hdf5/testpar/t_dset.c

2501 lines
86 KiB
C
Raw Normal View History

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the files COPYING and Copyright.html. COPYING can be found at the root *
* of the source code distribution tree; Copyright.html can be found at the *
* root level of an installed copy of the electronic HDF5 document set and *
* is linked from the top-level documents page. It can also be found at *
* http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have *
* access to either file, you may request a copy from help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Parallel tests for datasets
*/
/*
* Example of using the parallel HDF5 library to access datasets.
*
* This program contains three major parts. Part 1 tests fixed dimension
* datasets, for both independent and collective transfer modes.
* Part 2 tests extendible datasets, for independent transfer mode
* only.
* Part 3 tests extendible datasets, for collective transfer mode
* only.
*/
#include "testphdf5.h"
/*
* The following are various utility routines used by the tests.
*/
/*
* Setup the dimensions of the hyperslab.
* Two modes--by rows or by columns.
* Assume dimension rank is 2.
* BYROW divide into slabs of rows
* BYCOL divide into blocks of columns
* ZROW same as BYROW except process 0 gets 0 rows
* ZCOL same as BYCOL except process 0 gets 0 columns
*/
static void
slab_set(int mpi_rank, int mpi_size, hsize_t start[], hsize_t count[],
hsize_t stride[], hsize_t block[], int mode)
{
switch (mode){
case BYROW:
/* Each process takes a slabs of rows. */
block[0] = dim0/mpi_size;
block[1] = dim1;
stride[0] = block[0];
stride[1] = block[1];
count[0] = 1;
count[1] = 1;
start[0] = mpi_rank*block[0];
start[1] = 0;
if(VERBOSE_MED) printf("slab_set BYROW\n");
break;
case BYCOL:
/* Each process takes a block of columns. */
block[0] = dim0;
block[1] = dim1/mpi_size;
stride[0] = block[0];
stride[1] = block[1];
count[0] = 1;
count[1] = 1;
start[0] = 0;
start[1] = mpi_rank*block[1];
if(VERBOSE_MED) printf("slab_set BYCOL\n");
break;
case ZROW:
/* Similar to BYROW except process 0 gets 0 row */
block[0] = (mpi_rank ? dim0/mpi_size : 0);
block[1] = dim1;
stride[0] = (mpi_rank ? block[0] : 1); /* avoid setting stride to 0 */
stride[1] = block[1];
count[0] = 1;
count[1] = 1;
start[0] = (mpi_rank? mpi_rank*block[0] : 0);
start[1] = 0;
if(VERBOSE_MED) printf("slab_set ZROW\n");
break;
case ZCOL:
/* Similar to BYCOL except process 0 gets 0 column */
block[0] = dim0;
block[1] = (mpi_rank ? dim1/mpi_size : 0);
stride[0] = block[0];
stride[1] = (mpi_rank ? block[1] : 1); /* avoid setting stride to 0 */
count[0] = 1;
count[1] = 1;
start[0] = 0;
start[1] = (mpi_rank? mpi_rank*block[1] : 0);
if(VERBOSE_MED) printf("slab_set ZCOL\n");
break;
default:
/* Unknown mode. Set it to cover the whole dataset. */
printf("unknown slab_set mode (%d)\n", mode);
block[0] = dim0;
block[1] = dim1;
stride[0] = block[0];
stride[1] = block[1];
count[0] = 1;
count[1] = 1;
start[0] = 0;
start[1] = 0;
if(VERBOSE_MED) printf("slab_set wholeset\n");
break;
}
if(VERBOSE_MED){
printf("start[]=(%lu,%lu), count[]=(%lu,%lu), stride[]=(%lu,%lu), block[]=(%lu,%lu), total datapoints=%lu\n",
(unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], (unsigned long)count[1],
(unsigned long)stride[0], (unsigned long)stride[1], (unsigned long)block[0], (unsigned long)block[1],
(unsigned long)(block[0]*block[1]*count[0]*count[1]));
}
}
/*
* Fill the dataset with trivial data for testing.
* Assume dimension rank is 2 and data is stored contiguous.
*/
static void
dataset_fill(hsize_t start[], hsize_t block[], DATATYPE * dataset)
{
DATATYPE *dataptr = dataset;
hsize_t i, j;
/* put some trivial data in the data_array */
for (i=0; i < block[0]; i++){
for (j=0; j < block[1]; j++){
*dataptr = (DATATYPE)((i+start[0])*100 + (j+start[1]+1));
dataptr++;
}
}
}
/*
* Print the content of the dataset.
