_io_info.chunk_map->fsel_type == H5S_SEL_POINTS)
entire_chunk = false;
/* Lock the chunk into the cache */
if (NULL == (chunk = H5D__chunk_lock(io_info, dset_info, &udata, entire_chunk, false)))
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "unable to read raw data chunk");
/* Set up the storage buffer information for this chunk */
cpt_store.compact.buf = chunk;
/* Set up compact dataset info for write to cached chunk */
cpt_dset_info.layout_io_info.contig_piece_info = chunk_info;
cpt_dset_info.file_space = chunk_info->fspace;
cpt_dset_info.mem_space = chunk_info->mspace;
cpt_dset_info.nelmts = chunk_info->piece_points;
/* Set request_nelmts. This is not normally set by the upper layers because selection I/O
* usually does not use strip mining (H5D__scatgath_write), and instead allocates buffers
* large enough for the entire I/O. Set request_nelmts to be large enough for all selected
* elements in this chunk because it must be at least that large */
cpt_dset_info.type_info.request_nelmts = cpt_dset_info.nelmts;
/* Perform the actual write operation */
if ((dset_info->io_ops.single_write)(&cpt_io_info, &cpt_dset_info) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_READERROR, FAIL, "chunked write failed");
/* Release the cache lock on the chunk */
if (H5D__chunk_unlock(io_info, dset_info, &udata, true, chunk, dst_accessed_bytes) < 0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "unable to unlock raw data chunk");
} /* end if */
else {
/* If the chunk hasn't been allocated on disk, do so now. */
if (!H5_addr_defined(udata.chunk_block.offset)) {
/* Compose chunked index info struct */
idx_info.f = dset_info->dset->oloc.file;
idx_info.pline = &(dset_info->dset->shared->dcpl_cache.pline);
idx_info.layout = &(dset_info->dset->shared->layout.u.chunk);
idx_info.storage = &(dset_info->dset->shared->layout.storage.u.chunk);
/* Set up the size of chunk for user data */
udata.chunk_block.length = dset_info->dset->shared->layout.u.chunk.size;
/* Allocate the chunk */
if (H5D__chunk_file_alloc(&idx_info, NULL, &udata.chunk_block, &need_insert,
chunk_info->scaled) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINSERT, FAIL,
"unable to insert/resize chunk on chunk level");
/* Make sure the address of the chunk is returned. */
if (!H5_addr_defined(udata.chunk_block.offset))
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "chunk address isn't defined");
/* Cache the new chunk information */
H5D__chunk_cinfo_cache_update(&dset_info->dset->shared->cache.chunk.last, &udata);
/* Insert chunk into index */
if (need_insert && dset_info->dset->shared->layout.storage.u.chunk.ops->insert)
if ((dset_info->dset->shared->layout.storage.u.chunk.ops->insert)(&idx_info, &udata,
NULL) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINSERT, FAIL,
"unable to insert chunk addr into index");
} /* end if */
/* Add chunk to list for selection I/O, if not performing multi dataset I/O */
if (H5D_LAYOUT_CB_PERFORM_IO(io_info)) {
chunk_mem_spaces[num_chunks] = chunk_info->mspace;
chunk_file_spaces[num_chunks] = chunk_info->fspace;
chunk_addrs[num_chunks] = udata.chunk_block.offset;
num_chunks++;
} /* end if */
else {
/* Add to mdset selection I/O arrays */
assert(io_info->mem_spaces);
assert(io_info->file_spaces);
assert(io_info->addrs);
assert(io_info->element_sizes);
assert(io_info->wbufs);
assert(io_info->pieces_added < io_info->piece_count);
io_info->mem_spaces[io_info->pieces_added] = chunk_info->mspace;
io_info->file_spaces[io_info->pieces_added] = chunk_info->fspace;
io_info->addrs[io_info->pieces_added] = udata.chunk_block.offset;
io_info->element_sizes[io_info->pieces_added] = element_sizes[0];
io_info->wbufs[io_info->pieces_added] = bufs[0];
if (io_info->sel_pieces)
io_info->sel_pieces[io_info->pieces_added] = chunk_info;
io_info->pieces_added++;
if (io_info->sel_pieces && chunk_info->filtered_dset)
io_info->filtered_pieces_added++;
}
} /* end else */
/* Advance to next chunk in list */
chunk_node = H5D_CHUNK_GET_NEXT_NODE(dset_info, chunk_node);
} /* end while */
/* Only perform I/O if not performing multi dataset I/O or type conversion, otherwise the
* higher level will handle it after all datasets have been processed */
if (H5D_LAYOUT_CB_PERFORM_IO(io_info)) {
/* Issue selection I/O call (we can skip the page buffer because we've
* already verified it won't be used, and the metadata accumulator
* because this is raw data) */
H5_CHECK_OVERFLOW(num_chunks, size_t, uint32_t);
if (H5F_shared_select_write(H5F_SHARED(dset_info->dset->oloc.file), H5FD_MEM_DRAW,
(uint32_t)num_chunks, chunk_mem_spaces, chunk_file_spaces,
chunk_addrs, element_sizes, bufs) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_WRITEERROR, FAIL, "chunk selection write failed");
/* Clean up memory */
if (chunk_mem_spaces != chunk_mem_spaces_local) {
assert(chunk_file_spaces != chunk_file_spaces_local);
assert(chunk_addrs != chunk_addrs_local);
chunk_mem_spaces = H5MM_xfree(chunk_mem_spaces);
chunk_file_spaces = H5MM_xfree(chunk_file_spaces);
chunk_addrs = H5MM_xfree(chunk_addrs);
} /* end if */
} /* end if */
#ifdef H5_HAVE_PARALLEL
/* Report that collective chunk I/O was used (will only be set on the DXPL if collective I/O was
* requested) */
io_info->actual_io_mode |= H5D_MPIO_CHUNK_COLLECTIVE;
#endif /* H5_HAVE_PARALLEL */
} /* end if */
else {
/* Iterate through nodes in chunk skip list */
chunk_node = H5D_CHUNK_GET_FIRST_NODE(dset_info);
while (chunk_node) {
H5D_piece_info_t *chunk_info; /* Chunk information */
H5D_chk_idx_info_t idx_info; /* Chunked index info */
H5D_io_info_t *chk_io_info; /* Pointer to I/O info object for this chunk */
void *chunk; /* Pointer to locked chunk buffer */
H5D_chunk_ud_t udata; /* Index pass-through */
htri_t cacheable; /* Whether the chunk is cacheable */
bool need_insert = false; /* Whether the chunk needs to be inserted into the index */
/* Get the actual chunk information from the skip list node */
chunk_info = H5D_CHUNK_GET_NODE_INFO(dset_info, chunk_node);
/* Look up the chunk */
if (H5D__chunk_lookup(dset_info->dset, chunk_info->scaled, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "error looking up chunk address");
/* Sanity check */
assert((H5_addr_defined(udata.chunk_block.offset) && udata.chunk_block.length > 0) ||
(!H5_addr_defined(udata.chunk_block.offset) && udata.chunk_block.length == 0));
/* Set chunk's [scaled] coordinates */
dset_info->store->chunk.scaled = chunk_info->scaled;
/* Determine if we should use the chunk cache */
if ((cacheable = H5D__chunk_cacheable(io_info, dset_info, udata.chunk_block.offset, true)) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't tell if chunk is cacheable");
if (cacheable) {
/* Load the chunk into cache. But if the whole chunk is written,
* simply allocate space instead of load the chunk. */
bool entire_chunk = true; /* Whether whole chunk is selected */
/* Compute # of bytes accessed in chunk */
H5_CHECK_OVERFLOW(dset_info->type_info.dst_type_size, /*From:*/ size_t, /*To:*/ uint32_t);
H5_CHECK_OVERFLOW(chunk_info->piece_points, /*From:*/ size_t, /*To:*/ uint32_t);
dst_accessed_bytes =
(uint32_t)chunk_info->piece_points * (uint32_t)dset_info->type_info.dst_type_size;
/* Determine if we will access all the data in the chunk */
if (dst_accessed_bytes != ctg_store.contig.dset_size ||
(chunk_info->piece_points * dset_info->type_info.src_type_size) !=
ctg_store.contig.dset_size ||
dset_info->layout_io_info.chunk_map->fsel_type == H5S_SEL_POINTS)
entire_chunk = false;
/* Lock the chunk into the cache */
if (NULL == (chunk = H5D__chunk_lock(io_info, dset_info, &udata, entire_chunk, false)))
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "unable to read raw data chunk");
/* Set up the storage buffer information for this chunk */
cpt_store.compact.buf = chunk;
/* Point I/O info at main I/O info for this chunk */
chk_io_info = &cpt_io_info;
} /* end if */
else {
/* If the chunk hasn't been allocated on disk, do so now. */
if (!H5_addr_defined(udata.chunk_block.offset)) {
/* Compose chunked index info struct */
idx_info.f = dset_info->dset->oloc.file;
idx_info.pline = &(dset_info->dset->shared->dcpl_cache.pline);
idx_info.layout = &(dset_info->dset->shared->layout.u.chunk);
idx_info.storage = &(dset_info->dset->shared->layout.storage.u.chunk);
/* Set up the size of chunk for user data */
udata.chunk_block.length = dset_info->dset->shared->layout.u.chunk.size;
/* Allocate the chunk */
if (H5D__chunk_file_alloc(&idx_info, NULL, &udata.chunk_block, &need_insert,
chunk_info->scaled) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINSERT, FAIL,
"unable to insert/resize chunk on chunk level");
/* Make sure the address of the chunk is returned. */
if (!H5_addr_defined(udata.chunk_block.offset))
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "chunk address isn't defined");
/* Cache the new chunk information */
H5D__chunk_cinfo_cache_update(&dset_info->dset->shared->cache.chunk.last, &udata);
} /* end if */
/* Set up the storage address information for this chunk */
ctg_store.contig.dset_addr = udata.chunk_block.offset;
/* No chunk cached */
chunk = NULL;
/* Point I/O info at temporary I/O info for this chunk */
chk_io_info = &ctg_io_info;
} /* end else */
/* Perform the actual write operation */
assert(chk_io_info->count == 1);
chk_io_info->dsets_info[0].layout_io_info.contig_piece_info = chunk_info;
chk_io_info->dsets_info[0].file_space = chunk_info->fspace;
chk_io_info->dsets_info[0].mem_space = chunk_info->mspace;
chk_io_info->dsets_info[0].nelmts = chunk_info->piece_points;
if ((dset_info->io_ops.single_write)(chk_io_info, &chk_io_info->dsets_info[0]) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_READERROR, FAIL, "chunked write failed");
/* Release the cache lock on the chunk, or insert chunk into index. */
if (chunk) {
if (H5D__chunk_unlock(io_info, dset_info, &udata, true, chunk, dst_accessed_bytes) < 0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "unable to unlock raw data chunk");
} /* end if */
else {
if (need_insert && dset_info->dset->shared->layout.storage.u.chunk.ops->insert)
if ((dset_info->dset->shared->layout.storage.u.chunk.ops->insert)(&idx_info, &udata,
NULL) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINSERT, FAIL,
"unable to insert chunk addr into index");
} /* end else */
/* Advance to next chunk in list */
chunk_node = H5D_CHUNK_GET_NEXT_NODE(dset_info, chunk_node);
} /* end while */
} /* end else */
done:
/* Cleanup on failure */
if (ret_value < 0) {
if (chunk_mem_spaces != chunk_mem_spaces_local)
chunk_mem_spaces = H5MM_xfree(chunk_mem_spaces);
if (chunk_file_spaces != chunk_file_spaces_local)
chunk_file_spaces = H5MM_xfree(chunk_file_spaces);
if (chunk_addrs != chunk_addrs_local)
chunk_addrs = H5MM_xfree(chunk_addrs);
} /* end if */
/* Make sure we cleaned up */
assert(!chunk_mem_spaces || chunk_mem_spaces == chunk_mem_spaces_local);
assert(!chunk_file_spaces || chunk_file_spaces == chunk_file_spaces_local);
assert(!chunk_addrs || chunk_addrs == chunk_addrs_local);
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__chunk_write() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_flush
*
* Purpose: Writes all dirty chunks to disk and optionally preempts them
* from the cache.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_flush(H5D_t *dset)
{
H5D_rdcc_t *rdcc = &(dset->shared->cache.chunk);
H5D_rdcc_ent_t *ent, *next;
unsigned nerrors = 0; /* Count of any errors encountered when flushing chunks */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity check */
assert(dset);
/* Loop over all entries in the chunk cache */
for (ent = rdcc->head; ent; ent = next) {
next = ent->next;
if (H5D__chunk_flush_entry(dset, ent, false) < 0)
nerrors++;
} /* end for */
if (nerrors)
HGOTO_ERROR(H5E_DATASET, H5E_CANTFLUSH, FAIL, "unable to flush one or more raw data chunks");
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_flush() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_io_term
*
* Purpose: Destroy I/O operation information.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_io_term(H5D_io_info_t H5_ATTR_UNUSED *io_info, H5D_dset_io_info_t *di)
{
H5D_chunk_map_t *fm; /* Convenience pointer to chunk map */
herr_t ret_value = SUCCEED; /*return value */
FUNC_ENTER_PACKAGE
assert(di);
/* Set convenience pointer */
fm = di->layout_io_info.chunk_map;
/* Single element I/O vs. multiple element I/O cleanup */
if (fm->use_single) {
/* Sanity checks */
assert(fm->dset_sel_pieces == NULL);
assert(fm->last_piece_info == NULL);
assert(fm->single_piece_info);
assert(fm->single_piece_info->fspace_shared);
assert(fm->single_piece_info->mspace_shared);
/* Reset the selection for the single element I/O */
H5S_select_all(fm->single_space, true);
} /* end if */
else {
/* Release the nodes on the list of selected pieces, or the last (only)
* piece if the skiplist is not available */
if (fm->dset_sel_pieces) {
if (H5SL_free(fm->dset_sel_pieces, H5D__free_piece_info, NULL) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTNEXT, FAIL, "can't free dataset skip list");
} /* end if */
else if (fm->last_piece_info) {
if (H5D__free_piece_info(fm->last_piece_info, NULL, NULL) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTFREE, FAIL, "can't free piece info");
fm->last_piece_info = NULL;
} /* end if */
} /* end else */
/* Free the memory piece dataspace template */
if (fm->mchunk_tmpl)
if (H5S_close(fm->mchunk_tmpl) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTRELEASE, FAIL,
"can't release memory chunk dataspace template");
/* Free chunk map */
di->layout_io_info.chunk_map = H5FL_FREE(H5D_chunk_map_t, di->layout_io_info.chunk_map);
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_io_term() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_dest
*
* Purpose: Destroy the entire chunk cache by flushing dirty entries,
* preempting all entries, and freeing the cache itself.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_dest(H5D_t *dset)
{
H5D_chk_idx_info_t idx_info; /* Chunked index info */
H5D_rdcc_t *rdcc = &(dset->shared->cache.chunk); /* Dataset's chunk cache */
H5D_rdcc_ent_t *ent = NULL, *next = NULL; /* Pointer to current & next cache entries */
int nerrors = 0; /* Accumulated count of errors */
H5O_storage_chunk_t *sc = &(dset->shared->layout.storage.u.chunk);
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE_TAG(dset->oloc.addr)
/* Sanity checks */
assert(dset);
H5D_CHUNK_STORAGE_INDEX_CHK(sc);
/* Flush all the cached chunks */
for (ent = rdcc->head; ent; ent = next) {
next = ent->next;
if (H5D__chunk_cache_evict(dset, ent, true) < 0)
nerrors++;
} /* end for */
/* Continue even if there are failures. */
if (nerrors)
HDONE_ERROR(H5E_IO, H5E_CANTFLUSH, FAIL, "unable to flush one or more raw data chunks");
/* Release cache structures */
if (rdcc->slot)
rdcc->slot = H5FL_SEQ_FREE(H5D_rdcc_ent_ptr_t, rdcc->slot);
memset(rdcc, 0, sizeof(H5D_rdcc_t));
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &dset->shared->layout.u.chunk;
idx_info.storage = sc;
/* Free any index structures */
if (sc->ops->dest && (sc->ops->dest)(&idx_info) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTFREE, FAIL, "unable to release chunk index info");
done:
FUNC_LEAVE_NOAPI_TAG(ret_value)
} /* end H5D__chunk_dest() */
/*-------------------------------------------------------------------------
* Function: H5D_chunk_idx_reset
*
* Purpose: Reset index information
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
herr_t
H5D_chunk_idx_reset(H5O_storage_chunk_t *storage, bool reset_addr)
{
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(FAIL)
/* Sanity checks */
assert(storage);
assert(storage->ops);
H5D_CHUNK_STORAGE_INDEX_CHK(storage);
/* Reset index structures */
if ((storage->ops->reset)(storage, reset_addr) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTFREE, FAIL, "unable to reset chunk index info");
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D_chunk_idx_reset() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_cinfo_cache_reset
*
* Purpose: Reset the cached chunk info
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_cinfo_cache_reset(H5D_chunk_cached_t *last)
{
FUNC_ENTER_PACKAGE_NOERR
/* Sanity check */
assert(last);
/* Indicate that the cached info is not valid */
last->valid = false;
FUNC_LEAVE_NOAPI(SUCCEED)
} /* H5D__chunk_cinfo_cache_reset() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_cinfo_cache_update
*
* Purpose: Update the cached chunk info
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_cinfo_cache_update(H5D_chunk_cached_t *last, const H5D_chunk_ud_t *udata)
{
FUNC_ENTER_PACKAGE_NOERR
/* Sanity check */
assert(last);
assert(udata);
assert(udata->common.layout);
assert(udata->common.scaled);
/* Stored the information to cache */
H5MM_memcpy(last->scaled, udata->common.scaled, sizeof(hsize_t) * udata->common.layout->ndims);
last->addr = udata->chunk_block.offset;
H5_CHECKED_ASSIGN(last->nbytes, uint32_t, udata->chunk_block.length, hsize_t);
last->chunk_idx = udata->chunk_idx;
last->filter_mask = udata->filter_mask;
/* Indicate that the cached info is valid */
last->valid = true;
FUNC_LEAVE_NOAPI(SUCCEED)
} /* H5D__chunk_cinfo_cache_update() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_cinfo_cache_found
*
* Purpose: Look for chunk info in cache
*
* Return: true/false/FAIL
*
*-------------------------------------------------------------------------
*/
static bool
H5D__chunk_cinfo_cache_found(const H5D_chunk_cached_t *last, H5D_chunk_ud_t *udata)
{
bool ret_value = false; /* Return value */
FUNC_ENTER_PACKAGE_NOERR
/* Sanity check */
assert(last);
assert(udata);
assert(udata->common.layout);
assert(udata->common.scaled);
/* Check if the cached information is what is desired */
if (last->valid) {
unsigned u; /* Local index variable */
/* Check that the scaled offset is the same */
for (u = 0; u < udata->common.layout->ndims; u++)
if (last->scaled[u] != udata->common.scaled[u])
HGOTO_DONE(false);
/* Retrieve the information from the cache */
udata->chunk_block.offset = last->addr;
udata->chunk_block.length = last->nbytes;
udata->chunk_idx = last->chunk_idx;
udata->filter_mask = last->filter_mask;
/* Indicate that the data was found */
HGOTO_DONE(true);
} /* end if */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__chunk_cinfo_cache_found() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_create
*
* Purpose: Creates a new chunked storage index and initializes the
* layout information with information about the storage. The
* layout info should be immediately written to the object header.
*
* Return: Non-negative on success (with the layout information initialized
* and ready to write to an object header). Negative on failure.
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_create(const H5D_t *dset /*in,out*/)
{
H5D_chk_idx_info_t idx_info; /* Chunked index info */
H5O_storage_chunk_t *sc = &(dset->shared->layout.storage.u.chunk);
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Check args */
assert(dset);
assert(H5D_CHUNKED == dset->shared->layout.type);
assert(dset->shared->layout.u.chunk.ndims > 0 && dset->shared->layout.u.chunk.ndims <= H5O_LAYOUT_NDIMS);
H5D_CHUNK_STORAGE_INDEX_CHK(sc);
#ifndef NDEBUG
{
unsigned u; /* Local index variable */
for (u = 0; u < dset->shared->layout.u.chunk.ndims; u++)
assert(dset->shared->layout.u.chunk.dim[u] > 0);
}
#endif
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &dset->shared->layout.u.chunk;
idx_info.storage = sc;
/* Create the index for the chunks */
if ((sc->ops->create)(&idx_info) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "can't create chunk index");
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_create() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_hash_val
*
* Purpose: To calculate an index based on the dataset's scaled
* coordinates and sizes of the faster dimensions.
*
* Return: Hash value index
*
*-------------------------------------------------------------------------
*/
static unsigned
H5D__chunk_hash_val(const H5D_shared_t *shared, const hsize_t *scaled)
{
hsize_t val; /* Intermediate value */
unsigned ndims = shared->ndims; /* Rank of dataset */
unsigned ret = 0; /* Value to return */
unsigned u; /* Local index variable */
FUNC_ENTER_PACKAGE_NOERR
/* Sanity check */
assert(shared);
assert(scaled);
/* If the fastest changing dimension doesn't have enough entropy, use
* other dimensions too
*/
val = scaled[0];
for (u = 1; u < ndims; u++) {
val <<= shared->cache.chunk.scaled_encode_bits[u];
val ^= scaled[u];
} /* end for */
/* Modulo value against the number of array slots */
ret = (unsigned)(val % shared->cache.chunk.nslots);
FUNC_LEAVE_NOAPI(ret)
} /* H5D__chunk_hash_val() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_lookup
*
* Purpose: Loops up a chunk in cache and on disk, and retrieves
* information about that chunk.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_lookup(const H5D_t *dset, const hsize_t *scaled, H5D_chunk_ud_t *udata)
{
H5D_rdcc_ent_t *ent = NULL; /* Cache entry */
H5O_storage_chunk_t *sc = &(dset->shared->layout.storage.u.chunk);
unsigned idx = 0; /* Index of chunk in cache, if present */
bool found = false; /* In cache? */
#ifdef H5_HAVE_PARALLEL
H5P_coll_md_read_flag_t md_reads_file_flag;
bool md_reads_context_flag;
bool restore_md_reads_state = false;
#endif
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity checks */
assert(dset);
assert(dset->shared->layout.u.chunk.ndims > 0);
H5D_CHUNK_STORAGE_INDEX_CHK(sc);
assert(scaled);
assert(udata);
/* Initialize the query information about the chunk we are looking for */
udata->common.layout = &(dset->shared->layout.u.chunk);
udata->common.storage = sc;
udata->common.scaled = scaled;
/* Reset information about the chunk we are looking for */
udata->chunk_block.offset = HADDR_UNDEF;
udata->chunk_block.length = 0;
udata->filter_mask = 0;
udata->new_unfilt_chunk = false;
/* Check for chunk in cache */
if (dset->shared->cache.chunk.nslots > 0) {
/* Determine the chunk's location in the hash table */
idx = H5D__chunk_hash_val(dset->shared, scaled);
/* Get the chunk cache entry for that location */
ent = dset->shared->cache.chunk.slot[idx];
if (ent) {
unsigned u; /* Counter */
/* Speculatively set the 'found' flag */
found = true;
/* Verify that the cache entry is the correct chunk */
for (u = 0; u < dset->shared->ndims; u++)
if (scaled[u] != ent->scaled[u]) {
found = false;
break;
} /* end if */
} /* end if */
} /* end if */
/* Retrieve chunk addr */
if (found) {
udata->idx_hint = idx;
udata->chunk_block.offset = ent->chunk_block.offset;
udata->chunk_block.length = ent->chunk_block.length;
udata->chunk_idx = ent->chunk_idx;
} /* end if */
else {
/* Invalidate idx_hint, to signal that the chunk is not in cache */
udata->idx_hint = UINT_MAX;
/* Check for cached information */
if (!H5D__chunk_cinfo_cache_found(&dset->shared->cache.chunk.last, udata)) {
H5D_chk_idx_info_t idx_info; /* Chunked index info */
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &dset->shared->layout.u.chunk;
idx_info.storage = sc;
#ifdef H5_HAVE_PARALLEL
if (H5F_HAS_FEATURE(idx_info.f, H5FD_FEAT_HAS_MPI)) {
/* Disable collective metadata read for chunk indexes as it is
* highly unlikely that users would read the same chunks from all
* processes.
