[svn-r10180] Purpose: New way to do conversion test from floating-point to integer.

Description: This is the 3rd step of change conversion test.  This checkin is
only for conversion from floating-point to integer.

Solution:  The source buffer is filled in with normalized and denormalized
floating-point values.  For the normalized values, it starts from FLT(DBL, or
LDBL)_MIN, multiplied by 10(10000 for double, 100000000 for long double) for
the next value, until reaches to FLT_MAX.  For denormalized values, the
exponent part is always 0.  Mantissa part starts with 000...001, 000...011,
000...111, until reaches to 111...111.  The same is with negative values.

Platforms tested: h5committest and fuss.
This commit is contained in:
Raymond Lu 2005-03-10 16:49:28 -05:00
parent 418968677b
commit 4f3d64fd3d

View File

@ -118,7 +118,7 @@ static int num_opaque_conversions_g = 0;
#define aligned_malloc(Z) ((void*)((char*)HDmalloc(ALIGNMENT+Z)+ALIGNMENT))
#define aligned_free(M) HDfree((char*)(M)-ALIGNMENT)
/* Initialize source buffer of integer for integer->integer conversion test.
/* Initialize source buffer of integer for integer->integer and integer->floating-point conversion test.
* This algorithm is mainly to avoid any casting and comparison between source and destination types
* for compiler, because we're testing conversions. */
#define INIT_INTEGER(TYPE, SRC_MAX, SRC_MIN, SRC_SIZE, DST_SIZE, SRC_PREC, BUF, SAVED, NELMTS) \
@ -169,6 +169,129 @@ static int num_opaque_conversions_g = 0;
} \
}
/* Change a buffer's byte order from big endian to little endian. It's mainly for library's
* bit operations which handle only little endian order.
*/
#define CHANGE_ORDER(EBUF, EORDER, ESIZE) \
{ \
if (H5T_ORDER_BE==EORDER) { \
int m; \
unsigned char mediator; \
size_t half_size = ESIZE/2; \
for (m=0; m<half_size; m++) { \
mediator = EBUF[ESIZE-(m+1)]; \
EBUF[ESIZE-(m+1)] = EBUF[m]; \
EBUF[m] = mediator; \
} \
} \
}
/* Allocate buffer and initialize it with floating-point normalized and denormalized values.
* It's for conversion test of floating-point as the source.
*/
#define INIT_FP(TYPE, SRC_MAX, SRC_MIN, SRC_MAX_10_EXP, SRC_MIN_10_EXP, SRC_MANT_DIG, SRC_SIZE, \
SRC_PREC, SRC_ORDR, DST_SIZE, BUF, SAVED, NELMTS) \
{ \
unsigned char *buf_p, *saved_p; \
unsigned char *tmp1, *tmp2; \
size_t num_norm, factor, n; \
TYPE value1, value2; \
TYPE multiply; \
\
/*Determine the number of normalized values and increment pace. The values start from \
*minimal normalized value and are multiplied by MULTIPLY each step until reach to maximal \
*normalized value.*/ \
if(SRC_MAX_10_EXP<100) { /*for float*/ \
factor = 0; \
multiply = 10; \
} else if(SRC_MAX_10_EXP>=100 && SRC_MAX_10_EXP<400) { /*for double*/ \
factor = 2; \
multiply = 10000; \
} else { /*for long double*/ \
factor = 3; \
multiply = 100000000; \
} \
\
/*The number of values if multiplied by 10 for each step.*/ \
num_norm = (SRC_MAX_10_EXP - SRC_MIN_10_EXP); \
/*Reduce the number of values by 2^factor. MULTIPLY=10^(2^factor). Using this algorithm \
*instead of arithmatic operation to avoid any conversion*/ \
num_norm >>= factor; \
\
/*Total number of values*/ \
NELMTS = 2 * /*both positive and negative*/ \
(num_norm + /*number of normalized values*/ \
1 + /*maximal normalized value*/ \
SRC_MANT_DIG - 1); /*number of denormalized values*/ \
\
/* Allocate buffers */ \
BUF = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
SAVED = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
tmp1 = (unsigned char*)malloc(SRC_SIZE); \
tmp2 = (unsigned char*)malloc(SRC_SIZE); \
\
buf_p = BUF; \
saved_p = SAVED; \
\
/*Normalized values*/ \
value1 = SRC_MIN; \
value2 = -SRC_MIN; \
for(n=0; n<num_norm; n++) { \
if(value1<SRC_MAX) { /*positive*/ \
memcpy(buf_p, &value1, SRC_SIZE); \
memcpy(saved_p, &value1, SRC_SIZE); \
value1 *= multiply; \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
if(value2>-SRC_MAX) { /*negative*/ \
memcpy(buf_p, &value2, SRC_SIZE); \
memcpy(saved_p, &value2, SRC_SIZE); \
value2 *= multiply; \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
} \
\
value1 = SRC_MAX; /*maximal value*/ \
memcpy(buf_p, &value1, SRC_SIZE); \
memcpy(saved_p, &value1, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
\
value2 = -SRC_MAX; /*negative value*/ \
memcpy(buf_p, &value2, SRC_SIZE); \
memcpy(saved_p, &value2, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
\
/*Denormalized values. Exponent is 0. Let mantissa starts from 00000001, 00000011, \
*00000111,..., until 11111111.*/ \
memset(tmp1, 0, SRC_SIZE); \
memset(tmp2, 0, SRC_SIZE); \
H5T_bit_set (tmp2, SRC_PREC-1, 1, TRUE); /*the negative value*/ \
for(n=0; n<SRC_MANT_DIG-1; n++) { \
H5T_bit_set (tmp1, n, 1, TRUE); /*turn on 1 bit each time*/ \