*/
static void
dataset_print(hsize_t start[], hsize_t block[], DATATYPE * dataset)
{
DATATYPE *dataptr = dataset;
hsize_t i, j;
/* print the column heading */
printf("%-8s", "Cols:");
for (j=0; j < block[1]; j++){
printf("%3lu ", (unsigned long)(start[1]+j));
}
printf("\n");
/* print the slab data */
for (i=0; i < block[0]; i++){
printf("Row %2lu: ", (unsigned long)(i+start[0]));
for (j=0; j < block[1]; j++){
printf("%03d ", *dataptr++);
}
printf("\n");
}
}
/*
* Print the content of the dataset.
*/
int
dataset_vrfy(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], DATATYPE *dataset, DATATYPE *original)
{
hsize_t i, j;
int vrfyerrs;
/* print it if VERBOSE_MED */
if(VERBOSE_MED) {
printf("dataset_vrfy dumping:::\n");
printf("start(%lu, %lu), count(%lu, %lu), stride(%lu, %lu), block(%lu, %lu)\n",
(unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], (unsigned long)count[1],
(unsigned long)stride[0], (unsigned long)stride[1], (unsigned long)block[0], (unsigned long)block[1]);
printf("original values:\n");
dataset_print(start, block, original);
printf("compared values:\n");
dataset_print(start, block, dataset);
}
vrfyerrs = 0;
for (i=0; i < block[0]; i++){
for (j=0; j < block[1]; j++){
if(*dataset != *original){
if(vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED){
printf("Dataset Verify failed at [%lu][%lu](row %lu, col %lu): expect %d, got %d\n",
(unsigned long)i, (unsigned long)j,
(unsigned long)(i+start[0]), (unsigned long)(j+start[1]),
*(original), *(dataset));
}
dataset++;
original++;
}
}
}
if(vrfyerrs > MAX_ERR_REPORT && !VERBOSE_MED)
printf("[more errors ...]\n");
if(vrfyerrs)
printf("%d errors found in dataset_vrfy\n", vrfyerrs);
return(vrfyerrs);
}
/*
* Part 1.a--Independent read/write for fixed dimension datasets.
*/
/*
* Example of using the parallel HDF5 library to create two datasets
* in one HDF5 files with parallel MPIO access support.
* The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1.
* Each process controls only a slab of size dim0 x dim1 within each
* dataset.
*/
void
dataset_writeInd(void)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t sid; /* Dataspace ID */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2; /* Dataset ID */
hbool_t use_gpfs = FALSE; /* Use GPFS hints */
hsize_t dims[RANK]; /* dataset dim sizes */
DATATYPE *data_array1 = NULL; /* data buffer */
const char *filename;
hsize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
hsize_t block[RANK]; /* for hyperslab setting */
herr_t ret; /* Generic return value */
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
filename = GetTestParameters();
if(VERBOSE_MED)
printf("Independent write test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* allocate memory for data buffer */
data_array1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE));
VRFY((data_array1 != NULL), "data_array1 malloc succeeded");
/* ----------------------------------------
* CREATE AN HDF5 FILE WITH PARALLEL ACCESS
* ---------------------------------------*/
/* setup file access template */
acc_tpl = create_faccess_plist(comm, info, facc_type, use_gpfs);
VRFY((acc_tpl >= 0), "");
/* create the file collectively */
fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
VRFY((fid >= 0), "H5Fcreate succeeded");
/* Release file-access template */
ret = H5Pclose(acc_tpl);
VRFY((ret >= 0), "");
/* ---------------------------------------------
* Define the dimensions of the overall datasets
* and the slabs local to the MPI process.
* ------------------------------------------- */
/* setup dimensionality object */
dims[0] = dim0;
dims[1] = dim1;
sid = H5Screate_simple (RANK, dims, NULL);
VRFY((sid >= 0), "H5Screate_simple succeeded");
/* create a dataset collectively */
dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid,
H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
VRFY((dataset1 >= 0), "H5Dcreate2 succeeded");
/* create another dataset collectively */
dataset2 = H5Dcreate2(fid, DATASETNAME2, H5T_NATIVE_INT, sid,
H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
VRFY((dataset2 >= 0), "H5Dcreate2 succeeded");
/*
* To test the independent orders of writes between processes, all
* even number processes write to dataset1 first, then dataset2.
