hdf5/testpar/t_shapesame.c
Quincey Koziol 97e1ed4fc8
Refactor allocation of API context (#4942)
Since each API context is local to a thread, use the stack to
store the context instead of allocating & releasing it each time.
This improves performance (slightly), reduces alloc/free calls,
and eliminates the H5FL package from the push & pop operations,
which helps simplify threadsafe operation.

One effect of this change is that the H5VLstart_lib_state /
H5VLfinish_lib_state API routines for pass through connector
authors now require a parameter that can be used to store
the library's context. It was probably a mistake to assume
that these two routines would not do this previously, so this
is essentially a bug fix for them.

Some other minor things:

 * Added API context push+pop operations to cache tests
  (I'm not actually certain why this was working before) and
  a few other places
* Cleaned up a bunch of warnings in test code (calloc args, mainly)
* Made header file inclusions more standard in some source files
2024-10-24 10:09:22 -07:00

4449 lines
173 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the LICENSE file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
This program will test independent and collective reads and writes between
selections of different rank that non-the-less are deemed as having the
same shape by H5Sselect_shape_same().
*/
#define H5S_FRIEND /*suppress error about including H5Spkg */
/* Define this macro to indicate that the testing APIs should be available */
#define H5S_TESTING
#include "testpar.h"
#include "H5Spkg.h" /* Dataspaces */
/* Include testing framework functionality */
#include "testframe.h"
#ifndef PATH_MAX
#define PATH_MAX 512
#endif
#define ROW_FACTOR 8 /* Nominal row factor for dataset size */
#define COL_FACTOR 16 /* Nominal column factor for dataset size */
/* FILENAME and filenames must have the same number of names.
* Use PARATESTFILE in general and use a separated filename only if the file
* created in one test is accessed by a different test.
* filenames[0] is reserved as the file name for PARATESTFILE.
*/
#define NFILENAME 2
#define PARATESTFILE filenames[0]
const char *FILENAME[NFILENAME] = {"ShapeSameTest", NULL};
char *filenames[NFILENAME];
hid_t fapl; /* file access property list */
/* global variables */
int dim0;
int dim1;
int chunkdim0;
int chunkdim1;
int nerrors = 0; /* errors count */
int ndatasets = 300; /* number of datasets to create*/
int ngroups = 512; /* number of groups to create in root
* group. */
int facc_type = FACC_MPIO; /*Test file access type */
int dxfer_coll_type = DXFER_COLLECTIVE_IO;
H5E_auto2_t old_func; /* previous error handler */
void *old_client_data; /* previous error handler arg.*/
/* On Lustre (and perhaps other parallel file systems?), we have severe
* slow downs if two or more processes attempt to access the same file system
* block. To minimize this problem, we set alignment in the shape same tests
* to the default Lustre block size -- which greatly reduces contention in
* the chunked dataset case.
*/
#define SHAPE_SAME_TEST_ALIGNMENT ((hsize_t)(4 * 1024 * 1024))
#define PAR_SS_DR_MAX_RANK 5 /* must update code if this changes */
struct hs_dr_pio_test_vars_t {
int mpi_size;
int mpi_rank;
MPI_Comm mpi_comm;
MPI_Info mpi_info;
int test_num;
int edge_size;
int checker_edge_size;
int chunk_edge_size;
int small_rank;
int large_rank;
hid_t dset_type;
uint32_t *small_ds_buf_0;
uint32_t *small_ds_buf_1;
uint32_t *small_ds_buf_2;
uint32_t *small_ds_slice_buf;
uint32_t *large_ds_buf_0;
uint32_t *large_ds_buf_1;
uint32_t *large_ds_buf_2;
uint32_t *large_ds_slice_buf;
int small_ds_offset;
int large_ds_offset;
hid_t fid; /* HDF5 file ID */
hid_t xfer_plist;
hid_t full_mem_small_ds_sid;
hid_t full_file_small_ds_sid;
hid_t mem_small_ds_sid;
hid_t file_small_ds_sid_0;
hid_t file_small_ds_sid_1;
hid_t small_ds_slice_sid;
hid_t full_mem_large_ds_sid;
hid_t full_file_large_ds_sid;
hid_t mem_large_ds_sid;
hid_t file_large_ds_sid_0;
hid_t file_large_ds_sid_1;
hid_t file_large_ds_process_slice_sid;
hid_t mem_large_ds_process_slice_sid;
hid_t large_ds_slice_sid;
hid_t small_dataset; /* Dataset ID */
hid_t large_dataset; /* Dataset ID */
size_t small_ds_size;
size_t small_ds_slice_size;
size_t large_ds_size;
size_t large_ds_slice_size;
hsize_t dims[PAR_SS_DR_MAX_RANK];
hsize_t chunk_dims[PAR_SS_DR_MAX_RANK];
hsize_t start[PAR_SS_DR_MAX_RANK];
hsize_t stride[PAR_SS_DR_MAX_RANK];
hsize_t count[PAR_SS_DR_MAX_RANK];
hsize_t block[PAR_SS_DR_MAX_RANK];
hsize_t *start_ptr;
hsize_t *stride_ptr;
hsize_t *count_ptr;
hsize_t *block_ptr;
int skips;
int max_skips;
int64_t total_tests;
int64_t tests_run;
int64_t tests_skipped;
};
/* Structure for passing test parameters around */
typedef struct test_params_t {
char *filename;
} test_params_t;
/*-------------------------------------------------------------------------
* Function: hs_dr_pio_test__setup()
*
* Purpose: Do setup for tests of I/O to/from hyperslab selections of
* different rank in the parallel case.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
#define CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG 0
static void
hs_dr_pio_test__setup(const void *params, const int test_num, const int edge_size,
const int checker_edge_size, const int chunk_edge_size, const int small_rank,
const int large_rank, const bool use_collective_io, const hid_t dset_type,
const int express_test, struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG
const char *fcnName = "hs_dr_pio_test__setup()";
#endif /* CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG */
const char *filename;
bool mis_match = false;
int i;
int mrc;
int mpi_rank; /* needed by the VRFY macro */
uint32_t expected_value;
uint32_t *ptr_0;
uint32_t *ptr_1;
hid_t acc_tpl; /* File access templates */
hid_t small_ds_dcpl_id = H5P_DEFAULT;
hid_t large_ds_dcpl_id = H5P_DEFAULT;
herr_t ret; /* Generic return value */
assert(edge_size >= 6);
assert(edge_size >= chunk_edge_size);
assert((chunk_edge_size == 0) || (chunk_edge_size >= 3));
assert(1 < small_rank);
assert(small_rank < large_rank);
assert(large_rank <= PAR_SS_DR_MAX_RANK);
tv_ptr->test_num = test_num;
tv_ptr->edge_size = edge_size;
tv_ptr->checker_edge_size = checker_edge_size;
tv_ptr->chunk_edge_size = chunk_edge_size;
tv_ptr->small_rank = small_rank;
tv_ptr->large_rank = large_rank;
tv_ptr->dset_type = dset_type;
MPI_Comm_size(MPI_COMM_WORLD, &(tv_ptr->mpi_size));
MPI_Comm_rank(MPI_COMM_WORLD, &(tv_ptr->mpi_rank));
/* the VRFY() macro needs the local variable mpi_rank -- set it up now */
mpi_rank = tv_ptr->mpi_rank;
assert(tv_ptr->mpi_size >= 1);
tv_ptr->mpi_comm = MPI_COMM_WORLD;
tv_ptr->mpi_info = MPI_INFO_NULL;
for (i = 0; i < tv_ptr->small_rank - 1; i++) {
tv_ptr->small_ds_size *= (size_t)(tv_ptr->edge_size);
tv_ptr->small_ds_slice_size *= (size_t)(tv_ptr->edge_size);
}
tv_ptr->small_ds_size *= (size_t)(tv_ptr->mpi_size + 1);
/* used by checker board tests only */
tv_ptr->small_ds_offset = PAR_SS_DR_MAX_RANK - tv_ptr->small_rank;
assert(0 < tv_ptr->small_ds_offset);
assert(tv_ptr->small_ds_offset < PAR_SS_DR_MAX_RANK);
for (i = 0; i < tv_ptr->large_rank - 1; i++) {
tv_ptr->large_ds_size *= (size_t)(tv_ptr->edge_size);
tv_ptr->large_ds_slice_size *= (size_t)(tv_ptr->edge_size);
}
tv_ptr->large_ds_size *= (size_t)(tv_ptr->mpi_size + 1);
/* used by checker board tests only */
tv_ptr->large_ds_offset = PAR_SS_DR_MAX_RANK - tv_ptr->large_rank;
assert(0 <= tv_ptr->large_ds_offset);
assert(tv_ptr->large_ds_offset < PAR_SS_DR_MAX_RANK);
/* set up the start, stride, count, and block pointers */
/* used by contiguous tests only */
tv_ptr->start_ptr = &(tv_ptr->start[PAR_SS_DR_MAX_RANK - tv_ptr->large_rank]);
tv_ptr->stride_ptr = &(tv_ptr->stride[PAR_SS_DR_MAX_RANK - tv_ptr->large_rank]);
tv_ptr->count_ptr = &(tv_ptr->count[PAR_SS_DR_MAX_RANK - tv_ptr->large_rank]);
tv_ptr->block_ptr = &(tv_ptr->block[PAR_SS_DR_MAX_RANK - tv_ptr->large_rank]);
/* Allocate buffers */
tv_ptr->small_ds_buf_0 = (uint32_t *)malloc(sizeof(uint32_t) * tv_ptr->small_ds_size);
VRFY((tv_ptr->small_ds_buf_0 != NULL), "malloc of small_ds_buf_0 succeeded");
tv_ptr->small_ds_buf_1 = (uint32_t *)malloc(sizeof(uint32_t) * tv_ptr->small_ds_size);
VRFY((tv_ptr->small_ds_buf_1 != NULL), "malloc of small_ds_buf_1 succeeded");
tv_ptr->small_ds_buf_2 = (uint32_t *)malloc(sizeof(uint32_t) * tv_ptr->small_ds_size);
VRFY((tv_ptr->small_ds_buf_2 != NULL), "malloc of small_ds_buf_2 succeeded");
tv_ptr->small_ds_slice_buf = (uint32_t *)malloc(sizeof(uint32_t) * tv_ptr->small_ds_slice_size);
VRFY((tv_ptr->small_ds_slice_buf != NULL), "malloc of small_ds_slice_buf succeeded");
tv_ptr->large_ds_buf_0 = (uint32_t *)malloc(sizeof(uint32_t) * tv_ptr->large_ds_size);
VRFY((tv_ptr->large_ds_buf_0 != NULL), "malloc of large_ds_buf_0 succeeded");
tv_ptr->large_ds_buf_1 = (uint32_t *)malloc(sizeof(uint32_t) * tv_ptr->large_ds_size);
VRFY((tv_ptr->large_ds_buf_1 != NULL), "malloc of large_ds_buf_1 succeeded");
tv_ptr->large_ds_buf_2 = (uint32_t *)malloc(sizeof(uint32_t) * tv_ptr->large_ds_size);
VRFY((tv_ptr->large_ds_buf_2 != NULL), "malloc of large_ds_buf_2 succeeded");
tv_ptr->large_ds_slice_buf = (uint32_t *)malloc(sizeof(uint32_t) * tv_ptr->large_ds_slice_size);
VRFY((tv_ptr->large_ds_slice_buf != NULL), "malloc of large_ds_slice_buf succeeded");
/* initialize the buffers */
ptr_0 = tv_ptr->small_ds_buf_0;
for (i = 0; i < (int)(tv_ptr->small_ds_size); i++)
*ptr_0++ = (uint32_t)i;
memset(tv_ptr->small_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->small_ds_size);
memset(tv_ptr->small_ds_buf_2, 0, sizeof(uint32_t) * tv_ptr->small_ds_size);
memset(tv_ptr->small_ds_slice_buf, 0, sizeof(uint32_t) * tv_ptr->small_ds_slice_size);
ptr_0 = tv_ptr->large_ds_buf_0;
for (i = 0; i < (int)(tv_ptr->large_ds_size); i++)
*ptr_0++ = (uint32_t)i;
memset(tv_ptr->large_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->large_ds_size);
memset(tv_ptr->large_ds_buf_2, 0, sizeof(uint32_t) * tv_ptr->large_ds_size);
memset(tv_ptr->large_ds_slice_buf, 0, sizeof(uint32_t) * tv_ptr->large_ds_slice_size);
filename = ((const test_params_t *)params)->filename;
assert(filename != NULL);
#if CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG
if (MAINPROCESS) {
fprintf(stdout, "%d: test num = %d.\n", tv_ptr->mpi_rank, tv_ptr->test_num);
fprintf(stdout, "%d: mpi_size = %d.\n", tv_ptr->mpi_rank, tv_ptr->mpi_size);
fprintf(stdout, "%d: small/large rank = %d/%d, use_collective_io = %d.\n", tv_ptr->mpi_rank,
tv_ptr->small_rank, tv_ptr->large_rank, (int)use_collective_io);
fprintf(stdout, "%d: edge_size = %d, chunk_edge_size = %d.\n", tv_ptr->mpi_rank, tv_ptr->edge_size,
tv_ptr->chunk_edge_size);
fprintf(stdout, "%d: checker_edge_size = %d.\n", tv_ptr->mpi_rank, tv_ptr->checker_edge_size);
fprintf(stdout, "%d: small_ds_size = %d, large_ds_size = %d.\n", tv_ptr->mpi_rank,
(int)(tv_ptr->small_ds_size), (int)(tv_ptr->large_ds_size));
fprintf(stdout, "%d: filename = %s.\n", tv_ptr->mpi_rank, filename);
}
#endif /* CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG */
/* ----------------------------------------
* CREATE AN HDF5 FILE WITH PARALLEL ACCESS
* ---------------------------------------*/
/* setup file access template */
acc_tpl = create_faccess_plist(tv_ptr->mpi_comm, tv_ptr->mpi_info, facc_type);
VRFY((acc_tpl >= 0), "create_faccess_plist() succeeded");
/* set the alignment -- need it large so that we aren't always hitting the
* the same file system block. Do this only if express_test is greater
* than zero.
*/
if (express_test > 0) {
ret = H5Pset_alignment(acc_tpl, (hsize_t)0, SHAPE_SAME_TEST_ALIGNMENT);
VRFY((ret != FAIL), "H5Pset_alignment() succeeded");
}
/* create the file collectively */
tv_ptr->fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
VRFY((tv_ptr->fid >= 0), "H5Fcreate succeeded");
MESG("File opened.");
/* Release file-access template */
ret = H5Pclose(acc_tpl);
VRFY((ret >= 0), "H5Pclose(acc_tpl) succeeded");
/* setup dims: */
tv_ptr->dims[0] = (hsize_t)(tv_ptr->mpi_size + 1);
tv_ptr->dims[1] = tv_ptr->dims[2] = tv_ptr->dims[3] = tv_ptr->dims[4] = (hsize_t)(tv_ptr->edge_size);
/* Create small ds dataspaces */
tv_ptr->full_mem_small_ds_sid = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL);
VRFY((tv_ptr->full_mem_small_ds_sid != 0), "H5Screate_simple() full_mem_small_ds_sid succeeded");
tv_ptr->full_file_small_ds_sid = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL);
VRFY((tv_ptr->full_file_small_ds_sid != 0), "H5Screate_simple() full_file_small_ds_sid succeeded");
tv_ptr->mem_small_ds_sid = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL);
VRFY((tv_ptr->mem_small_ds_sid != 0), "H5Screate_simple() mem_small_ds_sid succeeded");
tv_ptr->file_small_ds_sid_0 = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL);
VRFY((tv_ptr->file_small_ds_sid_0 != 0), "H5Screate_simple() file_small_ds_sid_0 succeeded");
/* used by checker board tests only */
tv_ptr->file_small_ds_sid_1 = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL);
VRFY((tv_ptr->file_small_ds_sid_1 != 0), "H5Screate_simple() file_small_ds_sid_1 succeeded");
tv_ptr->small_ds_slice_sid = H5Screate_simple(tv_ptr->small_rank - 1, &(tv_ptr->dims[1]), NULL);
VRFY((tv_ptr->small_ds_slice_sid != 0), "H5Screate_simple() small_ds_slice_sid succeeded");
/* Create large ds dataspaces */
tv_ptr->full_mem_large_ds_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL);
VRFY((tv_ptr->full_mem_large_ds_sid != 0), "H5Screate_simple() full_mem_large_ds_sid succeeded");
tv_ptr->full_file_large_ds_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL);
VRFY((tv_ptr->full_file_large_ds_sid != FAIL), "H5Screate_simple() full_file_large_ds_sid succeeded");
tv_ptr->mem_large_ds_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL);
VRFY((tv_ptr->mem_large_ds_sid != FAIL), "H5Screate_simple() mem_large_ds_sid succeeded");
tv_ptr->file_large_ds_sid_0 = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL);
VRFY((tv_ptr->file_large_ds_sid_0 != FAIL), "H5Screate_simple() file_large_ds_sid_0 succeeded");
/* used by checker board tests only */
tv_ptr->file_large_ds_sid_1 = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL);
VRFY((tv_ptr->file_large_ds_sid_1 != FAIL), "H5Screate_simple() file_large_ds_sid_1 succeeded");
tv_ptr->mem_large_ds_process_slice_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL);
VRFY((tv_ptr->mem_large_ds_process_slice_sid != FAIL),
"H5Screate_simple() mem_large_ds_process_slice_sid succeeded");
tv_ptr->file_large_ds_process_slice_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL);
VRFY((tv_ptr->file_large_ds_process_slice_sid != FAIL),
"H5Screate_simple() file_large_ds_process_slice_sid succeeded");
tv_ptr->large_ds_slice_sid = H5Screate_simple(tv_ptr->large_rank - 1, &(tv_ptr->dims[1]), NULL);
VRFY((tv_ptr->large_ds_slice_sid != 0), "H5Screate_simple() large_ds_slice_sid succeeded");
/* if chunk edge size is greater than zero, set up the small and
* large data set creation property lists to specify chunked
* datasets.