*/
if (H5F_get_coll_metadata_reads(idx_info.f)) {
#ifndef NDEBUG
bool index_is_open;
/*
* The dataset's chunk index should be open at this point.
* Otherwise, we will end up reading it in independently,
* which may not be desired.
*/
sc->ops->is_open(&idx_info, &index_is_open);
assert(index_is_open);
#endif
md_reads_file_flag = H5P_FORCE_FALSE;
md_reads_context_flag = false;
H5F_set_coll_metadata_reads(idx_info.f, &md_reads_file_flag, &md_reads_context_flag);
restore_md_reads_state = true;
}
}
#endif /* H5_HAVE_PARALLEL */
/* Go get the chunk information */
if ((sc->ops->get_addr)(&idx_info, udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't query chunk address");
/*
* Cache the information retrieved.
*
* Note that if we are writing to the dataset in parallel and filters
* are involved, we skip caching this information as it is highly likely
* that the chunk information will be invalidated as a result of the
* filter operation (e.g. the chunk gets re-allocated to a different
* address in the file and/or gets re-allocated with a different size).
* If we were to cache this information, subsequent reads/writes would
* retrieve the invalid information and cause a variety of issues.
*
* It has been verified that in the serial library, when writing to chunks
* with the real chunk cache disabled and with filters involved, the
* functions within this file are correctly called in such a manner that
* this single chunk cache is always updated correctly. Therefore, this
* check is not needed for the serial library.
*
* This is an ugly and potentially frail check, but the
* H5D__chunk_cinfo_cache_reset() function is not currently available
* to functions outside of this file, so outside functions can not
* invalidate this single chunk cache. Even if the function were available,
* this check prevents us from doing the work of going through and caching
* each chunk in the write operation, when we're only going to invalidate
* the cache at the end of a parallel write anyway.
*
* - JTH (7/13/2018)
*/
#ifdef H5_HAVE_PARALLEL
if (!((H5F_HAS_FEATURE(idx_info.f, H5FD_FEAT_HAS_MPI)) &&
(H5F_INTENT(dset->oloc.file) & H5F_ACC_RDWR) && dset->shared->dcpl_cache.pline.nused))
#endif
H5D__chunk_cinfo_cache_update(&dset->shared->cache.chunk.last, udata);
} /* end if */
} /* end else */
done:
#ifdef H5_HAVE_PARALLEL
/* Re-enable collective metadata reads if we disabled them */
if (restore_md_reads_state)
H5F_set_coll_metadata_reads(dset->oloc.file, &md_reads_file_flag, &md_reads_context_flag);
#endif /* H5_HAVE_PARALLEL */
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__chunk_lookup() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_flush_entry
*
* Purpose: Writes a chunk to disk. If RESET is non-zero then the
* entry is cleared -- it's slightly faster to flush a chunk if
* the RESET flag is turned on because it results in one fewer
* memory copy.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_flush_entry(const H5D_t *dset, H5D_rdcc_ent_t *ent, bool reset)
{
void *buf = NULL; /* Temporary buffer */
bool point_of_no_return = false;
H5O_storage_chunk_t *sc = &(dset->shared->layout.storage.u.chunk);
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
assert(dset);
assert(dset->shared);
H5D_CHUNK_STORAGE_INDEX_CHK(sc);
assert(ent);
assert(!ent->locked);
buf = ent->chunk;
if (ent->dirty) {
H5D_chk_idx_info_t idx_info; /* Chunked index info */
H5D_chunk_ud_t udata; /* pass through B-tree */
bool must_alloc = false; /* Whether the chunk must be allocated */
bool need_insert = false; /* Whether the chunk needs to be inserted into the index */
/* Set up user data for index callbacks */
udata.common.layout = &dset->shared->layout.u.chunk;
udata.common.storage = sc;
udata.common.scaled = ent->scaled;
udata.chunk_block.offset = ent->chunk_block.offset;
udata.chunk_block.length = dset->shared->layout.u.chunk.size;
udata.filter_mask = 0;
udata.chunk_idx = ent->chunk_idx;
/* Should the chunk be filtered before writing it to disk? */
if (dset->shared->dcpl_cache.pline.nused && !(ent->edge_chunk_state & H5D_RDCC_DISABLE_FILTERS)) {
H5Z_EDC_t err_detect; /* Error detection info */
H5Z_cb_t filter_cb; /* I/O filter callback function */
size_t alloc = udata.chunk_block.length; /* Bytes allocated for BUF */
size_t nbytes; /* Chunk size (in bytes) */
/* Retrieve filter settings from API context */
if (H5CX_get_err_detect(&err_detect) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't get error detection info");
if (H5CX_get_filter_cb(&filter_cb) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't get I/O filter callback function");
if (!reset) {
/*
* Copy the chunk to a new buffer before running it through
* the pipeline because we'll want to save the original buffer
* for later.
*/
if (NULL == (buf = H5MM_malloc(alloc)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed for pipeline");
H5MM_memcpy(buf, ent->chunk, alloc);
} /* end if */
else {
/*
* If we are resetting and something goes wrong after this
* point then it's too late to recover because we may have
* destroyed the original data by calling H5Z_pipeline().
* The only safe option is to continue with the reset
* even if we can't write the data to disk.
*/
point_of_no_return = true;
ent->chunk = NULL;
} /* end else */
H5_CHECKED_ASSIGN(nbytes, size_t, udata.chunk_block.length, hsize_t);
if (H5Z_pipeline(&(dset->shared->dcpl_cache.pline), 0, &(udata.filter_mask), err_detect,
filter_cb, &nbytes, &alloc, &buf) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTFILTER, FAIL, "output pipeline failed");
#if H5_SIZEOF_SIZE_T > 4
/* Check for the chunk expanding too much to encode in a 32-bit value */
if (nbytes > ((size_t)0xffffffff))
HGOTO_ERROR(H5E_DATASET, H5E_BADRANGE, FAIL, "chunk too large for 32-bit length");
#endif /* H5_SIZEOF_SIZE_T > 4 */
H5_CHECKED_ASSIGN(udata.chunk_block.length, hsize_t, nbytes, size_t);
/* Indicate that the chunk must be allocated */
must_alloc = true;
} /* end if */
else if (!H5_addr_defined(udata.chunk_block.offset)) {
/* Indicate that the chunk must be allocated */
must_alloc = true;
/* This flag could be set for this chunk, just remove and ignore it
*/
ent->edge_chunk_state &= ~H5D_RDCC_NEWLY_DISABLED_FILTERS;
} /* end else */
else if (ent->edge_chunk_state & H5D_RDCC_NEWLY_DISABLED_FILTERS) {
/* Chunk on disk is still filtered, must insert to allocate correct
* size */
must_alloc = true;
/* Set the disable filters field back to the standard disable
* filters setting, as it no longer needs to be inserted with every
* flush */
ent->edge_chunk_state &= ~H5D_RDCC_NEWLY_DISABLED_FILTERS;
} /* end else */
assert(!(ent->edge_chunk_state & H5D_RDCC_NEWLY_DISABLED_FILTERS));
/* Check if the chunk needs to be allocated (it also could exist already
* and the chunk alloc operation could resize it)
*/
if (must_alloc) {
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &dset->shared->layout.u.chunk;
idx_info.storage = sc;
/* Create the chunk it if it doesn't exist, or reallocate the chunk
* if its size changed.
*/
if (H5D__chunk_file_alloc(&idx_info, &(ent->chunk_block), &udata.chunk_block, &need_insert,
ent->scaled) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINSERT, FAIL,
"unable to insert/resize chunk on chunk level");
/* Update the chunk entry's info, in case it was allocated or relocated */
ent->chunk_block.offset = udata.chunk_block.offset;
ent->chunk_block.length = udata.chunk_block.length;
} /* end if */
/* Write the data to the file */
assert(H5_addr_defined(udata.chunk_block.offset));
H5_CHECK_OVERFLOW(udata.chunk_block.length, hsize_t, size_t);
if (H5F_shared_block_write(H5F_SHARED(dset->oloc.file), H5FD_MEM_DRAW, udata.chunk_block.offset,
(size_t)udata.chunk_block.length, buf) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_WRITEERROR, FAIL, "unable to write raw data to file");
/* Insert the chunk record into the index */
if (need_insert && sc->ops->insert)
if ((sc->ops->insert)(&idx_info, &udata, dset) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINSERT, FAIL, "unable to insert chunk addr into index");
/* Cache the chunk's info, in case it's accessed again shortly */
H5D__chunk_cinfo_cache_update(&dset->shared->cache.chunk.last, &udata);
/* Mark cache entry as clean */
ent->dirty = false;
/* Increment # of flushed entries */
dset->shared->cache.chunk.stats.nflushes++;
} /* end if */
/* Reset, but do not free or removed from list */
if (reset) {
point_of_no_return = false;
if (buf == ent->chunk)
buf = NULL;
if (ent->chunk != NULL)
ent->chunk = (uint8_t *)H5D__chunk_mem_xfree(ent->chunk,
((ent->edge_chunk_state & H5D_RDCC_DISABLE_FILTERS)
? NULL
: &(dset->shared->dcpl_cache.pline)));
} /* end if */
done:
/* Free the temp buffer only if it's different than the entry chunk */
if (buf != ent->chunk)
H5MM_xfree(buf);
/*
* If we reached the point of no return then we have no choice but to
* reset the entry. This can only happen if RESET is true but the
* output pipeline failed. Do not free the entry or remove it from the
* list.
*/
if (ret_value < 0 && point_of_no_return)
if (ent->chunk)
ent->chunk = (uint8_t *)H5D__chunk_mem_xfree(ent->chunk,
((ent->edge_chunk_state & H5D_RDCC_DISABLE_FILTERS)
? NULL
: &(dset->shared->dcpl_cache.pline)));
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_flush_entry() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_cache_evict
*
* Purpose: Preempts the specified entry from the cache, flushing it to
* disk if necessary.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_cache_evict(const H5D_t *dset, H5D_rdcc_ent_t *ent, bool flush)
{
H5D_rdcc_t *rdcc = &(dset->shared->cache.chunk);
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity checks */
assert(dset);
assert(ent);
assert(!ent->locked);
assert(ent->idx < rdcc->nslots);
if (flush) {
/* Flush */
if (H5D__chunk_flush_entry(dset, ent, true) < 0)
HDONE_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "cannot flush indexed storage buffer");
} /* end if */
else {
/* Don't flush, just free chunk */
if (ent->chunk != NULL)
ent->chunk = (uint8_t *)H5D__chunk_mem_xfree(ent->chunk,
((ent->edge_chunk_state & H5D_RDCC_DISABLE_FILTERS)
? NULL
: &(dset->shared->dcpl_cache.pline)));
} /* end else */
/* Unlink from list */
if (ent->prev)
ent->prev->next = ent->next;
else
rdcc->head = ent->next;
if (ent->next)
ent->next->prev = ent->prev;
else
rdcc->tail = ent->prev;
ent->prev = ent->next = NULL;
/* Unlink from temporary list */
if (ent->tmp_prev) {
assert(rdcc->tmp_head->tmp_next);
ent->tmp_prev->tmp_next = ent->tmp_next;
if (ent->tmp_next) {
ent->tmp_next->tmp_prev = ent->tmp_prev;
ent->tmp_next = NULL;
} /* end if */
ent->tmp_prev = NULL;
} /* end if */
else
/* Only clear hash table slot if the chunk was not on the temporary list
*/
rdcc->slot[ent->idx] = NULL;
/* Remove from cache */
assert(rdcc->slot[ent->idx] != ent);
ent->idx = UINT_MAX;
rdcc->nbytes_used -= dset->shared->layout.u.chunk.size;
--rdcc->nused;
/* Free */
ent = H5FL_FREE(H5D_rdcc_ent_t, ent);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_cache_evict() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_cache_prune
*
* Purpose: Prune the cache by preempting some things until the cache has
* room for something which is SIZE bytes. Only unlocked
* entries are considered for preemption.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_cache_prune(const H5D_t *dset, size_t size)
{
const H5D_rdcc_t *rdcc = &(dset->shared->cache.chunk);
size_t total = rdcc->nbytes_max;
const int nmeth = 2; /* Number of methods */
int w[1]; /* Weighting as an interval */
H5D_rdcc_ent_t *p[2], *cur; /* List pointers */
H5D_rdcc_ent_t *n[2]; /* List next pointers */
int nerrors = 0; /* Accumulated error count during preemptions */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/*
* Preemption is accomplished by having multiple pointers (currently two)
* slide down the list beginning at the head. Pointer p(N+1) will start
* traversing the list when pointer pN reaches wN percent of the original
* list. In other words, preemption method N gets to consider entries in
* approximate least recently used order w0 percent before method N+1
* where 100% means the method N will run to completion before method N+1
* begins. The pointers participating in the list traversal are each
* given a chance at preemption before any of the pointers are advanced.
*/
w[0] = (int)(rdcc->nused * rdcc->w0);
p[0] = rdcc->head;
p[1] = NULL;
while ((p[0] || p[1]) && (rdcc->nbytes_used + size) > total) {
int i; /* Local index variable */
/* Introduce new pointers */
for (i = 0; i < nmeth - 1; i++)
if (0 == w[i])
p[i + 1] = rdcc->head;
/* Compute next value for each pointer */
for (i = 0; i < nmeth; i++)
n[i] = p[i] ? p[i]->next : NULL;
/* Give each method a chance */
for (i = 0; i < nmeth && (rdcc->nbytes_used + size) > total; i++) {
if (0 == i && p[0] && !p[0]->locked &&
((0 == p[0]->rd_count && 0 == p[0]->wr_count) ||
(0 == p[0]->rd_count && dset->shared->layout.u.chunk.size == p[0]->wr_count) ||
(dset->shared->layout.u.chunk.size == p[0]->rd_count && 0 == p[0]->wr_count))) {
/*
* Method 0: Preempt entries that have been completely written
* and/or completely read but not entries that are partially
* written or partially read.
*/
cur = p[0];
}
else if (1 == i && p[1] && !p[1]->locked) {
/*
* Method 1: Preempt the entry without regard to
* considerations other than being locked. This is the last
* resort preemption.
*/
cur = p[1];
}
else {
/* Nothing to preempt at this point */
cur = NULL;
}
if (cur) {
int j; /* Local index variable */
for (j = 0; j < nmeth; j++) {
if (p[j] == cur)
p[j] = NULL;
if (n[j] == cur)
n[j] = cur->next;
} /* end for */
if (H5D__chunk_cache_evict(dset, cur, true) < 0)
nerrors++;
} /* end if */
} /* end for */
/* Advance pointers */
for (i = 0; i < nmeth; i++)
p[i] = n[i];
for (i = 0; i < nmeth - 1; i++)
w[i] -= 1;
} /* end while */
if (nerrors)
HGOTO_ERROR(H5E_IO, H5E_CANTFLUSH, FAIL, "unable to preempt one or more raw data cache entry");
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_cache_prune() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_lock
*
* Purpose: Return a pointer to a dataset chunk. The pointer points
* directly into the chunk cache and should not be freed
* by the caller but will be valid until it is unlocked. The
* input value IDX_HINT is used to speed up cache lookups and
* it's output value should be given to H5D__chunk_unlock().
* IDX_HINT is ignored if it is out of range, and if it points
* to the wrong entry then we fall back to the normal search
* method.
*
* If RELAX is non-zero and the chunk isn't in the cache then
* don't try to read it from the file, but just allocate an
* uninitialized buffer to hold the result. This is intended
* for output functions that are about to overwrite the entire
* chunk.
*
* Return: Success: Ptr to a file chunk.
*
* Failure: NULL
*
*-------------------------------------------------------------------------
*/
static void *
H5D__chunk_lock(const H5D_io_info_t H5_ATTR_NDEBUG_UNUSED *io_info, const H5D_dset_io_info_t *dset_info,
H5D_chunk_ud_t *udata, bool relax, bool prev_unfilt_chunk)
{
const H5D_t *dset; /* Convenience pointer to the dataset */
H5O_pline_t *pline; /* I/O pipeline info - always equal to the pline passed to H5D__chunk_mem_alloc */
H5O_pline_t *old_pline; /* Old pipeline, i.e. pipeline used to read the chunk */
const H5O_layout_t *layout; /* Dataset layout */
const H5O_fill_t *fill; /* Fill value info */
H5D_fill_buf_info_t fb_info; /* Dataset's fill buffer info */
bool fb_info_init = false; /* Whether the fill value buffer has been initialized */
H5D_rdcc_t *rdcc; /*raw data chunk cache*/
H5D_rdcc_ent_t *ent; /*cache entry */
size_t chunk_size; /*size of a chunk */
bool disable_filters = false; /* Whether to disable filters (when adding to cache) */
void *chunk = NULL; /*the file chunk */
void *ret_value = NULL; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity checks */
assert(io_info);
assert(dset_info);
assert(dset_info->store);
dset = dset_info->dset;
assert(dset);
assert(udata);
assert(!(udata->new_unfilt_chunk && prev_unfilt_chunk));
/* Set convenience pointers */
pline = &(dset->shared->dcpl_cache.pline);
old_pline = pline;
layout = &(dset->shared->layout);
fill = &(dset->shared->dcpl_cache.fill);
rdcc = &(dset->shared->cache.chunk);
assert(!rdcc->tmp_head);
/* Get the chunk's size */
assert(layout->u.chunk.size > 0);
H5_CHECKED_ASSIGN(chunk_size, size_t, layout->u.chunk.size, uint32_t);
/* Check if the chunk is in the cache */
if (UINT_MAX != udata->idx_hint) {
/* Sanity check */
assert(udata->idx_hint < rdcc->nslots);
assert(rdcc->slot[udata->idx_hint]);
/* Get the entry */
ent = rdcc->slot[udata->idx_hint];
#ifndef NDEBUG
{
unsigned u; /*counters */
/* Make sure this is the right chunk */
for (u = 0; u < layout->u.chunk.ndims - 1; u++)
assert(dset_info->store->chunk.scaled[u] == ent->scaled[u]);
}
#endif /* NDEBUG */
/*
* Already in the cache. Count a hit.
*/
rdcc->stats.nhits++;
/* Make adjustments if the edge chunk status changed recently */
if (pline->nused) {
/* If the chunk recently became an unfiltered partial edge chunk
* while in cache, we must make some changes to the entry */
if (udata->new_unfilt_chunk) {
/* If this flag is set then partial chunk filters must be
* disabled, and the chunk must not have previously been a
* partial chunk (with disabled filters) */
assert(layout->u.chunk.flags & H5O_LAYOUT_CHUNK_DONT_FILTER_PARTIAL_BOUND_CHUNKS);
assert(!(ent->edge_chunk_state & H5D_RDCC_DISABLE_FILTERS));
assert(old_pline->nused);
/* Disable filters. Set pline to NULL instead of just the
* default pipeline to make a quick failure more likely if the
* code is changed in an inappropriate/incomplete way. */
pline = NULL;
/* Reallocate the chunk so H5D__chunk_mem_xfree doesn't get confused
*/
if (NULL == (chunk = H5D__chunk_mem_alloc(chunk_size, pline)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL,
"memory allocation failed for raw data chunk");
H5MM_memcpy(chunk, ent->chunk, chunk_size);
ent->chunk = (uint8_t *)H5D__chunk_mem_xfree(ent->chunk, old_pline);
ent->chunk = (uint8_t *)chunk;
chunk = NULL;
/* Mark the chunk as having filters disabled as well as "newly
* disabled" so it is inserted on flush */
ent->edge_chunk_state |= H5D_RDCC_DISABLE_FILTERS;
ent->edge_chunk_state |= H5D_RDCC_NEWLY_DISABLED_FILTERS;
} /* end if */
else if (prev_unfilt_chunk) {
/* If this flag is set then partial chunk filters must be
* disabled, and the chunk must have previously been a partial
* chunk (with disabled filters) */
assert(layout->u.chunk.flags & H5O_LAYOUT_CHUNK_DONT_FILTER_PARTIAL_BOUND_CHUNKS);
assert((ent->edge_chunk_state & H5D_RDCC_DISABLE_FILTERS));
assert(pline->nused);
/* Mark the old pipeline as having been disabled */
old_pline = NULL;
/* Reallocate the chunk so H5D__chunk_mem_xfree doesn't get confused
*/
if (NULL == (chunk = H5D__chunk_mem_alloc(chunk_size, pline)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL,
"memory allocation failed for raw data chunk");
H5MM_memcpy(chunk, ent->chunk, chunk_size);
ent->chunk = (uint8_t *)H5D__chunk_mem_xfree(ent->chunk, old_pline);
ent->chunk = (uint8_t *)chunk;
chunk = NULL;
/* Mark the chunk as having filters enabled */
ent->edge_chunk_state &= ~(H5D_RDCC_DISABLE_FILTERS | H5D_RDCC_NEWLY_DISABLED_FILTERS);
} /* end else */
} /* end if */
/*
* If the chunk is not at the beginning of the cache; move it backward
* by one slot. This is how we implement the LRU preemption
* algorithm.
*/
if (ent->next) {
if (ent->next->next)
ent->next->next->prev = ent;
else
rdcc->tail = ent;
ent->next->prev = ent->prev;
if (ent->prev)
ent->prev->next = ent->next;
else
rdcc->head = ent->next;
ent->prev = ent->next;
ent->next = ent->next->next;
ent->prev->next = ent;
} /* end if */
} /* end if */
else {
haddr_t chunk_addr; /* Address of chunk on disk */
hsize_t chunk_alloc; /* Length of chunk on disk */
/* Save the chunk info so the cache stays consistent */
chunk_addr = udata->chunk_block.offset;
chunk_alloc = udata->chunk_block.length;
/* Check if we should disable filters on this chunk */
if (pline->nused) {
if (udata->new_unfilt_chunk) {
assert(layout->u.chunk.flags & H5O_LAYOUT_CHUNK_DONT_FILTER_PARTIAL_BOUND_CHUNKS);
/* Disable the filters for writing */
disable_filters = true;
pline = NULL;
} /* end if */
else if (prev_unfilt_chunk) {
assert(layout->u.chunk.flags & H5O_LAYOUT_CHUNK_DONT_FILTER_PARTIAL_BOUND_CHUNKS);
/* Mark the filters as having been previously disabled (for the
* chunk as currently on disk) - disable the filters for reading
*/
old_pline = NULL;
} /* end if */
else if (layout->u.chunk.flags & H5O_LAYOUT_CHUNK_DONT_FILTER_PARTIAL_BOUND_CHUNKS) {
/* Check if this is an edge chunk */
if (H5D__chunk_is_partial_edge_chunk(dset->shared->ndims, layout->u.chunk.dim,
dset_info->store->chunk.scaled,
dset->shared->curr_dims)) {
/* Disable the filters for both writing and reading */
disable_filters = true;
old_pline = NULL;
pline = NULL;
} /* end if */
} /* end if */
} /* end if */
if (relax) {
/*
* Not in the cache, but we're about to overwrite the whole thing
* anyway, so just allocate a buffer for it but don't initialize that
* buffer with the file contents. Count this as a hit instead of a
* miss because we saved ourselves lots of work.
*/
rdcc->stats.nhits++;
if (NULL == (chunk = H5D__chunk_mem_alloc(chunk_size, pline)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "memory allocation failed for raw data chunk");
/* In the case that some dataset functions look through this data,
* clear it to all 0s. */
memset(chunk, 0, chunk_size);
} /* end if */
else {
/*
* Not in the cache. Count this as a miss if it's in the file
* or an init if it isn't.
