## Check for non-standard extenstion quadmath.h CHECK_INCLUDE_FILES(quadmath.h C_HAVE_QUADMATH) if (${C_HAVE_QUADMATH}) set(HAVE_QUADMATH 1) else () set(HAVE_QUADMATH 0) endif () # # This file provides functions for HDF5 specific Fortran support. # #------------------------------------------------------------------------------- ENABLE_LANGUAGE (Fortran) # The provided CMake Fortran macros don't provide a general compile/run function # so this one is used. #----------------------------------------------------------------------------- macro (FORTRAN_RUN FUNCTION CODE RUN_RESULT_VAR1 COMPILE_RESULT_VAR RETURN) # # if (NOT DEFINED ${RUN_RESULT_VAR}) message (STATUS "Detecting Fortran ${FUNCTION}") if (CMAKE_REQUIRED_LIBRARIES) set (CHECK_FUNCTION_EXISTS_ADD_LIBRARIES "-DLINK_LIBRARIES:STRING=${CMAKE_REQUIRED_LIBRARIES}") else () set (CHECK_FUNCTION_EXISTS_ADD_LIBRARIES) endif () file (WRITE ${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/CMakeTmp/testFortranCompiler1.f90 "${CODE}" ) TRY_RUN (RUN_RESULT_VAR COMPILE_RESULT_VAR ${CMAKE_BINARY_DIR} ${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/CMakeTmp/testFortranCompiler1.f90 CMAKE_FLAGS "${CHECK_FUNCTION_EXISTS_ADD_LIBRARIES}" RUN_OUTPUT_VARIABLE OUTPUT ) set(${RETURN} ${OUTPUT}) #message ( "Test result1 ${RETURN} ") #message ( "Test result3 ${RESULT} ") #message ( "Test result2 ${CMAKE_MATCH_0} ") #message ( "Test result4 ${CMAKE_MATCH_1} ") #message ( "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ") #message ( "Test result2 ${COMPILE_RESULT_VAR} ") #message ( "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ") #message ( "Test result1 ${RUN_RESULT_VAR} ") #message ( "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ") if (${COMPILE_RESULT_VAR}) if (${RUN_RESULT_VAR} MATCHES 0) message (STATUS "Testing Fortran ${FUNCTION} - OK") file (APPEND ${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/CMakeOutput.log "Determining if the Fortran ${FUNCTION} exists passed with the following output:\n" "${OUTPUT}\n\n" ) else () message (STATUS "Testing Fortran ${FUNCTION} - Fail") file (APPEND ${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/CMakeError.log "Determining if the Fortran ${FUNCTION} exists failed with the following output:\n" "${OUTPUT}\n\n") endif () endif () # endif () endmacro () # Read source line beginning at the line matching Input:"START" and ending at the line matching Input:"END" macro (READ_SOURCE START END RETURN) file (READ "${HDF5_SOURCE_DIR}/m4/aclocal_fc.f90" CODE) string (REGEX MATCH "${START}[\\\t\\\n\\\r[].+]*${END}" CODE ${CODE}) set (RETURN "${CODE}") endmacro () #----------------------------------------------------------------------------- # Check to see C_LONG_DOUBLE is available READ_SOURCE("PROGRAM PROG_FC_HAVE_C_LONG_DOUBLE" "END PROGRAM PROG_FC_HAVE_C_LONG_DOUBLE" CODE) CHECK_FORTRAN_FEATURE(c_long_double "${CODE}" FORTRAN_HAVE_C_LONG_DOUBLE ) if (${FORTRAN_HAVE_C_LONG_DOUBLE}) set (FORTRAN_HAVE_C_LONG_DOUBLE 1) else () set (FORTRAN_HAVE_C_LONG_DOUBLE 0) endif () # Check to see C_LONG_DOUBLE is different from C_DOUBLE