*/
if (tv_ptr->chunk_edge_size > 0) {
/* Under Lustre (and perhaps other parallel file systems?) we get
* locking delays when two or more processes attempt to access the
* same file system block.
*
* To minimize this problem, I have changed chunk_dims[0]
* from (mpi_size + 1) to just when any sort of express test is
* selected. Given the structure of the test, and assuming we
* set the alignment large enough, this avoids the contention
* issue by seeing to it that each chunk is only accessed by one
* process.
*
* One can argue as to whether this is a good thing to do in our
* tests, but for now it is necessary if we want the test to complete
* in a reasonable amount of time.
*
* JRM -- 9/16/10
*/
tv_ptr->chunk_dims[0] = 1;
tv_ptr->chunk_dims[1] = tv_ptr->chunk_dims[2] = tv_ptr->chunk_dims[3] = tv_ptr->chunk_dims[4] =
(hsize_t)(tv_ptr->chunk_edge_size);
small_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
VRFY((ret != FAIL), "H5Pcreate() small_ds_dcpl_id succeeded");
ret = H5Pset_layout(small_ds_dcpl_id, H5D_CHUNKED);
VRFY((ret != FAIL), "H5Pset_layout() small_ds_dcpl_id succeeded");
ret = H5Pset_chunk(small_ds_dcpl_id, tv_ptr->small_rank, tv_ptr->chunk_dims);
VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded");
large_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
VRFY((ret != FAIL), "H5Pcreate() large_ds_dcpl_id succeeded");
ret = H5Pset_layout(large_ds_dcpl_id, H5D_CHUNKED);
VRFY((ret != FAIL), "H5Pset_layout() large_ds_dcpl_id succeeded");
ret = H5Pset_chunk(large_ds_dcpl_id, tv_ptr->large_rank, tv_ptr->chunk_dims);
VRFY((ret != FAIL), "H5Pset_chunk() large_ds_dcpl_id succeeded");
}
/* create the small dataset */
tv_ptr->small_dataset =
H5Dcreate2(tv_ptr->fid, "small_dataset", tv_ptr->dset_type, tv_ptr->file_small_ds_sid_0, H5P_DEFAULT,
small_ds_dcpl_id, H5P_DEFAULT);
VRFY((ret != FAIL), "H5Dcreate2() small_dataset succeeded");
/* create the large dataset */
tv_ptr->large_dataset =
H5Dcreate2(tv_ptr->fid, "large_dataset", tv_ptr->dset_type, tv_ptr->file_large_ds_sid_0, H5P_DEFAULT,
large_ds_dcpl_id, H5P_DEFAULT);
VRFY((ret != FAIL), "H5Dcreate2() large_dataset succeeded");
/* setup xfer property list */
tv_ptr->xfer_plist = H5Pcreate(H5P_DATASET_XFER);
VRFY((tv_ptr->xfer_plist >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded");
if (use_collective_io) {
ret = H5Pset_dxpl_mpio(tv_ptr->xfer_plist, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
}
/* setup selection to write initial data to the small and large data sets */
tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank);
tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1));
tv_ptr->count[0] = 1;
tv_ptr->block[0] = 1;
for (i = 1; i < tv_ptr->large_rank; i++) {
tv_ptr->start[i] = 0;
tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
tv_ptr->count[i] = 1;
tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
}
/* setup selections for writing initial data to the small data set */
ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) succeeded");
ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) succeeded");
if (MAINPROCESS) { /* add an additional slice to the selections */
tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_size);
ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_OR, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, or) succeeded");
ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_OR, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, or) succeeded");
}
/* write the initial value of the small data set to file */
ret = H5Dwrite(tv_ptr->small_dataset, tv_ptr->dset_type, tv_ptr->mem_small_ds_sid,
tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_0);
VRFY((ret >= 0), "H5Dwrite() small_dataset initial write succeeded");
/* sync with the other processes before checking data */
mrc = MPI_Barrier(MPI_COMM_WORLD);
VRFY((mrc == MPI_SUCCESS), "Sync after small dataset writes");
/* read the small data set back to verify that it contains the
* expected data. Note that each process reads in the entire
* data set and verifies it.
*/
ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->full_mem_small_ds_sid,
tv_ptr->full_file_small_ds_sid, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_1);
VRFY((ret >= 0), "H5Dread() small_dataset initial read succeeded");
/* verify that the correct data was written to the small data set */
expected_value = 0;
mis_match = false;
ptr_1 = tv_ptr->small_ds_buf_1;
i = 0;
for (i = 0; i < (int)(tv_ptr->small_ds_size); i++) {
if (*ptr_1 != expected_value) {
mis_match = true;
}
ptr_1++;
expected_value++;
}
VRFY((mis_match == false), "small ds init data good.");
/* setup selections for writing initial data to the large data set */
tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank);
ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, set) succeeded");
ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, set) succeeded");
/* In passing, setup the process slice dataspaces as well */
ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_process_slice_sid, H5S_SELECT_SET, tv_ptr->start,
tv_ptr->stride, tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_process_slice_sid, set) succeeded");
ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_process_slice_sid, H5S_SELECT_SET, tv_ptr->start,
tv_ptr->stride, tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_process_slice_sid, set) succeeded");
if (MAINPROCESS) { /* add an additional slice to the selections */
tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_size);
ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_OR, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, or) succeeded");
ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_OR, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, or) succeeded");
}
/* write the initial value of the large data set to file */
ret = H5Dwrite(tv_ptr->large_dataset, tv_ptr->dset_type, tv_ptr->mem_large_ds_sid,
tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_0);
if (ret < 0)
H5Eprint2(H5E_DEFAULT, stderr);
VRFY((ret >= 0), "H5Dwrite() large_dataset initial write succeeded");
/* sync with the other processes before checking data */
mrc = MPI_Barrier(MPI_COMM_WORLD);
VRFY((mrc == MPI_SUCCESS), "Sync after large dataset writes");
/* read the large data set back to verify that it contains the
* expected data. Note that each process reads in the entire
* data set.
*/
ret = H5Dread(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->full_mem_large_ds_sid,
tv_ptr->full_file_large_ds_sid, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1);
VRFY((ret >= 0), "H5Dread() large_dataset initial read succeeded");
/* verify that the correct data was written to the large data set */
expected_value = 0;
mis_match = false;
ptr_1 = tv_ptr->large_ds_buf_1;
i = 0;
for (i = 0; i < (int)(tv_ptr->large_ds_size); i++) {
if (*ptr_1 != expected_value) {
mis_match = true;
}
ptr_1++;
expected_value++;
}
VRFY((mis_match == false), "large ds init data good.");
/* sync with the other processes before changing data */
mrc = MPI_Barrier(MPI_COMM_WORLD);
VRFY((mrc == MPI_SUCCESS), "Sync initial values check");
return;
} /* hs_dr_pio_test__setup() */
/*-------------------------------------------------------------------------
* Function: hs_dr_pio_test__takedown()
*
* Purpose: Do takedown after tests of I/O to/from hyperslab selections
* of different rank in the parallel case.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
#define HS_DR_PIO_TEST__TAKEDOWN__DEBUG 0
static void
hs_dr_pio_test__takedown(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if HS_DR_PIO_TEST__TAKEDOWN__DEBUG
const char *fcnName = "hs_dr_pio_test__takedown()";
#endif /* HS_DR_PIO_TEST__TAKEDOWN__DEBUG */
int mpi_rank; /* needed by the VRFY macro */
herr_t ret; /* Generic return value */
/* initialize the local copy of mpi_rank */
mpi_rank = tv_ptr->mpi_rank;
/* Close property lists */
if (tv_ptr->xfer_plist != H5P_DEFAULT) {
ret = H5Pclose(tv_ptr->xfer_plist);
VRFY((ret != FAIL), "H5Pclose(xfer_plist) succeeded");
}
/* Close dataspaces */
ret = H5Sclose(tv_ptr->full_mem_small_ds_sid);
VRFY((ret != FAIL), "H5Sclose(full_mem_small_ds_sid) succeeded");
ret = H5Sclose(tv_ptr->full_file_small_ds_sid);
VRFY((ret != FAIL), "H5Sclose(full_file_small_ds_sid) succeeded");
ret = H5Sclose(tv_ptr->mem_small_ds_sid);
VRFY((ret != FAIL), "H5Sclose(mem_small_ds_sid) succeeded");
ret = H5Sclose(tv_ptr->file_small_ds_sid_0);
VRFY((ret != FAIL), "H5Sclose(file_small_ds_sid_0) succeeded");
ret = H5Sclose(tv_ptr->file_small_ds_sid_1);
VRFY((ret != FAIL), "H5Sclose(file_small_ds_sid_1) succeeded");
ret = H5Sclose(tv_ptr->small_ds_slice_sid);
VRFY((ret != FAIL), "H5Sclose(small_ds_slice_sid) succeeded");
ret = H5Sclose(tv_ptr->full_mem_large_ds_sid);
VRFY((ret != FAIL), "H5Sclose(full_mem_large_ds_sid) succeeded");
ret = H5Sclose(tv_ptr->full_file_large_ds_sid);
VRFY((ret != FAIL), "H5Sclose(full_file_large_ds_sid) succeeded");
ret = H5Sclose(tv_ptr->mem_large_ds_sid);
VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded");
ret = H5Sclose(tv_ptr->file_large_ds_sid_0);
VRFY((ret != FAIL), "H5Sclose(file_large_ds_sid_0) succeeded");
ret = H5Sclose(tv_ptr->file_large_ds_sid_1);
VRFY((ret != FAIL), "H5Sclose(file_large_ds_sid_1) succeeded");
ret = H5Sclose(tv_ptr->mem_large_ds_process_slice_sid);
VRFY((ret != FAIL), "H5Sclose(mem_large_ds_process_slice_sid) succeeded");
ret = H5Sclose(tv_ptr->file_large_ds_process_slice_sid);
VRFY((ret != FAIL), "H5Sclose(file_large_ds_process_slice_sid) succeeded");
ret = H5Sclose(tv_ptr->large_ds_slice_sid);
VRFY((ret != FAIL), "H5Sclose(large_ds_slice_sid) succeeded");
/* Close Datasets */
ret = H5Dclose(tv_ptr->small_dataset);
VRFY((ret != FAIL), "H5Dclose(small_dataset) succeeded");
ret = H5Dclose(tv_ptr->large_dataset);
VRFY((ret != FAIL), "H5Dclose(large_dataset) succeeded");
/* close the file collectively */
MESG("about to close file.");
ret = H5Fclose(tv_ptr->fid);
VRFY((ret != FAIL), "file close succeeded");
/* Free memory buffers */
if (tv_ptr->small_ds_buf_0 != NULL)
free(tv_ptr->small_ds_buf_0);
if (tv_ptr->small_ds_buf_1 != NULL)
free(tv_ptr->small_ds_buf_1);
if (tv_ptr->small_ds_buf_2 != NULL)
free(tv_ptr->small_ds_buf_2);
if (tv_ptr->small_ds_slice_buf != NULL)
free(tv_ptr->small_ds_slice_buf);
if (tv_ptr->large_ds_buf_0 != NULL)
free(tv_ptr->large_ds_buf_0);
if (tv_ptr->large_ds_buf_1 != NULL)
free(tv_ptr->large_ds_buf_1);
if (tv_ptr->large_ds_buf_2 != NULL)
free(tv_ptr->large_ds_buf_2);
if (tv_ptr->large_ds_slice_buf != NULL)
free(tv_ptr->large_ds_slice_buf);
return;
} /* hs_dr_pio_test__takedown() */
/*-------------------------------------------------------------------------
* Function: contig_hs_dr_pio_test__d2m_l2s()
*
* Purpose: Part one of a series of tests of I/O to/from hyperslab
* selections of different rank in the parallel.
*
* Verify that we can read from disk correctly using
* selections of different rank that H5Sselect_shape_same()
* views as being of the same shape.
*
* In this function, we test this by reading small_rank - 1
* slices from the on disk large cube, and verifying that the
* data read is correct. Verify that H5Sselect_shape_same()
* returns true on the memory and file selections.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
#define CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG 0
static void
contig_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG
const char *fcnName = "contig_hs_dr_pio_test__run_test()";
#endif /* CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG */
bool mis_match = false;
int i, j, k, l;
size_t n;
int mpi_rank; /* needed by the VRFY macro */
uint32_t expected_value;
uint32_t *ptr_1;
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
/* initialize the local copy of mpi_rank */
mpi_rank = tv_ptr->mpi_rank;
/* We have already done a H5Sselect_all() on the dataspace
* small_ds_slice_sid in the initialization phase, so no need to
* call H5Sselect_all() again.
*/
/* set up start, stride, count, and block -- note that we will
* change start[] so as to read slices of the large cube.
*/
for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {
tv_ptr->start[i] = 0;
tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
tv_ptr->count[i] = 1;
if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {
tv_ptr->block[i] = 1;
}
else {
tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
}
}
/* zero out the buffer we will be reading into */
memset(tv_ptr->small_ds_slice_buf, 0, sizeof(uint32_t) * tv_ptr->small_ds_slice_size);
#if CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG
fprintf(stdout, "%s reading slices from big cube on disk into small cube slice.\n", fcnName);
#endif /* CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG */
/* in serial versions of this test, we loop through all the dimensions
* of the large data set. However, in the parallel version, each
* process only works with that slice of the large cube indicated
* by its rank -- hence we set the most slowly changing index to
* mpi_rank, and don't iterate over it.
*/
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {
i = tv_ptr->mpi_rank;
}
else {
i = 0;
}
/* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
* loop over it -- either we are setting i to mpi_rank, or
* we are setting it to zero. It will not change during the
* test.
*/
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {
j = tv_ptr->mpi_rank;
}
else {
j = 0;
}
do {
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {
k = tv_ptr->mpi_rank;
}
else {
k = 0;
}
do {
/* since small rank >= 2 and large_rank > small_rank, we
* have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
* (baring major re-orgaization), this gives us:
*
* (PAR_SS_DR_MAX_RANK - large_rank) <= 2
*
* so no need to repeat the test in the outer loops --
* just set l = 0.
*/
l = 0;
do {
if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */
(tv_ptr->tests_skipped)++;
}
else { /* run the test */
tv_ptr->skips = 0; /* reset the skips counter */
/* we know that small_rank - 1 >= 1 and that
* large_rank > small_rank by the assertions at the head
* of this function. Thus no need for another inner loop.
*/
tv_ptr->start[0] = (hsize_t)i;
tv_ptr->start[1] = (hsize_t)j;
tv_ptr->start[2] = (hsize_t)k;
tv_ptr->start[3] = (hsize_t)l;
tv_ptr->start[4] = 0;
ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_SET, tv_ptr->start_ptr,
tv_ptr->stride_ptr, tv_ptr->count_ptr, tv_ptr->block_ptr);
VRFY((ret != FAIL), "H5Sselect_hyperslab(file_large_cube_sid) succeeded");
/* verify that H5Sselect_shape_same() reports the two
* selections as having the same shape.