* All odd number processes write to dataset2 first, then dataset1.
*/
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW);
/* put some trivial data in the data_array */
dataset_fill(start, block, data_array1);
MESG("data_array initialized");
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* write data independently */
ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret >= 0), "H5Dwrite dataset1 succeeded");
/* write data independently */
ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret >= 0), "H5Dwrite dataset2 succeeded");
/* setup dimensions again to write with zero rows for process 0 */
if(VERBOSE_MED)
printf("writeInd by some with zero row\n");
slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW);
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* need to make mem_dataspace to match for process 0 */
if(MAINPROCESS){
ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded");
}
MESG("writeInd by some with zero row");
if((mpi_rank/2)*2 != mpi_rank){
ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret >= 0), "H5Dwrite dataset1 by ZROW succeeded");
}
#ifdef BARRIER_CHECKS
MPI_Barrier(MPI_COMM_WORLD);
#endif /* BARRIER_CHECKS */
/* release dataspace ID */
H5Sclose(file_dataspace);
/* close dataset collectively */
ret = H5Dclose(dataset1);
VRFY((ret >= 0), "H5Dclose1 succeeded");
ret = H5Dclose(dataset2);
VRFY((ret >= 0), "H5Dclose2 succeeded");
/* release all IDs created */
H5Sclose(sid);
/* close the file collectively */
H5Fclose(fid);
/* release data buffers */
if(data_array1) free(data_array1);
}
/* Example of using the parallel HDF5 library to read a dataset */
void
dataset_readInd(void)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2; /* Dataset ID */
hbool_t use_gpfs = FALSE; /* Use GPFS hints */
DATATYPE *data_array1 = NULL; /* data buffer */
DATATYPE *data_origin1 = NULL; /* expected data buffer */
const char *filename;
hsize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
hsize_t block[RANK]; /* for hyperslab setting */
herr_t ret; /* Generic return value */
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
filename = GetTestParameters();
if(VERBOSE_MED)
printf("Independent read test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* allocate memory for data buffer */
data_array1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE));
VRFY((data_array1 != NULL), "data_array1 malloc succeeded");
data_origin1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE));
VRFY((data_origin1 != NULL), "data_origin1 malloc succeeded");
/* setup file access template */
acc_tpl = create_faccess_plist(comm, info, facc_type, use_gpfs);
VRFY((acc_tpl >= 0), "");
/* open the file collectively */
fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl);
VRFY((fid >= 0), "");
/* Release file-access template */
ret = H5Pclose(acc_tpl);
VRFY((ret >= 0), "");
/* open the dataset1 collectively */
dataset1 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT);
VRFY((dataset1 >= 0), "");
/* open another dataset collectively */
dataset2 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT);
VRFY((dataset2 >= 0), "");
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace >= 0), "");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* fill dataset with test data */
dataset_fill(start, block, data_origin1);
/* read data independently */
ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret >= 0), "");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1);
if(ret) nerrors++;
/* read data independently */
ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret >= 0), "");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1);
if(ret) nerrors++;
/* close dataset collectively */
ret = H5Dclose(dataset1);
VRFY((ret >= 0), "");
ret = H5Dclose(dataset2);
VRFY((ret >= 0), "");
/* release all IDs created */
H5Sclose(file_dataspace);
/* close the file collectively */
H5Fclose(fid);
/* release data buffers */
if(data_array1) free(data_array1);
if(data_origin1) free(data_origin1);
}
/*
* Part 1.b--Collective read/write for fixed dimension datasets.
*/
/*
* Example of using the parallel HDF5 library to create two datasets
* in one HDF5 file with collective parallel access support.
* The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1.
* Each process controls only a slab of size dim0 x dim1 within each
* dataset. [Note: not so yet. Datasets are of sizes dim0xdim1 and
* each process controls a hyperslab within.]