READ_SOURCE("MODULE type_mod" "END PROGRAM PROG_FC_C_LONG_DOUBLE_EQ_C_DOUBLE" CODE) CHECK_FORTRAN_FEATURE(c_long_double "${CODE}" FORTRAN_C_LONG_DOUBLE_IS_UNIQUE ) if (${FORTRAN_C_LONG_DOUBLE_IS_UNIQUE}) set (FORTRAN_C_LONG_DOUBLE_IS_UNIQUE 1) else () set (FORTRAN_C_LONG_DOUBLE_IS_UNIQUE 0) endif () ## Set the sizeof function for use later in the fortran tests if (FORTRAN_HAVE_STORAGE_SIZE) set (FC_SIZEOF_A "STORAGE_SIZE(a, c_size_t)/STORAGE_SIZE(c_char_'a',c_size_t)") set (FC_SIZEOF_B "STORAGE_SIZE(b, c_size_t)/STORAGE_SIZE(c_char_'a',c_size_t)") set (FC_SIZEOF_C "STORAGE_SIZE(c, c_size_t)/STORAGE_SIZE(c_char_'a',c_size_t)") elseif (FORTRAN_HAVE_C_SIZEOF) set (FC_SIZEOF_A "SIZEOF(a)") set (FC_SIZEOF_B "SIZEOF(b)") set (FC_SIZEOF_C "SIZEOF(c)") else () message (FATAL_ERROR "Fortran compiler requires either intrinsic functions SIZEOF or STORAGE_SIZE") endif () #----------------------------------------------------------------------------- # Determine the available KINDs for REALs and INTEGERs #----------------------------------------------------------------------------- READ_SOURCE ("PROGRAM FC_AVAIL_KINDS" "END PROGRAM FC_AVAIL_KINDS" CODE) FORTRAN_RUN ("REAL and INTEGER KINDs" "${CODE}" XX YY PROG_OUTPUT ) # dnl The output from the above program will be: # dnl -- LINE 1 -- valid integer kinds (comma seperated list) # dnl -- LINE 2 -- valid real kinds (comma seperated list) # dnl -- LINE 3 -- max decimal precision for reals # dnl -- LINE 4 -- number of valid integer kinds # dnl -- LINE 5 -- number of valid real kinds file (READ "${CMAKE_BINARY_DIR}/pac_fconftest.out" PROG_OUTPUT) # Convert the string to a list of strings by replacing the carriage return with a semicolon string (REGEX REPLACE "\n" ";" PROG_OUTPUT "${PROG_OUTPUT}") list (GET PROG_OUTPUT 0 pac_validIntKinds) list (GET PROG_OUTPUT 1 pac_validRealKinds) list (GET PROG_OUTPUT 2 H5_PAC_FC_MAX_REAL_PRECISION) # If the lists are empty then something went wrong. if (NOT pac_validIntKinds) message (FATAL_ERROR "Failed to find available INTEGER KINDs for Fortran") endif () if (NOT pac_validRealKinds) message (FATAL_ERROR "Failed to find available REAL KINDs for Fortran") endif () if (NOT H5_PAC_FC_MAX_REAL_PRECISION) message (FATAL_ERROR "No output from Fortran decimal precision program") endif () set (PAC_FC_ALL_INTEGER_KINDS "\{${pac_validIntKinds}\}") set (PAC_FC_ALL_REAL_KINDS "\{${pac_validRealKinds}\}") list (GET PROG_OUTPUT 3 NUM_IKIND) list (GET PROG_OUTPUT 4 NUM_RKIND) set (PAC_FORTRAN_NUM_INTEGER_KINDS "${NUM_IKIND}") set (H5CONFIG_F_NUM_IKIND "INTEGER, PARAMETER :: num_ikinds = ${NUM_IKIND}") set (H5CONFIG_F_IKIND "INTEGER, DIMENSION(1:num_ikinds) :: ikind = (/${pac_validIntKinds}/)") message (STATUS "....NUMBER OF INTEGER KINDS FOUND ${PAC_FORTRAN_NUM_INTEGER_KINDS}") message (STATUS "....REAL KINDS FOUND ${PAC_FC_ALL_REAL_KINDS}") message (STATUS "....INTEGER KINDS FOUND ${PAC_FC_ALL_REAL_KINDS}") message (STATUS "....MAX DECIMAL PRECISION ${H5_PAC_FC_MAX_REAL_PRECISION}") #----------------------------------------------------------------------------- # Determine the available KINDs