*/
check = H5Sselect_shape_same(tv_ptr->small_ds_slice_sid, tv_ptr->file_large_ds_sid_0);
VRFY((check == true), "H5Sselect_shape_same passed");
/* Read selection from disk */
#if CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG
fprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, (int)(tv_ptr->mpi_rank),
(int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), (int)(tv_ptr->start[2]),
(int)(tv_ptr->start[3]), (int)(tv_ptr->start[4]));
fprintf(stdout, "%s slice/file extent dims = %d/%d.\n", fcnName,
H5Sget_simple_extent_ndims(tv_ptr->small_ds_slice_sid),
H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_0));
#endif /* CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG */
ret =
H5Dread(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->small_ds_slice_sid,
tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_slice_buf);
VRFY((ret >= 0), "H5Dread() slice from large ds succeeded.");
/* verify that expected data is retrieved */
mis_match = false;
ptr_1 = tv_ptr->small_ds_slice_buf;
expected_value =
(uint32_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
tv_ptr->edge_size) +
(j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
(k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));
for (n = 0; n < tv_ptr->small_ds_slice_size; n++) {
if (*ptr_1 != expected_value) {
mis_match = true;
}
*ptr_1 = 0; /* zero data for next use */
ptr_1++;
expected_value++;
}
VRFY((mis_match == false), "small slice read from large ds data good.");
(tv_ptr->tests_run)++;
}
l++;
(tv_ptr->total_tests)++;
} while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
k++;
} while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
j++;
} while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));
return;
} /* contig_hs_dr_pio_test__d2m_l2s() */
/*-------------------------------------------------------------------------
* Function: contig_hs_dr_pio_test__d2m_s2l()
*
* Purpose: Part two of a series of tests of I/O to/from hyperslab
* selections of different rank in the parallel.
*
* Verify that we can read from disk correctly using
* selections of different rank that H5Sselect_shape_same()
* views as being of the same shape.
*
* In this function, we test this by reading slices of the
* on disk small data set into slices through the in memory
* large data set, and verify that the correct data (and
* only the correct data) is read.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
#define CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG 0
static void
contig_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG
const char *fcnName = "contig_hs_dr_pio_test__d2m_s2l()";
#endif /* CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG */
bool mis_match = false;
int i, j, k, l;
size_t n;
int mpi_rank; /* needed by the VRFY macro */
size_t start_index;
size_t stop_index;
uint32_t expected_value;
uint32_t *ptr_1;
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
/* initialize the local copy of mpi_rank */
mpi_rank = tv_ptr->mpi_rank;
/* Read slices of the on disk small data set into slices
* through the in memory large data set, and verify that the correct
* data (and only the correct data) is read.
*/
tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank);
tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1));
tv_ptr->count[0] = 1;
tv_ptr->block[0] = 1;
for (i = 1; i < tv_ptr->large_rank; i++) {
tv_ptr->start[i] = 0;
tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
tv_ptr->count[i] = 1;
tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
}
ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) succeeded");
#if CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG
fprintf(stdout, "%s reading slices of on disk small data set into slices of big data set.\n", fcnName);
#endif /* CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG */
/* zero out the in memory large ds */
memset(tv_ptr->large_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->large_ds_size);
/* set up start, stride, count, and block -- note that we will
* change start[] so as to read slices of the large cube.
*/
for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {
tv_ptr->start[i] = 0;
tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
tv_ptr->count[i] = 1;
if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {
tv_ptr->block[i] = 1;
}
else {
tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
}
}
/* in serial versions of this test, we loop through all the dimensions
* of the large data set that don't appear in the small data set.
*
* However, in the parallel version, each process only works with that
* slice of the large (and small) data set indicated by its rank -- hence
* we set the most slowly changing index to mpi_rank, and don't iterate
* over it.
*/
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {
i = tv_ptr->mpi_rank;
}
else {
i = 0;
}
/* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
* loop over it -- either we are setting i to mpi_rank, or
* we are setting it to zero. It will not change during the
* test.
*/
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {
j = tv_ptr->mpi_rank;
}
else {
j = 0;
}
do {
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {
k = tv_ptr->mpi_rank;
}
else {
k = 0;
}
do {
/* since small rank >= 2 and large_rank > small_rank, we
* have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
* (baring major re-orgaization), this gives us:
*
* (PAR_SS_DR_MAX_RANK - large_rank) <= 2
*
* so no need to repeat the test in the outer loops --
* just set l = 0.
*/
l = 0;
do {
if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */
(tv_ptr->tests_skipped)++;
}
else { /* run the test */
tv_ptr->skips = 0; /* reset the skips counter */
/* we know that small_rank >= 1 and that large_rank > small_rank
* by the assertions at the head of this function. Thus no
* need for another inner loop.
*/
tv_ptr->start[0] = (hsize_t)i;
tv_ptr->start[1] = (hsize_t)j;
tv_ptr->start[2] = (hsize_t)k;
tv_ptr->start[3] = (hsize_t)l;
tv_ptr->start[4] = 0;
ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_SET, tv_ptr->start_ptr,
tv_ptr->stride_ptr, tv_ptr->count_ptr, tv_ptr->block_ptr);
VRFY((ret != FAIL), "H5Sselect_hyperslab(mem_large_ds_sid) succeeded");
/* verify that H5Sselect_shape_same() reports the two
* selections as having the same shape.
*/
check = H5Sselect_shape_same(tv_ptr->file_small_ds_sid_0, tv_ptr->mem_large_ds_sid);
VRFY((check == true), "H5Sselect_shape_same passed");
/* Read selection from disk */
#if CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG
fprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, (int)(tv_ptr->mpi_rank),
(int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), (int)(tv_ptr->start[2]),
(int)(tv_ptr->start[3]), (int)(tv_ptr->start[4]));
fprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
H5Sget_simple_extent_ndims(tv_ptr->mem_large_ds_sid),
H5Sget_simple_extent_ndims(tv_ptr->file_small_ds_sid_0));
#endif /* CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG */
ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid,
tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1);
VRFY((ret >= 0), "H5Dread() slice from small ds succeeded.");
/* verify that the expected data and only the
* expected data was read.
*/
ptr_1 = tv_ptr->large_ds_buf_1;
expected_value = (uint32_t)((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size);
start_index =
(size_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
tv_ptr->edge_size) +
(j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
(k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));
stop_index = start_index + tv_ptr->small_ds_slice_size - 1;
assert(start_index < stop_index);
assert(stop_index <= tv_ptr->large_ds_size);
for (n = 0; n < tv_ptr->large_ds_size; n++) {
if ((n >= start_index) && (n <= stop_index)) {
if (*ptr_1 != expected_value) {
mis_match = true;
}
expected_value++;
}
else {
if (*ptr_1 != 0) {
mis_match = true;
}
}
/* zero out the value for the next pass */
*ptr_1 = 0;
ptr_1++;
}
VRFY((mis_match == false), "small slice read from large ds data good.");
(tv_ptr->tests_run)++;
}
l++;
(tv_ptr->total_tests)++;
} while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
k++;
} while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
j++;
} while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));
return;
} /* contig_hs_dr_pio_test__d2m_s2l() */
/*-------------------------------------------------------------------------
* Function: contig_hs_dr_pio_test__m2d_l2s()
*
* Purpose: Part three of a series of tests of I/O to/from hyperslab
* selections of different rank in the parallel.
*
* Verify that we can write from memory to file using
* selections of different rank that H5Sselect_shape_same()
* views as being of the same shape.
*
* Do this by writing small_rank - 1 dimensional slices from
* the in memory large data set to the on disk small cube
* dataset. After each write, read the slice of the small
* dataset back from disk, and verify that it contains
* the expected data. Verify that H5Sselect_shape_same()
* returns true on the memory and file selections.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
#define CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG 0
static void
contig_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG
const char *fcnName = "contig_hs_dr_pio_test__m2d_l2s()";
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG */
bool mis_match = false;
int i, j, k, l;
size_t n;
int mpi_rank; /* needed by the VRFY macro */
size_t start_index;
size_t stop_index;
uint32_t expected_value;
uint32_t *ptr_1;
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
/* initialize the local copy of mpi_rank */
mpi_rank = tv_ptr->mpi_rank;
/* now we go in the opposite direction, verifying that we can write
* from memory to file using selections of different rank that
* H5Sselect_shape_same() views as being of the same shape.
*
* Start by writing small_rank - 1 dimensional slices from the in memory large
* data set to the on disk small cube dataset. After each write, read the
* slice of the small dataset back from disk, and verify that it contains
* the expected data. Verify that H5Sselect_shape_same() returns true on
* the memory and file selections.
*/
tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank);
tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1));
tv_ptr->count[0] = 1;
tv_ptr->block[0] = 1;
for (i = 1; i < tv_ptr->large_rank; i++) {
tv_ptr->start[i] = 0;
tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
tv_ptr->count[i] = 1;
tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
}
ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) succeeded");
ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) succeeded");
/* set up start, stride, count, and block -- note that we will
* change start[] so as to read slices of the large cube.
*/
for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {
tv_ptr->start[i] = 0;
tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
tv_ptr->count[i] = 1;
if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {
tv_ptr->block[i] = 1;
}
else {
tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
}
}
/* zero out the in memory small ds */
memset(tv_ptr->small_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->small_ds_size);
#if CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG
fprintf(stdout, "%s writing slices from big ds to slices of small ds on disk.\n", fcnName);
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG */
/* in serial versions of this test, we loop through all the dimensions
* of the large data set that don't appear in the small data set.
*
* However, in the parallel version, each process only works with that
* slice of the large (and small) data set indicated by its rank -- hence
* we set the most slowly changing index to mpi_rank, and don't iterate
* over it.
*/
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {
i = tv_ptr->mpi_rank;
}
else {
i = 0;
}
/* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
* loop over it -- either we are setting i to mpi_rank, or
* we are setting it to zero. It will not change during the
* test.
*/
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {
j = tv_ptr->mpi_rank;
}
else {
j = 0;
}
j = 0;
do {
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {
k = tv_ptr->mpi_rank;
}
else {
k = 0;
}
do {
/* since small rank >= 2 and large_rank > small_rank, we
* have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
* (baring major re-orgaization), this gives us:
*
* (PAR_SS_DR_MAX_RANK - large_rank) <= 2
*
* so no need to repeat the test in the outer loops --
* just set l = 0.
*/
l = 0;
do {
if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */
(tv_ptr->tests_skipped)++;
}
else { /* run the test */
tv_ptr->skips = 0; /* reset the skips counter */
/* we know that small_rank >= 1 and that large_rank > small_rank
* by the assertions at the head of this function. Thus no
* need for another inner loop.
*/
/* zero out this rank's slice of the on disk small data set */
ret = H5Dwrite(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid,
tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_2);
VRFY((ret >= 0), "H5Dwrite() zero slice to small ds succeeded.");
/* select the portion of the in memory large cube from which we
* are going to write data.
*/
tv_ptr->start[0] = (hsize_t)i;
tv_ptr->start[1] = (hsize_t)j;
tv_ptr->start[2] = (hsize_t)k;
tv_ptr->start[3] = (hsize_t)l;
tv_ptr->start[4] = 0;
ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_SET, tv_ptr->start_ptr,
tv_ptr->stride_ptr, tv_ptr->count_ptr, tv_ptr->block_ptr);
VRFY((ret >= 0), "H5Sselect_hyperslab() mem_large_ds_sid succeeded.");
/* verify that H5Sselect_shape_same() reports the in
* memory slice through the cube selection and the
* on disk full square selections as having the same shape.
*/
check = H5Sselect_shape_same(tv_ptr->file_small_ds_sid_0, tv_ptr->mem_large_ds_sid);
VRFY((check == true), "H5Sselect_shape_same passed.");
/* write the slice from the in memory large data set to the
* slice of the on disk small dataset. */
#if CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG
fprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, (int)(tv_ptr->mpi_rank),
(int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), (int)(tv_ptr->start[2]),
(int)(tv_ptr->start[3]), (int)(tv_ptr->start[4]));
fprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
H5Sget_simple_extent_ndims(tv_ptr->mem_large_ds_sid),
H5Sget_simple_extent_ndims(tv_ptr->file_small_ds_sid_0));
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG */
ret = H5Dwrite(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid,
tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_0);
VRFY((ret >= 0), "H5Dwrite() slice to large ds succeeded.");
/* read the on disk square into memory */
ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid,
tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_1);
VRFY((ret >= 0), "H5Dread() slice from small ds succeeded.");
/* verify that expected data is retrieved */
mis_match = false;
ptr_1 = tv_ptr->small_ds_buf_1;
expected_value =
(uint32_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
tv_ptr->edge_size) +
(j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
(k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));
start_index = (size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size;
stop_index = start_index + tv_ptr->small_ds_slice_size - 1;
assert(start_index < stop_index);
assert(stop_index <= tv_ptr->small_ds_size);
for (n = 0; n < tv_ptr->small_ds_size; n++) {
if ((n >= start_index) && (n <= stop_index)) {
if (*ptr_1 != expected_value) {
mis_match = true;
}
expected_value++;
}
else {
if (*ptr_1 != 0) {
mis_match = true;
}
}
/* zero out the value for the next pass */
*ptr_1 = 0;
ptr_1++;
}
VRFY((mis_match == false), "small slice write from large ds data good.");
(tv_ptr->tests_run)++;
}
l++;
(tv_ptr->total_tests)++;
} while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
k++;
} while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
j++;
} while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));
return;
} /* contig_hs_dr_pio_test__m2d_l2s() */
/*-------------------------------------------------------------------------
* Function: contig_hs_dr_pio_test__m2d_s2l()
*
* Purpose: Part four of a series of tests of I/O to/from hyperslab
* selections of different rank in the parallel.
*
* Verify that we can write from memory to file using
* selections of different rank that H5Sselect_shape_same()
* views as being of the same shape.
*
* Do this by writing the contents of the process's slice of
* the in memory small data set to slices of the on disk
* large data set. After each write, read the process's
* slice of the large data set back into memory, and verify
* that it contains the expected data.
*
* Verify that H5Sselect_shape_same() returns true on the
* memory and file selections.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
#define CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG 0
static void
contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG
const char *fcnName = "contig_hs_dr_pio_test__m2d_s2l()";
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */
bool mis_match = false;
int i, j, k, l;
size_t n;
int mpi_rank; /* needed by the VRFY macro */
size_t start_index;
size_t stop_index;
uint32_t expected_value;
uint32_t *ptr_1;
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
/* initialize the local copy of mpi_rank */
mpi_rank = tv_ptr->mpi_rank;
/* Now write the contents of the process's slice of the in memory
* small data set to slices of the on disk large data set. After
* each write, read the process's slice of the large data set back
* into memory, and verify that it contains the expected data.
* Verify that H5Sselect_shape_same() returns true on the memory
* and file selections.
*/
/* select the slice of the in memory small data set associated with
* the process's mpi rank.
*/
tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank);
tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1));
tv_ptr->count[0] = 1;
tv_ptr->block[0] = 1;
for (i = 1; i < tv_ptr->large_rank; i++) {
tv_ptr->start[i] = 0;
tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
tv_ptr->count[i] = 1;
tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
}
ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) succeeded");
/* set up start, stride, count, and block -- note that we will
* change start[] so as to write slices of the small data set to
* slices of the large data set.
*/
for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {
tv_ptr->start[i] = 0;
tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
tv_ptr->count[i] = 1;
if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {
tv_ptr->block[i] = 1;
}
else {
tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
}
}
/* zero out the in memory large ds */
memset(tv_ptr->large_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->large_ds_size);
#if CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG
fprintf(stdout, "%s writing process slices of small ds to slices of large ds on disk.\n", fcnName);
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {
i = tv_ptr->mpi_rank;
}
else {
i = 0;
}
/* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
* loop over it -- either we are setting i to mpi_rank, or
* we are setting it to zero. It will not change during the
* test.
*/
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {
j = tv_ptr->mpi_rank;
}
else {
j = 0;
}
do {
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {
k = tv_ptr->mpi_rank;
}
else {
k = 0;
}
do {
/* since small rank >= 2 and large_rank > small_rank, we
* have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
* (baring major re-orgaization), this gives us:
*
* (PAR_SS_DR_MAX_RANK - large_rank) <= 2
*
* so no need to repeat the test in the outer loops --
* just set l = 0.
*/
l = 0;
do {
if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */
(tv_ptr->tests_skipped)++;
#if CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG
tv_ptr->start[0] = (hsize_t)i;
tv_ptr->start[1] = (hsize_t)j;
tv_ptr->start[2] = (hsize_t)k;
tv_ptr->start[3] = (hsize_t)l;
tv_ptr->start[4] = 0;
fprintf(stdout, "%s:%d: skipping test with start = %d %d %d %d %d.\n", fcnName,
(int)(tv_ptr->mpi_rank), (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]),
(int)(tv_ptr->start[2]), (int)(tv_ptr->start[3]), (int)(tv_ptr->start[4]));
fprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
H5Sget_simple_extent_ndims(tv_ptr->mem_small_ds_sid),
H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_0));
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */
}
else { /* run the test */
tv_ptr->skips = 0; /* reset the skips counter */
/* we know that small_rank >= 1 and that large_rank > small_rank
* by the assertions at the head of this function. Thus no
* need for another inner loop.