*/
/* Check if the chunk exists on disk */
if (H5_addr_defined(chunk_addr)) {
size_t my_chunk_alloc = chunk_alloc; /* Allocated buffer size */
size_t buf_alloc = chunk_alloc; /* [Re-]allocated buffer size */
/* Chunk size on disk isn't [likely] the same size as the final chunk
* size in memory, so allocate memory big enough. */
if (NULL == (chunk = H5D__chunk_mem_alloc(my_chunk_alloc,
(udata->new_unfilt_chunk ? old_pline : pline))))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL,
"memory allocation failed for raw data chunk");
if (H5F_shared_block_read(H5F_SHARED(dset->oloc.file), H5FD_MEM_DRAW, chunk_addr,
my_chunk_alloc, chunk) < 0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, NULL, "unable to read raw data chunk");
if (old_pline && old_pline->nused) {
H5Z_EDC_t err_detect; /* Error detection info */
H5Z_cb_t filter_cb; /* I/O filter callback function */
/* Retrieve filter settings from API context */
if (H5CX_get_err_detect(&err_detect) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, NULL, "can't get error detection info");
if (H5CX_get_filter_cb(&filter_cb) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, NULL, "can't get I/O filter callback function");
if (H5Z_pipeline(old_pline, H5Z_FLAG_REVERSE, &(udata->filter_mask), err_detect,
filter_cb, &my_chunk_alloc, &buf_alloc, &chunk) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTFILTER, NULL, "data pipeline read failed");
/* Reallocate chunk if necessary */
if (udata->new_unfilt_chunk) {
void *tmp_chunk = chunk;
if (NULL == (chunk = H5D__chunk_mem_alloc(my_chunk_alloc, pline))) {
(void)H5D__chunk_mem_xfree(tmp_chunk, old_pline);
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL,
"memory allocation failed for raw data chunk");
} /* end if */
H5MM_memcpy(chunk, tmp_chunk, chunk_size);
(void)H5D__chunk_mem_xfree(tmp_chunk, old_pline);
} /* end if */
} /* end if */
/* Increment # of cache misses */
rdcc->stats.nmisses++;
} /* end if */
else {
H5D_fill_value_t fill_status;
/* Sanity check */
assert(fill->alloc_time != H5D_ALLOC_TIME_EARLY);
/* Chunk size on disk isn't [likely] the same size as the final chunk
* size in memory, so allocate memory big enough. */
if (NULL == (chunk = H5D__chunk_mem_alloc(chunk_size, pline)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL,
"memory allocation failed for raw data chunk");
if (H5P_is_fill_value_defined(fill, &fill_status) < 0)
HGOTO_ERROR(H5E_PLIST, H5E_CANTGET, NULL, "can't tell if fill value defined");
if (fill->fill_time == H5D_FILL_TIME_ALLOC ||
(fill->fill_time == H5D_FILL_TIME_IFSET &&
(fill_status == H5D_FILL_VALUE_USER_DEFINED || fill_status == H5D_FILL_VALUE_DEFAULT))) {
/*
* The chunk doesn't exist in the file. Replicate the fill
* value throughout the chunk, if the fill value is defined.
*/
/* Initialize the fill value buffer */
/* (use the compact dataset storage buffer as the fill value buffer) */
if (H5D__fill_init(&fb_info, chunk, NULL, NULL, NULL, NULL,
&dset->shared->dcpl_cache.fill, dset->shared->type,
dset->shared->type_id, (size_t)0, chunk_size) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, NULL, "can't initialize fill buffer info");
fb_info_init = true;
/* Check for VL datatype & non-default fill value */
if (fb_info.has_vlen_fill_type)
/* Fill the buffer with VL datatype fill values */
if (H5D__fill_refill_vl(&fb_info, fb_info.elmts_per_buf) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTCONVERT, NULL, "can't refill fill value buffer");
} /* end if */
else
memset(chunk, 0, chunk_size);
/* Increment # of creations */
rdcc->stats.ninits++;
} /* end else */
} /* end else */
/* See if the chunk can be cached */
if (rdcc->nslots > 0 && chunk_size <= rdcc->nbytes_max) {
/* Calculate the index */
udata->idx_hint = H5D__chunk_hash_val(dset->shared, udata->common.scaled);
/* Add the chunk to the cache only if the slot is not already locked */
ent = rdcc->slot[udata->idx_hint];
if (!ent || !ent->locked) {
/* Preempt enough things from the cache to make room */
if (ent) {
if (H5D__chunk_cache_evict(dset, ent, true) < 0)
HGOTO_ERROR(H5E_IO, H5E_CANTINIT, NULL, "unable to preempt chunk from cache");
} /* end if */
if (H5D__chunk_cache_prune(dset, chunk_size) < 0)
HGOTO_ERROR(H5E_IO, H5E_CANTINIT, NULL, "unable to preempt chunk(s) from cache");
/* Create a new entry */
if (NULL == (ent = H5FL_CALLOC(H5D_rdcc_ent_t)))
HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, NULL, "can't allocate raw data chunk entry");
ent->edge_chunk_state = disable_filters ? H5D_RDCC_DISABLE_FILTERS : 0;
if (udata->new_unfilt_chunk)
ent->edge_chunk_state |= H5D_RDCC_NEWLY_DISABLED_FILTERS;
/* Initialize the new entry */
ent->chunk_block.offset = chunk_addr;
ent->chunk_block.length = chunk_alloc;
ent->chunk_idx = udata->chunk_idx;
H5MM_memcpy(ent->scaled, udata->common.scaled, sizeof(hsize_t) * layout->u.chunk.ndims);
H5_CHECKED_ASSIGN(ent->rd_count, uint32_t, chunk_size, size_t);
H5_CHECKED_ASSIGN(ent->wr_count, uint32_t, chunk_size, size_t);
ent->chunk = (uint8_t *)chunk;
/* Add it to the cache */
assert(NULL == rdcc->slot[udata->idx_hint]);
rdcc->slot[udata->idx_hint] = ent;
ent->idx = udata->idx_hint;
rdcc->nbytes_used += chunk_size;
rdcc->nused++;
/* Add it to the linked list */
if (rdcc->tail) {
rdcc->tail->next = ent;
ent->prev = rdcc->tail;
rdcc->tail = ent;
} /* end if */
else
rdcc->head = rdcc->tail = ent;
ent->tmp_next = NULL;
ent->tmp_prev = NULL;
} /* end if */
else
/* We did not add the chunk to cache */
ent = NULL;
} /* end else */
else /* No cache set up, or chunk is too large: chunk is uncacheable */
ent = NULL;
} /* end else */
/* Lock the chunk into the cache */
if (ent) {
assert(!ent->locked);
ent->locked = true;
chunk = ent->chunk;
} /* end if */
else
/*
* The chunk cannot be placed in cache so we don't cache it. This is the
* reason all those arguments have to be repeated for the unlock
* function.
*/
udata->idx_hint = UINT_MAX;
/* Set return value */
ret_value = chunk;
done:
/* Release the fill buffer info, if it's been initialized */
if (fb_info_init && H5D__fill_term(&fb_info) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTFREE, NULL, "Can't release fill buffer info");
/* Release the chunk allocated, on error */
if (!ret_value)
if (chunk)
chunk = H5D__chunk_mem_xfree(chunk, pline);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_lock() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_unlock
*
* Purpose: Unlocks a previously locked chunk. The LAYOUT, COMP, and
* OFFSET arguments should be the same as for H5D__chunk_lock().
* The DIRTY argument should be set to non-zero if the chunk has
* been modified since it was locked. The IDX_HINT argument is
* the returned index hint from the lock operation and BUF is
* the return value from the lock.
*
* The NACCESSED argument should be the number of bytes accessed
* for reading or writing (depending on the value of DIRTY).
* It's only purpose is to provide additional information to the
* preemption policy.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_unlock(const H5D_io_info_t H5_ATTR_NDEBUG_UNUSED *io_info, const H5D_dset_io_info_t *dset_info,
const H5D_chunk_ud_t *udata, bool dirty, void *chunk, uint32_t naccessed)
{
const H5O_layout_t *layout; /* Dataset layout */
const H5D_rdcc_t *rdcc;
const H5D_t *dset; /* Local pointer to the dataset info */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity check */
assert(io_info);
assert(dset_info);
assert(udata);
/* Set convenience pointers */
layout = &(dset_info->dset->shared->layout);
rdcc = &(dset_info->dset->shared->cache.chunk);
dset = dset_info->dset;
if (UINT_MAX == udata->idx_hint) {
/*
* It's not in the cache, probably because it's too big. If it's
* dirty then flush it to disk. In any case, free the chunk.
*/
bool is_unfiltered_edge_chunk = false; /* Whether the chunk is an unfiltered edge chunk */
/* Check if we should disable filters on this chunk */
if (udata->new_unfilt_chunk) {
assert(layout->u.chunk.flags & H5O_LAYOUT_CHUNK_DONT_FILTER_PARTIAL_BOUND_CHUNKS);
is_unfiltered_edge_chunk = true;
} /* end if */
else if (layout->u.chunk.flags & H5O_LAYOUT_CHUNK_DONT_FILTER_PARTIAL_BOUND_CHUNKS) {
/* Check if the chunk is an edge chunk, and disable filters if so */
is_unfiltered_edge_chunk =
H5D__chunk_is_partial_edge_chunk(dset->shared->ndims, layout->u.chunk.dim,
dset_info->store->chunk.scaled, dset->shared->curr_dims);
} /* end if */
if (dirty) {
H5D_rdcc_ent_t fake_ent; /* "fake" chunk cache entry */
memset(&fake_ent, 0, sizeof(fake_ent));
fake_ent.dirty = true;
if (is_unfiltered_edge_chunk)
fake_ent.edge_chunk_state = H5D_RDCC_DISABLE_FILTERS;
if (udata->new_unfilt_chunk)
fake_ent.edge_chunk_state |= H5D_RDCC_NEWLY_DISABLED_FILTERS;
H5MM_memcpy(fake_ent.scaled, udata->common.scaled, sizeof(hsize_t) * layout->u.chunk.ndims);
assert(layout->u.chunk.size > 0);
fake_ent.chunk_idx = udata->chunk_idx;
fake_ent.chunk_block.offset = udata->chunk_block.offset;
fake_ent.chunk_block.length = udata->chunk_block.length;
fake_ent.chunk = (uint8_t *)chunk;
if (H5D__chunk_flush_entry(dset, &fake_ent, true) < 0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "cannot flush indexed storage buffer");
} /* end if */
else {
if (chunk)
chunk = H5D__chunk_mem_xfree(
chunk, (is_unfiltered_edge_chunk ? NULL : &(dset->shared->dcpl_cache.pline)));
} /* end else */
} /* end if */
else {
H5D_rdcc_ent_t *ent; /* Chunk's entry in the cache */
/* Sanity check */
assert(udata->idx_hint < rdcc->nslots);
assert(rdcc->slot[udata->idx_hint]);
assert(rdcc->slot[udata->idx_hint]->chunk == chunk);
/*
* It's in the cache so unlock it.
*/
ent = rdcc->slot[udata->idx_hint];
assert(ent->locked);
if (dirty) {
ent->dirty = true;
ent->wr_count -= MIN(ent->wr_count, naccessed);
} /* end if */
else
ent->rd_count -= MIN(ent->rd_count, naccessed);
ent->locked = false;
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_unlock() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_allocated_cb
*
* Purpose: Simply counts the number of chunks for a dataset.
*
* Return: Success: Non-negative
* Failure: Negative
*
*-------------------------------------------------------------------------
*/
static int
H5D__chunk_allocated_cb(const H5D_chunk_rec_t *chunk_rec, void *_udata)
{
hsize_t *nbytes = (hsize_t *)_udata;
FUNC_ENTER_PACKAGE_NOERR
*(hsize_t *)nbytes += chunk_rec->nbytes;
FUNC_LEAVE_NOAPI(H5_ITER_CONT)
} /* H5D__chunk_allocated_cb() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_allocated
*
* Purpose: Return the number of bytes allocated in the file for storage
* of raw data in the chunked dataset
*
* Return: Success: Number of bytes stored in all chunks.
* Failure: 0
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_allocated(const H5D_t *dset, hsize_t *nbytes)
{
H5D_chk_idx_info_t idx_info; /* Chunked index info */
const H5D_rdcc_t *rdcc = &(dset->shared->cache.chunk); /* Raw data chunk cache */
H5D_rdcc_ent_t *ent; /* Cache entry */
hsize_t chunk_bytes = 0; /* Number of bytes allocated for chunks */
H5O_storage_chunk_t *sc = &(dset->shared->layout.storage.u.chunk);
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
assert(dset);
assert(dset->shared);
H5D_CHUNK_STORAGE_INDEX_CHK(sc);
/* Search for cached chunks that haven't been written out */
for (ent = rdcc->head; ent; ent = ent->next)
/* Flush the chunk out to disk, to make certain the size is correct later */
if (H5D__chunk_flush_entry(dset, ent, false) < 0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "cannot flush indexed storage buffer");
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &dset->shared->layout.u.chunk;
idx_info.storage = sc;
/* Iterate over the chunks */
if ((sc->ops->iterate)(&idx_info, H5D__chunk_allocated_cb, &chunk_bytes) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL,
"unable to retrieve allocated chunk information from index");
/* Set number of bytes for caller */
*nbytes = chunk_bytes;
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_allocated() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_allocate
*
* Purpose: Allocate file space for all chunks that are not allocated yet.
* Return SUCCEED if all needed allocation succeed, otherwise
* FAIL.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_allocate(const H5D_t *dset, bool full_overwrite, const hsize_t old_dim[])
{
H5D_chk_idx_info_t idx_info; /* Chunked index info */
const H5D_chunk_ops_t *ops = dset->shared->layout.storage.u.chunk.ops; /* Chunk operations */
hsize_t min_unalloc[H5O_LAYOUT_NDIMS]; /* First chunk in each dimension that is unallocated (in scaled
coordinates) */
hsize_t max_unalloc[H5O_LAYOUT_NDIMS]; /* Last chunk in each dimension that is unallocated (in scaled
coordinates) */
hsize_t scaled[H5O_LAYOUT_NDIMS]; /* Offset of current chunk (in scaled coordinates) */
size_t orig_chunk_size; /* Original size of chunk in bytes */
size_t chunk_size; /* Actual size of chunk in bytes, possibly filtered */
unsigned filter_mask = 0; /* Filter mask for chunks that have them */
H5O_layout_t *layout = &(dset->shared->layout); /* Dataset layout */
H5O_pline_t *pline = &(dset->shared->dcpl_cache.pline); /* I/O pipeline info */
H5O_pline_t def_pline = H5O_CRT_PIPELINE_DEF; /* Default pipeline */
const H5O_fill_t *fill = &(dset->shared->dcpl_cache.fill); /* Fill value info */
H5D_fill_value_t fill_status; /* The fill value status */
bool should_fill = false; /* Whether fill values should be written */
void *unfilt_fill_buf = NULL; /* Unfiltered fill value buffer */
void **fill_buf = NULL; /* Pointer to the fill buffer to use for a chunk */
#ifdef H5_HAVE_PARALLEL
bool blocks_written = false; /* Flag to indicate that chunk was actually written */
bool using_mpi =
false; /* Flag to indicate that the file is being accessed with an MPI-capable file driver */
H5D_chunk_coll_fill_info_t chunk_fill_info; /* chunk address information for doing I/O */
#endif /* H5_HAVE_PARALLEL */
bool carry; /* Flag to indicate that chunk increment carrys to higher dimension (sorta) */
unsigned space_ndims; /* Dataset's space rank */
const hsize_t *space_dim; /* Dataset's dataspace dimensions */
const uint32_t *chunk_dim = layout->u.chunk.dim; /* Convenience pointer to chunk dimensions */
unsigned op_dim; /* Current operating dimension */
H5D_fill_buf_info_t fb_info; /* Dataset's fill buffer info */
bool fb_info_init = false; /* Whether the fill value buffer has been initialized */
bool has_unfilt_edge_chunks = false; /* Whether there are partial edge chunks with disabled filters */
bool unfilt_edge_chunk_dim[H5O_LAYOUT_NDIMS]; /* Whether there are unfiltered edge chunks at the edge
of each dimension */
hsize_t edge_chunk_scaled[H5O_LAYOUT_NDIMS]; /* Offset of the unfiltered edge chunks at the edge of each
dimension */
unsigned nunfilt_edge_chunk_dims = 0; /* Number of dimensions on an edge */
H5O_storage_chunk_t *sc = &(layout->storage.u.chunk); /* Convenience variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Check args */
assert(dset && H5D_CHUNKED == layout->type);
assert(layout->u.chunk.ndims > 0 && layout->u.chunk.ndims <= H5O_LAYOUT_NDIMS);
H5D_CHUNK_STORAGE_INDEX_CHK(sc);
/* Retrieve the dataset dimensions */
space_dim = dset->shared->curr_dims;
space_ndims = dset->shared->ndims;
/* The last dimension in scaled chunk coordinates is always 0 */
scaled[space_ndims] = (hsize_t)0;
/* Check if any space dimensions are 0, if so we do not have to do anything
*/
for (op_dim = 0; op_dim < (unsigned)space_ndims; op_dim++)
if (space_dim[op_dim] == 0) {
/* Reset any cached chunk info for this dataset */
H5D__chunk_cinfo_cache_reset(&dset->shared->cache.chunk.last);
HGOTO_DONE(SUCCEED);
} /* end if */
#ifdef H5_HAVE_PARALLEL
/* Retrieve MPI parameters */
if (H5F_HAS_FEATURE(dset->oloc.file, H5FD_FEAT_HAS_MPI)) {
/* Set the MPI-capable file driver flag */
using_mpi = true;
/* init chunk info stuff for collective I/O */
chunk_fill_info.num_chunks = 0;
chunk_fill_info.chunk_info = NULL;
} /* end if */
#endif /* H5_HAVE_PARALLEL */
/* Calculate the minimum and maximum chunk offsets in each dimension, and
* determine if there are any unfiltered partial edge chunks. Note that we
* assume here that all elements of space_dim are > 0. This is checked at
* the top of this function. */
for (op_dim = 0; op_dim < space_ndims; op_dim++) {
/* Validate this chunk dimension */
if (chunk_dim[op_dim] == 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "chunk size must be > 0, dim = %u ", op_dim);
min_unalloc[op_dim] = (old_dim[op_dim] + chunk_dim[op_dim] - 1) / chunk_dim[op_dim];
max_unalloc[op_dim] = (space_dim[op_dim] - 1) / chunk_dim[op_dim];
/* Calculate if there are unfiltered edge chunks at the edge of this
* dimension. Note the edge_chunk_scaled is uninitialized for
* dimensions where unfilt_edge_chunk_dim is false. Also */
if ((layout->u.chunk.flags & H5O_LAYOUT_CHUNK_DONT_FILTER_PARTIAL_BOUND_CHUNKS) && pline->nused > 0 &&
space_dim[op_dim] % chunk_dim[op_dim] != 0) {
has_unfilt_edge_chunks = true;
unfilt_edge_chunk_dim[op_dim] = true;
edge_chunk_scaled[op_dim] = max_unalloc[op_dim];
} /* end if */
else
unfilt_edge_chunk_dim[op_dim] = false;
} /* end for */
/* Get original chunk size */
H5_CHECKED_ASSIGN(orig_chunk_size, size_t, layout->u.chunk.size, uint32_t);
/* Check the dataset's fill-value status */
if (H5P_is_fill_value_defined(fill, &fill_status) < 0)
HGOTO_ERROR(H5E_PLIST, H5E_CANTGET, FAIL, "can't tell if fill value defined");
/* If we are filling the dataset on allocation or "if set" and
* the fill value _is_ set, _and_ we are not overwriting the new blocks,
* or if there are any pipeline filters defined,
* set the "should fill" flag
*/
if ((!full_overwrite &&
(fill->fill_time == H5D_FILL_TIME_ALLOC ||
(fill->fill_time == H5D_FILL_TIME_IFSET &&
(fill_status == H5D_FILL_VALUE_USER_DEFINED || fill_status == H5D_FILL_VALUE_DEFAULT)))) ||
pline->nused > 0)
should_fill = true;
/* Check if fill values should be written to chunks */
if (should_fill) {
/* Initialize the fill value buffer */
/* (delay allocating fill buffer for VL datatypes until refilling) */
if (H5D__fill_init(&fb_info, NULL, H5D__chunk_mem_alloc, pline, H5D__chunk_mem_free, pline,
&dset->shared->dcpl_cache.fill, dset->shared->type, dset->shared->type_id,
(size_t)0, orig_chunk_size) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "can't initialize fill buffer info");
fb_info_init = true;
/* Initialize the fill_buf pointer to the buffer in fb_info. If edge
* chunk filters are disabled, we will switch the buffer as appropriate
* for each chunk. */
fill_buf = &fb_info.fill_buf;
/* Check if there are filters which need to be applied to the chunk */
/* (only do this in advance when the chunk info can be re-used (i.e.
* it doesn't contain any non-default VL datatype fill values)
*/
if (!fb_info.has_vlen_fill_type && pline->nused > 0) {
H5Z_EDC_t err_detect; /* Error detection info */
H5Z_cb_t filter_cb; /* I/O filter callback function */
size_t buf_size = orig_chunk_size;
/* If the dataset has disabled partial chunk filters, create a copy
* of the unfiltered fill_buf to use for partial chunks */
if (has_unfilt_edge_chunks) {
if (NULL == (unfilt_fill_buf = H5D__chunk_mem_alloc(orig_chunk_size, &def_pline)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"memory allocation failed for raw data chunk");
H5MM_memcpy(unfilt_fill_buf, fb_info.fill_buf, orig_chunk_size);
} /* end if */
/* Retrieve filter settings from API context */
if (H5CX_get_err_detect(&err_detect) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't get error detection info");
if (H5CX_get_filter_cb(&filter_cb) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't get I/O filter callback function");
/* Push the chunk through the filters */
if (H5Z_pipeline(pline, 0, &filter_mask, err_detect, filter_cb, &orig_chunk_size, &buf_size,
&fb_info.fill_buf) < 0)
HGOTO_ERROR(H5E_PLINE, H5E_WRITEERROR, FAIL, "output pipeline failed");
#if H5_SIZEOF_SIZE_T > 4
/* Check for the chunk expanding too much to encode in a 32-bit value */
if (orig_chunk_size > ((size_t)0xffffffff))
HGOTO_ERROR(H5E_DATASET, H5E_BADRANGE, FAIL, "chunk too large for 32-bit length");
#endif /* H5_SIZEOF_SIZE_T > 4 */
} /* end if */
} /* end if */
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &dset->shared->layout.u.chunk;
idx_info.storage = sc;
/* Loop over all chunks */
/* The algorithm is:
* For each dimension:
* -Allocate all chunks in the new dataspace that are beyond the original
* dataspace in the operating dimension, except those that have already
* been allocated.
*
* This is accomplished mainly using the min_unalloc and max_unalloc arrays.
* min_unalloc represents the lowest offset in each dimension of chunks that
* have not been allocated (whether or not they need to be). max_unalloc
* represents the highest offset in each dimension of chunks in the new
* dataset that have not been allocated by this routine (they may have been
* allocated previously).
*
* Every time the algorithm finishes allocating chunks allocated beyond a
* certain dimension, max_unalloc is updated in order to avoid allocating
* those chunks again.
*
* Note that min_unalloc & max_unalloc are in scaled coordinates.