for REALs and INTEGERs #----------------------------------------------------------------------------- # ********** # INTEGERS # ********** string (REGEX REPLACE "," ";" VAR "${pac_validIntKinds}") foreach (KIND ${VAR} ) set (PROG_SRC " PROGRAM main USE ISO_C_BINDING IMPLICIT NONE INTEGER (KIND=${KIND}) a WRITE(*,'(I0)') ${FC_SIZEOF_A} END " ) FORTRAN_RUN("INTEGER KIND SIZEOF" ${PROG_SRC} XX YY PROG_OUTPUT1 ) string (REGEX REPLACE "\n" "" PROG_OUTPUT1 "${PROG_OUTPUT1}") set (pack_int_sizeof "${pack_int_sizeof} ${PROG_OUTPUT1},") endforeach () if (pack_int_sizeof STREQUAL "") message (FATAL_ERROR "Failed to find available INTEGER KINDs for Fortran") endif () string (STRIP ${pack_int_sizeof} pack_int_sizeof) #Remove trailing comma string (REGEX REPLACE ",$" "" pack_int_sizeof "${pack_int_sizeof}") #Remove spaces string (REGEX REPLACE " " "" pack_int_sizeof "${pack_int_sizeof}") set (PAC_FC_ALL_INTEGER_KINDS_SIZEOF "\{${pack_int_sizeof}\}") message (STATUS "....FOUND SIZEOF for INTEGER KINDs ${PAC_FC_ALL_INTEGER_KINDS_SIZEOF}") # ********** # REALS # ********** string (REGEX REPLACE "," ";" VAR "${pac_validRealKinds}") #find the maximum kind of the real list (LENGTH VAR LEN_VAR) MATH (EXPR _LEN "${LEN_VAR}-1") list (GET VAR ${_LEN} max_real_fortran_kind) foreach (KIND ${VAR} ) set (PROG_SRC " PROGRAM main USE ISO_C_BINDING IMPLICIT NONE REAL (KIND=${KIND}) a WRITE(*,'(I0)') ${FC_SIZEOF_A} END " ) FORTRAN_RUN ("REAL KIND SIZEOF" ${PROG_SRC} XX YY PROG_OUTPUT1 ) string (REGEX REPLACE "\n" "" PROG_OUTPUT1 "${PROG_OUTPUT1}") set (pack_real_sizeof "${pack_real_sizeof} ${PROG_OUTPUT1},") endforeach () if (pack_int_sizeof STREQUAL "") message (FATAL_ERROR "Failed to find available REAL KINDs for Fortran") endif () string(STRIP ${pack_real_sizeof} pack_real_sizeof) #Remove trailing comma string (REGEX REPLACE ",$" "" pack_real_sizeof "${pack_real_sizeof}") #Remove spaces string (REGEX REPLACE " " "" pack_real_sizeof "${pack_real_sizeof}") set (H5CONFIG_F_RKIND_SIZEOF "INTEGER, DIMENSION(1:num_rkinds) :: rkind_sizeof = (/${pack_real_sizeof}/)") message (STATUS "....FOUND SIZEOF for REAL KINDs \{${pack_real_sizeof}\}") set (PAC_FC_ALL_REAL_KINDS_SIZEOF "\{${pack_real_sizeof}\}") #find the maximum kind of the real string (REGEX REPLACE "," ";" VAR "${pack_real_sizeof}") list (LENGTH VAR LEN_VAR) MATH (EXPR _LEN "${LEN_VAR}-1") list (GET VAR ${_LEN} max_real_fortran_sizeof) #----------------------------------------------------------------------------- # Find sizeof of native kinds #----------------------------------------------------------------------------- FORTRAN_RUN ("SIZEOF NATIVE KINDs" " PROGRAM main USE ISO_C_BINDING IMPLICIT NONE INTEGER a REAL b DOUBLE PRECISION c WRITE(*,*) ${FC_SIZEOF_A} WRITE(*,*) kind(a) WRITE(*,*) ${FC_SIZEOF_B} WRITE(*,*) kind(b) WRITE(*,*) ${FC_SIZEOF_C} WRITE(*,*) kind(c) END " XX YY PROG_OUTPUT ) # dnl The output from the above program will be: # dnl -- LINE 1 -- sizeof INTEGER # dnl -- LINE 2 -- kind of INTEGER # dnl -- LINE 3 -- sizeof REAL # dnl -- LINE 4 -- kind of REAL # dnl -- LINE 5 -- sizeof DOUBLE PRECISION # dnl -- LINE 6 -- kind of DOUBLE PRECISION # Convert the string to a list of strings by replacing the carriage return with a semicolon string (REGEX REPLACE "\n" ";" PROG_OUTPUT "${PROG_OUTPUT}") list (GET PROG_OUTPUT 0 PAC_FORTRAN_NATIVE_INTEGER_SIZEOF) list (GET PROG_OUTPUT 1 PAC_FORTRAN_NATIVE_INTEGER_KIND) list (GET PROG_OUTPUT 2 PAC_FORTRAN_NATIVE_REAL_SIZEOF) list (GET PROG_OUTPUT 3 PAC_FORTRAN_NATIVE_REAL_KIND) list (GET PROG_OUTPUT 4 PAC_FORTRAN_NATIVE_DOUBLE_SIZEOF) list (GET PROG_OUTPUT 5 PAC_FORTRAN_NATIVE_DOUBLE_KIND) if (NOT PAC_FORTRAN_NATIVE_INTEGER_SIZEOF) message (FATAL_ERROR "Failed to find SIZEOF NATIVE INTEGER KINDs for Fortran") endif () if (NOT PAC_FORTRAN_NATIVE_REAL_SIZEOF) message (FATAL_ERROR "Failed to find SIZEOF NATIVE REAL KINDs for Fortran") endif () if (NOT PAC_FORTRAN_NATIVE_DOUBLE_SIZEOF) message (FATAL_ERROR "Failed to find SIZEOF NATIVE DOUBLE KINDs for Fortran") endif () if (NOT PAC_FORTRAN_NATIVE_INTEGER_KIND) message (FATAL_ERROR "Failed to find KIND of NATIVE INTEGER for Fortran") endif () if (NOT PAC_FORTRAN_NATIVE_REAL_KIND) message (FATAL_ERROR "Failed to find KIND of NATIVE REAL for Fortran") endif () if (NOT PAC_FORTRAN_NATIVE_DOUBLE_KIND) message (FATAL_ERROR "Failed to find KIND of NATIVE DOUBLE for Fortran") endif () set (FORTRAN_SIZEOF_LONG_DOUBLE ${${HDF_PREFIX}_SIZEOF_LONG_DOUBLE}) #set (H5_SIZEOF_LONG_DOUBLE ${${HDF_PREFIX}_SIZEOF_LONG_DOUBLE}) # remove the invalid kind from the list if (NOT(${SIZEOF___FLOAT128} EQUAL 0)) if (NOT(${SIZEOF___FLOAT128} EQUAL ${max_real_fortran_sizeof}) AND NOT(${FORTRAN_SIZEOF_LONG_DOUBLE} EQUAL ${max_real_fortran_sizeof}) # account for the fact that the C compiler can have 16-byte __float128 and the fortran compiler only has 8-byte doubles, # so we don't want to remove the 8-byte fortran doubles. AND NOT(${PAC_FORTRAN_NATIVE_DOUBLE_SIZEOF} EQUAL ${max_real_fortran_sizeof})) message (WARNING " Fortran REAL(KIND=${max_real_fortran_kind}) is $max_real_fortran_sizeof Bytes, but no corresponding C float type exists of that size !!! Fortran interfaces will not be generated for REAL(KIND=${max_real_fortran_kind}) !!!") string (REGEX REPLACE ",[0-9]+}" "}" PAC_FC_ALL_REAL_KINDS ${PAC_FC_ALL_REAL_KINDS}) string (REGEX REPLACE ",[0-9]+}" "}" PAC_FC_ALL_REAL_KINDS_SIZEOF ${PAC_FC_ALL_REAL_KINDS_SIZEOF}) MATH (EXPR NUM_RKIND "${NUM_RKIND} - 1") endif () endif () set (H5CONFIG_F_NUM_RKIND "INTEGER, PARAMETER :: num_rkinds = ${NUM_RKIND}") string (REGEX REPLACE "{" "" OUT_VAR ${PAC_FC_ALL_REAL_KINDS}) string (REGEX REPLACE "}" "" OUT_VAR ${OUT_VAR}) set (H5CONFIG_F_RKIND "INTEGER, DIMENSION(1:num_rkinds) :: rkind = (/${OUT_VAR}/)") string (REGEX REPLACE "{" "" OUT_VAR ${PAC_FC_ALL_REAL_KINDS_SIZEOF}) string (REGEX REPLACE "}" "" OUT_VAR ${OUT_VAR}) set (H5CONFIG_F_RKIND_SIZEOF "INTEGER, DIMENSION(1:num_rkinds) :: rkind_sizeof = (/${OUT_VAR}/)") ENABLE_LANGUAGE (C) #----------------------------------------------------------------------------- # The provided CMake C macros don't provide a general compile/run function # so this one is used. #----------------------------------------------------------------------------- macro (C_RUN FUNCTION CODE RETURN) message (STATUS "Detecting C ${FUNCTION}") if (CMAKE_REQUIRED_LIBRARIES) set (CHECK_FUNCTION_EXISTS_ADD_LIBRARIES "-DLINK_LIBRARIES:STRING=${CMAKE_REQUIRED_LIBRARIES}") else () set (CHECK_FUNCTION_EXISTS_ADD_LIBRARIES) endif () file (WRITE ${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/CMakeTmp/testCCompiler1.c ${CODE} ) TRY_RUN (RUN_RESULT_VAR COMPILE_RESULT_VAR ${CMAKE_BINARY_DIR} ${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/CMakeTmp/testCCompiler1.c CMAKE_FLAGS "${CHECK_FUNCTION_EXISTS_ADD_LIBRARIES}" RUN_OUTPUT_VARIABLE OUTPUT ) set (${RETURN} ${OUTPUT}) #message ( "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ") #message ( "Test COMPILE_RESULT_VAR ${COMPILE_RESULT_VAR} ") #message ( "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ") #message ( "Test RUN_RESULT_VAR ${RUN_RESULT_VAR} ") #message ( "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ") if (${COMPILE_RESULT_VAR}) if (${RUN_RESULT_VAR} MATCHES 1) set (${RUN_RESULT_VAR} 1 CACHE INTERNAL "Have C function ${FUNCTION}") message (STATUS "Testing C ${FUNCTION} - OK") file (APPEND ${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/CMakeOutput.log "Determining if the C ${FUNCTION} exists passed with the following output:\n" "${OUTPUT}\n\n" ) else () message (STATUS "Testing C ${FUNCTION} - Fail") set (${RUN_RESULT_VAR} 0 CACHE INTERNAL "Have C function ${FUNCTION}") file (APPEND ${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/CMakeError.log "Determining if the C ${FUNCTION} exists failed with the following output:\n" "${OUTPUT}\n\n") endif () else () message (FATAL_ERROR "Compilation of C ${FUNCTION} - Failed") endif () endmacro () set (PROG_SRC " #include #include #define CHECK_FLOAT128 ${SIZEOF___FLOAT128} #if CHECK_FLOAT128!=0 # if ${HAVE_QUADMATH}!=0 #include # endif # ifdef FLT128_DIG #define C_FLT128_DIG FLT128_DIG # else #define C_FLT128_DIG 0 # endif #else #define C_FLT128_DIG 0 #endif #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define C_LDBL_DIG DECIMAL_DIG #else #define C_LDBL_DIG LDBL_DIG #endif int main() { printf(\"%d\\\\n%d\\\\n\", C_LDBL_DIG, C_FLT128_DIG)\\\; return 1\\\; } " ) C_RUN ("maximum decimal precision for C" ${PROG_SRC} PROG_OUTPUT) # dnl The output from the above program will be: # dnl -- LINE 1 -- long double decimal precision # dnl -- LINE 2 -- __float128 decimal precision # Convert the string to a list of strings by replacing the carriage return with a semicolon string (REGEX REPLACE "\n" ";" PROG_OUTPUT "${PROG_OUTPUT}") list (GET PROG_OUTPUT 0 LDBL_DIG) list (GET PROG_OUTPUT 1 FLT128_DIG) if (SIZEOF___FLOAT128 EQUAL 0 OR FLT128_DIG EQUAL 0) set (H5_HAVE_FLOAT128 0) set (SIZEOF___FLOAT128 0) set (H5_PAC_C_MAX_REAL_PRECISION ${LDBL_DIG}) else () set(H5_PAC_C_MAX_REAL_PRECISION ${FLT128_DIG}) endif () # Setting definition if there is a 16 byte fortran integer string (FIND ${PAC_FC_ALL_INTEGER_KINDS_SIZEOF} "16" pos) if (${pos} EQUAL -1) set (HAVE_Fortran_INTEGER_SIZEOF_16 0) else () set (HAVE_Fortran_INTEGER_SIZEOF_16 1) endif ()