*/
/* Zero out this processes slice of the on disk large data set.
* Note that this will leave one slice with its original data
* as there is one more slice than processes.
*/
ret = H5Dwrite(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->large_ds_slice_sid,
tv_ptr->file_large_ds_process_slice_sid, tv_ptr->xfer_plist,
tv_ptr->large_ds_buf_2);
VRFY((ret != FAIL), "H5Dwrite() to zero large ds succeeded");
/* select the portion of the in memory large cube to which we
* are going to write data.
*/
tv_ptr->start[0] = (hsize_t)i;
tv_ptr->start[1] = (hsize_t)j;
tv_ptr->start[2] = (hsize_t)k;
tv_ptr->start[3] = (hsize_t)l;
tv_ptr->start[4] = 0;
ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_SET, tv_ptr->start_ptr,
tv_ptr->stride_ptr, tv_ptr->count_ptr, tv_ptr->block_ptr);
VRFY((ret != FAIL), "H5Sselect_hyperslab() target large ds slice succeeded");
/* verify that H5Sselect_shape_same() reports the in
* memory small data set slice selection and the
* on disk slice through the large data set selection
* as having the same shape.
*/
check = H5Sselect_shape_same(tv_ptr->mem_small_ds_sid, tv_ptr->file_large_ds_sid_0);
VRFY((check == true), "H5Sselect_shape_same passed");
/* write the small data set slice from memory to the
* target slice of the disk data set
*/
#if CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG
fprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, (int)(tv_ptr->mpi_rank),
(int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), (int)(tv_ptr->start[2]),
(int)(tv_ptr->start[3]), (int)(tv_ptr->start[4]));
fprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
H5Sget_simple_extent_ndims(tv_ptr->mem_small_ds_sid),
H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_0));
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */
ret = H5Dwrite(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid,
tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_0);
VRFY((ret != FAIL), "H5Dwrite of small ds slice to large ds succeeded");
/* read this processes slice on the on disk large
* data set into memory.
*/
ret = H5Dread(
tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_process_slice_sid,
tv_ptr->file_large_ds_process_slice_sid, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1);
VRFY((ret != FAIL), "H5Dread() of process slice of large ds succeeded");
/* verify that the expected data and only the
* expected data was read.
*/
ptr_1 = tv_ptr->large_ds_buf_1;
expected_value = (uint32_t)((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size);
start_index =
(size_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
tv_ptr->edge_size) +
(j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
(k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));
stop_index = start_index + tv_ptr->small_ds_slice_size - 1;
assert(start_index < stop_index);
assert(stop_index < tv_ptr->large_ds_size);
for (n = 0; n < tv_ptr->large_ds_size; n++) {
if ((n >= start_index) && (n <= stop_index)) {
if (*ptr_1 != expected_value) {
mis_match = true;
}
expected_value++;
}
else {
if (*ptr_1 != 0) {
mis_match = true;
}
}
/* zero out buffer for next test */
*ptr_1 = 0;
ptr_1++;
}
VRFY((mis_match == false), "small ds slice write to large ds slice data good.");
(tv_ptr->tests_run)++;
}
l++;
(tv_ptr->total_tests)++;
} while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
k++;
} while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
j++;
} while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));
return;
} /* contig_hs_dr_pio_test__m2d_s2l() */
/*-------------------------------------------------------------------------
* Function: contig_hs_dr_pio_test__run_test()
*
* Purpose: Test I/O to/from hyperslab selections of different rank in
* the parallel.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
#define CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG 0
static void
contig_hs_dr_pio_test__run_test(const void *params, const int test_num, const int edge_size,
const int chunk_edge_size, const int small_rank, const int large_rank,
const bool use_collective_io, const hid_t dset_type, int express_test,
int *skips_ptr, int max_skips, int64_t *total_tests_ptr,
int64_t *tests_run_ptr, int64_t *tests_skipped_ptr, int mpi_rank)
{
#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
const char *fcnName = "contig_hs_dr_pio_test__run_test()";
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
struct hs_dr_pio_test_vars_t test_vars = {
/* int mpi_size = */ -1,
/* int mpi_rank = */ -1,
/* MPI_Comm mpi_comm = */ MPI_COMM_NULL,
/* MPI_Inf mpi_info = */ MPI_INFO_NULL,
/* int test_num = */ -1,
/* int edge_size = */ -1,
/* int checker_edge_size = */ -1,
/* int chunk_edge_size = */ -1,
/* int small_rank = */ -1,
/* int large_rank = */ -1,
/* hid_t dset_type = */ H5I_INVALID_HID,
/* uint32_t * small_ds_buf_0 = */ NULL,
/* uint32_t * small_ds_buf_1 = */ NULL,
/* uint32_t * small_ds_buf_2 = */ NULL,
/* uint32_t * small_ds_slice_buf = */ NULL,
/* uint32_t * large_ds_buf_0 = */ NULL,
/* uint32_t * large_ds_buf_1 = */ NULL,
/* uint32_t * large_ds_buf_2 = */ NULL,
/* uint32_t * large_ds_slice_buf = */ NULL,
/* int small_ds_offset = */ -1,
/* int large_ds_offset = */ -1,
/* hid_t fid = */ H5I_INVALID_HID, /* HDF5 file ID */
/* hid_t xfer_plist = */ H5P_DEFAULT,
/* hid_t full_mem_small_ds_sid = */ H5I_INVALID_HID,
/* hid_t full_file_small_ds_sid = */ H5I_INVALID_HID,
/* hid_t mem_small_ds_sid = */ H5I_INVALID_HID,
/* hid_t file_small_ds_sid_0 = */ H5I_INVALID_HID,
/* hid_t file_small_ds_sid_1 = */ H5I_INVALID_HID,
/* hid_t small_ds_slice_sid = */ H5I_INVALID_HID,
/* hid_t full_mem_large_ds_sid = */ H5I_INVALID_HID,
/* hid_t full_file_large_ds_sid = */ H5I_INVALID_HID,
/* hid_t mem_large_ds_sid = */ H5I_INVALID_HID,
/* hid_t file_large_ds_sid_0 = */ H5I_INVALID_HID,
/* hid_t file_large_ds_sid_1 = */ H5I_INVALID_HID,
/* hid_t file_large_ds_process_slice_sid = */ H5I_INVALID_HID,
/* hid_t mem_large_ds_process_slice_sid = */ H5I_INVALID_HID,
/* hid_t large_ds_slice_sid = */ H5I_INVALID_HID,
/* hid_t small_dataset = */ H5I_INVALID_HID, /* Dataset ID */
/* hid_t large_dataset = */ H5I_INVALID_HID, /* Dataset ID */
/* size_t small_ds_size = */ 1,
/* size_t small_ds_slice_size = */ 1,
/* size_t large_ds_size = */ 1,
/* size_t large_ds_slice_size = */ 1,
/* hsize_t dims[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0},
/* hsize_t chunk_dims[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0},
/* hsize_t start[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0},
/* hsize_t stride[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0},
/* hsize_t count[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0},
/* hsize_t block[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0},
/* hsize_t * start_ptr = */ NULL,
/* hsize_t * stride_ptr = */ NULL,
/* hsize_t * count_ptr = */ NULL,
/* hsize_t * block_ptr = */ NULL,
/* int skips = */ 0,
/* int max_skips = */ 0,
/* int64_t total_tests = */ 0,
/* int64_t tests_run = */ 0,
/* int64_t tests_skipped = */ 0};
struct hs_dr_pio_test_vars_t *tv_ptr = &test_vars;
if (MAINPROCESS)
printf("\r - running test #%lld: small rank = %d, large rank = %d", (long long)(test_num + 1),
small_rank, large_rank);
hs_dr_pio_test__setup(params, test_num, edge_size, -1, chunk_edge_size, small_rank, large_rank,
use_collective_io, dset_type, express_test, tv_ptr);
/* initialize skips & max_skips */
tv_ptr->skips = *skips_ptr;
tv_ptr->max_skips = max_skips;
#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
if (MAINPROCESS) {
fprintf(stdout, "test %d: small rank = %d, large rank = %d.\n", test_num, small_rank, large_rank);
fprintf(stdout, "test %d: Initialization complete.\n", test_num);
}
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
/* first, verify that we can read from disk correctly using selections
* of different rank that H5Sselect_shape_same() views as being of the
* same shape.
*
* Start by reading small_rank - 1 dimensional slice from the on disk
* large cube, and verifying that the data read is correct. Verify that
* H5Sselect_shape_same() returns true on the memory and file selections.
*/
#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
if (MAINPROCESS) {
fprintf(stdout, "test %d: running contig_hs_dr_pio_test__d2m_l2s.\n", test_num);
}
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
contig_hs_dr_pio_test__d2m_l2s(tv_ptr);
/* Second, read slices of the on disk small data set into slices
* through the in memory large data set, and verify that the correct
* data (and only the correct data) is read.
*/
#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
if (MAINPROCESS) {
fprintf(stdout, "test %d: running contig_hs_dr_pio_test__d2m_s2l.\n", test_num);
}
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
contig_hs_dr_pio_test__d2m_s2l(tv_ptr);
/* now we go in the opposite direction, verifying that we can write
* from memory to file using selections of different rank that
* H5Sselect_shape_same() views as being of the same shape.
*
* Start by writing small_rank - 1 D slices from the in memory large data
* set to the on disk small cube dataset. After each write, read the
* slice of the small dataset back from disk, and verify that it contains
* the expected data. Verify that H5Sselect_shape_same() returns true on
* the memory and file selections.
*/
#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
if (MAINPROCESS) {
fprintf(stdout, "test %d: running contig_hs_dr_pio_test__m2d_l2s.\n", test_num);
}
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
contig_hs_dr_pio_test__m2d_l2s(tv_ptr);
/* Now write the contents of the process's slice of the in memory
* small data set to slices of the on disk large data set. After
* each write, read the process's slice of the large data set back
* into memory, and verify that it contains the expected data.
* Verify that H5Sselect_shape_same() returns true on the memory
* and file selections.
*/
#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
if (MAINPROCESS) {
fprintf(stdout, "test %d: running contig_hs_dr_pio_test__m2d_s2l.\n", test_num);
}
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
contig_hs_dr_pio_test__m2d_s2l(tv_ptr);
#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
if (MAINPROCESS) {
fprintf(stdout, "test %d: Subtests complete -- tests run/skipped/total = %lld/%lld/%lld.\n", test_num,
(long long)(tv_ptr->tests_run), (long long)(tv_ptr->tests_skipped),
(long long)(tv_ptr->total_tests));
}
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
hs_dr_pio_test__takedown(tv_ptr);
#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
if (MAINPROCESS) {
fprintf(stdout, "test %d: Takedown complete.\n", test_num);
}
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
*skips_ptr = tv_ptr->skips;
*total_tests_ptr += tv_ptr->total_tests;
*tests_run_ptr += tv_ptr->tests_run;
*tests_skipped_ptr += tv_ptr->tests_skipped;
return;
} /* contig_hs_dr_pio_test__run_test() */
/*-------------------------------------------------------------------------
* Function: contig_hs_dr_pio_test(ShapeSameTestMethods sstest_type)
*
* Purpose: Test I/O to/from hyperslab selections of different rank in
* the parallel case.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
#define CONTIG_HS_DR_PIO_TEST__DEBUG 0
static void
contig_hs_dr_pio_test(const void *params, ShapeSameTestMethods sstest_type)
{
int express_test;
int local_express_test;
int mpi_rank = -1;
int mpi_size;
int test_num = 0;
int edge_size;
int chunk_edge_size = 0;
int small_rank;
int large_rank;
int mpi_result;
int skips = 0;
int max_skips = 0;
/* The following table list the number of sub-tests skipped between
* each test that is actually executed as a function of the express
* test level. Note that any value in excess of 4880 will cause all
* sub tests to be skipped.
*/
int max_skips_tbl[4] = {0, 4, 64, 1024};
hid_t dset_type = H5T_NATIVE_UINT;
int64_t total_tests = 0;
int64_t tests_run = 0;
int64_t tests_skipped = 0;
HDcompile_assert(sizeof(uint32_t) == sizeof(unsigned));
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
edge_size = (mpi_size > 6 ? mpi_size : 6);
local_express_test = GetTestExpress();
mpi_result = MPI_Allreduce((void *)&local_express_test, (void *)&express_test, 1, MPI_INT, MPI_MAX,
MPI_COMM_WORLD);
VRFY((mpi_result == MPI_SUCCESS), "MPI_Allreduce(0) succeeded");
if (local_express_test < 0) {
max_skips = max_skips_tbl[0];
}
else if (local_express_test > 3) {
max_skips = max_skips_tbl[3];
}
else {
max_skips = max_skips_tbl[local_express_test];
}
for (large_rank = 3; large_rank <= PAR_SS_DR_MAX_RANK; large_rank++) {
for (small_rank = 2; small_rank < large_rank; small_rank++) {
switch (sstest_type) {
case IND_CONTIG:
/* contiguous data set, independent I/O */
chunk_edge_size = 0;
contig_hs_dr_pio_test__run_test(params, test_num, edge_size, chunk_edge_size, small_rank,
large_rank, false, dset_type, express_test, &skips,
max_skips, &total_tests, &tests_run, &tests_skipped,
mpi_rank);
test_num++;
break;
/* end of case IND_CONTIG */
case COL_CONTIG:
/* contiguous data set, collective I/O */
chunk_edge_size = 0;
contig_hs_dr_pio_test__run_test(
params, test_num, edge_size, chunk_edge_size, small_rank, large_rank, true, dset_type,
express_test, &skips, max_skips, &total_tests, &tests_run, &tests_skipped, mpi_rank);
test_num++;
break;
/* end of case COL_CONTIG */
case IND_CHUNKED:
/* chunked data set, independent I/O */
chunk_edge_size = 5;
contig_hs_dr_pio_test__run_test(params, test_num, edge_size, chunk_edge_size, small_rank,
large_rank, false, dset_type, express_test, &skips,
max_skips, &total_tests, &tests_run, &tests_skipped,
mpi_rank);
test_num++;
break;
/* end of case IND_CHUNKED */
case COL_CHUNKED:
/* chunked data set, collective I/O */
chunk_edge_size = 5;
contig_hs_dr_pio_test__run_test(
params, test_num, edge_size, chunk_edge_size, small_rank, large_rank, true, dset_type,
express_test, &skips, max_skips, &total_tests, &tests_run, &tests_skipped, mpi_rank);
test_num++;
break;
/* end of case COL_CHUNKED */
default:
VRFY((false), "unknown test type");
break;
} /* end of switch(sstest_type) */
#if CONTIG_HS_DR_PIO_TEST__DEBUG
if ((MAINPROCESS) && (tests_skipped > 0)) {
fprintf(stdout, " run/skipped/total = %lld/%lld/%lld.\n", tests_run, tests_skipped,
total_tests);
}
#endif /* CONTIG_HS_DR_PIO_TEST__DEBUG */
}
}
if (MAINPROCESS) {
if (tests_skipped > 0) {
fprintf(stdout, " %" PRId64 " of %" PRId64 " subtests skipped to expedite testing.\n",
tests_skipped, total_tests);
}
else
printf("\n");
}
return;
} /* contig_hs_dr_pio_test() */
/****************************************************************
**
** ckrbrd_hs_dr_pio_test__slct_ckrbrd():
** Given a dataspace of tgt_rank, and dimensions:
**
** (mpi_size + 1), edge_size, ... , edge_size
**
** edge_size, and a checker_edge_size, select a checker
** board selection of a sel_rank (sel_rank < tgt_rank)
** dimensional slice through the dataspace parallel to the
** sel_rank fastest changing indices, with origin (in the
** higher indices) as indicated by the start array.
**
** Note that this function, like all its relatives, is
** hard coded to presume a maximum dataspace rank of 5.
** While this maximum is declared as a constant, increasing
** it will require extensive coding in addition to changing
** the value of the constant.
**
** JRM -- 10/8/09
**
****************************************************************/
#define CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG 0
static void
ckrbrd_hs_dr_pio_test__slct_ckrbrd(const int mpi_rank, const hid_t tgt_sid, const int tgt_rank,
const int edge_size, const int checker_edge_size, const int sel_rank,
hsize_t sel_start[])
{
#if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
const char *fcnName = "ckrbrd_hs_dr_pio_test__slct_ckrbrd():";
#endif
bool first_selection = true;
int i, j, k, l, m;
int n_cube_offset;
int sel_offset;
const int test_max_rank = PAR_SS_DR_MAX_RANK; /* must update code if */
/* this changes */
hsize_t base_count;
hsize_t offset_count;
hsize_t start[PAR_SS_DR_MAX_RANK];
hsize_t stride[PAR_SS_DR_MAX_RANK];
hsize_t count[PAR_SS_DR_MAX_RANK];
hsize_t block[PAR_SS_DR_MAX_RANK];
herr_t ret; /* Generic return value */
assert(edge_size >= 6);
assert(0 < checker_edge_size);
assert(checker_edge_size <= edge_size);
assert(0 < sel_rank);
assert(sel_rank <= tgt_rank);
assert(tgt_rank <= test_max_rank);
assert(test_max_rank <= PAR_SS_DR_MAX_RANK);
sel_offset = test_max_rank - sel_rank;
assert(sel_offset >= 0);
n_cube_offset = test_max_rank - tgt_rank;
assert(n_cube_offset >= 0);
assert(n_cube_offset <= sel_offset);
#if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
fprintf(stdout, "%s:%d: edge_size/checker_edge_size = %d/%d\n", fcnName, mpi_rank, edge_size,
checker_edge_size);
fprintf(stdout, "%s:%d: sel_rank/sel_offset = %d/%d.\n", fcnName, mpi_rank, sel_rank, sel_offset);
fprintf(stdout, "%s:%d: tgt_rank/n_cube_offset = %d/%d.\n", fcnName, mpi_rank, tgt_rank, n_cube_offset);
#endif /* CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */
/* First, compute the base count (which assumes start == 0
* for the associated offset) and offset_count (which
* assumes start == checker_edge_size for the associated
* offset).