*
*/
chunk_size = orig_chunk_size;
for (op_dim = 0; op_dim < space_ndims; op_dim++) {
H5D_chunk_ud_t udata; /* User data for querying chunk info */
unsigned u; /* Local index variable */
int i; /* Local index variable */
/* Check if allocation along this dimension is really necessary */
if (min_unalloc[op_dim] > max_unalloc[op_dim])
continue;
else {
/* Reset the chunk offset indices */
memset(scaled, 0, (space_ndims * sizeof(scaled[0])));
scaled[op_dim] = min_unalloc[op_dim];
if (has_unfilt_edge_chunks) {
/* Initialize nunfilt_edge_chunk_dims */
nunfilt_edge_chunk_dims = 0;
for (u = 0; u < space_ndims; u++)
if (unfilt_edge_chunk_dim[u] && scaled[u] == edge_chunk_scaled[u])
nunfilt_edge_chunk_dims++;
/* Initialize chunk_size and fill_buf */
if (should_fill && !fb_info.has_vlen_fill_type) {
assert(fb_info_init);
assert(unfilt_fill_buf);
if (nunfilt_edge_chunk_dims) {
fill_buf = &unfilt_fill_buf;
chunk_size = layout->u.chunk.size;
} /* end if */
else {
fill_buf = &fb_info.fill_buf;
chunk_size = orig_chunk_size;
} /* end else */
} /* end if */
} /* end if */
carry = false;
} /* end else */
while (!carry) {
bool need_insert = false; /* Whether the chunk needs to be inserted into the index */
/* Look up this chunk */
if (H5D__chunk_lookup(dset, scaled, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "error looking up chunk address");
#ifndef NDEBUG
/* None of the chunks should be allocated */
if (H5D_CHUNK_IDX_NONE != sc->idx_type)
assert(!H5_addr_defined(udata.chunk_block.offset));
/* Make sure the chunk is really in the dataset and outside the
* original dimensions */
{
unsigned v; /* Local index variable */
bool outside_orig = false;
for (v = 0; v < space_ndims; v++) {
assert((scaled[v] * chunk_dim[v]) < space_dim[v]);
if ((scaled[v] * chunk_dim[v]) >= old_dim[v])
outside_orig = true;
} /* end for */
assert(outside_orig);
} /* end block */
#endif /* NDEBUG */
/* Check for VL datatype & non-default fill value */
if (fb_info_init && fb_info.has_vlen_fill_type) {
/* Sanity check */
assert(should_fill);
assert(!unfilt_fill_buf);
#ifdef H5_HAVE_PARALLEL
assert(!using_mpi); /* Can't write VL datatypes in parallel currently */
#endif
/* Check to make sure the buffer is large enough. It is
* possible (though ill-advised) for the filter to shrink the
* buffer.
*/
if (fb_info.fill_buf_size < orig_chunk_size) {
if (NULL ==
(fb_info.fill_buf = H5D__chunk_mem_realloc(fb_info.fill_buf, orig_chunk_size, pline)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"memory reallocation failed for raw data chunk");
fb_info.fill_buf_size = orig_chunk_size;
} /* end if */
/* Fill the buffer with VL datatype fill values */
if (H5D__fill_refill_vl(&fb_info, fb_info.elmts_per_buf) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTCONVERT, FAIL, "can't refill fill value buffer");
/* Check if there are filters which need to be applied to the chunk */
if ((pline->nused > 0) && !nunfilt_edge_chunk_dims) {
H5Z_EDC_t err_detect; /* Error detection info */
H5Z_cb_t filter_cb; /* I/O filter callback function */
size_t nbytes = orig_chunk_size;
/* Retrieve filter settings from API context */
if (H5CX_get_err_detect(&err_detect) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't get error detection info");
if (H5CX_get_filter_cb(&filter_cb) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't get I/O filter callback function");
/* Push the chunk through the filters */
if (H5Z_pipeline(pline, 0, &filter_mask, err_detect, filter_cb, &nbytes,
&fb_info.fill_buf_size, &fb_info.fill_buf) < 0)
HGOTO_ERROR(H5E_PLINE, H5E_WRITEERROR, FAIL, "output pipeline failed");
#if H5_SIZEOF_SIZE_T > 4
/* Check for the chunk expanding too much to encode in a 32-bit value */
if (nbytes > ((size_t)0xffffffff))
HGOTO_ERROR(H5E_DATASET, H5E_BADRANGE, FAIL, "chunk too large for 32-bit length");
#endif /* H5_SIZEOF_SIZE_T > 4 */
/* Keep the number of bytes the chunk turned in to */
chunk_size = nbytes;
} /* end if */
else
chunk_size = layout->u.chunk.size;
assert(*fill_buf == fb_info.fill_buf);
} /* end if */
/* Initialize the chunk information */
udata.common.layout = &layout->u.chunk;
udata.common.storage = sc;
udata.common.scaled = scaled;
udata.chunk_block.offset = HADDR_UNDEF;
H5_CHECKED_ASSIGN(udata.chunk_block.length, uint32_t, chunk_size, size_t);
udata.filter_mask = filter_mask;
/* Allocate the chunk (with all processes) */
if (H5D__chunk_file_alloc(&idx_info, NULL, &udata.chunk_block, &need_insert, scaled) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINSERT, FAIL,
"unable to insert/resize chunk on chunk level");
assert(H5_addr_defined(udata.chunk_block.offset));
/* Check if fill values should be written to chunks */
if (should_fill) {
/* Sanity check */
assert(fb_info_init);
assert(udata.chunk_block.length == chunk_size);
#ifdef H5_HAVE_PARALLEL
/* Check if this file is accessed with an MPI-capable file driver */
if (using_mpi) {
/* collect all chunk addresses to be written to
write collectively at the end */
/* allocate/resize chunk info array if no more space left */
if (0 == chunk_fill_info.num_chunks % 1024) {
void *tmp_realloc;
if (NULL == (tmp_realloc = H5MM_realloc(chunk_fill_info.chunk_info,
(chunk_fill_info.num_chunks + 1024) *
sizeof(struct chunk_coll_fill_info))))
HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL,
"memory allocation failed for chunk fill info");
chunk_fill_info.chunk_info = tmp_realloc;
}
/* Store info about the chunk for later */
chunk_fill_info.chunk_info[chunk_fill_info.num_chunks].addr = udata.chunk_block.offset;
chunk_fill_info.chunk_info[chunk_fill_info.num_chunks].chunk_size = chunk_size;
chunk_fill_info.chunk_info[chunk_fill_info.num_chunks].unfiltered_partial_chunk =
(*fill_buf == unfilt_fill_buf);
chunk_fill_info.num_chunks++;
/* Indicate that blocks will be written */
blocks_written = true;
} /* end if */
else {
#endif /* H5_HAVE_PARALLEL */
if (H5F_shared_block_write(H5F_SHARED(dset->oloc.file), H5FD_MEM_DRAW,
udata.chunk_block.offset, chunk_size, *fill_buf) < 0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "unable to write raw data to file");
#ifdef H5_HAVE_PARALLEL
} /* end else */
#endif /* H5_HAVE_PARALLEL */
} /* end if */
/* Insert the chunk record into the index */
if (need_insert && ops->insert)
if ((ops->insert)(&idx_info, &udata, dset) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINSERT, FAIL, "unable to insert chunk addr into index");
/* Increment indices and adjust the edge chunk state */
carry = true;
for (i = ((int)space_ndims - 1); i >= 0; --i) {
scaled[i]++;
if (scaled[i] > max_unalloc[i]) {
if ((unsigned)i == op_dim)
scaled[i] = min_unalloc[i];
else
scaled[i] = 0;
/* Check if we just left the edge in this dimension */
if (unfilt_edge_chunk_dim[i] && edge_chunk_scaled[i] == max_unalloc[i] &&
scaled[i] < edge_chunk_scaled[i]) {
nunfilt_edge_chunk_dims--;
if (should_fill && nunfilt_edge_chunk_dims == 0 && !fb_info.has_vlen_fill_type) {
assert(
!H5D__chunk_is_partial_edge_chunk(space_ndims, chunk_dim, scaled, space_dim));
fill_buf = &fb_info.fill_buf;
chunk_size = orig_chunk_size;
} /* end if */
} /* end if */
} /* end if */
else {
/* Check if we just entered the edge in this dimension */
if (unfilt_edge_chunk_dim[i] && scaled[i] == edge_chunk_scaled[i]) {
assert(edge_chunk_scaled[i] == max_unalloc[i]);
nunfilt_edge_chunk_dims++;
if (should_fill && nunfilt_edge_chunk_dims == 1 && !fb_info.has_vlen_fill_type) {
assert(
H5D__chunk_is_partial_edge_chunk(space_ndims, chunk_dim, scaled, space_dim));
fill_buf = &unfilt_fill_buf;
chunk_size = layout->u.chunk.size;
} /* end if */
} /* end if */
carry = false;
break;
} /* end else */
} /* end for */
} /* end while(!carry) */
/* Adjust max_unalloc so we don't allocate the same chunk twice. Also
* check if this dimension started from 0 (and hence allocated all of
* the chunks. */
if (min_unalloc[op_dim] == 0)
break;
else
max_unalloc[op_dim] = min_unalloc[op_dim] - 1;
} /* end for(op_dim=0...) */
#ifdef H5_HAVE_PARALLEL
/* do final collective I/O */
if (using_mpi && blocks_written)
if (H5D__chunk_collective_fill(dset, &chunk_fill_info, fb_info.fill_buf, unfilt_fill_buf) < 0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "unable to write raw data to file");
#endif /* H5_HAVE_PARALLEL */
/* Reset any cached chunk info for this dataset */
H5D__chunk_cinfo_cache_reset(&dset->shared->cache.chunk.last);
done:
/* Release the fill buffer info, if it's been initialized */
if (fb_info_init && H5D__fill_term(&fb_info) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTFREE, FAIL, "Can't release fill buffer info");
/* Free the unfiltered fill value buffer */
unfilt_fill_buf = H5D__chunk_mem_xfree(unfilt_fill_buf, &def_pline);
#ifdef H5_HAVE_PARALLEL
if (using_mpi && chunk_fill_info.chunk_info)
H5MM_free(chunk_fill_info.chunk_info);
#endif
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_allocate() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_update_old_edge_chunks
*
* Purpose: Update all chunks which were previously partial edge
* chunks and are now complete. Determines exactly which
* chunks need to be updated and locks each into cache using
* the 'prev_unfilt_chunk' flag, then unlocks it, causing
* filters to be applied as necessary.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_update_old_edge_chunks(H5D_t *dset, hsize_t old_dim[])
{
hsize_t old_edge_chunk_sc[H5O_LAYOUT_NDIMS]; /* Offset of first previously incomplete chunk in each
dimension */
hsize_t max_edge_chunk_sc[H5O_LAYOUT_NDIMS]; /* largest offset of chunks that might need to be modified in
each dimension */
bool new_full_dim[H5O_LAYOUT_NDIMS]; /* Whether the plane of chunks in this dimension needs to be
modified */
const H5O_layout_t *layout = &(dset->shared->layout); /* Dataset layout */
hsize_t chunk_sc[H5O_LAYOUT_NDIMS]; /* Offset of current chunk */
const uint32_t *chunk_dim = layout->u.chunk.dim; /* Convenience pointer to chunk dimensions */
unsigned space_ndims; /* Dataset's space rank */
const hsize_t *space_dim; /* Dataset's dataspace dimensions */
unsigned op_dim; /* Current operationg dimension */
H5D_io_info_t chk_io_info; /* Chunked I/O info object */
H5D_chunk_ud_t chk_udata; /* User data for locking chunk */
H5D_storage_t chk_store; /* Chunk storage information */
H5D_dset_io_info_t chk_dset_info; /* Chunked I/O dset info object */
void *chunk; /* The file chunk */
bool carry; /* Flag to indicate that chunk increment carrys to higher dimension (sorta) */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Check args */
assert(dset && H5D_CHUNKED == layout->type);
assert(layout->u.chunk.ndims > 0 && layout->u.chunk.ndims <= H5O_LAYOUT_NDIMS);
H5D_CHUNK_STORAGE_INDEX_CHK(&layout->storage.u.chunk);
assert(dset->shared->dcpl_cache.pline.nused > 0);
assert(layout->u.chunk.flags & H5O_LAYOUT_CHUNK_DONT_FILTER_PARTIAL_BOUND_CHUNKS);
/* Retrieve the dataset dimensions */
space_dim = dset->shared->curr_dims;
space_ndims = dset->shared->ndims;
/* The last dimension in chunk_offset is always 0 */
chunk_sc[space_ndims] = (hsize_t)0;
/* Check if any current dimensions are smaller than the chunk size, or if
* any old dimensions are 0. If so we do not have to do anything. */
for (op_dim = 0; op_dim < space_ndims; op_dim++)
if ((space_dim[op_dim] < chunk_dim[op_dim]) || old_dim[op_dim] == 0) {
/* Reset any cached chunk info for this dataset */
H5D__chunk_cinfo_cache_reset(&dset->shared->cache.chunk.last);
HGOTO_DONE(SUCCEED);
} /* end if */
/* Set up chunked I/O info object, for operations on chunks (in callback).
* Note that we only need to set chunk_offset once, as the array's address
* will never change. */
chk_store.chunk.scaled = chunk_sc;
chk_io_info.op_type = H5D_IO_OP_READ;
chk_dset_info.dset = dset;
chk_dset_info.store = &chk_store;
chk_dset_info.buf.vp = NULL;
chk_io_info.dsets_info = &chk_dset_info;
/*
* Determine the edges of the dataset which need to be modified
*/
for (op_dim = 0; op_dim < space_ndims; op_dim++) {
/* Start off with this dimension marked as not needing to be modified */
new_full_dim[op_dim] = false;
/* Validate this chunk dimension */
if (chunk_dim[op_dim] == 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "chunk size must be > 0, dim = %u ", op_dim);
/* Calculate offset of first previously incomplete chunk in this
* dimension */
old_edge_chunk_sc[op_dim] = (old_dim[op_dim] / chunk_dim[op_dim]);
/* Calculate the largest offset of chunks that might need to be
* modified in this dimension */
max_edge_chunk_sc[op_dim] = MIN((old_dim[op_dim] - 1) / chunk_dim[op_dim],
MAX((space_dim[op_dim] / chunk_dim[op_dim]), 1) - 1);
/* Check for old_dim aligned with chunk boundary in this dimension, if
* so we do not need to modify chunks along the edge in this dimension
*/
if (old_dim[op_dim] % chunk_dim[op_dim] == 0)
continue;
/* Check if the dataspace expanded enough to cause the old edge chunks
* in this dimension to become full */
if ((space_dim[op_dim] / chunk_dim[op_dim]) >= (old_edge_chunk_sc[op_dim] + 1))
new_full_dim[op_dim] = true;
} /* end for */
/* Main loop: fix old edge chunks */
for (op_dim = 0; op_dim < space_ndims; op_dim++) {
/* Check if allocation along this dimension is really necessary */
if (!new_full_dim[op_dim])
continue;
else {
assert(max_edge_chunk_sc[op_dim] == old_edge_chunk_sc[op_dim]);
/* Reset the chunk offset indices */
memset(chunk_sc, 0, (space_ndims * sizeof(chunk_sc[0])));
chunk_sc[op_dim] = old_edge_chunk_sc[op_dim];
carry = false;
} /* end if */
while (!carry) {
int i; /* Local index variable */
/* Make sure the chunk is really a former edge chunk */
assert(H5D__chunk_is_partial_edge_chunk(space_ndims, chunk_dim, chunk_sc, old_dim) &&
!H5D__chunk_is_partial_edge_chunk(space_ndims, chunk_dim, chunk_sc, space_dim));
/* Lookup the chunk */
if (H5D__chunk_lookup(dset, chunk_sc, &chk_udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "error looking up chunk address");
/* If this chunk does not exist in cache or on disk, no need to do
* anything */
if (H5_addr_defined(chk_udata.chunk_block.offset) || (UINT_MAX != chk_udata.idx_hint)) {
/* Lock the chunk into cache. H5D__chunk_lock will take care of
* updating the chunk to no longer be an edge chunk. */
if (NULL ==
(chunk = (void *)H5D__chunk_lock(&chk_io_info, &chk_dset_info, &chk_udata, false, true)))
HGOTO_ERROR(H5E_DATASET, H5E_READERROR, FAIL, "unable to lock raw data chunk");
/* Unlock the chunk */
if (H5D__chunk_unlock(&chk_io_info, &chk_dset_info, &chk_udata, true, chunk, (uint32_t)0) < 0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "unable to unlock raw data chunk");
} /* end if */
/* Increment indices */
carry = true;
for (i = ((int)space_ndims - 1); i >= 0; --i) {
if ((unsigned)i != op_dim) {
++chunk_sc[i];
if (chunk_sc[i] > (hsize_t)max_edge_chunk_sc[i])
chunk_sc[i] = 0;
else {
carry = false;
break;
} /* end else */
} /* end if */
} /* end for */
} /* end while(!carry) */
/* Adjust max_edge_chunk_sc so we don't modify the same chunk twice.
* Also check if this dimension started from 0 (and hence modified all
* of the old edge chunks. */
if (old_edge_chunk_sc[op_dim] == 0)
break;
else
--max_edge_chunk_sc[op_dim];
} /* end for(op_dim=0...) */
/* Reset any cached chunk info for this dataset */
H5D__chunk_cinfo_cache_reset(&dset->shared->cache.chunk.last);
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_update_old_edge_chunks() */
#ifdef H5_HAVE_PARALLEL
/*-------------------------------------------------------------------------
* Function: H5D__chunk_collective_fill
*
* Purpose: Use MPIO selection vector I/O for writing fill chunks
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_collective_fill(const H5D_t *dset, H5D_chunk_coll_fill_info_t *chunk_fill_info,
const void *fill_buf, const void *partial_chunk_fill_buf)
{
MPI_Comm mpi_comm = MPI_COMM_NULL; /* MPI communicator for file */
int mpi_rank = (-1); /* This process's rank */
int mpi_size = (-1); /* MPI Comm size */
int mpi_code; /* MPI return code */
size_t num_blocks; /* Number of blocks between processes. */
size_t leftover_blocks; /* Number of leftover blocks to handle */
int blocks; /* converted to int for MPI */
int leftover; /* converted to int for MPI */
H5FD_mpio_xfer_t prev_xfer_mode; /* Previous data xfer mode */
bool have_xfer_mode = false; /* Whether the previous xffer mode has been retrieved */
size_t i; /* Local index variable */
haddr_t *io_addrs = NULL;
size_t *io_sizes = NULL;
const void **io_wbufs = NULL;
H5FD_mem_t io_types[2];
bool all_same_block_len = true;
bool need_sort = false;
size_t io_2sizes[2];
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
assert(chunk_fill_info->num_chunks != 0);
/*
* If a separate fill buffer is provided for partial chunks, ensure
* that the "don't filter partial edge chunks" flag is set.
*/
if (partial_chunk_fill_buf)
assert(dset->shared->layout.u.chunk.flags & H5O_LAYOUT_CHUNK_DONT_FILTER_PARTIAL_BOUND_CHUNKS);
/* Get the MPI communicator */
if (MPI_COMM_NULL == (mpi_comm = H5F_mpi_get_comm(dset->oloc.file)))
HGOTO_ERROR(H5E_INTERNAL, H5E_MPI, FAIL, "Can't retrieve MPI communicator");
/* Get the MPI rank */
if ((mpi_rank = H5F_mpi_get_rank(dset->oloc.file)) < 0)
HGOTO_ERROR(H5E_INTERNAL, H5E_MPI, FAIL, "Can't retrieve MPI rank");
/* Get the MPI size */
if ((mpi_size = H5F_mpi_get_size(dset->oloc.file)) < 0)
HGOTO_ERROR(H5E_INTERNAL, H5E_MPI, FAIL, "Can't retrieve MPI size");
/* Distribute evenly the number of blocks between processes. */
if (mpi_size == 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "Resulted in division by zero");
num_blocks =
(size_t)(chunk_fill_info->num_chunks / (size_t)mpi_size); /* value should be the same on all procs */
/* After evenly distributing the blocks between processes, are there any
* leftover blocks for each individual process (round-robin)?
*/
leftover_blocks = (size_t)(chunk_fill_info->num_chunks % (size_t)mpi_size);
/* Cast values to types needed by MPI */
H5_CHECKED_ASSIGN(blocks, int, num_blocks, size_t);
H5_CHECKED_ASSIGN(leftover, int, leftover_blocks, size_t);
/* Check if we have any chunks to write on this rank */
if (num_blocks > 0 || leftover > mpi_rank) {
if (NULL == (io_addrs = H5MM_malloc((size_t)(blocks + 1) * sizeof(*io_addrs))))
HGOTO_ERROR(H5E_RESOURCE, H5E_CANTALLOC, FAIL,
"couldn't allocate space for I/O addresses vector");
if (NULL == (io_wbufs = H5MM_malloc((size_t)(blocks + 1) * sizeof(*io_wbufs))))
HGOTO_ERROR(H5E_RESOURCE, H5E_CANTALLOC, FAIL, "couldn't allocate space for I/O buffers vector");
}
/*
* Perform initial scan of chunk info list to:
* - make sure that chunk addresses are monotonically non-decreasing
* - check if all blocks have the same length
*/
for (i = 1; i < chunk_fill_info->num_chunks; i++) {
if (chunk_fill_info->chunk_info[i].addr < chunk_fill_info->chunk_info[i - 1].addr)
need_sort = true;
if (chunk_fill_info->chunk_info[i].chunk_size != chunk_fill_info->chunk_info[i - 1].chunk_size)
all_same_block_len = false;
}
/*
* Note that we sort all of the chunks here, and not just a subset
* corresponding to this rank. We do this since we have found MPI I/O to work
* better when each rank writes blocks that are contiguous in the file,
* and by sorting the full list we maximize the chance of that happening.
*/
if (need_sort)
qsort(chunk_fill_info->chunk_info, chunk_fill_info->num_chunks, sizeof(struct chunk_coll_fill_info),
H5D__chunk_cmp_coll_fill_info);
/*
* If all the chunks have the same length, use the compressed feature
* to store the size.
* Otherwise, allocate the array of sizes for storing chunk sizes.
*/
if (all_same_block_len) {
io_2sizes[0] = chunk_fill_info->chunk_info[0].chunk_size;
io_2sizes[1] = 0;
}
else {
if (NULL == (io_sizes = H5MM_malloc((size_t)(blocks + 1) * sizeof(*io_sizes))))
HGOTO_ERROR(H5E_RESOURCE, H5E_CANTALLOC, FAIL, "couldn't allocate space for I/O sizes vector");
}
/*
* Since the type of all chunks is raw data, use the compressed feature
* to store the chunk type.
*/
io_types[0] = H5FD_MEM_DRAW;
io_types[1] = H5FD_MEM_NOLIST;
/*
* For the chunks corresponding to this rank, fill in the
* address, size and buf pointer for each chunk.
*/
for (i = 0; i < (size_t)blocks; i++) {
size_t idx = i + (size_t)(mpi_rank * blocks);
io_addrs[i] = chunk_fill_info->chunk_info[idx].addr;
if (!all_same_block_len)
io_sizes[i] = chunk_fill_info->chunk_info[idx].chunk_size;
if (chunk_fill_info->chunk_info[idx].unfiltered_partial_chunk)
io_wbufs[i] = partial_chunk_fill_buf;
else
io_wbufs[i] = fill_buf;
}
/*
* For the leftover chunk corresponding to this rank, fill in the
* address, size and buf pointer for the chunk.