*/
void
dataset_writeAll(void)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t xfer_plist; /* Dataset transfer properties list */
hid_t sid; /* Dataspace ID */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2, dataset3, dataset4; /* Dataset ID */
hid_t datatype; /* Datatype ID */
hbool_t use_gpfs = FALSE; /* Use GPFS hints */
hsize_t dims[RANK]; /* dataset dim sizes */
DATATYPE *data_array1 = NULL; /* data buffer */
const char *filename;
hsize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
hsize_t block[RANK]; /* for hyperslab setting */
herr_t ret; /* Generic return value */
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
filename = GetTestParameters();
if(VERBOSE_MED)
printf("Collective write test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* allocate memory for data buffer */
data_array1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE));
VRFY((data_array1 != NULL), "data_array1 malloc succeeded");
/* -------------------
* START AN HDF5 FILE
* -------------------*/
/* setup file access template */
acc_tpl = create_faccess_plist(comm, info, facc_type, use_gpfs);
VRFY((acc_tpl >= 0), "");
/* create the file collectively */
fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
VRFY((fid >= 0), "H5Fcreate succeeded");
/* Release file-access template */
ret = H5Pclose(acc_tpl);
VRFY((ret >= 0), "");
/* --------------------------
* Define the dimensions of the overall datasets
* and create the dataset
* ------------------------- */
/* setup 2-D dimensionality object */
dims[0] = dim0;
dims[1] = dim1;
sid = H5Screate_simple (RANK, dims, NULL);
VRFY((sid >= 0), "H5Screate_simple succeeded");
/* create a dataset collectively */
dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
VRFY((dataset1 >= 0), "H5Dcreate2 succeeded");
/* create another dataset collectively */
datatype = H5Tcopy(H5T_NATIVE_INT);
ret = H5Tset_order(datatype, H5T_ORDER_LE);
VRFY((ret >= 0), "H5Tset_order succeeded");
dataset2 = H5Dcreate2(fid, DATASETNAME2, datatype, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
VRFY((dataset2 >= 0), "H5Dcreate2 2 succeeded");
/* create a third dataset collectively */
dataset3 = H5Dcreate2(fid, DATASETNAME3, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
VRFY((dataset3 >= 0), "H5Dcreate2 succeeded");
/* release 2-D space ID created */
H5Sclose(sid);
/* setup scalar dimensionality object */
sid = H5Screate(H5S_SCALAR);
VRFY((sid >= 0), "H5Screate succeeded");
/* create a fourth dataset collectively */
dataset4 = H5Dcreate2(fid, DATASETNAME4, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
VRFY((dataset4 >= 0), "H5Dcreate2 succeeded");
/* release scalar space ID created */
H5Sclose(sid);
/*
* Set up dimensions of the slab this process accesses.
*/
/* Dataset1: each process takes a block of rows. */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* fill the local slab with some trivial data */
dataset_fill(start, block, data_array1);
MESG("data_array initialized");
if(VERBOSE_MED){
MESG("data_array created");
dataset_print(start, block, data_array1);
}
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded");
ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
if(dxfer_coll_type == DXFER_INDEPENDENT_IO) {
ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO);
VRFY((ret>= 0),"set independent IO collectively succeeded");
}
/* write data collectively */
MESG("writeAll by Row");
ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dwrite dataset1 succeeded");
/* setup dimensions again to writeAll with zero rows for process 0 */
if(VERBOSE_MED)
printf("writeAll by some with zero row\n");
slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW);
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* need to make mem_dataspace to match for process 0 */
if(MAINPROCESS){
ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded");
}
MESG("writeAll by some with zero row");
ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dwrite dataset1 by ZROW succeeded");
/* release all temporary handles. */
/* Could have used them for dataset2 but it is cleaner */
/* to create them again.*/
H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
H5Pclose(xfer_plist);
/* Dataset2: each process takes a block of columns. */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL);
/* put some trivial data in the data_array */
dataset_fill(start, block, data_array1);
MESG("data_array initialized");
if(VERBOSE_MED){
MESG("data_array created");
dataset_print(start, block, data_array1);
}
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* fill the local slab with some trivial data */
dataset_fill(start, block, data_array1);
MESG("data_array initialized");
if(VERBOSE_MED){
MESG("data_array created");
dataset_print(start, block, data_array1);
}
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist >= 0), "");
ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pcreate xfer succeeded");
if(dxfer_coll_type == DXFER_INDEPENDENT_IO) {
ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO);
VRFY((ret>= 0),"set independent IO collectively succeeded");
}
/* write data independently */
ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dwrite dataset2 succeeded");