*
* Note that the following computation depends on the C99
* requirement that integer division discard any fraction
* (truncation towards zero) to function correctly. As we
* now require C99, this shouldn't be a problem, but noting
* it may save us some pain if we are ever obliged to support
* pre-C99 compilers again.
*/
base_count = (hsize_t)(edge_size / (checker_edge_size * 2));
if ((edge_size % (checker_edge_size * 2)) > 0) {
base_count++;
}
offset_count = (hsize_t)((edge_size - checker_edge_size) / (checker_edge_size * 2));
if (((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0) {
offset_count++;
}
/* Now set up the stride and block arrays, and portions of the start
* and count arrays that will not be altered during the selection of
* the checker board.
*/
i = 0;
while (i < n_cube_offset) {
/* these values should never be used */
start[i] = 0;
stride[i] = 0;
count[i] = 0;
block[i] = 0;
i++;
}
while (i < sel_offset) {
start[i] = sel_start[i];
stride[i] = (hsize_t)(2 * edge_size);
count[i] = 1;
block[i] = 1;
i++;
}
while (i < test_max_rank) {
stride[i] = (hsize_t)(2 * checker_edge_size);
block[i] = (hsize_t)checker_edge_size;
i++;
}
i = 0;
do {
if (0 >= sel_offset) {
if (i == 0) {
start[0] = 0;
count[0] = base_count;
}
else {
start[0] = (hsize_t)checker_edge_size;
count[0] = offset_count;
}
}
j = 0;
do {
if (1 >= sel_offset) {
if (j == 0) {
start[1] = 0;
count[1] = base_count;
}
else {
start[1] = (hsize_t)checker_edge_size;
count[1] = offset_count;
}
}
k = 0;
do {
if (2 >= sel_offset) {
if (k == 0) {
start[2] = 0;
count[2] = base_count;
}
else {
start[2] = (hsize_t)checker_edge_size;
count[2] = offset_count;
}
}
l = 0;
do {
if (3 >= sel_offset) {
if (l == 0) {
start[3] = 0;
count[3] = base_count;
}
else {
start[3] = (hsize_t)checker_edge_size;
count[3] = offset_count;
}
}
m = 0;
do {
if (4 >= sel_offset) {
if (m == 0) {
start[4] = 0;
count[4] = base_count;
}
else {
start[4] = (hsize_t)checker_edge_size;
count[4] = offset_count;
}
}
if (((i + j + k + l + m) % 2) == 0) {
#if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
fprintf(stdout, "%s%d: *** first_selection = %d ***\n", fcnName, mpi_rank,
(int)first_selection);
fprintf(stdout, "%s:%d: i/j/k/l/m = %d/%d/%d/%d/%d\n", fcnName, mpi_rank, i, j, k,
l, m);
fprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, mpi_rank,
(int)start[0], (int)start[1], (int)start[2], (int)start[3],
(int)start[4]);
fprintf(stdout, "%s:%d: stride = %d %d %d %d %d.\n", fcnName, mpi_rank,
(int)stride[0], (int)stride[1], (int)stride[2], (int)stride[3],
(int)stride[4]);
fprintf(stdout, "%s:%d: count = %d %d %d %d %d.\n", fcnName, mpi_rank,
(int)count[0], (int)count[1], (int)count[2], (int)count[3],
(int)count[4]);
fprintf(stdout, "%s:%d: block = %d %d %d %d %d.\n", fcnName, mpi_rank,
(int)block[0], (int)block[1], (int)block[2], (int)block[3],
(int)block[4]);
fprintf(stdout, "%s:%d: n-cube extent dims = %d.\n", fcnName, mpi_rank,
H5Sget_simple_extent_ndims(tgt_sid));
fprintf(stdout, "%s:%d: selection rank = %d.\n", fcnName, mpi_rank, sel_rank);
#endif
if (first_selection) {
first_selection = false;
ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_SET, &(start[n_cube_offset]),
&(stride[n_cube_offset]), &(count[n_cube_offset]),
&(block[n_cube_offset]));
VRFY((ret != FAIL), "H5Sselect_hyperslab(SET) succeeded");
}
else {
ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_OR, &(start[n_cube_offset]),
&(stride[n_cube_offset]), &(count[n_cube_offset]),
&(block[n_cube_offset]));
VRFY((ret != FAIL), "H5Sselect_hyperslab(OR) succeeded");
}
}
m++;
} while ((m <= 1) && (4 >= sel_offset));
l++;
} while ((l <= 1) && (3 >= sel_offset));
k++;
} while ((k <= 1) && (2 >= sel_offset));
j++;
} while ((j <= 1) && (1 >= sel_offset));
i++;
} while ((i <= 1) && (0 >= sel_offset));
#if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
fprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", fcnName, mpi_rank,
(int)H5Sget_select_npoints(tgt_sid));
#endif /* CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */
/* Clip the selection back to the dataspace proper. */
for (i = 0; i < test_max_rank; i++) {
start[i] = 0;
stride[i] = (hsize_t)edge_size;
count[i] = 1;
block[i] = (hsize_t)edge_size;
}
ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_AND, start, stride, count, block);
VRFY((ret != FAIL), "H5Sselect_hyperslab(AND) succeeded");
#if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
fprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", fcnName, mpi_rank,
(int)H5Sget_select_npoints(tgt_sid));
fprintf(stdout, "%s%d: done.\n", fcnName, mpi_rank);
#endif /* CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */
return;
} /* ckrbrd_hs_dr_pio_test__slct_ckrbrd() */
/****************************************************************
**
** ckrbrd_hs_dr_pio_test__verify_data():
**
** Examine the supplied buffer to see if it contains the
** expected data. Return true if it does, and false
** otherwise.
**
** The supplied buffer is presumed to this process's slice
** of the target data set. Each such slice will be an
** n-cube of rank (rank -1) and the supplied edge_size with
** origin (mpi_rank, 0, ... , 0) in the target data set.
**
** Further, the buffer is presumed to be the result of reading
** or writing a checker board selection of an m (1 <= m <
** rank) dimensional slice through this processes slice
** of the target data set. Also, this slice must be parallel
** to the fastest changing indices.
**
** It is further presumed that the buffer was zeroed before
** the read/write, and that the full target data set (i.e.
** the buffer/data set for all processes) was initialized
** with the natural numbers listed in order from the origin
** along the fastest changing axis.
**
** Thus for a 20x10x10 dataset, the value stored in location
** (x, y, z) (assuming that z is the fastest changing index
** and x the slowest) is assumed to be:
**
** (10 * 10 * x) + (10 * y) + z
**
** Further, supposing that this is process 10, this process's
** slice of the dataset would be a 10 x 10 2-cube with origin
** (10, 0, 0) in the data set, and would be initialize (prior
** to the checkerboard selection) as follows:
**
** 1000, 1001, 1002, ... 1008, 1009
** 1010, 1011, 1012, ... 1018, 1019
** . . . . .
** . . . . .
** . . . . .
** 1090, 1091, 1092, ... 1098, 1099
**
** In the case of a read from the processors slice of another
** data set of different rank, the values expected will have
** to be adjusted accordingly. This is done via the
** first_expected_val parameter.
**
** Finally, the function presumes that the first element
** of the buffer resides either at the origin of either
** a selected or an unselected checker. (Translation:
** if partial checkers appear in the buffer, they will
** intersect the edges of the n-cube opposite the origin.)
**
****************************************************************/
#define CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG 0
static bool
ckrbrd_hs_dr_pio_test__verify_data(uint32_t *buf_ptr, const int rank, const int edge_size,
const int checker_edge_size, uint32_t first_expected_val,
bool buf_starts_in_checker)
{
#if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG
const char *fcnName = "ckrbrd_hs_dr_pio_test__verify_data():";
#endif
bool good_data = true;
bool in_checker;
bool start_in_checker[5];
uint32_t expected_value;
uint32_t *val_ptr;
int i, j, k, l, m; /* to track position in n-cube */
int v, w, x, y, z; /* to track position in checker */
const int test_max_rank = 5; /* code changes needed if this is increased */
assert(buf_ptr != NULL);
assert(0 < rank);
assert(rank <= test_max_rank);
assert(edge_size >= 6);
assert(0 < checker_edge_size);
assert(checker_edge_size <= edge_size);
assert(test_max_rank <= PAR_SS_DR_MAX_RANK);
#if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG
int mpi_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
fprintf(stdout, "%s mpi_rank = %d.\n", fcnName, mpi_rank);
fprintf(stdout, "%s rank = %d.\n", fcnName, rank);
fprintf(stdout, "%s edge_size = %d.\n", fcnName, edge_size);
fprintf(stdout, "%s checker_edge_size = %d.\n", fcnName, checker_edge_size);
fprintf(stdout, "%s first_expected_val = %d.\n", fcnName, (int)first_expected_val);
fprintf(stdout, "%s starts_in_checker = %d.\n", fcnName, (int)buf_starts_in_checker);
}
#endif
val_ptr = buf_ptr;
expected_value = first_expected_val;
i = 0;
v = 0;
start_in_checker[0] = buf_starts_in_checker;
do {
if (v >= checker_edge_size) {
start_in_checker[0] = !start_in_checker[0];
v = 0;
}
j = 0;
w = 0;
start_in_checker[1] = start_in_checker[0];
do {
if (w >= checker_edge_size) {
start_in_checker[1] = !start_in_checker[1];
w = 0;
}
k = 0;
x = 0;
start_in_checker[2] = start_in_checker[1];
do {
if (x >= checker_edge_size) {
start_in_checker[2] = !start_in_checker[2];
x = 0;
}
l = 0;
y = 0;
start_in_checker[3] = start_in_checker[2];
do {
if (y >= checker_edge_size) {
start_in_checker[3] = !start_in_checker[3];
y = 0;
}
m = 0;
z = 0;
#if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG
fprintf(stdout, "%d, %d, %d, %d, %d:", i, j, k, l, m);
#endif
in_checker = start_in_checker[3];
do {
#if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG
fprintf(stdout, " %d", (int)(*val_ptr));
#endif
if (z >= checker_edge_size) {
in_checker = !in_checker;
z = 0;
}
if (in_checker) {
if (*val_ptr != expected_value) {
good_data = false;
}
/* zero out buffer for reuse */
*val_ptr = 0;
}
else if (*val_ptr != 0) {
good_data = false;
/* zero out buffer for reuse */
*val_ptr = 0;
}
val_ptr++;
expected_value++;
m++;
z++;
} while ((rank >= (test_max_rank - 4)) && (m < edge_size));
#if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG
fprintf(stdout, "\n");
#endif
l++;
y++;
} while ((rank >= (test_max_rank - 3)) && (l < edge_size));
k++;
x++;
} while ((rank >= (test_max_rank - 2)) && (k < edge_size));
j++;
w++;
} while ((rank >= (test_max_rank - 1)) && (j < edge_size));
i++;
v++;
} while ((rank >= test_max_rank) && (i < edge_size));
return (good_data);
} /* ckrbrd_hs_dr_pio_test__verify_data() */
/*-------------------------------------------------------------------------
* Function: ckrbrd_hs_dr_pio_test__d2m_l2s()
*
* Purpose: Part one of a series of tests of I/O to/from hyperslab
* selections of different rank in the parallel.
*
* Verify that we can read from disk correctly using checker
* board selections of different rank that
* H5Sselect_shape_same() views as being of the same shape.
*
* In this function, we test this by reading small_rank - 1
* checker board slices from the on disk large cube, and
* verifying that the data read is correct. Verify that
* H5Sselect_shape_same() returns true on the memory and
* file selections.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
#define CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG 0
static void
ckrbrd_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG
const char *fcnName = "ckrbrd_hs_dr_pio_test__d2m_l2s()";
uint32_t *ptr_0;
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG */
bool data_ok = false;
int i, j, k, l;
uint32_t expected_value;
int mpi_rank; /* needed by VRFY */
hsize_t sel_start[PAR_SS_DR_MAX_RANK];
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
/* initialize the local copy of mpi_rank */
mpi_rank = tv_ptr->mpi_rank;
/* first, verify that we can read from disk correctly using selections
* of different rank that H5Sselect_shape_same() views as being of the
* same shape.
*
* Start by reading a (small_rank - 1)-D checker board slice from this
* processes slice of the on disk large data set, and verifying that the
* data read is correct. Verify that H5Sselect_shape_same() returns
* true on the memory and file selections.
*
* The first step is to set up the needed checker board selection in the
* in memory small small cube
*/
sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
sel_start[tv_ptr->small_ds_offset] = (hsize_t)(tv_ptr->mpi_rank);
ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, tv_ptr->small_ds_slice_sid, tv_ptr->small_rank - 1,
tv_ptr->edge_size, tv_ptr->checker_edge_size, tv_ptr->small_rank - 1,
sel_start);
/* zero out the buffer we will be reading into */
memset(tv_ptr->small_ds_slice_buf, 0, sizeof(uint32_t) * tv_ptr->small_ds_slice_size);
#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG
fprintf(stdout, "%s:%d: initial small_ds_slice_buf = ", fcnName, tv_ptr->mpi_rank);
ptr_0 = tv_ptr->small_ds_slice_buf;
for (i = 0; i < (int)(tv_ptr->small_ds_slice_size); i++) {
fprintf(stdout, "%d ", (int)(*ptr_0));
ptr_0++;
}
fprintf(stdout, "\n");
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG */
/* set up start, stride, count, and block -- note that we will
* change start[] so as to read slices of the large cube.
*/
for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {
tv_ptr->start[i] = 0;
tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
tv_ptr->count[i] = 1;
if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {
tv_ptr->block[i] = 1;
}
else {
tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
}
}
#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG
fprintf(stdout, "%s:%d: reading slice from big ds on disk into small ds slice.\n", fcnName,
tv_ptr->mpi_rank);
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG */
/* in serial versions of this test, we loop through all the dimensions
* of the large data set. However, in the parallel version, each
* process only works with that slice of the large cube indicated
* by its rank -- hence we set the most slowly changing index to
* mpi_rank, and don't iterate over it.
*/
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {
i = tv_ptr->mpi_rank;
}
else {
i = 0;
}
/* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
* loop over it -- either we are setting i to mpi_rank, or
* we are setting it to zero. It will not change during the
* test.
*/
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {
j = tv_ptr->mpi_rank;
}
else {
j = 0;
}
do {
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {
k = tv_ptr->mpi_rank;
}
else {
k = 0;
}
do {
/* since small rank >= 2 and large_rank > small_rank, we
* have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
* (baring major re-orgaization), this gives us:
*
* (PAR_SS_DR_MAX_RANK - large_rank) <= 2
*
* so no need to repeat the test in the outer loops --
* just set l = 0.
*/
l = 0;
do {
if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */
(tv_ptr->tests_skipped)++;
}
else { /* run the test */
tv_ptr->skips = 0; /* reset the skips counter */
/* we know that small_rank - 1 >= 1 and that
* large_rank > small_rank by the assertions at the head
* of this function. Thus no need for another inner loop.
*/
tv_ptr->start[0] = (hsize_t)i;
tv_ptr->start[1] = (hsize_t)j;
tv_ptr->start[2] = (hsize_t)k;
tv_ptr->start[3] = (hsize_t)l;
tv_ptr->start[4] = 0;
assert((tv_ptr->start[0] == 0) || (0 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[1] == 0) || (1 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[2] == 0) || (2 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[3] == 0) || (3 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[4] == 0) || (4 < tv_ptr->small_ds_offset + 1));
ckrbrd_hs_dr_pio_test__slct_ckrbrd(
tv_ptr->mpi_rank, tv_ptr->file_large_ds_sid_0, tv_ptr->large_rank, tv_ptr->edge_size,
tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, tv_ptr->start);
/* verify that H5Sselect_shape_same() reports the two
* selections as having the same shape.