*/
if (leftover > mpi_rank) {
io_addrs[blocks] = chunk_fill_info->chunk_info[(blocks * mpi_size) + mpi_rank].addr;
if (!all_same_block_len)
io_sizes[blocks] = chunk_fill_info->chunk_info[(blocks * mpi_size) + mpi_rank].chunk_size;
if (chunk_fill_info->chunk_info[(blocks * mpi_size) + mpi_rank].unfiltered_partial_chunk) {
assert(partial_chunk_fill_buf);
io_wbufs[blocks] = partial_chunk_fill_buf;
}
else
io_wbufs[blocks] = fill_buf;
blocks++;
}
/* Get current transfer mode */
if (H5CX_get_io_xfer_mode(&prev_xfer_mode) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSET, FAIL, "can't set transfer mode");
have_xfer_mode = true;
/* Set transfer mode */
if (H5CX_set_io_xfer_mode(H5FD_MPIO_COLLECTIVE) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSET, FAIL, "can't set transfer mode");
/* Barrier so processes don't race ahead */
if (MPI_SUCCESS != (mpi_code = MPI_Barrier(mpi_comm)))
HMPI_GOTO_ERROR(FAIL, "MPI_Barrier failed", mpi_code)
/* Perform the selection vector I/O for the chunks */
if (H5F_shared_vector_write(H5F_SHARED(dset->oloc.file), (uint32_t)blocks, io_types, io_addrs,
all_same_block_len ? io_2sizes : io_sizes, io_wbufs) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_WRITEERROR, FAIL, "vector write call failed");
done:
if (have_xfer_mode)
/* Restore transfer mode */
if (H5CX_set_io_xfer_mode(prev_xfer_mode) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTSET, FAIL, "can't set transfer mode");
H5MM_xfree(io_addrs);
H5MM_xfree(io_wbufs);
H5MM_xfree(io_sizes);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_collective_fill() */
static int
H5D__chunk_cmp_coll_fill_info(const void *_entry1, const void *_entry2)
{
const struct chunk_coll_fill_info *entry1;
const struct chunk_coll_fill_info *entry2;
FUNC_ENTER_PACKAGE_NOERR
entry1 = (const struct chunk_coll_fill_info *)_entry1;
entry2 = (const struct chunk_coll_fill_info *)_entry2;
FUNC_LEAVE_NOAPI(H5_addr_cmp(entry1->addr, entry2->addr))
} /* end H5D__chunk_cmp_coll_fill_info() */
#endif /* H5_HAVE_PARALLEL */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_prune_fill
*
* Purpose: Write the fill value to the parts of the chunk that are no
* longer part of the dataspace
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__chunk_prune_fill(H5D_chunk_it_ud1_t *udata, bool new_unfilt_chunk)
{
const H5D_io_info_t *io_info = udata->io_info; /* Local pointer to I/O info */
const H5D_t *dset = udata->dset_info->dset; /* Local pointer to the dataset info */
const H5O_layout_t *layout = &(dset->shared->layout); /* Dataset's layout */
unsigned rank = udata->common.layout->ndims - 1; /* Dataset rank */
const hsize_t *scaled = udata->common.scaled; /* Scaled chunk offset */
H5S_sel_iter_t *chunk_iter = NULL; /* Memory selection iteration info */
bool chunk_iter_init = false; /* Whether the chunk iterator has been initialized */
hsize_t sel_nelmts; /* Number of elements in selection */
hsize_t count[H5O_LAYOUT_NDIMS]; /* Element count of hyperslab */
size_t chunk_size; /*size of a chunk */
void *chunk; /* The file chunk */
H5D_chunk_ud_t chk_udata; /* User data for locking chunk */
uint32_t bytes_accessed; /* Bytes accessed in chunk */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Get the chunk's size */
assert(layout->u.chunk.size > 0);
H5_CHECKED_ASSIGN(chunk_size, size_t, layout->u.chunk.size, uint32_t);
/* Get the info for the chunk in the file */
if (H5D__chunk_lookup(dset, scaled, &chk_udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "error looking up chunk address");
chk_udata.new_unfilt_chunk = new_unfilt_chunk;
/* If this chunk does not exist in cache or on disk, no need to do anything */
if (!H5_addr_defined(chk_udata.chunk_block.offset) && UINT_MAX == chk_udata.idx_hint)
HGOTO_DONE(SUCCEED);
/* Initialize the fill value buffer, if necessary */
if (!udata->fb_info_init) {
H5_CHECK_OVERFLOW(udata->elmts_per_chunk, uint32_t, size_t);
if (H5D__fill_init(&udata->fb_info, NULL, NULL, NULL, NULL, NULL, &dset->shared->dcpl_cache.fill,
dset->shared->type, dset->shared->type_id, (size_t)udata->elmts_per_chunk,
chunk_size) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "can't initialize fill buffer info");
udata->fb_info_init = true;
} /* end if */
/* Compute the # of elements to leave with existing value, in each dimension */
for (u = 0; u < rank; u++) {
count[u] = MIN(layout->u.chunk.dim[u], (udata->space_dim[u] - (scaled[u] * layout->u.chunk.dim[u])));
assert(count[u] > 0);
} /* end for */
/* Select all elements in chunk, to begin with */
if (H5S_select_all(udata->chunk_space, true) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSELECT, FAIL, "unable to select space");
/* "Subtract out" the elements to keep */
if (H5S_select_hyperslab(udata->chunk_space, H5S_SELECT_NOTB, udata->hyper_start, NULL, count, NULL) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSELECT, FAIL, "unable to select hyperslab");
/* Lock the chunk into the cache, to get a pointer to the chunk buffer */
if (NULL == (chunk = (void *)H5D__chunk_lock(io_info, udata->dset_info, &chk_udata, false, false)))
HGOTO_ERROR(H5E_DATASET, H5E_READERROR, FAIL, "unable to lock raw data chunk");
/* Fill the selection in the memory buffer */
/* Use the size of the elements in the chunk directly instead of */
/* relying on the fill.size, which might be set to 0 if there is */
/* no fill-value defined for the dataset -QAK */
/* Get the number of elements in the selection */
sel_nelmts = H5S_GET_SELECT_NPOINTS(udata->chunk_space);
H5_CHECK_OVERFLOW(sel_nelmts, hsize_t, size_t);
/* Check for VL datatype & non-default fill value */
if (udata->fb_info.has_vlen_fill_type)
/* Re-fill the buffer to use for this I/O operation */
if (H5D__fill_refill_vl(&udata->fb_info, (size_t)sel_nelmts) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTCONVERT, FAIL, "can't refill fill value buffer");
/* Allocate the chunk selection iterator */
if (NULL == (chunk_iter = H5FL_MALLOC(H5S_sel_iter_t)))
HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "can't allocate chunk selection iterator");
/* Create a selection iterator for scattering the elements to memory buffer */
if (H5S_select_iter_init(chunk_iter, udata->chunk_space, layout->u.chunk.dim[rank], 0) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to initialize chunk selection information");
chunk_iter_init = true;
/* Scatter the data into memory */
if (H5D__scatter_mem(udata->fb_info.fill_buf, chunk_iter, (size_t)sel_nelmts, chunk /*out*/) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_WRITEERROR, FAIL, "scatter failed");
/* The number of bytes accessed in the chunk */
/* (i.e. the bytes replaced with fill values) */
H5_CHECK_OVERFLOW(sel_nelmts, hsize_t, uint32_t);
bytes_accessed = (uint32_t)sel_nelmts * layout->u.chunk.dim[rank];
/* Release lock on chunk */
if (H5D__chunk_unlock(io_info, udata->dset_info, &chk_udata, true, chunk, bytes_accessed) < 0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "unable to unlock raw data chunk");
done:
/* Release the selection iterator */
if (chunk_iter_init && H5S_SELECT_ITER_RELEASE(chunk_iter) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTFREE, FAIL, "Can't release selection iterator");
if (chunk_iter)
chunk_iter = H5FL_FREE(H5S_sel_iter_t, chunk_iter);
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__chunk_prune_fill */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_prune_by_extent
*
* Purpose: This function searches for chunks that are no longer necessary
* both in the raw data cache and in the chunk index.
*
* Return: Non-negative on success/Negative on failure
*
* The algorithm is:
*
* For chunks that are no longer necessary:
*
* 1. Search in the raw data cache for each chunk
* 2. If found then preempt it from the cache
* 3. Search in the B-tree for each chunk
* 4. If found then remove it from the B-tree and deallocate file storage for the chunk
*
* This example shows a 2d dataset of 90x90 with a chunk size of 20x20.
*
*
* 0 20 40 60 80 90 100
* 0 +---------+---------+---------+---------+-----+...+
* |:::::X:::::::::::::: : : | :
* |:::::::X:::::::::::: : : | : Key
* |::::::::::X::::::::: : : | : --------
* |::::::::::::X::::::: : : | : +-+ Dataset
* 20+::::::::::::::::::::.........:.........:.....+...: | | Extent
* | :::::X::::: : : | : +-+
* | ::::::::::: : : | :
* | ::::::::::: : : | : ... Chunk
* | :::::::X::: : : | : : : Boundary
* 40+.........:::::::::::.........:.........:.....+...: :.:
* | : : : : | :
* | : : : : | : ... Allocated
* | : : : : | : ::: & Filled
* | : : : : | : ::: Chunk
* 60+.........:.........:.........:.........:.....+...:
* | : :::::::X::: : | : X Element
* | : ::::::::::: : | : Written
* | : ::::::::::: : | :
* | : ::::::::::: : | :
* 80+.........:.........:::::::::::.........:.....+...: O Fill Val
* | : : ::::::::::: | : Explicitly
* | : : ::::::X:::: | : Written
* 90+---------+---------+---------+---------+-----+ :
* : : : ::::::::::: :
* 100:.........:.........:.........:::::::::::.........:
*
*
* We have 25 total chunks for this dataset, 5 of which have space
* allocated in the file because they were written to one or more
* elements. These five chunks (and only these five) also have entries in
* the storage B-tree for this dataset.
*
* Now lets say we want to shrink the dataset down to 70x70:
*
*
* 0 20 40 60 70 80 90 100
* 0 +---------+---------+---------+----+----+-----+...+
* |:::::X:::::::::::::: : | : | :
* |:::::::X:::::::::::: : | : | : Key
* |::::::::::X::::::::: : | : | : --------
* |::::::::::::X::::::: : | : | : +-+ Dataset
* 20+::::::::::::::::::::.........:....+....:.....|...: | | Extent
* | :::::X::::: : | : | : +-+
* | ::::::::::: : | : | :
* | ::::::::::: : | : | : ... Chunk
* | :::::::X::: : | : | : : : Boundary
* 40+.........:::::::::::.........:....+....:.....|...: :.:
* | : : : | : | :
* | : : : | : | : ... Allocated
* | : : : | : | : ::: & Filled
* | : : : | : | : ::: Chunk
* 60+.........:.........:.........:....+....:.....|...:
* | : :::::::X::: | : | : X Element
* | : ::::::::::: | : | : Written
* +---------+---------+---------+----+ : | :
* | : ::::::::::: : | :
* 80+.........:.........:::::::::X:.........:.....|...: O Fill Val
* | : : ::::::::::: | : Explicitly
* | : : ::::::X:::: | : Written
* 90+---------+---------+---------+---------+-----+ :
* : : : ::::::::::: :
* 100:.........:.........:.........:::::::::::.........:
*
*
* That means that the nine chunks along the bottom and right side should
* no longer exist. Of those nine chunks, (0,80), (20,80), (40,80),
* (60,80), (80,80), (80,60), (80,40), (80,20), and (80,0), one is actually allocated
* that needs to be released.
* To release the chunks, we traverse the B-tree to obtain a list of unused
* allocated chunks, and then call H5B_remove() for each chunk.
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_prune_by_extent(H5D_t *dset, const hsize_t *old_dim)
{
hsize_t min_mod_chunk_sc[H5O_LAYOUT_NDIMS]; /* Scaled offset of first chunk to modify in each dimension */
hsize_t max_mod_chunk_sc[H5O_LAYOUT_NDIMS]; /* Scaled offset of last chunk to modify in each dimension */
hssize_t max_fill_chunk_sc[H5O_LAYOUT_NDIMS]; /* Scaled offset of last chunk that might be filled in each
dimension */
bool fill_dim[H5O_LAYOUT_NDIMS]; /* Whether the plane of edge chunks in this dimension needs to be
filled */
hsize_t min_partial_chunk_sc[H5O_LAYOUT_NDIMS]; /* Offset of first partial (or empty) chunk in each
dimension */
bool new_unfilt_dim[H5O_LAYOUT_NDIMS]; /* Whether the plane of edge chunks in this dimension are newly
unfiltered */
H5D_chk_idx_info_t idx_info; /* Chunked index info */
H5D_io_info_t chk_io_info; /* Chunked I/O info object */
H5D_dset_io_info_t chk_dset_info; /* Chunked I/O dset info object */
H5D_storage_t chk_store; /* Chunk storage information */
const H5O_layout_t *layout = &(dset->shared->layout); /* Dataset's layout */
const H5D_rdcc_t *rdcc = &(dset->shared->cache.chunk); /*raw data chunk cache */
unsigned space_ndims; /* Dataset's space rank */
const hsize_t *space_dim; /* Current dataspace dimensions */
unsigned op_dim; /* Current operating dimension */
bool shrunk_dim[H5O_LAYOUT_NDIMS]; /* Dimensions which have shrunk */
H5D_chunk_it_ud1_t udata; /* Chunk index iterator user data */
bool udata_init = false; /* Whether the chunk index iterator user data has been initialized */
H5D_chunk_common_ud_t idx_udata; /* User data for index removal routine */
H5S_t *chunk_space = NULL; /* Dataspace for a chunk */
hsize_t chunk_dim[H5O_LAYOUT_NDIMS]; /* Chunk dimensions */
hsize_t scaled[H5O_LAYOUT_NDIMS]; /* Scaled offset of current chunk */
hsize_t hyper_start[H5O_LAYOUT_NDIMS]; /* Starting location of hyperslab */
uint32_t elmts_per_chunk; /* Elements in chunk */
bool disable_edge_filters = false; /* Whether to disable filters on partial edge chunks */
bool new_unfilt_chunk = false; /* Whether the chunk is newly unfiltered */
unsigned u; /* Local index variable */
const H5O_storage_chunk_t *sc = &(layout->storage.u.chunk);
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Check args */
assert(dset && H5D_CHUNKED == layout->type);
assert(layout->u.chunk.ndims > 0 && layout->u.chunk.ndims <= H5O_LAYOUT_NDIMS);
H5D_CHUNK_STORAGE_INDEX_CHK(sc);
/* Go get the rank & dimensions (including the element size) */
space_dim = dset->shared->curr_dims;
space_ndims = dset->shared->ndims;
/* The last dimension in scaled is always 0 */
scaled[space_ndims] = (hsize_t)0;
/* Check if any old dimensions are 0, if so we do not have to do anything */
for (op_dim = 0; op_dim < (unsigned)space_ndims; op_dim++)
if (old_dim[op_dim] == 0) {
/* Reset any cached chunk info for this dataset */
H5D__chunk_cinfo_cache_reset(&dset->shared->cache.chunk.last);
HGOTO_DONE(SUCCEED);
} /* end if */
/* Round up to the next integer # of chunks, to accommodate partial chunks */
/* Use current dims because the indices have already been updated! -NAF */
/* (also compute the number of elements per chunk) */
/* (also copy the chunk dimensions into 'hsize_t' array for creating dataspace) */
/* (also compute the dimensions which have been shrunk) */
elmts_per_chunk = 1;
for (u = 0; u < space_ndims; u++) {
elmts_per_chunk *= layout->u.chunk.dim[u];
chunk_dim[u] = layout->u.chunk.dim[u];
shrunk_dim[u] = (space_dim[u] < old_dim[u]);
} /* end for */
/* Create a dataspace for a chunk & set the extent */
if (NULL == (chunk_space = H5S_create_simple(space_ndims, chunk_dim, NULL)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCREATE, FAIL, "can't create simple dataspace");
/* Reset hyperslab start array */
/* (hyperslabs will always start from origin) */
memset(hyper_start, 0, sizeof(hyper_start));
/* Set up chunked I/O info object, for operations on chunks (in callback)
* Note that we only need to set scaled once, as the array's address
* will never change. */
chk_store.chunk.scaled = scaled;
chk_io_info.op_type = H5D_IO_OP_READ;
chk_dset_info.dset = dset;
chk_dset_info.store = &chk_store;
chk_dset_info.buf.vp = NULL;
chk_io_info.dsets_info = &chk_dset_info;
chk_io_info.count = 1;
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &dset->shared->layout.u.chunk;
idx_info.storage = &dset->shared->layout.storage.u.chunk;
/* Initialize the user data for the iteration */
memset(&udata, 0, sizeof udata);
udata.common.layout = &layout->u.chunk;
udata.common.storage = sc;
udata.common.scaled = scaled;
udata.io_info = &chk_io_info;
udata.dset_info = &chk_dset_info;
udata.idx_info = &idx_info;
udata.space_dim = space_dim;
udata.shrunk_dim = shrunk_dim;
udata.elmts_per_chunk = elmts_per_chunk;
udata.chunk_space = chunk_space;
udata.hyper_start = hyper_start;
udata_init = true;
/* Initialize user data for removal */
idx_udata.layout = &layout->u.chunk;
idx_udata.storage = sc;
/* Determine if partial edge chunk filters are disabled */
disable_edge_filters = (layout->u.chunk.flags & H5O_LAYOUT_CHUNK_DONT_FILTER_PARTIAL_BOUND_CHUNKS) &&
(idx_info.pline->nused > 0);
/*
* Determine the chunks which need to be filled or removed
*/
memset(min_mod_chunk_sc, 0, sizeof(min_mod_chunk_sc));
memset(max_mod_chunk_sc, 0, sizeof(max_mod_chunk_sc));
for (op_dim = 0; op_dim < (unsigned)space_ndims; op_dim++) {
/* Validate this chunk dimension */
if (chunk_dim[op_dim] == 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "chunk size must be > 0, dim = %u ", op_dim);
/* Calculate the largest offset of chunks that might need to be
* modified in this dimension */
max_mod_chunk_sc[op_dim] = (old_dim[op_dim] - 1) / chunk_dim[op_dim];
/* Calculate the largest offset of chunks that might need to be
* filled in this dimension */
if (0 == space_dim[op_dim])
max_fill_chunk_sc[op_dim] = -1;
else
max_fill_chunk_sc[op_dim] =
(hssize_t)(((MIN(space_dim[op_dim], old_dim[op_dim]) - 1) / chunk_dim[op_dim]));
if (shrunk_dim[op_dim]) {
/* Calculate the smallest offset of chunks that might need to be
* modified in this dimension. Note that this array contains
* garbage for all dimensions which are not shrunk. These locations
* must not be read from! */
min_mod_chunk_sc[op_dim] = space_dim[op_dim] / chunk_dim[op_dim];
/* Determine if we need to fill chunks in this dimension */
if ((hssize_t)min_mod_chunk_sc[op_dim] == max_fill_chunk_sc[op_dim]) {
fill_dim[op_dim] = true;
/* If necessary, check if chunks in this dimension that need to
* be filled are new partial edge chunks */
if (disable_edge_filters && old_dim[op_dim] >= (min_mod_chunk_sc[op_dim] + 1))
new_unfilt_dim[op_dim] = true;
else
new_unfilt_dim[op_dim] = false;
} /* end if */
else {
fill_dim[op_dim] = false;
new_unfilt_dim[op_dim] = false;
} /* end else */
} /* end if */
else {
fill_dim[op_dim] = false;
new_unfilt_dim[op_dim] = false;
} /* end else */
/* If necessary, calculate the smallest offset of non-previously full
* chunks in this dimension, so we know these chunks were previously
* unfiltered */
if (disable_edge_filters)
min_partial_chunk_sc[op_dim] = old_dim[op_dim] / chunk_dim[op_dim];
} /* end for */
/* Main loop: fill or remove chunks */
for (op_dim = 0; op_dim < (unsigned)space_ndims; op_dim++) {
bool dims_outside_fill[H5O_LAYOUT_NDIMS]; /* Dimensions in chunk offset outside fill dimensions */
int ndims_outside_fill; /* Number of dimensions in chunk offset outside fill dimensions */
bool carry; /* Flag to indicate that chunk increment carrys to higher dimension (sorta) */
/* Check if modification along this dimension is really necessary */
if (!shrunk_dim[op_dim])
continue;
else {
assert(max_mod_chunk_sc[op_dim] >= min_mod_chunk_sc[op_dim]);
/* Reset the chunk offset indices */
memset(scaled, 0, (space_ndims * sizeof(scaled[0])));
scaled[op_dim] = min_mod_chunk_sc[op_dim];
/* Initialize "dims_outside_fill" array */
ndims_outside_fill = 0;
for (u = 0; u < space_ndims; u++)
if ((hssize_t)scaled[u] > max_fill_chunk_sc[u]) {
dims_outside_fill[u] = true;
ndims_outside_fill++;
} /* end if */
else
dims_outside_fill[u] = false;
} /* end else */
carry = false;
while (!carry) {
int i; /* Local index variable */
udata.common.scaled = scaled;
if (0 == ndims_outside_fill) {
assert(fill_dim[op_dim]);
assert(scaled[op_dim] == min_mod_chunk_sc[op_dim]);
/* Make sure this is an edge chunk */
assert(H5D__chunk_is_partial_edge_chunk(space_ndims, layout->u.chunk.dim, scaled, space_dim));
/* Determine if the chunk just became an unfiltered chunk */
if (new_unfilt_dim[op_dim]) {
new_unfilt_chunk = true;
for (u = 0; u < space_ndims; u++)
if (scaled[u] == min_partial_chunk_sc[u]) {
new_unfilt_chunk = false;
break;
} /* end if */
} /* end if */
/* Make sure that, if we think this is a new unfiltered chunk,
* it was previously not an edge chunk */
assert(!new_unfilt_dim[op_dim] ||
(!new_unfilt_chunk != !H5D__chunk_is_partial_edge_chunk(
space_ndims, layout->u.chunk.dim, scaled, old_dim)));
assert(!new_unfilt_chunk || new_unfilt_dim[op_dim]);
/* Fill the unused parts of the chunk */
if (H5D__chunk_prune_fill(&udata, new_unfilt_chunk) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_WRITEERROR, FAIL, "unable to write fill value");
} /* end if */
else {
H5D_chunk_ud_t chk_udata; /* User data for getting chunk info */
#ifndef NDEBUG
/* Make sure this chunk is really outside the new dimensions */
{
bool outside_dim = false;
for (u = 0; u < space_ndims; u++)
if ((scaled[u] * chunk_dim[u]) >= space_dim[u]) {
outside_dim = true;
break;
} /* end if */
assert(outside_dim);
} /* end block */
#endif /* NDEBUG */
/* Check if the chunk exists in cache or on disk */
if (H5D__chunk_lookup(dset, scaled, &chk_udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "error looking up chunk");
/* Evict the entry from the cache if present, but do not flush
* it to disk */
if (UINT_MAX != chk_udata.idx_hint)
if (H5D__chunk_cache_evict(dset, rdcc->slot[chk_udata.idx_hint], false) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTREMOVE, FAIL, "unable to evict chunk");
/* Remove the chunk from disk, if present */
if (H5_addr_defined(chk_udata.chunk_block.offset)) {
/* Update the offset in idx_udata */
idx_udata.scaled = udata.common.scaled;
/* Remove the chunk from disk */
if ((sc->ops->remove)(&idx_info, &idx_udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTDELETE, FAIL,
"unable to remove chunk entry from index");
} /* end if */
} /* end else */
/* Increment indices */
carry = true;
for (i = (int)(space_ndims - 1); i >= 0; --i) {
scaled[i]++;
if (scaled[i] > max_mod_chunk_sc[i]) {
/* Left maximum dimensions, "wrap around" and check if this
* dimension is no longer outside the fill dimension */
if ((unsigned)i == op_dim) {
scaled[i] = min_mod_chunk_sc[i];
if (dims_outside_fill[i] && fill_dim[i]) {
dims_outside_fill[i] = false;
ndims_outside_fill--;
} /* end if */
} /* end if */
else {
scaled[i] = 0;
if (dims_outside_fill[i] && max_fill_chunk_sc[i] >= 0) {
dims_outside_fill[i] = false;
ndims_outside_fill--;
} /* end if */
} /* end else */
} /* end if */
else {
/* Check if we just went outside the fill dimension */
if (!dims_outside_fill[i] && (hssize_t)scaled[i] > max_fill_chunk_sc[i]) {
dims_outside_fill[i] = true;
ndims_outside_fill++;
} /* end if */
/* We found the next chunk, so leave the loop */
carry = false;
break;
} /* end else */
} /* end for */
} /* end while(!carry) */
/* Adjust max_mod_chunk_sc so we don't modify the same chunk twice.