/* setup dimensions again to writeAll with zero columns for process 0 */
if(VERBOSE_MED)
printf("writeAll by some with zero col\n");
slab_set(mpi_rank, mpi_size, start, count, stride, block, ZCOL);
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* need to make mem_dataspace to match for process 0 */
if(MAINPROCESS){
ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded");
}
MESG("writeAll by some with zero col");
ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dwrite dataset1 by ZCOL succeeded");
/* release all temporary handles. */
/* Could have used them for dataset3 but it is cleaner */
/* to create them again.*/
H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
H5Pclose(xfer_plist);
/* Dataset3: each process takes a block of rows, except process zero uses "none" selection. */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset3);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
if(MAINPROCESS) {
ret = H5Sselect_none(file_dataspace);
VRFY((ret >= 0), "H5Sselect_none file_dataspace succeeded");
} /* end if */
else {
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sselect_hyperslab succeeded");
} /* end else */
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
if(MAINPROCESS) {
ret = H5Sselect_none(mem_dataspace);
VRFY((ret >= 0), "H5Sselect_none mem_dataspace succeeded");
} /* end if */
/* fill the local slab with some trivial data */
dataset_fill(start, block, data_array1);
MESG("data_array initialized");
if(VERBOSE_MED) {
MESG("data_array created");
dataset_print(start, block, data_array1);
} /* end if */
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist >= 0), "");
ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pcreate xfer succeeded");
if(dxfer_coll_type == DXFER_INDEPENDENT_IO) {
ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO);
VRFY((ret>= 0),"set independent IO collectively succeeded");
}
/* write data collectively */
MESG("writeAll with none");
ret = H5Dwrite(dataset3, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dwrite dataset3 succeeded");
/* write data collectively (with datatype conversion) */
MESG("writeAll with none");
ret = H5Dwrite(dataset3, H5T_NATIVE_UCHAR, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dwrite dataset3 succeeded");
/* release all temporary handles. */
/* Could have used them for dataset4 but it is cleaner */
/* to create them again.*/
H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
H5Pclose(xfer_plist);
/* Dataset4: each process writes no data, except process zero uses "all" selection. */
/* Additionally, these are in a scalar dataspace */
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset4);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
if(MAINPROCESS) {
ret = H5Sselect_none(file_dataspace);
VRFY((ret >= 0), "H5Sselect_all file_dataspace succeeded");
} /* end if */
else {
ret = H5Sselect_all(file_dataspace);
VRFY((ret >= 0), "H5Sselect_none succeeded");
} /* end else */
/* create a memory dataspace independently */
mem_dataspace = H5Screate(H5S_SCALAR);
VRFY((mem_dataspace >= 0), "");
if(MAINPROCESS) {
ret = H5Sselect_none(mem_dataspace);
VRFY((ret >= 0), "H5Sselect_all mem_dataspace succeeded");
} /* end if */
else {
ret = H5Sselect_all(mem_dataspace);
VRFY((ret >= 0), "H5Sselect_none succeeded");
} /* end else */
/* fill the local slab with some trivial data */
dataset_fill(start, block, data_array1);
MESG("data_array initialized");
if(VERBOSE_MED) {
MESG("data_array created");
dataset_print(start, block, data_array1);
} /* end if */
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist >= 0), "");
ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pcreate xfer succeeded");
if(dxfer_coll_type == DXFER_INDEPENDENT_IO) {
ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO);
VRFY((ret>= 0),"set independent IO collectively succeeded");
}
/* write data collectively */
MESG("writeAll with scalar dataspace");
ret = H5Dwrite(dataset4, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dwrite dataset4 succeeded");
/* write data collectively (with datatype conversion) */
MESG("writeAll with scalar dataspace");
ret = H5Dwrite(dataset4, H5T_NATIVE_UCHAR, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dwrite dataset4 succeeded");
/* release all temporary handles. */
H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
H5Pclose(xfer_plist);
/*
* All writes completed. Close datasets collectively
*/
ret = H5Dclose(dataset1);
VRFY((ret >= 0), "H5Dclose1 succeeded");
ret = H5Dclose(dataset2);
VRFY((ret >= 0), "H5Dclose2 succeeded");
ret = H5Dclose(dataset3);
VRFY((ret >= 0), "H5Dclose3 succeeded");
ret = H5Dclose(dataset4);
VRFY((ret >= 0), "H5Dclose3 succeeded");
/* close the file collectively */
H5Fclose(fid);
/* release data buffers */
if(data_array1) free(data_array1);
}
/*
* Example of using the parallel HDF5 library to read two datasets
* in one HDF5 file with collective parallel access support.
* The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1.
* Each process controls only a slab of size dim0 x dim1 within each
* dataset. [Note: not so yet. Datasets are of sizes dim0xdim1 and
* each process controls a hyperslab within.]