*/
check = H5Sselect_shape_same(tv_ptr->small_ds_slice_sid, tv_ptr->file_large_ds_sid_0);
VRFY((check == true), "H5Sselect_shape_same passed");
/* Read selection from disk */
#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG
fprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, tv_ptr->mpi_rank,
tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], tv_ptr->start[3],
tv_ptr->start[4]);
fprintf(stdout, "%s slice/file extent dims = %d/%d.\n", fcnName,
H5Sget_simple_extent_ndims(tv_ptr->small_ds_slice_sid),
H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_0));
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG */
ret =
H5Dread(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->small_ds_slice_sid,
tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_slice_buf);
VRFY((ret >= 0), "H5Dread() slice from large ds succeeded.");
#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG
fprintf(stdout, "%s:%d: H5Dread() returns.\n", fcnName, tv_ptr->mpi_rank);
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG */
/* verify that expected data is retrieved */
expected_value =
(uint32_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
tv_ptr->edge_size) +
(j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
(k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));
data_ok = ckrbrd_hs_dr_pio_test__verify_data(
tv_ptr->small_ds_slice_buf, tv_ptr->small_rank - 1, tv_ptr->edge_size,
tv_ptr->checker_edge_size, expected_value, (bool)true);
VRFY((data_ok == true), "small slice read from large ds data good.");
(tv_ptr->tests_run)++;
}
l++;
(tv_ptr->total_tests)++;
} while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
k++;
} while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
j++;
} while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));
return;
} /* ckrbrd_hs_dr_pio_test__d2m_l2s() */
/*-------------------------------------------------------------------------
* Function: ckrbrd_hs_dr_pio_test__d2m_s2l()
*
* Purpose: Part two of a series of tests of I/O to/from hyperslab
* selections of different rank in the parallel.
*
* Verify that we can read from disk correctly using
* selections of different rank that H5Sselect_shape_same()
* views as being of the same shape.
*
* In this function, we test this by reading checker board
* slices of the on disk small data set into slices through
* the in memory large data set, and verify that the correct
* data (and only the correct data) is read.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
#define CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG 0
static void
ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG
const char *fcnName = "ckrbrd_hs_dr_pio_test__d2m_s2l()";
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG */
bool data_ok = false;
int i, j, k, l;
size_t u;
size_t start_index;
size_t stop_index;
uint32_t expected_value;
uint32_t *ptr_1;
int mpi_rank; /* needed by VRFY */
hsize_t sel_start[PAR_SS_DR_MAX_RANK];
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
/* initialize the local copy of mpi_rank */
mpi_rank = tv_ptr->mpi_rank;
/* similarly, read slices of the on disk small data set into slices
* through the in memory large data set, and verify that the correct
* data (and only the correct data) is read.
*/
sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
sel_start[tv_ptr->small_ds_offset] = (hsize_t)(tv_ptr->mpi_rank);
ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, tv_ptr->file_small_ds_sid_0, tv_ptr->small_rank,
tv_ptr->edge_size, tv_ptr->checker_edge_size, tv_ptr->small_rank - 1,
sel_start);
#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG
fprintf(stdout, "%s reading slices of on disk small data set into slices of big data set.\n", fcnName);
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG */
/* zero out the buffer we will be reading into */
memset(tv_ptr->large_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->large_ds_size);
/* set up start, stride, count, and block -- note that we will
* change start[] so as to read the slice of the small data set
* into different slices of the process slice of the large data
* set.
*/
for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {
tv_ptr->start[i] = 0;
tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
tv_ptr->count[i] = 1;
if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {
tv_ptr->block[i] = 1;
}
else {
tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
}
}
/* in serial versions of this test, we loop through all the dimensions
* of the large data set that don't appear in the small data set.
*
* However, in the parallel version, each process only works with that
* slice of the large (and small) data set indicated by its rank -- hence
* we set the most slowly changing index to mpi_rank, and don't iterate
* over it.
*/
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {
i = tv_ptr->mpi_rank;
}
else {
i = 0;
}
/* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
* loop over it -- either we are setting i to mpi_rank, or
* we are setting it to zero. It will not change during the
* test.
*/
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {
j = tv_ptr->mpi_rank;
}
else {
j = 0;
}
do {
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {
k = tv_ptr->mpi_rank;
}
else {
k = 0;
}
do {
/* since small rank >= 2 and large_rank > small_rank, we
* have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
* (baring major re-orgaization), this gives us:
*
* (PAR_SS_DR_MAX_RANK - large_rank) <= 2
*
* so no need to repeat the test in the outer loops --
* just set l = 0.
*/
l = 0;
do {
if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */
(tv_ptr->tests_skipped)++;
}
else { /* run the test */
tv_ptr->skips = 0; /* reset the skips counter */
/* we know that small_rank >= 1 and that large_rank > small_rank
* by the assertions at the head of this function. Thus no
* need for another inner loop.
*/
tv_ptr->start[0] = (hsize_t)i;
tv_ptr->start[1] = (hsize_t)j;
tv_ptr->start[2] = (hsize_t)k;
tv_ptr->start[3] = (hsize_t)l;
tv_ptr->start[4] = 0;
assert((tv_ptr->start[0] == 0) || (0 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[1] == 0) || (1 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[2] == 0) || (2 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[3] == 0) || (3 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[4] == 0) || (4 < tv_ptr->small_ds_offset + 1));
ckrbrd_hs_dr_pio_test__slct_ckrbrd(
tv_ptr->mpi_rank, tv_ptr->mem_large_ds_sid, tv_ptr->large_rank, tv_ptr->edge_size,
tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, tv_ptr->start);
/* verify that H5Sselect_shape_same() reports the two
* selections as having the same shape.
*/
check = H5Sselect_shape_same(tv_ptr->file_small_ds_sid_0, tv_ptr->mem_large_ds_sid);
VRFY((check == true), "H5Sselect_shape_same passed");
/* Read selection from disk */
#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG
fprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, tv_ptr->mpi_rank,
tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], tv_ptr->start[3],
tv_ptr->start[4]);
fprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
H5Sget_simple_extent_ndims(tv_ptr->large_ds_slice_sid),
H5Sget_simple_extent_ndims(tv_ptr->file_small_ds_sid_0));
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG */
ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid,
tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1);
VRFY((ret >= 0), "H5Dread() slice from small ds succeeded.");
/* verify that the expected data and only the
* expected data was read.
*/
data_ok = true;
ptr_1 = tv_ptr->large_ds_buf_1;
expected_value = (uint32_t)((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size);
start_index =
(size_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
tv_ptr->edge_size) +
(j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
(k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));
stop_index = start_index + tv_ptr->small_ds_slice_size - 1;
#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG
{
int m, n;
fprintf(stdout, "%s:%d: expected_value = %d.\n", fcnName, tv_ptr->mpi_rank,
expected_value);
fprintf(stdout, "%s:%d: start/stop index = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
start_index, stop_index);
n = 0;
for (m = 0; (unsigned)m < tv_ptr->large_ds_size; m++) {
fprintf(stdout, "%d ", (int)(*ptr_1));
ptr_1++;
n++;
if (n >= tv_ptr->edge_size) {
fprintf(stdout, "\n");
n = 0;
}
}
fprintf(stdout, "\n");
ptr_1 = tv_ptr->large_ds_buf_1;
}
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG */
assert(start_index < stop_index);
assert(stop_index <= tv_ptr->large_ds_size);
for (u = 0; u < start_index; u++) {
if (*ptr_1 != 0) {
data_ok = false;
}
/* zero out the value for the next pass */
*ptr_1 = 0;
ptr_1++;
}
VRFY((data_ok == true), "slice read from small to large ds data good(1).");
data_ok = ckrbrd_hs_dr_pio_test__verify_data(ptr_1, tv_ptr->small_rank - 1,
tv_ptr->edge_size, tv_ptr->checker_edge_size,
expected_value, (bool)true);
VRFY((data_ok == true), "slice read from small to large ds data good(2).");
ptr_1 = tv_ptr->large_ds_buf_1 + stop_index + 1;
for (u = stop_index + 1; u < tv_ptr->large_ds_size; u++) {
if (*ptr_1 != 0) {
data_ok = false;
}
/* zero out the value for the next pass */
*ptr_1 = 0;
ptr_1++;
}
VRFY((data_ok == true), "slice read from small to large ds data good(3).");
(tv_ptr->tests_run)++;
}
l++;
(tv_ptr->total_tests)++;
} while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
k++;
} while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
j++;
} while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));
return;
} /* ckrbrd_hs_dr_pio_test__d2m_s2l() */
/*-------------------------------------------------------------------------
* Function: ckrbrd_hs_dr_pio_test__m2d_l2s()
*
* Purpose: Part three of a series of tests of I/O to/from checker
* board hyperslab selections of different rank in the
* parallel.
*
* Verify that we can write from memory to file using checker
* board selections of different rank that
* H5Sselect_shape_same() views as being of the same shape.
*
* Do this by writing small_rank - 1 dimensional checker
* board slices from the in memory large data set to the on
* disk small cube dataset. After each write, read the
* slice of the small dataset back from disk, and verify
* that it contains the expected data. Verify that
* H5Sselect_shape_same() returns true on the memory and
* file selections.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
#define CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG 0
static void
ckrbrd_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG
const char *fcnName = "ckrbrd_hs_dr_pio_test__m2d_l2s()";
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG */
bool data_ok = false;
int i, j, k, l;
size_t u;
size_t start_index;
size_t stop_index;
uint32_t expected_value;
uint32_t *ptr_1;
int mpi_rank; /* needed by VRFY */
hsize_t sel_start[PAR_SS_DR_MAX_RANK];
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
/* initialize the local copy of mpi_rank */
mpi_rank = tv_ptr->mpi_rank;
/* now we go in the opposite direction, verifying that we can write
* from memory to file using selections of different rank that
* H5Sselect_shape_same() views as being of the same shape.
*
* Start by writing small_rank - 1 D slices from the in memory large data
* set to the on disk small dataset. After each write, read the slice of
* the small dataset back from disk, and verify that it contains the
* expected data. Verify that H5Sselect_shape_same() returns true on
* the memory and file selections.
*/
tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank);
tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1));
tv_ptr->count[0] = 1;
tv_ptr->block[0] = 1;
for (i = 1; i < tv_ptr->large_rank; i++) {
tv_ptr->start[i] = 0;
tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
tv_ptr->count[i] = 1;
tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
}
ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) succeeded");
ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) succeeded");
sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
sel_start[tv_ptr->small_ds_offset] = (hsize_t)(tv_ptr->mpi_rank);
ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, tv_ptr->file_small_ds_sid_1, tv_ptr->small_rank,
tv_ptr->edge_size, tv_ptr->checker_edge_size, tv_ptr->small_rank - 1,
sel_start);
/* set up start, stride, count, and block -- note that we will
* change start[] so as to read slices of the large cube.
*/
for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {
tv_ptr->start[i] = 0;
tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
tv_ptr->count[i] = 1;
if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {
tv_ptr->block[i] = 1;
}
else {
tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
}
}
/* zero out the in memory small ds */
memset(tv_ptr->small_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->small_ds_size);
#if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG
fprintf(stdout,
"%s writing checker boards selections of slices from big ds to slices of small ds on disk.\n",
fcnName);
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG */
/* in serial versions of this test, we loop through all the dimensions
* of the large data set that don't appear in the small data set.
*
* However, in the parallel version, each process only works with that
* slice of the large (and small) data set indicated by its rank -- hence
* we set the most slowly changing index to mpi_rank, and don't iterate
* over it.
*/
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {
i = tv_ptr->mpi_rank;
}
else {
i = 0;
}
/* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
* loop over it -- either we are setting i to mpi_rank, or
* we are setting it to zero. It will not change during the
* test.
*/
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {
j = tv_ptr->mpi_rank;
}
else {
j = 0;
}
j = 0;
do {
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {
k = tv_ptr->mpi_rank;
}
else {
k = 0;
}
do {
/* since small rank >= 2 and large_rank > small_rank, we
* have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
* (baring major re-orgaization), this gives us:
*
* (PAR_SS_DR_MAX_RANK - large_rank) <= 2
*
* so no need to repeat the test in the outer loops --
* just set l = 0.
*/
l = 0;
do {
if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */
(tv_ptr->tests_skipped)++;
}
else { /* run the test */
tv_ptr->skips = 0; /* reset the skips counter */
/* we know that small_rank >= 1 and that large_rank > small_rank
* by the assertions at the head of this function. Thus no
* need for another inner loop.
*/
/* zero out this rank's slice of the on disk small data set */
ret = H5Dwrite(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid,
tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_2);
VRFY((ret >= 0), "H5Dwrite() zero slice to small ds succeeded.");
/* select the portion of the in memory large cube from which we
* are going to write data.
*/
tv_ptr->start[0] = (hsize_t)i;
tv_ptr->start[1] = (hsize_t)j;
tv_ptr->start[2] = (hsize_t)k;
tv_ptr->start[3] = (hsize_t)l;
tv_ptr->start[4] = 0;
assert((tv_ptr->start[0] == 0) || (0 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[1] == 0) || (1 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[2] == 0) || (2 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[3] == 0) || (3 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[4] == 0) || (4 < tv_ptr->small_ds_offset + 1));
ckrbrd_hs_dr_pio_test__slct_ckrbrd(
tv_ptr->mpi_rank, tv_ptr->mem_large_ds_sid, tv_ptr->large_rank, tv_ptr->edge_size,
tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, tv_ptr->start);
/* verify that H5Sselect_shape_same() reports the in
* memory checkerboard selection of the slice through the
* large dataset and the checkerboard selection of the process
* slice of the small data set as having the same shape.
*/
check = H5Sselect_shape_same(tv_ptr->file_small_ds_sid_1, tv_ptr->mem_large_ds_sid);
VRFY((check == true), "H5Sselect_shape_same passed.");
/* write the checker board selection of the slice from the in
* memory large data set to the slice of the on disk small
* dataset.
*/
#if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG
fprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, tv_ptr->mpi_rank,
tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], tv_ptr->start[3],
tv_ptr->start[4]);
fprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
H5Sget_simple_extent_ndims(tv_ptr->mem_large_ds_sid),
H5Sget_simple_extent_ndims(tv_ptr->file_small_ds_sid_1));
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG */
ret = H5Dwrite(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid,
tv_ptr->file_small_ds_sid_1, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_0);
VRFY((ret >= 0), "H5Dwrite() slice to large ds succeeded.");
/* read the on disk process slice of the small dataset into memory */
ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid,
tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_1);
VRFY((ret >= 0), "H5Dread() slice from small ds succeeded.");
/* verify that expected data is retrieved */
expected_value =
(uint32_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
tv_ptr->edge_size) +
(j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
(k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));
start_index = (size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size;
stop_index = start_index + tv_ptr->small_ds_slice_size - 1;
assert(start_index < stop_index);
assert(stop_index <= tv_ptr->small_ds_size);
data_ok = true;
ptr_1 = tv_ptr->small_ds_buf_1;
for (u = 0; u < start_index; u++, ptr_1++) {
if (*ptr_1 != 0) {
data_ok = false;
*ptr_1 = 0;
}
}
data_ok &= ckrbrd_hs_dr_pio_test__verify_data(
tv_ptr->small_ds_buf_1 + start_index, tv_ptr->small_rank - 1, tv_ptr->edge_size,
tv_ptr->checker_edge_size, expected_value, (bool)true);
ptr_1 = tv_ptr->small_ds_buf_1;
for (u = stop_index; u < tv_ptr->small_ds_size; u++, ptr_1++) {
if (*ptr_1 != 0) {
data_ok = false;
*ptr_1 = 0;
}
}
VRFY((data_ok == true), "large slice write slice to small slice data good.");
(tv_ptr->tests_run)++;
}
l++;
(tv_ptr->total_tests)++;
} while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
k++;
} while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
j++;
} while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));
return;
} /* ckrbrd_hs_dr_pio_test__m2d_l2s() */
/*-------------------------------------------------------------------------
* Function: ckrbrd_hs_dr_pio_test__m2d_s2l()
*
* Purpose: Part four of a series of tests of I/O to/from checker
* board hyperslab selections of different rank in the parallel.
*
* Verify that we can write from memory to file using
* selections of different rank that H5Sselect_shape_same()
* views as being of the same shape.
*
* Do this by writing checker board selections of the contents
* of the process's slice of the in memory small data set to
* slices of the on disk large data set. After each write,
* read the process's slice of the large data set back into
* memory, and verify that it contains the expected data.