* Also check if this dimension started from 0 (and hence removed all
* of the chunks). */
if (min_mod_chunk_sc[op_dim] == 0)
break;
else
max_mod_chunk_sc[op_dim] = min_mod_chunk_sc[op_dim] - 1;
} /* end for(op_dim=0...) */
/* Reset any cached chunk info for this dataset */
H5D__chunk_cinfo_cache_reset(&dset->shared->cache.chunk.last);
done:
/* Release resources */
if (chunk_space && H5S_close(chunk_space) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CLOSEERROR, FAIL, "unable to release dataspace");
if (udata_init)
if (udata.fb_info_init && H5D__fill_term(&udata.fb_info) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTFREE, FAIL, "Can't release fill buffer info");
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_prune_by_extent() */
#ifdef H5_HAVE_PARALLEL
/*-------------------------------------------------------------------------
* Function: H5D__chunk_addrmap_cb
*
* Purpose: Callback when obtaining the chunk addresses for all existing chunks
*
* Return: Success: Non-negative
* Failure: Negative
*
*-------------------------------------------------------------------------
*/
static int
H5D__chunk_addrmap_cb(const H5D_chunk_rec_t *chunk_rec, void *_udata)
{
H5D_chunk_it_ud2_t *udata = (H5D_chunk_it_ud2_t *)_udata; /* User data for callback */
unsigned rank = udata->common.layout->ndims - 1; /* # of dimensions of dataset */
hsize_t chunk_index;
FUNC_ENTER_PACKAGE_NOERR
/* Compute the index for this chunk */
chunk_index = H5VM_array_offset_pre(rank, udata->common.layout->down_chunks, chunk_rec->scaled);
/* Set it in the userdata to return */
udata->chunk_addr[chunk_index] = chunk_rec->chunk_addr;
FUNC_LEAVE_NOAPI(H5_ITER_CONT)
} /* H5D__chunk_addrmap_cb() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_addrmap
*
* Purpose: Obtain the chunk addresses for all existing chunks
*
* Return: Success: Non-negative on succeed.
* Failure: negative value
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_addrmap(const H5D_t *dset, haddr_t chunk_addr[])
{
H5D_chk_idx_info_t idx_info; /* Chunked index info */
H5D_chunk_it_ud2_t udata; /* User data for iteration callback */
H5O_storage_chunk_t *sc;
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
assert(dset);
assert(dset->shared);
sc = &(dset->shared->layout.storage.u.chunk);
H5D_CHUNK_STORAGE_INDEX_CHK(sc);
assert(chunk_addr);
/* Set up user data for B-tree callback */
memset(&udata, 0, sizeof(udata));
udata.common.layout = &dset->shared->layout.u.chunk;
udata.common.storage = sc;
udata.chunk_addr = chunk_addr;
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &dset->shared->layout.u.chunk;
idx_info.storage = sc;
/* Iterate over chunks to build mapping of chunk addresses */
if ((sc->ops->iterate)(&idx_info, H5D__chunk_addrmap_cb, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL,
"unable to iterate over chunk index to build address map");
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_addrmap() */
#endif /* H5_HAVE_PARALLEL */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_delete
*
* Purpose: Delete raw data storage for entire dataset (i.e. all chunks)
*
* Return: Success: Non-negative
* Failure: negative
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_delete(H5F_t *f, H5O_t *oh, H5O_storage_t *storage)
{
H5D_chk_idx_info_t idx_info; /* Chunked index info */
H5O_layout_t layout; /* Dataset layout message */
bool layout_read = false; /* Whether the layout message was read from the file */
H5O_pline_t pline; /* I/O pipeline message */
bool pline_read = false; /* Whether the I/O pipeline message was read from the file */
htri_t exists; /* Flag if header message of interest exists */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity check */
assert(f);
assert(oh);
assert(storage);
H5D_CHUNK_STORAGE_INDEX_CHK(&storage->u.chunk);
/* Check for I/O pipeline message */
if ((exists = H5O_msg_exists_oh(oh, H5O_PLINE_ID)) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to check for object header message");
else if (exists) {
if (NULL == H5O_msg_read_oh(f, oh, H5O_PLINE_ID, &pline))
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't get I/O pipeline message");
pline_read = true;
} /* end else if */
else
memset(&pline, 0, sizeof(pline));
/* Retrieve dataset layout message */
if ((exists = H5O_msg_exists_oh(oh, H5O_LAYOUT_ID)) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to check for object header message");
else if (exists) {
if (NULL == H5O_msg_read_oh(f, oh, H5O_LAYOUT_ID, &layout))
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't get layout message");
layout_read = true;
} /* end else if */
else
HGOTO_ERROR(H5E_DATASET, H5E_NOTFOUND, FAIL, "can't find layout message");
/* Compose chunked index info struct */
idx_info.f = f;
idx_info.pline = &pline;
idx_info.layout = &layout.u.chunk;
idx_info.storage = &storage->u.chunk;
/* Delete the chunked storage information in the file */
if ((storage->u.chunk.ops->idx_delete)(&idx_info) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTDELETE, FAIL, "unable to delete chunk index");
done:
/* Clean up any messages read in */
if (pline_read)
if (H5O_msg_reset(H5O_PLINE_ID, &pline) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTRESET, FAIL, "unable to reset I/O pipeline message");
if (layout_read)
if (H5O_msg_reset(H5O_LAYOUT_ID, &layout) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTRESET, FAIL, "unable to reset layout message");
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_delete() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_update_cache
*
* Purpose: Update any cached chunks index values after the dataspace
* size has changed
*
* Return: Success: Non-negative
* Failure: negative
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_update_cache(H5D_t *dset)
{
H5D_rdcc_t *rdcc = &(dset->shared->cache.chunk); /*raw data chunk cache */
H5D_rdcc_ent_t *ent, *next; /*cache entry */
H5D_rdcc_ent_t tmp_head; /* Sentinel entry for temporary entry list */
H5D_rdcc_ent_t *tmp_tail; /* Tail pointer for temporary entry list */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Check args */
assert(dset && H5D_CHUNKED == dset->shared->layout.type);
assert(dset->shared->layout.u.chunk.ndims > 0 && dset->shared->layout.u.chunk.ndims <= H5O_LAYOUT_NDIMS);
/* Check the rank */
assert((dset->shared->layout.u.chunk.ndims - 1) > 1);
/* Add temporary entry list to rdcc */
(void)memset(&tmp_head, 0, sizeof(tmp_head));
rdcc->tmp_head = &tmp_head;
tmp_tail = &tmp_head;
/* Recompute the index for each cached chunk that is in a dataset */
for (ent = rdcc->head; ent; ent = next) {
unsigned old_idx; /* Previous index number */
/* Get the pointer to the next cache entry */
next = ent->next;
/* Compute the index for the chunk entry */
old_idx = ent->idx; /* Save for later */
ent->idx = H5D__chunk_hash_val(dset->shared, ent->scaled);
if (old_idx != ent->idx) {
H5D_rdcc_ent_t *old_ent; /* Old cache entry */
/* Check if there is already a chunk at this chunk's new location */
old_ent = rdcc->slot[ent->idx];
if (old_ent != NULL) {
assert(old_ent->locked == false);
assert(old_ent->deleted == false);
/* Insert the old entry into the temporary list, but do not
* evict (yet). Make sure we do not make any calls to the index
* until all chunks have updated indices! */
assert(!old_ent->tmp_next);
assert(!old_ent->tmp_prev);
tmp_tail->tmp_next = old_ent;
old_ent->tmp_prev = tmp_tail;
tmp_tail = old_ent;
} /* end if */
/* Insert this chunk into correct location in hash table */
rdcc->slot[ent->idx] = ent;
/* If this chunk was previously on the temporary list and therefore
* not in the hash table, remove it from the temporary list.
* Otherwise clear the old hash table slot. */
if (ent->tmp_prev) {
assert(tmp_head.tmp_next);
assert(tmp_tail != &tmp_head);
ent->tmp_prev->tmp_next = ent->tmp_next;
if (ent->tmp_next) {
ent->tmp_next->tmp_prev = ent->tmp_prev;
ent->tmp_next = NULL;
} /* end if */
else {
assert(tmp_tail == ent);
tmp_tail = ent->tmp_prev;
} /* end else */
ent->tmp_prev = NULL;
} /* end if */
else
rdcc->slot[old_idx] = NULL;
} /* end if */
} /* end for */
/* tmp_tail is no longer needed, and will be invalidated by
* H5D_chunk_cache_evict anyways. */
tmp_tail = NULL;
/* Evict chunks that are still on the temporary list */
while (tmp_head.tmp_next) {
ent = tmp_head.tmp_next;
/* Remove the old entry from the cache */
if (H5D__chunk_cache_evict(dset, ent, true) < 0)
HGOTO_ERROR(H5E_IO, H5E_CANTFLUSH, FAIL, "unable to flush one or more raw data chunks");
} /* end while */
done:
/* Remove temporary list from rdcc */
rdcc->tmp_head = NULL;
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_update_cache() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_copy_cb
*
* Purpose: Copy chunked raw data from source file and insert to the
* index in the destination file
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static int
H5D__chunk_copy_cb(const H5D_chunk_rec_t *chunk_rec, void *_udata)
{
H5D_chunk_it_ud3_t *udata = (H5D_chunk_it_ud3_t *)_udata; /* User data for callback */
H5D_chunk_ud_t udata_dst; /* User data about new destination chunk */
bool is_vlen = false; /* Whether datatype is variable-length */
bool fix_ref = false; /* Whether to fix up references in the dest. file */
bool need_insert = false; /* Whether the chunk needs to be inserted into the index */
/* General information about chunk copy */
void *bkg = udata->bkg; /* Background buffer for datatype conversion */
void *buf = udata->buf; /* Chunk buffer for I/O & datatype conversions */
size_t buf_size = udata->buf_size; /* Size of chunk buffer */
const H5O_pline_t *pline = udata->pline; /* I/O pipeline for applying filters */
/* needed for compressed variable length data */
bool must_filter = false; /* Whether chunk must be filtered during copy */
size_t nbytes; /* Size of chunk in file (in bytes) */
H5Z_cb_t filter_cb; /* Filter failure callback struct */
int ret_value = H5_ITER_CONT; /* Return value */
FUNC_ENTER_PACKAGE
/* Get 'size_t' local value for number of bytes in chunk */
H5_CHECKED_ASSIGN(nbytes, size_t, chunk_rec->nbytes, uint32_t);
/* Initialize the filter callback struct */
filter_cb.op_data = NULL;
filter_cb.func = NULL; /* no callback function when failed */
/* Check for filtered chunks */
/* Check for an edge chunk that is not filtered */
if (pline && pline->nused) {
must_filter = true;
if ((udata->common.layout->flags & H5O_LAYOUT_CHUNK_DONT_FILTER_PARTIAL_BOUND_CHUNKS) &&
H5D__chunk_is_partial_edge_chunk(udata->dset_ndims, udata->common.layout->dim, chunk_rec->scaled,
udata->dset_dims))
must_filter = false;
}
/* Check parameter for type conversion */
if (udata->do_convert) {
if (H5T_detect_class(udata->dt_src, H5T_VLEN, false) > 0)
is_vlen = true;
else if ((H5T_get_class(udata->dt_src, false) == H5T_REFERENCE) &&
(udata->file_src != udata->idx_info_dst->f))
fix_ref = true;
else
HGOTO_ERROR(H5E_DATASET, H5E_CANTCOPY, H5_ITER_ERROR, "unable to copy dataset elements");
} /* end if */
/* Resize the buf if it is too small to hold the data */
if (nbytes > buf_size) {
void *new_buf; /* New buffer for data */
/* Re-allocate memory for copying the chunk */
if (NULL == (new_buf = H5MM_realloc(udata->buf, nbytes)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, H5_ITER_ERROR,
"memory allocation failed for raw data chunk");
udata->buf = new_buf;
if (udata->bkg) {
if (NULL == (new_buf = H5MM_realloc(udata->bkg, nbytes)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, H5_ITER_ERROR,
"memory allocation failed for raw data chunk");
udata->bkg = new_buf;
if (!udata->cpy_info->expand_ref)
memset((uint8_t *)udata->bkg + buf_size, 0, (size_t)(nbytes - buf_size));
bkg = udata->bkg;
} /* end if */
buf = udata->buf;
udata->buf_size = buf_size = nbytes;
} /* end if */
if (udata->chunk_in_cache && udata->chunk) {
assert(!H5_addr_defined(chunk_rec->chunk_addr));
H5MM_memcpy(buf, udata->chunk, nbytes);
udata->chunk = NULL;
}
else {
H5D_rdcc_ent_t *ent = NULL; /* Cache entry */
unsigned idx; /* Index of chunk in cache, if present */
unsigned u; /* Counter */
H5D_shared_t *shared_fo = (H5D_shared_t *)udata->cpy_info->shared_fo;
/* See if the written chunk is in the chunk cache */
if (shared_fo && shared_fo->cache.chunk.nslots > 0) {
/* Determine the chunk's location in the hash table */
idx = H5D__chunk_hash_val(shared_fo, chunk_rec->scaled);
/* Get the chunk cache entry for that location */
ent = shared_fo->cache.chunk.slot[idx];
if (ent) {
/* Speculatively set the 'found' flag */
udata->chunk_in_cache = true;
/* Verify that the cache entry is the correct chunk */
for (u = 0; u < shared_fo->ndims; u++)
if (chunk_rec->scaled[u] != ent->scaled[u]) {
udata->chunk_in_cache = false;
break;
} /* end if */
} /* end if */
} /* end if */
if (udata->chunk_in_cache) {
if (NULL == ent)
HGOTO_ERROR(H5E_IO, H5E_BADVALUE, H5_ITER_ERROR, "NULL chunk entry pointer");
assert(H5_addr_defined(chunk_rec->chunk_addr));
assert(H5_addr_defined(ent->chunk_block.offset));
H5_CHECKED_ASSIGN(nbytes, size_t, shared_fo->layout.u.chunk.size, uint32_t);
H5MM_memcpy(buf, ent->chunk, nbytes);
}
else {
/* read chunk data from the source file */
if (H5F_block_read(udata->file_src, H5FD_MEM_DRAW, chunk_rec->chunk_addr, nbytes, buf) < 0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, H5_ITER_ERROR, "unable to read raw data chunk");
}
}
/* Need to uncompress filtered variable-length & reference data elements that are not found in chunk cache
*/
if (must_filter && (is_vlen || fix_ref) && !udata->chunk_in_cache) {
unsigned filter_mask = chunk_rec->filter_mask;
if (H5Z_pipeline(pline, H5Z_FLAG_REVERSE, &filter_mask, H5Z_NO_EDC, filter_cb, &nbytes, &buf_size,
&buf) < 0)
HGOTO_ERROR(H5E_PLINE, H5E_CANTFILTER, H5_ITER_ERROR, "data pipeline read failed");
} /* end if */
/* Perform datatype conversion, if necessary */
if (is_vlen) {
H5T_path_t *tpath_src_mem = udata->tpath_src_mem;
H5T_path_t *tpath_mem_dst = udata->tpath_mem_dst;
H5S_t *buf_space = udata->buf_space;
hid_t tid_src = udata->tid_src;
hid_t tid_dst = udata->tid_dst;
hid_t tid_mem = udata->tid_mem;
void *reclaim_buf = udata->reclaim_buf;
size_t reclaim_buf_size = udata->reclaim_buf_size;
/* Convert from source file to memory */
H5_CHECK_OVERFLOW(udata->nelmts, uint32_t, size_t);
if (H5T_convert(tpath_src_mem, tid_src, tid_mem, (size_t)udata->nelmts, (size_t)0, (size_t)0, buf,
bkg) < 0)
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTINIT, H5_ITER_ERROR, "datatype conversion failed");
/* Copy into another buffer, to reclaim memory later */
H5MM_memcpy(reclaim_buf, buf, reclaim_buf_size);
/* Set background buffer to all zeros */
memset(bkg, 0, buf_size);
/* Convert from memory to destination file */
if (H5T_convert(tpath_mem_dst, tid_mem, tid_dst, udata->nelmts, (size_t)0, (size_t)0, buf, bkg) < 0)
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTINIT, H5_ITER_ERROR, "datatype conversion failed");
/* Reclaim space from variable length data */
if (H5T_reclaim(tid_mem, buf_space, reclaim_buf) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADITER, H5_ITER_ERROR, "unable to reclaim variable-length data");
} /* end if */
else if (fix_ref) {
/* Check for expanding references */
/* (background buffer has already been zeroed out, if not expanding) */
if (udata->cpy_info->expand_ref) {
/* Copy the reference elements */
if (H5O_copy_expand_ref(udata->file_src, udata->tid_src, udata->dt_src, buf, nbytes,
udata->idx_info_dst->f, bkg, udata->cpy_info) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTCOPY, H5_ITER_ERROR, "unable to copy reference attribute");
} /* end if */
/* After fix ref, copy the new reference elements to the buffer to write out */
H5MM_memcpy(buf, bkg, buf_size);
} /* end if */
/* Set up destination chunk callback information for insertion */
udata_dst.common.layout = udata->idx_info_dst->layout;
udata_dst.common.storage = udata->idx_info_dst->storage;
udata_dst.common.scaled = chunk_rec->scaled;
udata_dst.chunk_block.offset = HADDR_UNDEF;
udata_dst.chunk_block.length = chunk_rec->nbytes;
udata_dst.filter_mask = chunk_rec->filter_mask;
/* Need to compress variable-length or reference data elements or a chunk found in cache before writing to
* file */
if (must_filter && (is_vlen || fix_ref || udata->chunk_in_cache)) {
if (H5Z_pipeline(pline, 0, &(udata_dst.filter_mask), H5Z_NO_EDC, filter_cb, &nbytes, &buf_size,
&buf) < 0)
HGOTO_ERROR(H5E_PLINE, H5E_CANTFILTER, H5_ITER_ERROR, "output pipeline failed");
#if H5_SIZEOF_SIZE_T > 4
/* Check for the chunk expanding too much to encode in a 32-bit value */
if (nbytes > ((size_t)0xffffffff))
HGOTO_ERROR(H5E_DATASET, H5E_BADRANGE, H5_ITER_ERROR, "chunk too large for 32-bit length");
#endif /* H5_SIZEOF_SIZE_T > 4 */
H5_CHECKED_ASSIGN(udata_dst.chunk_block.length, uint32_t, nbytes, size_t);
udata->buf = buf;
udata->buf_size = buf_size;
} /* end if */
udata->chunk_in_cache = false;
udata_dst.chunk_idx =
H5VM_array_offset_pre(udata_dst.common.layout->ndims - 1, udata_dst.common.layout->max_down_chunks,
udata_dst.common.scaled);
/* Allocate chunk in the file */
if (H5D__chunk_file_alloc(udata->idx_info_dst, NULL, &udata_dst.chunk_block, &need_insert,
udata_dst.common.scaled) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINSERT, FAIL, "unable to insert/resize chunk on chunk level");
/* Write chunk data to destination file */
assert(H5_addr_defined(udata_dst.chunk_block.offset));
if (H5F_block_write(udata->idx_info_dst->f, H5FD_MEM_DRAW, udata_dst.chunk_block.offset, nbytes, buf) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_WRITEERROR, H5_ITER_ERROR, "unable to write raw data to file");
/* Set metadata tag in API context */
H5_BEGIN_TAG(H5AC__COPIED_TAG)
/* Insert chunk record into index */
if (need_insert && udata->idx_info_dst->storage->ops->insert)
if ((udata->idx_info_dst->storage->ops->insert)(udata->idx_info_dst, &udata_dst, NULL) < 0)
HGOTO_ERROR_TAG(H5E_DATASET, H5E_CANTINSERT, H5_ITER_ERROR,
"unable to insert chunk addr into index");
/* Reset metadata tag in API context */
H5_END_TAG
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_copy_cb() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_copy
*
* Purpose: Copy chunked storage from SRC file to DST file.