CHANGE_ORDER(tmp1, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \
memcpy(buf_p, tmp1, SRC_SIZE); \
memcpy(saved_p, tmp1, SRC_SIZE); \
CHANGE_ORDER(tmp1, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
\
/*negative values*/ \
H5T_bit_set (tmp2, n, 1, TRUE); \
CHANGE_ORDER(tmp2, SRC_ORDR, SRC_SIZE); \
memcpy(buf_p, tmp2, SRC_SIZE); \
memcpy(saved_p, tmp2, SRC_SIZE); \
CHANGE_ORDER(tmp2, SRC_ORDR, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
free(tmp1); \
free(tmp2); \
}
void some_dummy_func(float x);
static hbool_t overflows(unsigned char *origin_bits, hid_t src_id, size_t dst_num_bits);
static int my_isnan(dtype_t type, void *val);
@ -4653,9 +4776,9 @@ test_conv_int_1(const char *name, hid_t src, hid_t dst)
} else if(src_type == INT_ULONG) {
INIT_INTEGER(unsigned long, ULONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_LLONG) {
INIT_INTEGER(long long, LLONG_MAX, LLONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
INIT_INTEGER(long_long, LLONG_MAX, LLONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_ULLONG) {
INIT_INTEGER(unsigned long long, ULLONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
INIT_INTEGER(unsigned long_long, ULLONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else
goto error;
@ -6295,9 +6418,9 @@ test_conv_int_float(const char *name, hid_t src, hid_t dst)
goto error;
}
/* Allocate and initialize the source buffer through macro INIT_INTEGER if the source is integer.
* The BUF will be used for the conversion while the SAVED buffer will be
* used for the comparison later.
/* Allocate and initialize the source buffer through macro INIT_INTEGER if the source is integer,
* INIT_FP if floating-point. The BUF will be used for the conversion while the SAVED buffer
* will be used for the comparison later.
*/
if(src_type == INT_SCHAR) {
INIT_INTEGER(signed char, SCHAR_MAX, SCHAR_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
@ -6316,50 +6439,20 @@ test_conv_int_float(const char *name, hid_t src, hid_t dst)
} else if(src_type == INT_ULONG) {
INIT_INTEGER(unsigned long, ULONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_LLONG) {
INIT_INTEGER(long long, LLONG_MAX, LLONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
INIT_INTEGER(long_long, LLONG_MAX, LLONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_ULLONG) {
INIT_INTEGER(unsigned long long, ULLONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else { /* source is floating number. Use the old way to fill in random values. */
/* Reduce the number of elements if the source is "long double"
* because it takes too long.
*/
if(src_type == FLT_LDOUBLE)
nelmts = NTESTELEM / 10;
else
nelmts = NTESTELEM;
/* Allocate buffers */
buf = (unsigned char*)aligned_malloc(nelmts*MAX(src_size, dst_size));
saved = (unsigned char*)aligned_malloc(nelmts*MAX(src_size, dst_size));
/*
* Initialize the source buffers to random bits. The `buf' buffer
* will be used for the conversion while the `saved' buffer will be
* used for the comparison later.
*/
for (j=0; j<nelmts*src_size; j++) {
buf[j] = saved[j] = HDrand();
/* For Intel machines, the size of "long double" is 12 byte, precision
* is 80 bits, mantissa size is 64 bits, and no normalization. So the
* most significant bit of mantissa is always 1 unless the floating number
* has special value. This step tries to compensate this case by turning
* on the most significant bit of mantissa if the mantissa bits aren't
* all 0s. It also tries to decrease exponent by one if the exponent
* happens to be set all 1s(NaN).
*/
if(endian==H5T_ORDER_LE && src_type==FLT_LDOUBLE && src_size==12) {
if(j%12==7) {
buf[j] |= 0x80;
saved[j] |= 0x80;
}
if(j%12==9 && (buf[j]==0xff || buf[j]==0x7f) && buf[j-1]==0xff) {
buf[j] -= 1;
saved[j] -= 1;
}
}
}
}
INIT_INTEGER(unsigned long_long, ULLONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == FLT_FLOAT) {
INIT_FP(float, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP, FLT_MANT_DIG,
src_size, src_nbits, endian, dst_size, buf, saved, nelmts);
} else if(src_type == FLT_DOUBLE) {
INIT_FP(double, DBL_MAX, DBL_MIN, DBL_MAX_10_EXP, DBL_MIN_10_EXP, DBL_MANT_DIG,
src_size, src_nbits, endian, dst_size, buf, saved, nelmts);
} else if(src_type == FLT_LDOUBLE) {
INIT_FP(long double, LDBL_MAX, LDBL_MIN, LDBL_MAX_10_EXP, LDBL_MIN_10_EXP, LDBL_MANT_DIG,
src_size, src_nbits, endian, dst_size, buf, saved, nelmts);
} else
goto error;
/* The tests */
for (i=0; i<ntests; i++) {
@ -7465,7 +7558,7 @@ run_float_int_conv(const char *name)
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_float(name, H5T_NATIVE_DOUBLE, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_float(name, H5T_NATIVE_DOUBLE, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_float(name, H5T_NATIVE_FLOAT, H5T_NATIVE_SHORT);