*
* Verify that H5Sselect_shape_same() returns true on the
* memory and file selections.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
#define CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG 0
static void
ckrbrd_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG
const char *fcnName = "ckrbrd_hs_dr_pio_test__m2d_s2l()";
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */
bool data_ok = false;
int i, j, k, l;
size_t u;
size_t start_index;
size_t stop_index;
uint32_t expected_value;
uint32_t *ptr_1;
int mpi_rank; /* needed by VRFY */
hsize_t sel_start[PAR_SS_DR_MAX_RANK];
htri_t check; /* Shape comparison return value */
herr_t ret; /* Generic return value */
/* initialize the local copy of mpi_rank */
mpi_rank = tv_ptr->mpi_rank;
/* Now write the contents of the process's slice of the in memory
* small data set to slices of the on disk large data set. After
* each write, read the process's slice of the large data set back
* into memory, and verify that it contains the expected data.
* Verify that H5Sselect_shape_same() returns true on the memory
* and file selections.
*/
tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank);
tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1));
tv_ptr->count[0] = 1;
tv_ptr->block[0] = 1;
for (i = 1; i < tv_ptr->large_rank; i++) {
tv_ptr->start[i] = 0;
tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
tv_ptr->count[i] = 1;
tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
}
ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, set) succeeded");
ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
tv_ptr->count, tv_ptr->block);
VRFY((ret >= 0), "H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, set) succeeded");
/* setup a checkerboard selection of the slice of the in memory small
* data set associated with the process's mpi rank.
*/
sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
sel_start[tv_ptr->small_ds_offset] = (hsize_t)(tv_ptr->mpi_rank);
ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, tv_ptr->mem_small_ds_sid, tv_ptr->small_rank,
tv_ptr->edge_size, tv_ptr->checker_edge_size, tv_ptr->small_rank - 1,
sel_start);
/* set up start, stride, count, and block -- note that we will
* change start[] so as to write checkerboard selections of slices
* of the small data set to slices of the large data set.
*/
for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {
tv_ptr->start[i] = 0;
tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
tv_ptr->count[i] = 1;
if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {
tv_ptr->block[i] = 1;
}
else {
tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
}
}
/* zero out the in memory large ds */
memset(tv_ptr->large_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->large_ds_size);
#if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG
fprintf(stdout,
"%s writing process checkerboard selections of slices of small ds to process slices of large "
"ds on disk.\n",
fcnName);
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG */
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {
i = tv_ptr->mpi_rank;
}
else {
i = 0;
}
/* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
* loop over it -- either we are setting i to mpi_rank, or
* we are setting it to zero. It will not change during the
* test.
*/
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {
j = tv_ptr->mpi_rank;
}
else {
j = 0;
}
do {
if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {
k = tv_ptr->mpi_rank;
}
else {
k = 0;
}
do {
/* since small rank >= 2 and large_rank > small_rank, we
* have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
* (baring major re-orgaization), this gives us:
*
* (PAR_SS_DR_MAX_RANK - large_rank) <= 2
*
* so no need to repeat the test in the outer loops --
* just set l = 0.
*/
l = 0;
do {
if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */
(tv_ptr->tests_skipped)++;
}
else { /* run the test */
tv_ptr->skips = 0; /* reset the skips counter */
/* we know that small_rank >= 1 and that large_rank > small_rank
* by the assertions at the head of this function. Thus no
* need for another inner loop.
*/
/* Zero out this processes slice of the on disk large data set.
* Note that this will leave one slice with its original data
* as there is one more slice than processes.
*/
ret = H5Dwrite(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid,
tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_2);
VRFY((ret != FAIL), "H5Dwrite() to zero large ds succeeded");
/* select the portion of the in memory large cube to which we
* are going to write data.
*/
tv_ptr->start[0] = (hsize_t)i;
tv_ptr->start[1] = (hsize_t)j;
tv_ptr->start[2] = (hsize_t)k;
tv_ptr->start[3] = (hsize_t)l;
tv_ptr->start[4] = 0;
assert((tv_ptr->start[0] == 0) || (0 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[1] == 0) || (1 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[2] == 0) || (2 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[3] == 0) || (3 < tv_ptr->small_ds_offset + 1));
assert((tv_ptr->start[4] == 0) || (4 < tv_ptr->small_ds_offset + 1));
ckrbrd_hs_dr_pio_test__slct_ckrbrd(
tv_ptr->mpi_rank, tv_ptr->file_large_ds_sid_1, tv_ptr->large_rank, tv_ptr->edge_size,
tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, tv_ptr->start);
/* verify that H5Sselect_shape_same() reports the in
* memory small data set slice selection and the
* on disk slice through the large data set selection
* as having the same shape.
*/
check = H5Sselect_shape_same(tv_ptr->mem_small_ds_sid, tv_ptr->file_large_ds_sid_1);
VRFY((check == true), "H5Sselect_shape_same passed");
/* write the small data set slice from memory to the
* target slice of the disk data set
*/
#if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG
fprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, tv_ptr->mpi_rank,
tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], tv_ptr->start[3],
tv_ptr->start[4]);
fprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
H5Sget_simple_extent_ndims(tv_ptr->mem_small_ds_sid),
H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_1));
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG */
ret = H5Dwrite(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid,
tv_ptr->file_large_ds_sid_1, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_0);
VRFY((ret != FAIL), "H5Dwrite of small ds slice to large ds succeeded");
/* read this processes slice on the on disk large
* data set into memory.
*/
ret = H5Dread(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid,
tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1);
VRFY((ret != FAIL), "H5Dread() of process slice of large ds succeeded");
/* verify that the expected data and only the
* expected data was read.
*/
expected_value = (uint32_t)((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size);
start_index =
(size_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
tv_ptr->edge_size) +
(j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
(k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));
stop_index = start_index + tv_ptr->small_ds_slice_size - 1;
assert(start_index < stop_index);
assert(stop_index < tv_ptr->large_ds_size);
data_ok = true;
ptr_1 = tv_ptr->large_ds_buf_1;
for (u = 0; u < start_index; u++, ptr_1++) {
if (*ptr_1 != 0) {
data_ok = false;
*ptr_1 = 0;
}
}
data_ok &= ckrbrd_hs_dr_pio_test__verify_data(
tv_ptr->large_ds_buf_1 + start_index, tv_ptr->small_rank - 1, tv_ptr->edge_size,
tv_ptr->checker_edge_size, expected_value, (bool)true);
ptr_1 = tv_ptr->large_ds_buf_1;
for (u = stop_index; u < tv_ptr->small_ds_size; u++, ptr_1++) {
if (*ptr_1 != 0) {
data_ok = false;
*ptr_1 = 0;
}
}
VRFY((data_ok == true), "small ds cb slice write to large ds slice data good.");
(tv_ptr->tests_run)++;
}
l++;
(tv_ptr->total_tests)++;
} while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
k++;
} while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
j++;
} while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));
return;
} /* ckrbrd_hs_dr_pio_test__m2d_s2l() */
/*-------------------------------------------------------------------------
* Function: ckrbrd_hs_dr_pio_test__run_test()
*
* Purpose: Test I/O to/from checkerboard selections of hyperslabs of
* different rank in the parallel.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
#define CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG 0
static void
ckrbrd_hs_dr_pio_test__run_test(const void *params, const int test_num, const int edge_size,
const int checker_edge_size, const int chunk_edge_size, const int small_rank,
const int large_rank, const bool use_collective_io, const hid_t dset_type,
const int express_test, int *skips_ptr, int max_skips,
int64_t *total_tests_ptr, int64_t *tests_run_ptr, int64_t *tests_skipped_ptr,
int mpi_rank)
{
#if CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG
const char *fcnName = "ckrbrd_hs_dr_pio_test__run_test()";
#endif /* CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
struct hs_dr_pio_test_vars_t test_vars = {
/* int mpi_size = */ -1,
/* int mpi_rank = */ -1,
/* MPI_Comm mpi_comm = */ MPI_COMM_NULL,
/* MPI_Inf mpi_info = */ MPI_INFO_NULL,
/* int test_num = */ -1,
/* int edge_size = */ -1,
/* int checker_edge_size = */ -1,
/* int chunk_edge_size = */ -1,
/* int small_rank = */ -1,
/* int large_rank = */ -1,
/* hid_t dset_type = */ H5I_INVALID_HID,
/* uint32_t * small_ds_buf_0 = */ NULL,
/* uint32_t * small_ds_buf_1 = */ NULL,
/* uint32_t * small_ds_buf_2 = */ NULL,
/* uint32_t * small_ds_slice_buf = */ NULL,
/* uint32_t * large_ds_buf_0 = */ NULL,
/* uint32_t * large_ds_buf_1 = */ NULL,
/* uint32_t * large_ds_buf_2 = */ NULL,
/* uint32_t * large_ds_slice_buf = */ NULL,
/* int small_ds_offset = */ -1,
/* int large_ds_offset = */ -1,
/* hid_t fid = */ H5I_INVALID_HID, /* HDF5 file ID */
/* hid_t xfer_plist = */ H5P_DEFAULT,
/* hid_t full_mem_small_ds_sid = */ H5I_INVALID_HID,
/* hid_t full_file_small_ds_sid = */ H5I_INVALID_HID,
/* hid_t mem_small_ds_sid = */ H5I_INVALID_HID,
/* hid_t file_small_ds_sid_0 = */ H5I_INVALID_HID,
/* hid_t file_small_ds_sid_1 = */ H5I_INVALID_HID,
/* hid_t small_ds_slice_sid = */ H5I_INVALID_HID,
/* hid_t full_mem_large_ds_sid = */ H5I_INVALID_HID,
/* hid_t full_file_large_ds_sid = */ H5I_INVALID_HID,
/* hid_t mem_large_ds_sid = */ H5I_INVALID_HID,
/* hid_t file_large_ds_sid_0 = */ H5I_INVALID_HID,
/* hid_t file_large_ds_sid_1 = */ H5I_INVALID_HID,
/* hid_t file_large_ds_process_slice_sid = */ H5I_INVALID_HID,
/* hid_t mem_large_ds_process_slice_sid = */ H5I_INVALID_HID,
/* hid_t large_ds_slice_sid = */ H5I_INVALID_HID,
/* hid_t small_dataset = */ H5I_INVALID_HID, /* Dataset ID */
/* hid_t large_dataset = */ H5I_INVALID_HID, /* Dataset ID */
/* size_t small_ds_size = */ 1,
/* size_t small_ds_slice_size = */ 1,
/* size_t large_ds_size = */ 1,
/* size_t large_ds_slice_size = */ 1,
/* hsize_t dims[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0},
/* hsize_t chunk_dims[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0},
/* hsize_t start[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0},
/* hsize_t stride[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0},
/* hsize_t count[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0},
/* hsize_t block[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0},
/* hsize_t * start_ptr = */ NULL,
/* hsize_t * stride_ptr = */ NULL,
/* hsize_t * count_ptr = */ NULL,
/* hsize_t * block_ptr = */ NULL,
/* int skips = */ 0,
/* int max_skips = */ 0,
/* int64_t total_tests = */ 0,
/* int64_t tests_run = */ 0,
/* int64_t tests_skipped = */ 0};
struct hs_dr_pio_test_vars_t *tv_ptr = &test_vars;
if (MAINPROCESS)
printf("\r - running test #%lld: small rank = %d, large rank = %d", (long long)(test_num + 1),
small_rank, large_rank);
hs_dr_pio_test__setup(params, test_num, edge_size, checker_edge_size, chunk_edge_size, small_rank,
large_rank, use_collective_io, dset_type, express_test, tv_ptr);
/* initialize skips & max_skips */
tv_ptr->skips = *skips_ptr;
tv_ptr->max_skips = max_skips;
#if CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG
if (MAINPROCESS) {
fprintf(stdout, "test %d: small rank = %d, large rank = %d.\n", test_num, small_rank, large_rank);
fprintf(stdout, "test %d: Initialization complete.\n", test_num);
}
#endif /* CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
/* first, verify that we can read from disk correctly using selections
* of different rank that H5Sselect_shape_same() views as being of the
* same shape.
*
* Start by reading a (small_rank - 1)-D slice from this processes slice
* of the on disk large data set, and verifying that the data read is
* correct. Verify that H5Sselect_shape_same() returns true on the
* memory and file selections.
*
* The first step is to set up the needed checker board selection in the
* in memory small small cube
*/
ckrbrd_hs_dr_pio_test__d2m_l2s(tv_ptr);
/* similarly, read slices of the on disk small data set into slices
* through the in memory large data set, and verify that the correct
* data (and only the correct data) is read.
*/
ckrbrd_hs_dr_pio_test__d2m_s2l(tv_ptr);
/* now we go in the opposite direction, verifying that we can write
* from memory to file using selections of different rank that
* H5Sselect_shape_same() views as being of the same shape.
*
* Start by writing small_rank - 1 D slices from the in memory large data
* set to the on disk small dataset. After each write, read the slice of
* the small dataset back from disk, and verify that it contains the
* expected data. Verify that H5Sselect_shape_same() returns true on
* the memory and file selections.
*/
ckrbrd_hs_dr_pio_test__m2d_l2s(tv_ptr);
/* Now write the contents of the process's slice of the in memory
* small data set to slices of the on disk large data set. After
* each write, read the process's slice of the large data set back
* into memory, and verify that it contains the expected data.
* Verify that H5Sselect_shape_same() returns true on the memory
* and file selections.
*/
ckrbrd_hs_dr_pio_test__m2d_s2l(tv_ptr);
#if CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG
if (MAINPROCESS) {
fprintf(stdout, "test %d: Subtests complete -- tests run/skipped/total = %lld/%lld/%lld.\n", test_num,
(long long)(tv_ptr->tests_run), (long long)(tv_ptr->tests_skipped),
(long long)(tv_ptr->total_tests));
}
#endif /* CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
hs_dr_pio_test__takedown(tv_ptr);
#if CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG
if (MAINPROCESS) {
fprintf(stdout, "test %d: Takedown complete.\n", test_num);
}
#endif /* CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
*skips_ptr = tv_ptr->skips;
*total_tests_ptr += tv_ptr->total_tests;
*tests_run_ptr += tv_ptr->tests_run;
*tests_skipped_ptr += tv_ptr->tests_skipped;
return;
} /* ckrbrd_hs_dr_pio_test__run_test() */
/*-------------------------------------------------------------------------
* Function: ckrbrd_hs_dr_pio_test()
*
* Purpose: Test I/O to/from hyperslab selections of different rank in
* the parallel case.
*
* Return: void
*
*-------------------------------------------------------------------------
*/
static void
ckrbrd_hs_dr_pio_test(const void *params, ShapeSameTestMethods sstest_type)
{
int express_test;
int local_express_test;
int mpi_size = -1;
int mpi_rank = -1;
int test_num = 0;
int edge_size;
int checker_edge_size = 3;
int chunk_edge_size = 0;
int small_rank = 3;
int large_rank = 4;
int mpi_result;
hid_t dset_type = H5T_NATIVE_UINT;
int skips = 0;
int max_skips = 0;
/* The following table list the number of sub-tests skipped between
* each test that is actually executed as a function of the express
* test level. Note that any value in excess of 4880 will cause all
* sub tests to be skipped.