*
* Return: Success: Non-negative
* Failure: negative
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_copy(H5F_t *f_src, H5O_storage_chunk_t *storage_src, H5O_layout_chunk_t *layout_src, H5F_t *f_dst,
H5O_storage_chunk_t *storage_dst, const H5S_extent_t *ds_extent_src, const H5T_t *dt_src,
const H5O_pline_t *pline_src, H5O_copy_t *cpy_info)
{
H5D_chunk_it_ud3_t udata; /* User data for iteration callback */
H5D_chk_idx_info_t idx_info_dst; /* Dest. chunked index info */
H5D_chk_idx_info_t idx_info_src; /* Source chunked index info */
int sndims; /* Rank of dataspace */
hsize_t curr_dims[H5O_LAYOUT_NDIMS]; /* Curr. size of dataset dimensions */
hsize_t max_dims[H5O_LAYOUT_NDIMS]; /* Curr. size of dataset dimensions */
H5O_pline_t _pline; /* Temporary pipeline info */
const H5O_pline_t *pline; /* Pointer to pipeline info to use */
H5T_path_t *tpath_src_mem = NULL, *tpath_mem_dst = NULL; /* Datatype conversion paths */
hid_t tid_src = -1; /* Datatype ID for source datatype */
hid_t tid_dst = -1; /* Datatype ID for destination datatype */
hid_t tid_mem = -1; /* Datatype ID for memory datatype */
size_t buf_size; /* Size of copy buffer */
size_t reclaim_buf_size; /* Size of reclaim buffer */
void *buf = NULL; /* Buffer for copying data */
void *bkg = NULL; /* Buffer for background during type conversion */
void *reclaim_buf = NULL; /* Buffer for reclaiming data */
H5S_t *buf_space = NULL; /* Dataspace describing buffer */
hid_t sid_buf = -1; /* ID for buffer dataspace */
uint32_t nelmts = 0; /* Number of elements in buffer */
bool do_convert = false; /* Indicate that type conversions should be performed */
bool copy_setup_done = false; /* Indicate that 'copy setup' is done */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Check args */
assert(f_src);
assert(storage_src);
H5D_CHUNK_STORAGE_INDEX_CHK(storage_src);
assert(layout_src);
assert(f_dst);
assert(storage_dst);
H5D_CHUNK_STORAGE_INDEX_CHK(storage_dst);
assert(ds_extent_src);
assert(dt_src);
/* Initialize the temporary pipeline info */
if (NULL == pline_src) {
memset(&_pline, 0, sizeof(_pline));
pline = &_pline;
} /* end if */
else
pline = pline_src;
/* Layout is not created in the destination file, reset index address */
if (H5D_chunk_idx_reset(storage_dst, true) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to reset chunked storage index in dest");
/* Initialize layout information */
{
unsigned ndims; /* Rank of dataspace */
/* Get the dim info for dataset */
if ((sndims = H5S_extent_get_dims(ds_extent_src, curr_dims, max_dims)) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't get dataspace dimensions");
H5_CHECKED_ASSIGN(ndims, unsigned, sndims, int);
/* Set the source layout chunk information */
if (H5D__chunk_set_info_real(layout_src, ndims, curr_dims, max_dims) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTSET, FAIL, "can't set layout's chunk info");
} /* end block */
/* Compose source & dest chunked index info structs */
idx_info_src.f = f_src;
idx_info_src.pline = pline;
idx_info_src.layout = layout_src;
idx_info_src.storage = storage_src;
idx_info_dst.f = f_dst;
idx_info_dst.pline = pline; /* Use same I/O filter pipeline for dest. */
idx_info_dst.layout = layout_src /* Use same layout for dest. */;
idx_info_dst.storage = storage_dst;
/* Call the index-specific "copy setup" routine */
if ((storage_src->ops->copy_setup)(&idx_info_src, &idx_info_dst) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL,
"unable to set up index-specific chunk copying information");
copy_setup_done = true;
/* Create datatype ID for src datatype */
if ((tid_src = H5I_register(H5I_DATATYPE, dt_src, false)) < 0)
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTREGISTER, FAIL, "unable to register source file datatype");
/* If there's a VLEN source datatype, set up type conversion information */
if (H5T_detect_class(dt_src, H5T_VLEN, false) > 0) {
H5T_t *dt_dst; /* Destination datatype */
H5T_t *dt_mem; /* Memory datatype */
size_t mem_dt_size; /* Memory datatype size */
size_t tmp_dt_size; /* Temp. datatype size */
size_t max_dt_size; /* Max atatype size */
hsize_t buf_dim; /* Dimension for buffer */
unsigned u;
/* create a memory copy of the variable-length datatype */
if (NULL == (dt_mem = H5T_copy(dt_src, H5T_COPY_TRANSIENT)))
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTINIT, FAIL, "unable to copy");
if ((tid_mem = H5I_register(H5I_DATATYPE, dt_mem, false)) < 0) {
(void)H5T_close_real(dt_mem);
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTREGISTER, FAIL, "unable to register memory datatype");
} /* end if */
/* create variable-length datatype at the destination file */
if (NULL == (dt_dst = H5T_copy(dt_src, H5T_COPY_TRANSIENT)))
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTINIT, FAIL, "unable to copy");
if (H5T_set_loc(dt_dst, H5F_VOL_OBJ(f_dst), H5T_LOC_DISK) < 0) {
(void)H5T_close_real(dt_dst);
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTINIT, FAIL, "cannot mark datatype on disk");
} /* end if */
if ((tid_dst = H5I_register(H5I_DATATYPE, dt_dst, false)) < 0) {
(void)H5T_close_real(dt_dst);
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTREGISTER, FAIL, "unable to register destination file datatype");
} /* end if */
/* Set up the conversion functions */
if (NULL == (tpath_src_mem = H5T_path_find(dt_src, dt_mem)))
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTINIT, FAIL, "unable to convert between src and mem datatypes");
if (NULL == (tpath_mem_dst = H5T_path_find(dt_mem, dt_dst)))
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTINIT, FAIL, "unable to convert between mem and dst datatypes");
/* Determine largest datatype size */
if (0 == (max_dt_size = H5T_get_size(dt_src)))
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTINIT, FAIL, "unable to determine datatype size");
if (0 == (mem_dt_size = H5T_get_size(dt_mem)))
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTINIT, FAIL, "unable to determine datatype size");
max_dt_size = MAX(max_dt_size, mem_dt_size);
if (0 == (tmp_dt_size = H5T_get_size(dt_dst)))
HGOTO_ERROR(H5E_DATATYPE, H5E_CANTINIT, FAIL, "unable to determine datatype size");
max_dt_size = MAX(max_dt_size, tmp_dt_size);
/* Compute the number of elements per chunk */
nelmts = 1;
for (u = 0; u < (layout_src->ndims - 1); u++)
nelmts *= layout_src->dim[u];
/* Create the space and set the initial extent */
buf_dim = nelmts;
if (NULL == (buf_space = H5S_create_simple((unsigned)1, &buf_dim, NULL)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCREATE, FAIL, "can't create simple dataspace");
/* Register */
if ((sid_buf = H5I_register(H5I_DATASPACE, buf_space, false)) < 0) {
(void)H5S_close(buf_space);
HGOTO_ERROR(H5E_ID, H5E_CANTREGISTER, FAIL, "unable to register dataspace ID");
} /* end if */
/* Set initial buffer sizes */
buf_size = nelmts * max_dt_size;
reclaim_buf_size = nelmts * mem_dt_size;
/* Allocate memory for reclaim buf */
if (NULL == (reclaim_buf = H5MM_malloc(reclaim_buf_size)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed for raw data chunk");
/* Indicate that type conversion should be performed */
do_convert = true;
} /* end if */
else {
if (H5T_get_class(dt_src, false) == H5T_REFERENCE) {
/* Indicate that type conversion should be performed */
do_convert = true;
} /* end if */
H5_CHECKED_ASSIGN(buf_size, size_t, layout_src->size, uint32_t);
reclaim_buf_size = 0;
} /* end else */
/* Set up conversion buffer, if appropriate */
if (do_convert) {
/* Allocate background memory for converting the chunk */
if (NULL == (bkg = H5MM_malloc(buf_size)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed for raw data chunk");
/* Check for reference datatype and no expanding references & clear background buffer */
if (!cpy_info->expand_ref && ((H5T_get_class(dt_src, false) == H5T_REFERENCE) && (f_src != f_dst)))
/* Reset value to zero */
memset(bkg, 0, buf_size);
} /* end if */
/* Allocate memory for copying the chunk */
if (NULL == (buf = H5MM_malloc(buf_size)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed for raw data chunk");
/* Initialize the callback structure for the source */
memset(&udata, 0, sizeof udata);
udata.common.layout = layout_src;
udata.common.storage = storage_src;
udata.file_src = f_src;
udata.idx_info_dst = &idx_info_dst;
udata.buf = buf;
udata.bkg = bkg;
udata.buf_size = buf_size;
udata.tid_src = tid_src;
udata.tid_mem = tid_mem;
udata.tid_dst = tid_dst;
udata.dt_src = dt_src;
udata.do_convert = do_convert;
udata.tpath_src_mem = tpath_src_mem;
udata.tpath_mem_dst = tpath_mem_dst;
udata.reclaim_buf = reclaim_buf;
udata.reclaim_buf_size = reclaim_buf_size;
udata.buf_space = buf_space;
udata.nelmts = nelmts;
udata.pline = pline;
udata.dset_ndims = (unsigned)sndims;
udata.dset_dims = curr_dims;
udata.cpy_info = cpy_info;
udata.chunk_in_cache = false;
udata.chunk = NULL;
/* Iterate over chunks to copy data */
if ((storage_src->ops->iterate)(&idx_info_src, H5D__chunk_copy_cb, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADITER, FAIL, "unable to iterate over chunk index to copy data");
/* Iterate over the chunk cache to copy data for chunks with undefined address */
if (udata.cpy_info->shared_fo) {
H5D_rdcc_ent_t *ent, *next;
H5D_chunk_rec_t chunk_rec;
H5D_shared_t *shared_fo = (H5D_shared_t *)udata.cpy_info->shared_fo;
chunk_rec.nbytes = layout_src->size;
chunk_rec.filter_mask = 0;
chunk_rec.chunk_addr = HADDR_UNDEF;
for (ent = shared_fo->cache.chunk.head; ent; ent = next) {
if (!H5_addr_defined(ent->chunk_block.offset)) {
H5MM_memcpy(chunk_rec.scaled, ent->scaled, sizeof(chunk_rec.scaled));
udata.chunk = ent->chunk;
udata.chunk_in_cache = true;
if (H5D__chunk_copy_cb(&chunk_rec, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTCOPY, FAIL, "unable to copy chunk data in cache");
}
next = ent->next;
} /* end for */
}
/* I/O buffers may have been re-allocated */
buf = udata.buf;
bkg = udata.bkg;
done:
if (sid_buf > 0 && H5I_dec_ref(sid_buf) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTFREE, FAIL, "can't decrement temporary dataspace ID");
if (tid_src > 0 && H5I_dec_ref(tid_src) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTFREE, FAIL, "Can't decrement temporary datatype ID");
if (tid_dst > 0 && H5I_dec_ref(tid_dst) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTFREE, FAIL, "Can't decrement temporary datatype ID");
if (tid_mem > 0 && H5I_dec_ref(tid_mem) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTFREE, FAIL, "Can't decrement temporary datatype ID");
if (buf)
H5MM_xfree(buf);
if (bkg)
H5MM_xfree(bkg);
if (reclaim_buf)
H5MM_xfree(reclaim_buf);
/* Clean up any index information */
if (copy_setup_done)
if (storage_src->ops->copy_shutdown &&
(storage_src->ops->copy_shutdown)(storage_src, storage_dst) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTRELEASE, FAIL, "unable to shut down index copying info");
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_copy() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_bh_info
*
* Purpose: Retrieve the amount of index storage for chunked dataset
*
* Return: Success: Non-negative
* Failure: negative
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_bh_info(const H5O_loc_t *loc, H5O_t *oh, H5O_layout_t *layout, hsize_t *index_size)
{
H5D_chk_idx_info_t idx_info; /* Chunked index info */
H5S_t *space = NULL; /* Dataset's dataspace */
H5O_pline_t pline; /* I/O pipeline message */
H5O_storage_chunk_t *sc = &(layout->storage.u.chunk);
htri_t exists; /* Flag if header message of interest exists */
bool idx_info_init = false; /* Whether the chunk index info has been initialized */
bool pline_read = false; /* Whether the I/O pipeline message was read */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Check args */
assert(loc);
assert(loc->file);
assert(H5_addr_defined(loc->addr));
assert(layout);
H5D_CHUNK_STORAGE_INDEX_CHK(sc);
assert(index_size);
/* Check for I/O pipeline message */
if ((exists = H5O_msg_exists_oh(oh, H5O_PLINE_ID)) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to read object header");
else if (exists) {
if (NULL == H5O_msg_read_oh(loc->file, oh, H5O_PLINE_ID, &pline))
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't find I/O pipeline message");
pline_read = true;
} /* end else if */
else
memset(&pline, 0, sizeof(pline));
/* Compose chunked index info struct */
idx_info.f = loc->file;
idx_info.pline = &pline;
idx_info.layout = &layout->u.chunk;
idx_info.storage = sc;
/* Get the dataspace for the dataset */
if (NULL == (space = H5S_read(loc)))
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to load dataspace info from dataset header");
/* Allocate any indexing structures */
if (sc->ops->init && (sc->ops->init)(&idx_info, space, loc->addr) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "can't initialize indexing information");
idx_info_init = true;
/* Get size of index structure */
if (sc->ops->size && (sc->ops->size)(&idx_info, index_size) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "unable to retrieve chunk index info");
done:
/* Free resources, if they've been initialized */
if (idx_info_init && sc->ops->dest && (sc->ops->dest)(&idx_info) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTFREE, FAIL, "unable to release chunk index info");
if (pline_read && H5O_msg_reset(H5O_PLINE_ID, &pline) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTRESET, FAIL, "unable to reset I/O pipeline message");
if (space && H5S_close(space) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CLOSEERROR, FAIL, "unable to release dataspace");
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_bh_info() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_dump_index_cb
*
* Purpose: If the UDATA.STREAM member is non-null then debugging
* information is written to that stream.
*
* Return: Success: Non-negative
*
* Failure: Negative
*
*-------------------------------------------------------------------------
*/
static int
H5D__chunk_dump_index_cb(const H5D_chunk_rec_t *chunk_rec, void *_udata)
{
H5D_chunk_it_ud4_t *udata = (H5D_chunk_it_ud4_t *)_udata; /* User data from caller */
FUNC_ENTER_PACKAGE_NOERR
if (udata->stream) {
unsigned u; /* Local index variable */
/* Print header if not already displayed */
if (!udata->header_displayed) {
fprintf(udata->stream, " Flags Bytes Address Logical Offset\n");
fprintf(udata->stream, " ========== ======== ========== ==============================\n");
/* Set flag that the headers has been printed */
udata->header_displayed = true;
} /* end if */
/* Print information about this chunk */
fprintf(udata->stream, " 0x%08x %8" PRIu32 " %10" PRIuHADDR " [", chunk_rec->filter_mask,
chunk_rec->nbytes, chunk_rec->chunk_addr);
for (u = 0; u < udata->ndims; u++)
fprintf(udata->stream, "%s%" PRIuHSIZE, (u ? ", " : ""),
(chunk_rec->scaled[u] * udata->chunk_dim[u]));
fputs("]\n", udata->stream);
} /* end if */
FUNC_LEAVE_NOAPI(H5_ITER_CONT)
} /* H5D__chunk_dump_index_cb() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_dump_index
*
* Purpose: Prints information about the storage index to the specified
* stream.
*
* Return: Success: Non-negative
* Failure: negative
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_dump_index(H5D_t *dset, FILE *stream)
{
H5O_storage_chunk_t *sc = &(dset->shared->layout.storage.u.chunk);
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity check */
assert(dset);
H5D_CHUNK_STORAGE_INDEX_CHK(sc);
/* Only display info if stream is defined */
if (stream) {
H5D_chk_idx_info_t idx_info; /* Chunked index info */
H5D_chunk_it_ud4_t udata; /* User data for callback */
/* Display info for index */
if ((sc->ops->dump)(sc, stream) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_UNSUPPORTED, FAIL, "unable to dump chunk index info");
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &dset->shared->layout.u.chunk;
idx_info.storage = sc;
/* Set up user data for callback */
udata.stream = stream;
udata.header_displayed = false;
udata.ndims = dset->shared->layout.u.chunk.ndims;
udata.chunk_dim = dset->shared->layout.u.chunk.dim;
/* Iterate over index and dump chunk info */
if ((sc->ops->iterate)(&idx_info, H5D__chunk_dump_index_cb, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADITER, FAIL,
"unable to iterate over chunk index to dump chunk info");
} /* end if */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_dump_index() */
#ifdef H5D_CHUNK_DEBUG
/*-------------------------------------------------------------------------
* Function: H5D__chunk_stats
*
* Purpose: Print raw data cache statistics to the debug stream. If
* HEADERS is non-zero then print table column headers,
* otherwise assume that the H5AC layer has already printed them.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_stats(const H5D_t *dset, bool headers)
{
H5D_rdcc_t *rdcc = &(dset->shared->cache.chunk);
double miss_rate;
char ascii[32];
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE_NOERR
if (!H5DEBUG(AC))
HGOTO_DONE(SUCCEED);
if (headers) {
fprintf(H5DEBUG(AC), "H5D: raw data cache statistics\n");
fprintf(H5DEBUG(AC), " %-18s %8s %8s %8s %8s+%-8s\n", "Layer", "Hits", "Misses", "MissRate",
"Inits", "Flushes");
fprintf(H5DEBUG(AC), " %-18s %8s %8s %8s %8s-%-8s\n", "-----", "----", "------", "--------",
"-----", "-------");
}
#ifdef H5AC_DEBUG
if (H5DEBUG(AC))
headers = true;
#endif
if (headers) {
if (rdcc->stats.nhits > 0 || rdcc->stats.nmisses > 0) {
miss_rate = 100.0 * rdcc->stats.nmisses / (rdcc->stats.nhits + rdcc->stats.nmisses);
}
else {
miss_rate = 0.0;
}
if (miss_rate > 100) {
snprintf(ascii, sizeof(ascii), "%7d%%", (int)(miss_rate + 0.5));
}
else {
snprintf(ascii, sizeof(ascii), "%7.2f%%", miss_rate);
}
fprintf(H5DEBUG(AC), " %-18s %8u %8u %7s %8d+%-9ld\n", "raw data chunks", rdcc->stats.nhits,
rdcc->stats.nmisses, ascii, rdcc->stats.ninits,
(long)(rdcc->stats.nflushes) - (long)(rdcc->stats.ninits));
}
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_stats() */
#endif /* H5D_CHUNK_DEBUG */
/*-------------------------------------------------------------------------
* Function: H5D__nonexistent_readvv_cb
*
* Purpose: Callback operation for performing fill value I/O operation
* on memory buffer.
*
* Note: This algorithm is pretty inefficient about initializing and
* terminating the fill buffer info structure and it would be
* faster to refactor this into a "real" initialization routine,
* and a "vectorized fill" routine. -QAK
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static herr_t
H5D__nonexistent_readvv_cb(hsize_t H5_ATTR_UNUSED dst_off, hsize_t src_off, size_t len, void *_udata)
{
H5D_chunk_readvv_ud_t *udata = (H5D_chunk_readvv_ud_t *)_udata; /* User data for H5VM_opvv() operator */
H5D_fill_buf_info_t fb_info; /* Dataset's fill buffer info */
bool fb_info_init = false; /* Whether the fill value buffer has been initialized */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Initialize the fill value buffer */
if (H5D__fill_init(&fb_info, (udata->rbuf + src_off), NULL, NULL, NULL, NULL,
&udata->dset->shared->dcpl_cache.fill, udata->dset->shared->type,
udata->dset->shared->type_id, (size_t)0, len) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "can't initialize fill buffer info");
fb_info_init = true;
/* Check for VL datatype & fill the buffer with VL datatype fill values */
if (fb_info.has_vlen_fill_type && H5D__fill_refill_vl(&fb_info, fb_info.elmts_per_buf) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTCONVERT, FAIL, "can't refill fill value buffer");
done:
/* Release the fill buffer info, if it's been initialized */
if (fb_info_init && H5D__fill_term(&fb_info) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTFREE, FAIL, "Can't release fill buffer info");
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__nonexistent_readvv_cb() */
/*-------------------------------------------------------------------------
* Function: H5D__nonexistent_readvv
*
* Purpose: When the chunk doesn't exist on disk and the chunk is bigger
* than the cache size, performs fill value I/O operation on
* memory buffer, advancing through two I/O vectors, until one
* runs out.
*
* Note: This algorithm is pretty inefficient about initializing and
* terminating the fill buffer info structure and it would be
* faster to refactor this into a "real" initialization routine,
* and a "vectorized fill" routine. -QAK
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
static ssize_t
H5D__nonexistent_readvv(const H5D_io_info_t H5_ATTR_NDEBUG_UNUSED *io_info,
const H5D_dset_io_info_t *dset_info, size_t chunk_max_nseq, size_t *chunk_curr_seq,
size_t chunk_len_arr[], hsize_t chunk_off_arr[], size_t mem_max_nseq,
size_t *mem_curr_seq, size_t mem_len_arr[], hsize_t mem_off_arr[])
{
H5D_chunk_readvv_ud_t udata; /* User data for H5VM_opvv() operator */
ssize_t ret_value = -1; /* Return value */
FUNC_ENTER_PACKAGE
/* Check args */
assert(io_info);
assert(chunk_curr_seq);
assert(chunk_len_arr);
assert(chunk_off_arr);
assert(mem_curr_seq);
assert(mem_len_arr);
assert(mem_off_arr);
/* Set up user data for H5VM_opvv() */
udata.rbuf = (unsigned char *)dset_info->buf.vp;
udata.dset = dset_info->dset;
/* Call generic sequence operation routine */
if ((ret_value = H5VM_opvv(chunk_max_nseq, chunk_curr_seq, chunk_len_arr, chunk_off_arr, mem_max_nseq,
mem_curr_seq, mem_len_arr, mem_off_arr, H5D__nonexistent_readvv_cb, &udata)) <
0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTOPERATE, FAIL, "can't perform vectorized fill value init");
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__nonexistent_readvv() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_is_partial_edge_chunk
*
* Purpose: Checks to see if the chunk is a partial edge chunk.
* Either dset or (dset_dims and dset_ndims) must be
* provided.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
bool
H5D__chunk_is_partial_edge_chunk(unsigned dset_ndims, const uint32_t *chunk_dims, const hsize_t scaled[],
const hsize_t *dset_dims)
{
unsigned u; /* Local index variable */
bool ret_value = false; /* Return value */
FUNC_ENTER_PACKAGE_NOERR
/* Check args */
assert(scaled);
assert(dset_ndims > 0);
assert(dset_dims);
assert(chunk_dims);
/* check if this is a partial edge chunk */
for (u = 0; u < dset_ndims; u++)
if (((scaled[u] + 1) * chunk_dims[u]) > dset_dims[u])
HGOTO_DONE(true);
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__chunk_is_partial_edge_chunk() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_file_alloc()
*
* Purpose: Chunk allocation:
* Create the chunk if it doesn't exist, or reallocate the
* chunk if its size changed.
* The coding is moved and modified from each index structure.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_file_alloc(const H5D_chk_idx_info_t *idx_info, const H5F_block_t *old_chunk,
H5F_block_t *new_chunk, bool *need_insert, const hsize_t *scaled)
{
bool alloc_chunk = false; /* Whether to allocate chunk */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Sanity check */
assert(idx_info);
assert(idx_info->f);
assert(idx_info->pline);
assert(idx_info->layout);
assert(idx_info->storage);
assert(new_chunk);
assert(need_insert);
*need_insert = false;
/* Check for filters on chunks */
if (idx_info->pline->nused > 0) {
/* Sanity/error checking block */
assert(idx_info->storage->idx_type != H5D_CHUNK_IDX_NONE);
{
unsigned allow_chunk_size_len; /* Allowed size of encoded chunk size */
unsigned new_chunk_size_len; /* Size of encoded chunk size */
/* Compute the size required for encoding the size of a chunk, allowing
* for an extra byte, in case the filter makes the chunk larger.
*/
allow_chunk_size_len = 1 + ((H5VM_log2_gen((uint64_t)(idx_info->layout->size)) + 8) / 8);
if (allow_chunk_size_len > 8)
allow_chunk_size_len = 8;
/* Compute encoded size of chunk */
new_chunk_size_len = (H5VM_log2_gen((uint64_t)(new_chunk->length)) + 8) / 8;
if (new_chunk_size_len > 8)
HGOTO_ERROR(H5E_DATASET, H5E_BADRANGE, FAIL, "encoded chunk size is more than 8 bytes?!?");
/* Check if the chunk became too large to be encoded */
if (new_chunk_size_len > allow_chunk_size_len)
HGOTO_ERROR(H5E_DATASET, H5E_BADRANGE, FAIL, "chunk size can't be encoded");
} /* end block */
if (old_chunk && H5_addr_defined(old_chunk->offset)) {
/* Sanity check */
assert(!H5_addr_defined(new_chunk->offset) || H5_addr_eq(new_chunk->offset, old_chunk->offset));
/* Check for chunk being same size */
if (new_chunk->length != old_chunk->length) {
/* Release previous chunk */
/* Only free the old location if not doing SWMR writes - otherwise
* we must keep the old chunk around in case a reader has an
* outdated version of the B-tree node
*/
if (!(H5F_INTENT(idx_info->f) & H5F_ACC_SWMR_WRITE))
if (H5MF_xfree(idx_info->f, H5FD_MEM_DRAW, old_chunk->offset, old_chunk->length) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTFREE, FAIL, "unable to free chunk");
alloc_chunk = true;
} /* end if */
else {
/* Don't need to reallocate chunk, but send its address back up */
if (!H5_addr_defined(new_chunk->offset))
new_chunk->offset = old_chunk->offset;
} /* end else */
} /* end if */
else {
assert(!H5_addr_defined(new_chunk->offset));
alloc_chunk = true;
} /* end else */
} /* end if */
else {
assert(!H5_addr_defined(new_chunk->offset));
assert(new_chunk->length == idx_info->layout->size);
alloc_chunk = true;
} /* end else */
/* Actually allocate space for the chunk in the file */
if (alloc_chunk) {
switch (idx_info->storage->idx_type) {
case H5D_CHUNK_IDX_NONE: {
H5D_chunk_ud_t udata;
udata.common.scaled = scaled;
if ((idx_info->storage->ops->get_addr)(idx_info, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't query chunk address");
new_chunk->offset = udata.chunk_block.offset;
assert(new_chunk->length == udata.chunk_block.length);
break;
}
case H5D_CHUNK_IDX_EARRAY:
case H5D_CHUNK_IDX_FARRAY:
case H5D_CHUNK_IDX_BT2:
case H5D_CHUNK_IDX_BTREE:
case H5D_CHUNK_IDX_SINGLE:
assert(new_chunk->length > 0);
H5_CHECK_OVERFLOW(new_chunk->length, /*From: */ uint32_t, /*To: */ hsize_t);
new_chunk->offset = H5MF_alloc(idx_info->f, H5FD_MEM_DRAW, (hsize_t)new_chunk->length);
if (!H5_addr_defined(new_chunk->offset))
HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "file allocation failed");
*need_insert = true;
break;
case H5D_CHUNK_IDX_NTYPES:
default:
assert(0 && "This should never be executed!");
break;
} /* end switch */
} /* end if */
assert(H5_addr_defined(new_chunk->offset));
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__chunk_file_alloc() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_format_convert_cb
*
* Purpose: Callback routine to insert chunk address into v1 B-tree
* chunk index.