*/
int max_skips_tbl[4] = {0, 4, 64, 1024};
int64_t total_tests = 0;
int64_t tests_run = 0;
int64_t tests_skipped = 0;
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
edge_size = (mpi_size > 6 ? mpi_size : 6);
local_express_test = GetTestExpress();
HDcompile_assert(sizeof(uint32_t) == sizeof(unsigned));
mpi_result = MPI_Allreduce((void *)&local_express_test, (void *)&express_test, 1, MPI_INT, MPI_MAX,
MPI_COMM_WORLD);
VRFY((mpi_result == MPI_SUCCESS), "MPI_Allreduce(0) succeeded");
if (local_express_test < 0) {
max_skips = max_skips_tbl[0];
}
else if (local_express_test > 3) {
max_skips = max_skips_tbl[3];
}
else {
max_skips = max_skips_tbl[local_express_test];
}
#if 0
{
int DebugWait = 1;
while (DebugWait) ;
}
#endif
for (large_rank = 3; large_rank <= PAR_SS_DR_MAX_RANK; large_rank++) {
for (small_rank = 2; small_rank < large_rank; small_rank++) {
switch (sstest_type) {
case IND_CONTIG:
/* contiguous data set, independent I/O */
chunk_edge_size = 0;
ckrbrd_hs_dr_pio_test__run_test(params, test_num, edge_size, checker_edge_size,
chunk_edge_size, small_rank, large_rank, false, dset_type,
express_test, &skips, max_skips, &total_tests, &tests_run,
&tests_skipped, mpi_rank);
test_num++;
break;
/* end of case IND_CONTIG */
case COL_CONTIG:
/* contiguous data set, collective I/O */
chunk_edge_size = 0;
ckrbrd_hs_dr_pio_test__run_test(params, test_num, edge_size, checker_edge_size,
chunk_edge_size, small_rank, large_rank, true, dset_type,
express_test, &skips, max_skips, &total_tests, &tests_run,
&tests_skipped, mpi_rank);
test_num++;
break;
/* end of case COL_CONTIG */
case IND_CHUNKED:
/* chunked data set, independent I/O */
chunk_edge_size = 5;
ckrbrd_hs_dr_pio_test__run_test(params, test_num, edge_size, checker_edge_size,
chunk_edge_size, small_rank, large_rank, false, dset_type,
express_test, &skips, max_skips, &total_tests, &tests_run,
&tests_skipped, mpi_rank);
test_num++;
break;
/* end of case IND_CHUNKED */
case COL_CHUNKED:
/* chunked data set, collective I/O */
chunk_edge_size = 5;
ckrbrd_hs_dr_pio_test__run_test(params, test_num, edge_size, checker_edge_size,
chunk_edge_size, small_rank, large_rank, true, dset_type,
express_test, &skips, max_skips, &total_tests, &tests_run,
&tests_skipped, mpi_rank);
test_num++;
break;
/* end of case COL_CHUNKED */
default:
VRFY((false), "unknown test type");
break;
} /* end of switch(sstest_type) */
#if CONTIG_HS_DR_PIO_TEST__DEBUG
if ((MAINPROCESS) && (tests_skipped > 0)) {
fprintf(stdout, " run/skipped/total = %" PRId64 "/%" PRId64 "/%" PRId64 ".\n", tests_run,
tests_skipped, total_tests);
}
#endif /* CONTIG_HS_DR_PIO_TEST__DEBUG */
}
}
if (MAINPROCESS) {
if (tests_skipped > 0) {
fprintf(stdout, " %" PRId64 " of %" PRId64 " subtests skipped to expedite testing.\n",
tests_skipped, total_tests);
}
else
printf("\n");
}
return;
} /* ckrbrd_hs_dr_pio_test() */
/* Main Body. Here for now, may have to move them to a separated file later. */
/*
* Main driver of the Parallel HDF5 tests
*/
/* other option flags */
#ifdef USE_PAUSE
/* pause the process for a moment to allow debugger to attach if desired. */
/* Will pause more if greenlight file is not present but will eventually */
/* continue. */
#include <sys/types.h>
#include <sys/stat.h>
void
pause_proc(void)
{
int pid;
h5_stat_t statbuf;
char greenlight[] = "go";
int maxloop = 10;
int loops = 0;
int time_int = 10;
/* mpi variables */
int mpi_size, mpi_rank;
int mpi_namelen;
char mpi_name[MPI_MAX_PROCESSOR_NAME];
pid = getpid();
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Get_processor_name(mpi_name, &mpi_namelen);
if (MAINPROCESS) {
memset(&statbuf, 0, sizeof(h5_stat_t));
while ((HDstat(greenlight, &statbuf) == -1) && loops < maxloop) {
if (!loops++) {
printf("Proc %d (%*s, %d): to debug, attach %d\n", mpi_rank, mpi_namelen, mpi_name, pid, pid);
}
printf("waiting(%ds) for file %s ...\n", time_int, greenlight);
fflush(stdout);
HDsleep(time_int);
memset(&statbuf, 0, sizeof(h5_stat_t));
}
}
MPI_Barrier(MPI_COMM_WORLD);
}
/* Use the Profile feature of MPI to call the pause_proc() */
int
MPI_Init(int *argc, char ***argv)
{
int ret_code;
ret_code = PMPI_Init(argc, argv);
pause_proc();
return (ret_code);
}
#endif /* USE_PAUSE */
/*
* Show command usage
*/
static void
usage(FILE *stream)
{
fprintf(stream, " [-r] [-w] [-m<n_datasets>] [-n<n_groups>] "
"[-o] [-f <prefix>] [-d <dim0> <dim1>]\n");
fprintf(stream, "\t-m<n_datasets>"
"\tset number of datasets for the multiple dataset test\n");
fprintf(stream, "\t-n<n_groups>"
"\tset number of groups for the multiple group test\n");
fprintf(stream, "\t-f <prefix>\tfilename prefix\n");
fprintf(stream, "\t-2\t\tuse Split-file together with MPIO\n");
fprintf(stream, "\t-d <factor0> <factor1>\tdataset dimensions factors. Defaults (%d,%d)\n", ROW_FACTOR,
COL_FACTOR);
fprintf(stream, "\t-c <dim0> <dim1>\tdataset chunk dimensions. Defaults (dim0/10,dim1/10)\n");
fprintf(stream, "\n");
}
/*
* parse the command line options
*/
static int
parse_options(int argc, char **argv)
{
int mpi_size, mpi_rank; /* mpi variables */
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
/* setup default chunk-size. Make sure sizes are > 0 */
chunkdim0 = (dim0 + 9) / 10;
chunkdim1 = (dim1 + 9) / 10;
while (--argc) {
if (**(++argv) != '-') {
break;
}
else {
switch (*(*argv + 1)) {
case 'm':
ndatasets = atoi((*argv + 1) + 1);
if (ndatasets < 0) {
nerrors++;
return (1);
}
break;
case 'n':
ngroups = atoi((*argv + 1) + 1);
if (ngroups < 0) {
nerrors++;
return (1);
}
break;
case 'f':
if (--argc < 1) {
nerrors++;
return (1);
}
if (**(++argv) == '-') {
nerrors++;
return (1);
}
paraprefix = *argv;
break;
case 'i': /* Collective MPI-IO access with independent IO */
dxfer_coll_type = DXFER_INDEPENDENT_IO;
break;
case '2': /* Use the split-file driver with MPIO access */
/* Can use $HDF5_METAPREFIX to define the */
/* meta-file-prefix. */
facc_type = FACC_MPIO | FACC_SPLIT;
break;
case 'd': /* dimensizes */
if (--argc < 2) {
nerrors++;
return (1);
}
dim0 = atoi(*(++argv)) * mpi_size;
argc--;
dim1 = atoi(*(++argv)) * mpi_size;
/* set default chunkdim sizes too */
chunkdim0 = (dim0 + 9) / 10;
chunkdim1 = (dim1 + 9) / 10;
break;
case 'c': /* chunk dimensions */
if (--argc < 2) {
nerrors++;
return (1);
}
chunkdim0 = atoi(*(++argv));
argc--;
chunkdim1 = atoi(*(++argv));
break;
case 'h': /* print help message--return with nerrors set */
return (1);
default:
if (MAINPROCESS)
printf("Illegal option(%s)\n", *argv);
nerrors++;
return (1);
}
}
} /*while*/
/* check validity of dimension and chunk sizes */
if (dim0 <= 0 || dim1 <= 0) {
if (MAINPROCESS)
printf("Illegal dim sizes (%d, %d)\n", dim0, dim1);
nerrors++;
return (1);
}
if (chunkdim0 <= 0 || chunkdim1 <= 0) {
if (MAINPROCESS)
printf("Illegal chunkdim sizes (%d, %d)\n", chunkdim0, chunkdim1);
nerrors++;
return (1);
}
/* Make sure datasets can be divided into equal portions by the processes */
if ((dim0 % mpi_size) || (dim1 % mpi_size)) {
if (MAINPROCESS)
printf("dim0(%d) and dim1(%d) must be multiples of processes(%d)\n", dim0, dim1, mpi_size);
nerrors++;
return (1);
}
/* compose the test filenames */
{
int i, n;
n = sizeof(FILENAME) / sizeof(FILENAME[0]) - 1; /* exclude the NULL */
for (i = 0; i < n; i++)
if (h5_fixname(FILENAME[i], fapl, filenames[i], PATH_MAX) == NULL) {
printf("h5_fixname failed\n");
nerrors++;
return (1);
}
if (MAINPROCESS) {
printf("Test filenames are:\n");
for (i = 0; i < n; i++)
printf(" %s\n", filenames[i]);
}
}
return (0);
}
/* Shape Same test using contiguous hyperslab using independent IO on contiguous datasets */
static void
sscontig1(const void *params)
{
contig_hs_dr_pio_test(params, IND_CONTIG);
}
/* Shape Same test using contiguous hyperslab using collective IO on contiguous datasets */
static void
sscontig2(const void *params)
{
contig_hs_dr_pio_test(params, COL_CONTIG);
}
/* Shape Same test using contiguous hyperslab using independent IO on chunked datasets */
static void
sscontig3(const void *params)
{
contig_hs_dr_pio_test(params, IND_CHUNKED);
}
/* Shape Same test using contiguous hyperslab using collective IO on chunked datasets */
static void
sscontig4(const void *params)
{
contig_hs_dr_pio_test(params, COL_CHUNKED);
}
/* Shape Same test using checker hyperslab using independent IO on contiguous datasets */
static void
sschecker1(const void *params)
{
ckrbrd_hs_dr_pio_test(params, IND_CONTIG);
}
/* Shape Same test using checker hyperslab using collective IO on contiguous datasets */
static void
sschecker2(const void *params)
{
ckrbrd_hs_dr_pio_test(params, COL_CONTIG);
}
/* Shape Same test using checker hyperslab using independent IO on chunked datasets */
static void
sschecker3(const void *params)
{
ckrbrd_hs_dr_pio_test(params, IND_CHUNKED);
}
/* Shape Same test using checker hyperslab using collective IO on chunked datasets */
static void
sschecker4(const void *params)
{
ckrbrd_hs_dr_pio_test(params, COL_CHUNKED);
}
int
main(int argc, char **argv)
{
test_params_t test_params;
int mpi_size, mpi_rank; /* mpi variables */
int mpi_code;
#ifdef H5_HAVE_TEST_API
int required = MPI_THREAD_MULTIPLE;
int provided;
#endif
#ifndef H5_HAVE_WIN32_API
/* Un-buffer the stdout and stderr */
setbuf(stderr, NULL);
setbuf(stdout, NULL);
#endif
#ifdef H5_HAVE_TEST_API
/* Attempt to initialize with MPI_THREAD_MULTIPLE if possible */
if (MPI_SUCCESS != (mpi_code = MPI_Init_thread(&argc, &argv, required, &provided))) {
printf("MPI_Init_thread failed with error code %d\n", mpi_code);
return -1;
}
#else
if (MPI_SUCCESS != (mpi_code = MPI_Init(&argc, &argv))) {
printf("MPI_Init failed with error code %d\n", mpi_code);
return -1;
}
#endif
if (MPI_SUCCESS != (mpi_code = MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank))) {
printf("MPI_Comm_rank failed with error code %d\n", mpi_code);
MPI_Finalize();
return -1;
}
#ifdef H5_HAVE_TEST_API
/* Warn about missing MPI_THREAD_MULTIPLE support */
if ((provided < required) && MAINPROCESS)
printf("** MPI doesn't support MPI_Init_thread with MPI_THREAD_MULTIPLE **\n");
#endif
if (MPI_SUCCESS != (mpi_code = MPI_Comm_size(MPI_COMM_WORLD, &mpi_size))) {
if (MAINPROCESS)
printf("MPI_Comm_size failed with error code %d\n", mpi_code);
MPI_Finalize();
return -1;
}
dim0 = ROW_FACTOR * mpi_size;
dim1 = COL_FACTOR * mpi_size;
if (MAINPROCESS) {
printf("===================================\n");
printf("Shape Same Tests Start\n");
printf(" express_test = %d.\n", GetTestExpress());
printf("===================================\n");
}
/* Attempt to turn off atexit post processing so that in case errors
* happen during the test and the process is aborted, it will not get
* hung in the atexit post processing in which it may try to make MPI
* calls. By then, MPI calls may not work.
*/
if (H5dont_atexit() < 0) {
if (MAINPROCESS)
printf("%d: Failed to turn off atexit processing. Continue.\n", mpi_rank);
};
H5open();
h5_show_hostname();
fapl = H5Pcreate(H5P_FILE_ACCESS);
/* Get the capability flag of the VOL connector being used */
if (H5Pget_vol_cap_flags(fapl, &vol_cap_flags_g) < 0) {
if (MAINPROCESS)
printf("Failed to get the capability flag of the VOL connector being used\n");
MPI_Finalize();
return -1;
}
/* Make sure the connector supports the API functions being tested. This test only
* uses a few API functions, such as H5Fcreate/close/delete, H5Dcreate/write/read/close,
*/
if (!(vol_cap_flags_g & H5VL_CAP_FLAG_FILE_BASIC) || !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_BASIC)) {
if (MAINPROCESS)
printf("API functions for basic file and dataset aren't supported with this connector\n");
MPI_Finalize();
return 0;
}
memset(filenames, 0, sizeof(filenames));
for (int i = 0; i < NFILENAME; i++) {
if (NULL == (filenames[i] = malloc(PATH_MAX))) {
printf("couldn't allocate filename array\n");
MPI_Abort(MPI_COMM_WORLD, -1);
}
}
/* Initialize testing framework */
if (TestInit(argv[0], usage, parse_options, NULL, NULL, mpi_rank) < 0) {
if (MAINPROCESS) {
fprintf(stderr, "couldn't initialize testing framework\n");
fflush(stderr);
}
MPI_Finalize();
return -1;
}
test_params.filename = PARATESTFILE;
/* Shape Same tests using contiguous hyperslab */
AddTest("sscontig1", sscontig1, NULL, NULL, &test_params, sizeof(test_params),
"Cntg hslab, ind IO, cntg dsets");
AddTest("sscontig2", sscontig2, NULL, NULL, &test_params, sizeof(test_params),
"Cntg hslab, col IO, cntg dsets");
AddTest("sscontig3", sscontig3, NULL, NULL, &test_params, sizeof(test_params),
"Cntg hslab, ind IO, chnk dsets");
AddTest("sscontig4", sscontig4, NULL, NULL, &test_params, sizeof(test_params),
"Cntg hslab, col IO, chnk dsets");
/* Shape Same tests using checker board hyperslab */
AddTest("sschecker1", sschecker1, NULL, NULL, &test_params, sizeof(test_params),
"Check hslab, ind IO, cntg dsets");
AddTest("sschecker2", sschecker2, NULL, NULL, &test_params, sizeof(test_params),
"Check hslab, col IO, cntg dsets");
AddTest("sschecker3", sschecker3, NULL, NULL, &test_params, sizeof(test_params),
"Check hslab, ind IO, chnk dsets");
AddTest("sschecker4", sschecker4, NULL, NULL, &test_params, sizeof(test_params),
"Check hslab, col IO, chnk dsets");
/* Display testing information */
TestInfo(stdout);
/* setup file access property list */
H5Pset_fapl_mpio(fapl, MPI_COMM_WORLD, MPI_INFO_NULL);
/* Parse command line arguments */
if (TestParseCmdLine(argc, argv) < 0) {
if (MAINPROCESS)
fprintf(stderr, "couldn't parse command-line arguments\n");
TestShutdown();
MPI_Abort(MPI_COMM_WORLD, -1);
}
if (dxfer_coll_type == DXFER_INDEPENDENT_IO && MAINPROCESS) {
printf("===================================\n"
" Using Independent I/O with file set view to replace collective I/O \n"
"===================================\n");
}
/* Perform requested testing */
if (PerformTests() < 0) {
if (MAINPROCESS)
fprintf(stderr, "couldn't run tests\n");
TestShutdown();
MPI_Abort(MPI_COMM_WORLD, -1);
}
/* make sure all processes are finished before final report, cleanup
* and exit.
*/
MPI_Barrier(MPI_COMM_WORLD);
/* Display test summary, if requested */
if (MAINPROCESS && GetTestSummary())
TestSummary(stdout);
/* Clean up test files */
h5_delete_all_test_files(FILENAME, fapl);
H5Pclose(fapl);
nerrors += GetTestNumErrs();
/* Gather errors from all processes */
{
int temp;
MPI_Allreduce(&nerrors, &temp, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD);
nerrors = temp;
}
if (MAINPROCESS) { /* only process 0 reports */
printf("===================================\n");
if (nerrors)
printf("***Shape Same tests detected %d errors***\n", nerrors);
else
printf("Shape Same tests finished with no errors\n");
printf("===================================\n");
}
for (int i = 0; i < NFILENAME; i++) {
free(filenames[i]);
filenames[i] = NULL;
}
/* close HDF5 library */
H5close();
/* Release test infrastructure */
if (TestShutdown() < 0) {
if (MAINPROCESS)
fprintf(stderr, "couldn't shut down testing framework\n");
MPI_Abort(MPI_COMM_WORLD, -1);
}
MPI_Finalize();
/* cannot just return (nerrors) because exit code is limited to 1byte */
return (nerrors != 0);
}