*
* Return: Success: Non-negative
* Failure: Negative
*
*-------------------------------------------------------------------------
*/
static int
H5D__chunk_format_convert_cb(const H5D_chunk_rec_t *chunk_rec, void *_udata)
{
H5D_chunk_it_ud5_t *udata = (H5D_chunk_it_ud5_t *)_udata; /* User data */
H5D_chk_idx_info_t *new_idx_info; /* The new chunk index information */
H5D_chunk_ud_t insert_udata; /* Chunk information to be inserted */
haddr_t chunk_addr; /* Chunk address */
size_t nbytes; /* Chunk size */
void *buf = NULL; /* Pointer to buffer of chunk data */
int ret_value = H5_ITER_CONT; /* Return value */
FUNC_ENTER_PACKAGE
/* Set up */
new_idx_info = udata->new_idx_info;
H5_CHECKED_ASSIGN(nbytes, size_t, chunk_rec->nbytes, uint32_t);
chunk_addr = chunk_rec->chunk_addr;
if (new_idx_info->pline->nused &&
(new_idx_info->layout->flags & H5O_LAYOUT_CHUNK_DONT_FILTER_PARTIAL_BOUND_CHUNKS) &&
(H5D__chunk_is_partial_edge_chunk(udata->dset_ndims, new_idx_info->layout->dim, chunk_rec->scaled,
udata->dset_dims))) {
/* This is a partial non-filtered edge chunk */
/* Convert the chunk to a filtered edge chunk for v1 B-tree chunk index */
unsigned filter_mask = chunk_rec->filter_mask;
H5Z_cb_t filter_cb; /* Filter failure callback struct */
size_t read_size = nbytes; /* Bytes to read */
assert(read_size == new_idx_info->layout->size);
/* Initialize the filter callback struct */
filter_cb.op_data = NULL;
filter_cb.func = NULL; /* no callback function when failed */
/* Allocate buffer for chunk data */
if (NULL == (buf = H5MM_malloc(read_size)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, H5_ITER_ERROR,
"memory allocation failed for raw data chunk");
/* Read the non-filtered edge chunk */
if (H5F_block_read(new_idx_info->f, H5FD_MEM_DRAW, chunk_addr, read_size, buf) < 0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, H5_ITER_ERROR, "unable to read raw data chunk");
/* Pass the chunk through the pipeline */
if (H5Z_pipeline(new_idx_info->pline, 0, &filter_mask, H5Z_NO_EDC, filter_cb, &nbytes, &read_size,
&buf) < 0)
HGOTO_ERROR(H5E_PLINE, H5E_CANTFILTER, H5_ITER_ERROR, "output pipeline failed");
#if H5_SIZEOF_SIZE_T > 4
/* Check for the chunk expanding too much to encode in a 32-bit value */
if (nbytes > ((size_t)0xffffffff))
HGOTO_ERROR(H5E_DATASET, H5E_BADRANGE, H5_ITER_ERROR, "chunk too large for 32-bit length");
#endif /* H5_SIZEOF_SIZE_T > 4 */
/* Allocate space for the filtered chunk */
if ((chunk_addr = H5MF_alloc(new_idx_info->f, H5FD_MEM_DRAW, (hsize_t)nbytes)) == HADDR_UNDEF)
HGOTO_ERROR(H5E_DATASET, H5E_NOSPACE, H5_ITER_ERROR, "file allocation failed for filtered chunk");
assert(H5_addr_defined(chunk_addr));
/* Write the filtered chunk to disk */
if (H5F_block_write(new_idx_info->f, H5FD_MEM_DRAW, chunk_addr, nbytes, buf) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_WRITEERROR, H5_ITER_ERROR, "unable to write raw data to file");
} /* end if */
/* Set up chunk information for insertion to chunk index */
insert_udata.chunk_block.offset = chunk_addr;
insert_udata.chunk_block.length = nbytes;
insert_udata.filter_mask = chunk_rec->filter_mask;
insert_udata.common.scaled = chunk_rec->scaled;
insert_udata.common.layout = new_idx_info->layout;
insert_udata.common.storage = new_idx_info->storage;
/* Insert chunk into the v1 B-tree chunk index */
if ((new_idx_info->storage->ops->insert)(new_idx_info, &insert_udata, NULL) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINSERT, H5_ITER_ERROR, "unable to insert chunk addr into index");
done:
if (buf)
H5MM_xfree(buf);
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__chunk_format_convert_cb() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_format_convert
*
* Purpose: Iterate over the chunks for the current chunk index and insert the
* the chunk addresses into v1 B-tree chunk index via callback.
*
* Return: Non-negative on success/Negative on failure
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_format_convert(H5D_t *dset, H5D_chk_idx_info_t *idx_info, H5D_chk_idx_info_t *new_idx_info)
{
H5D_chunk_it_ud5_t udata; /* User data */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Check args */
assert(dset);
/* Set up user data */
udata.new_idx_info = new_idx_info;
udata.dset_ndims = dset->shared->ndims;
udata.dset_dims = dset->shared->curr_dims;
/* Iterate over the chunks in the current index and insert the chunk addresses into version 1 B-tree index
*/
if ((idx_info->storage->ops->iterate)(idx_info, H5D__chunk_format_convert_cb, &udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_BADITER, FAIL, "unable to iterate over chunk index to chunk info");
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_format_convert() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_index_empty_cb
*
* Purpose: Callback function that simply stops iteration and sets the
* `empty` parameter to false if called. If this callback is
* entered, it means that the chunk index contains at least
* one chunk, so is not empty.
*
* Return: H5_ITER_STOP
*
*-------------------------------------------------------------------------
*/
static int
H5D__chunk_index_empty_cb(const H5D_chunk_rec_t H5_ATTR_UNUSED *chunk_rec, void *_udata)
{
bool *empty = (bool *)_udata;
int ret_value = H5_ITER_STOP;
FUNC_ENTER_PACKAGE_NOERR
*empty = false;
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_index_empty_cb() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_index_empty
*
* Purpose: Determines whether a chunk index is empty (has no chunks
* inserted into it yet).
*
* Note: This routine is meant to be a little more performant than
* just counting the number of chunks in the index. In the
* future, this is probably a callback that the chunk index
* ops structure should provide.
*
* Return: Non-negative on Success/Negative on failure
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_index_empty(const H5D_t *dset, bool *empty)
{
H5D_chk_idx_info_t idx_info; /* Chunked index info */
H5D_rdcc_ent_t *ent; /* Cache entry */
const H5D_rdcc_t *rdcc = NULL; /* Raw data chunk cache */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE_TAG(dset->oloc.addr)
assert(dset);
assert(dset->shared);
assert(empty);
rdcc = &(dset->shared->cache.chunk); /* raw data chunk cache */
assert(rdcc);
/* Search for cached chunks that haven't been written out */
for (ent = rdcc->head; ent; ent = ent->next)
/* Flush the chunk out to disk, to make certain the size is correct later */
if (H5D__chunk_flush_entry(dset, ent, false) < 0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "cannot flush indexed storage buffer");
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &dset->shared->layout.u.chunk;
idx_info.storage = &dset->shared->layout.storage.u.chunk;
*empty = true;
if (H5_addr_defined(idx_info.storage->idx_addr)) {
/* Iterate over the allocated chunks */
if ((dset->shared->layout.storage.u.chunk.ops->iterate)(&idx_info, H5D__chunk_index_empty_cb, empty) <
0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL,
"unable to retrieve allocated chunk information from index");
}
done:
FUNC_LEAVE_NOAPI_TAG(ret_value)
} /* end H5D__chunk_index_empty() */
/*-------------------------------------------------------------------------
* Function: H5D__get_num_chunks_cb
*
* Purpose: Callback function that increments the number of written
* chunks in the dataset.
*
* Note: Currently, this function only gets the number of all written
* chunks, regardless the dataspace.
*
* Return: H5_ITER_CONT
*
*-------------------------------------------------------------------------
*/
static int
H5D__get_num_chunks_cb(const H5D_chunk_rec_t H5_ATTR_UNUSED *chunk_rec, void *_udata)
{
hsize_t *num_chunks = (hsize_t *)_udata;
int ret_value = H5_ITER_CONT; /* Callback return value */
FUNC_ENTER_PACKAGE_NOERR
assert(num_chunks);
(*num_chunks)++;
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__get_num_chunks_cb() */
/*-------------------------------------------------------------------------
* Function: H5D__get_num_chunks
*
* Purpose: Gets the number of written chunks in a dataset.
*
* Note: Currently, this function only gets the number of all written
* chunks, regardless the dataspace.
*
* Return: Success: Non-negative
* Failure: Negative
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__get_num_chunks(const H5D_t *dset, const H5S_t H5_ATTR_UNUSED *space, hsize_t *nchunks)
{
H5D_chk_idx_info_t idx_info; /* Chunked index info */
hsize_t num_chunks = 0; /* Number of written chunks */
H5D_rdcc_ent_t *ent; /* Cache entry */
const H5D_rdcc_t *rdcc = NULL; /* Raw data chunk cache */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE_TAG(dset->oloc.addr)
assert(dset);
assert(dset->shared);
assert(space);
assert(nchunks);
rdcc = &(dset->shared->cache.chunk); /* raw data chunk cache */
assert(rdcc);
/* Search for cached chunks that haven't been written out */
for (ent = rdcc->head; ent; ent = ent->next)
/* Flush the chunk out to disk, to make certain the size is correct later */
if (H5D__chunk_flush_entry(dset, ent, false) < 0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "cannot flush indexed storage buffer");
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &dset->shared->layout.u.chunk;
idx_info.storage = &dset->shared->layout.storage.u.chunk;
/* If the dataset is not written, number of chunks will be 0 */
if (!H5_addr_defined(idx_info.storage->idx_addr))
*nchunks = 0;
else {
/* Iterate over the allocated chunks */
if ((dset->shared->layout.storage.u.chunk.ops->iterate)(&idx_info, H5D__get_num_chunks_cb,
&num_chunks) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL,
"unable to retrieve allocated chunk information from index");
*nchunks = num_chunks;
}
done:
FUNC_LEAVE_NOAPI_TAG(ret_value)
} /* end H5D__get_num_chunks() */
/*-------------------------------------------------------------------------
* Function: H5D__get_chunk_info_cb
*
* Purpose: Get the chunk info of the queried chunk, given by its index.
*
* Return: Success: H5_ITER_CONT or H5_ITER_STOP
* H5_ITER_STOP indicates the queried chunk is found
* Failure: Negative (H5_ITER_ERROR)
*
*-------------------------------------------------------------------------
*/
static int
H5D__get_chunk_info_cb(const H5D_chunk_rec_t *chunk_rec, void *_udata)
{
H5D_chunk_info_iter_ud_t *chunk_info = (H5D_chunk_info_iter_ud_t *)_udata;
int ret_value = H5_ITER_CONT; /* Callback return value */
FUNC_ENTER_PACKAGE_NOERR
/* Check args */
assert(chunk_rec);
assert(chunk_info);
/* If this is the queried chunk, retrieve its info and stop iterating */
if (chunk_info->curr_idx == chunk_info->chunk_idx) {
hsize_t ii = 0; /* Dimension index */
/* Copy info */
chunk_info->filter_mask = chunk_rec->filter_mask;
chunk_info->chunk_addr = chunk_rec->chunk_addr;
chunk_info->nbytes = chunk_rec->nbytes;
for (ii = 0; ii < chunk_info->ndims; ii++)
chunk_info->scaled[ii] = chunk_rec->scaled[ii];
chunk_info->found = true;
/* Stop iterating */
ret_value = H5_ITER_STOP;
}
/* Go to the next chunk */
else
chunk_info->curr_idx++;
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__get_chunk_info_cb() */
/*-------------------------------------------------------------------------
* Function: H5D__get_chunk_info
*
* Purpose: Iterate over the chunks in the dataset to get the info
* of the desired chunk.
*
* Note: Currently, the domain of the index in this function is of all
* the written chunks, regardless the dataspace.
*
* Return: Success: SUCCEED
* Failure: FAIL
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__get_chunk_info(const H5D_t *dset, const H5S_t H5_ATTR_UNUSED *space, hsize_t chk_index, hsize_t *offset,
unsigned *filter_mask, haddr_t *addr, hsize_t *size)
{
H5D_chk_idx_info_t idx_info; /* Chunked index info */
H5D_chunk_info_iter_ud_t udata; /* User data for callback */
const H5D_rdcc_t *rdcc = NULL; /* Raw data chunk cache */
H5D_rdcc_ent_t *ent; /* Cache entry index */
hsize_t ii = 0; /* Dimension index */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE_TAG(dset->oloc.addr)
assert(dset);
assert(dset->shared);
assert(space);
/* Get the raw data chunk cache */
rdcc = &(dset->shared->cache.chunk);
assert(rdcc);
/* Search for cached chunks that haven't been written out */
for (ent = rdcc->head; ent; ent = ent->next)
/* Flush the chunk out to disk, to make certain the size is correct later */
if (H5D__chunk_flush_entry(dset, ent, false) < 0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "cannot flush indexed storage buffer");
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &dset->shared->layout.u.chunk;
idx_info.storage = &dset->shared->layout.storage.u.chunk;
/* Set addr & size for when dset is not written or queried chunk is not found */
if (addr)
*addr = HADDR_UNDEF;
if (size)
*size = 0;
/* If the chunk is written, get its info, otherwise, return without error */
if (H5_addr_defined(idx_info.storage->idx_addr)) {
/* Initialize before iteration */
udata.chunk_idx = chk_index;
udata.curr_idx = 0;
udata.ndims = dset->shared->ndims;
udata.nbytes = 0;
udata.filter_mask = 0;
udata.chunk_addr = HADDR_UNDEF;
udata.found = false;
/* Iterate over the allocated chunks */
if ((dset->shared->layout.storage.u.chunk.ops->iterate)(&idx_info, H5D__get_chunk_info_cb, &udata) <
0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL,
"unable to retrieve allocated chunk information from index");
/* Obtain requested info if the chunk is found */
if (udata.found) {
if (filter_mask)
*filter_mask = udata.filter_mask;
if (addr)
*addr = udata.chunk_addr;
if (size)
*size = udata.nbytes;
if (offset)
for (ii = 0; ii < udata.ndims; ii++)
offset[ii] = udata.scaled[ii] * dset->shared->layout.u.chunk.dim[ii];
} /* end if */
} /* end if H5_addr_defined */
done:
FUNC_LEAVE_NOAPI_TAG(ret_value)
} /* end H5D__get_chunk_info() */
/*-------------------------------------------------------------------------
* Function: H5D__get_chunk_info_by_coord_cb
*
* Purpose: Get the chunk info of the desired chunk, given its offset
* coordinates.
*
* Return: Success: H5_ITER_CONT or H5_ITER_STOP
* Failure: Negative (H5_ITER_ERROR)
*
*-------------------------------------------------------------------------
*/
static int
H5D__get_chunk_info_by_coord_cb(const H5D_chunk_rec_t *chunk_rec, void *_udata)
{
H5D_chunk_info_iter_ud_t *chunk_info = (H5D_chunk_info_iter_ud_t *)_udata;
bool different = false; /* true when a scaled value pair mismatch */
hsize_t ii; /* Local index value */
int ret_value = H5_ITER_CONT; /* Callback return value */
FUNC_ENTER_PACKAGE_NOERR
/* Check args */
assert(chunk_rec);
assert(chunk_info);
/* Going through the scaled, stop when a mismatch is found */
for (ii = 0; ii < chunk_info->ndims && !different; ii++)
if (chunk_info->scaled[ii] != chunk_rec->scaled[ii])
different = true;
/* Same scaled coords means the chunk is found, copy the chunk info */
if (!different) {
chunk_info->nbytes = chunk_rec->nbytes;
chunk_info->filter_mask = chunk_rec->filter_mask;
chunk_info->chunk_addr = chunk_rec->chunk_addr;
chunk_info->found = true;
/* Stop iterating */
ret_value = H5_ITER_STOP;
}
FUNC_LEAVE_NOAPI(ret_value)
} /* H5D__get_chunk_info_by_coord_cb() */
/*-------------------------------------------------------------------------
* Function: H5D__get_chunk_info_by_coord
*
* Purpose: Iterate over the chunks in the dataset to get the info
* of the desired chunk, given by its offset coordinates.
*
* Return: Success: Non-negative
* Failure: Negative
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__get_chunk_info_by_coord(const H5D_t *dset, const hsize_t *offset, unsigned *filter_mask, haddr_t *addr,
hsize_t *size)
{
const H5O_layout_t *layout = NULL; /* Dataset layout */
const H5D_rdcc_t *rdcc = NULL; /* Raw data chunk cache */
H5D_rdcc_ent_t *ent; /* Cache entry index */
H5D_chk_idx_info_t idx_info; /* Chunked index info */
H5D_chunk_info_iter_ud_t udata; /* User data for callback */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE_TAG(dset->oloc.addr)
/* Check args */
assert(dset);
assert(dset->shared);
assert(offset);
/* Get dataset layout and raw data chunk cache */
layout = &(dset->shared->layout);
rdcc = &(dset->shared->cache.chunk);
assert(layout);
assert(rdcc);
assert(H5D_CHUNKED == layout->type);
/* Search for cached chunks that haven't been written out */
for (ent = rdcc->head; ent; ent = ent->next)
/* Flush the chunk out to disk, to make certain the size is correct later */
if (H5D__chunk_flush_entry(dset, ent, false) < 0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "cannot flush indexed storage buffer");
/* Set addr & size for when dset is not written or queried chunk is not found */
if (addr)
*addr = HADDR_UNDEF;
if (size)
*size = 0;
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &dset->shared->layout.u.chunk;
idx_info.storage = &dset->shared->layout.storage.u.chunk;
/* If the dataset is not written, return without errors */
if (H5_addr_defined(idx_info.storage->idx_addr)) {
/* Calculate the scaled of this chunk */
H5VM_chunk_scaled(dset->shared->ndims, offset, layout->u.chunk.dim, udata.scaled);
udata.scaled[dset->shared->ndims] = 0;
/* Initialize before iteration */
udata.ndims = dset->shared->ndims;
udata.nbytes = 0;
udata.filter_mask = 0;
udata.chunk_addr = HADDR_UNDEF;
udata.found = false;
/* Iterate over the allocated chunks to find the requested chunk */
if ((dset->shared->layout.storage.u.chunk.ops->iterate)(&idx_info, H5D__get_chunk_info_by_coord_cb,
&udata) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL,
"unable to retrieve information of the chunk by its scaled coordinates");
/* Obtain requested info if the chunk is found */
if (udata.found) {
if (filter_mask)
*filter_mask = udata.filter_mask;
if (addr)
*addr = udata.chunk_addr;
if (size)
*size = udata.nbytes;
} /* end if */
} /* end if H5_addr_defined */
done:
FUNC_LEAVE_NOAPI_TAG(ret_value)
} /* end H5D__get_chunk_info_by_coord() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_iter_cb
*
* Purpose: Call the user-defined function with the chunk data. The iterator continues if
* the user-defined function returns H5_ITER_CONT, and stops if H5_ITER_STOP is
* returned.
*
* Return: Success: H5_ITER_CONT or H5_ITER_STOP
* Failure: Negative (H5_ITER_ERROR)
*
*-------------------------------------------------------------------------
*/
static int
H5D__chunk_iter_cb(const H5D_chunk_rec_t *chunk_rec, void *udata)
{
const H5D_chunk_iter_ud_t *data = (H5D_chunk_iter_ud_t *)udata;
const H5O_layout_chunk_t *chunk = data->chunk;
int ret_value = H5_ITER_CONT;
hsize_t offset[H5O_LAYOUT_NDIMS];
unsigned ii; /* Match H5O_layout_chunk_t.ndims */
/* Similar to H5D__get_chunk_info */
for (ii = 0; ii < chunk->ndims; ii++)
offset[ii] = chunk_rec->scaled[ii] * chunk->dim[ii];
FUNC_ENTER_PACKAGE_NOERR
/* Check for callback failure and pass along return value */
if ((ret_value = (data->op)(offset, (unsigned)chunk_rec->filter_mask, chunk_rec->chunk_addr,
(hsize_t)chunk_rec->nbytes, data->op_data)) < 0)
HERROR(H5E_DATASET, H5E_CANTNEXT, "iteration operator failed");
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_iter_cb */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_iter
*
* Purpose: Iterate over all the chunks in the dataset with given callback.
*
* Return: Success: Non-negative
* Failure: Negative
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_iter(H5D_t *dset, H5D_chunk_iter_op_t op, void *op_data)
{
const H5D_rdcc_t *rdcc = NULL; /* Raw data chunk cache */
H5O_layout_t *layout = NULL; /* Dataset layout */
H5D_rdcc_ent_t *ent; /* Cache entry index */
H5D_chk_idx_info_t idx_info; /* Chunked index info */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE_TAG(dset->oloc.addr)
/* Check args */
assert(dset);
assert(dset->shared);
/* Get dataset layout and raw data chunk cache */
layout = &(dset->shared->layout);
rdcc = &(dset->shared->cache.chunk);
assert(layout);
assert(rdcc);
assert(H5D_CHUNKED == layout->type);
/* Search for cached chunks that haven't been written out */
for (ent = rdcc->head; ent; ent = ent->next)
/* Flush the chunk out to disk, to make certain the size is correct later */
if (H5D__chunk_flush_entry(dset, ent, false) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTFLUSH, FAIL, "cannot flush indexed storage buffer");
/* Compose chunked index info struct */
idx_info.f = dset->oloc.file;
idx_info.pline = &dset->shared->dcpl_cache.pline;
idx_info.layout = &layout->u.chunk;
idx_info.storage = &layout->storage.u.chunk;
/* If the dataset is not written, return without errors */
if (H5_addr_defined(idx_info.storage->idx_addr)) {
H5D_chunk_iter_ud_t ud;
/* Set up info for iteration callback */
ud.op = op;
ud.op_data = op_data;
ud.chunk = &dset->shared->layout.u.chunk;
/* Iterate over the allocated chunks calling the iterator callback */
if ((ret_value = (layout->storage.u.chunk.ops->iterate)(&idx_info, H5D__chunk_iter_cb, &ud)) < 0)
HERROR(H5E_DATASET, H5E_CANTNEXT, "chunk iteration failed");
} /* end if H5_addr_defined */
done:
FUNC_LEAVE_NOAPI_TAG(ret_value)
} /* end H5D__chunk_iter() */
/*-------------------------------------------------------------------------
* Function: H5D__chunk_get_offset_copy
*
* Purpose: Copies an offset buffer and performs bounds checks on the
* values.
*
* This helper function ensures that the offset buffer given
* by the user is suitable for use with the rest of the library.
*
* Return: SUCCEED/FAIL
*
*-------------------------------------------------------------------------
*/
herr_t
H5D__chunk_get_offset_copy(const H5D_t *dset, const hsize_t *offset, hsize_t *offset_copy)
{
unsigned u;
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(FAIL)
assert(dset);
assert(offset);
assert(offset_copy);
/* The library's chunking code requires the offset to terminate with a zero.
* So transfer the offset array to an internal offset array that we
* can properly terminate (handled via the memset call).
*/
memset(offset_copy, 0, H5O_LAYOUT_NDIMS * sizeof(hsize_t));
for (u = 0; u < dset->shared->ndims; u++) {
/* Make sure the offset doesn't exceed the dataset's dimensions */
if (offset[u] > dset->shared->curr_dims[u])
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "offset exceeds dimensions of dataset");
/* Make sure the offset fall right on a chunk's boundary */
if (offset[u] % dset->shared->layout.u.chunk.dim[u])
HGOTO_ERROR(H5E_DATASET, H5E_BADVALUE, FAIL, "offset doesn't fall on chunks's boundary");
offset_copy[u] = offset[u];
}
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5D__chunk_get_offset_copy() */