*/
void
dataset_readAll(void)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t xfer_plist; /* Dataset transfer properties list */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2; /* Dataset ID */
hbool_t use_gpfs = FALSE; /* Use GPFS hints */
DATATYPE *data_array1 = NULL; /* data buffer */
DATATYPE *data_origin1 = NULL; /* expected data buffer */
const char *filename;
hsize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
hsize_t block[RANK]; /* for hyperslab setting */
herr_t ret; /* Generic return value */
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
filename = GetTestParameters();
if(VERBOSE_MED)
printf("Collective read test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* allocate memory for data buffer */
data_array1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE));
VRFY((data_array1 != NULL), "data_array1 malloc succeeded");
data_origin1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE));
VRFY((data_origin1 != NULL), "data_origin1 malloc succeeded");
/* -------------------
* OPEN AN HDF5 FILE
* -------------------*/
/* setup file access template */
acc_tpl = create_faccess_plist(comm, info, facc_type, use_gpfs);
VRFY((acc_tpl >= 0), "");
/* open the file collectively */
fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl);
VRFY((fid >= 0), "H5Fopen succeeded");
/* Release file-access template */
ret = H5Pclose(acc_tpl);
VRFY((ret >= 0), "");
/* --------------------------
* Open the datasets in it
* ------------------------- */
/* open the dataset1 collectively */
dataset1 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT);
VRFY((dataset1 >= 0), "H5Dopen2 succeeded");
/* open another dataset collectively */
dataset2 = H5Dopen2(fid, DATASETNAME2, H5P_DEFAULT);
VRFY((dataset2 >= 0), "H5Dopen2 2 succeeded");
/*
* Set up dimensions of the slab this process accesses.
*/
/* Dataset1: each process takes a block of columns. */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* fill dataset with test data */
dataset_fill(start, block, data_origin1);
MESG("data_array initialized");
if(VERBOSE_MED){
MESG("data_array created");
dataset_print(start, block, data_origin1);
}
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist >= 0), "");
ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pcreate xfer succeeded");
if(dxfer_coll_type == DXFER_INDEPENDENT_IO) {
ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO);
VRFY((ret>= 0),"set independent IO collectively succeeded");
}
/* read data collectively */
ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dread dataset1 succeeded");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1);
if(ret) nerrors++;
/* setup dimensions again to readAll with zero columns for process 0 */
if(VERBOSE_MED)
printf("readAll by some with zero col\n");
slab_set(mpi_rank, mpi_size, start, count, stride, block, ZCOL);
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* need to make mem_dataspace to match for process 0 */
if(MAINPROCESS){
ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded");
}
MESG("readAll by some with zero col");
ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dread dataset1 by ZCOL succeeded");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1);
if(ret) nerrors++;
/* release all temporary handles. */
/* Could have used them for dataset2 but it is cleaner */
/* to create them again.*/
H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
H5Pclose(xfer_plist);
/* Dataset2: each process takes a block of rows. */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* fill dataset with test data */
dataset_fill(start, block, data_origin1);
MESG("data_array initialized");
if(VERBOSE_MED){
MESG("data_array created");
dataset_print(start, block, data_origin1);
}
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist >= 0), "");
ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pcreate xfer succeeded");
if(dxfer_coll_type == DXFER_INDEPENDENT_IO) {
ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO);
VRFY((ret>= 0),"set independent IO collectively succeeded");
}
/* read data collectively */
ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dread dataset2 succeeded");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1);
if(ret) nerrors++;
/* setup dimensions again to readAll with zero rows for process 0 */
if(VERBOSE_MED)
printf("readAll by some with zero row\n");
slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW);
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* need to make mem_dataspace to match for process 0 */
if(MAINPROCESS){
ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded");
}
MESG("readAll by some with zero row");
ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dread dataset1 by ZROW succeeded");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1);
if(ret) nerrors++;
/* release all temporary handles. */
H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
H5Pclose(xfer_plist);
/*
* All reads completed. Close datasets collectively
*/
ret = H5Dclose(dataset1);
VRFY((ret >= 0), "H5Dclose1 succeeded");
ret = H5Dclose(dataset2);
VRFY((ret >= 0), "H5Dclose2 succeeded");
/* close the file collectively */
H5Fclose(fid);
/* release data buffers */
if(data_array1) free(data_array1);
if(data_origin1) free(data_origin1);
}
/*
* Part 2--Independent read/write for extendible datasets.
*/
/*
* Example of using the parallel HDF5 library to create two extendible
* datasets in one HDF5 file with independent parallel MPIO access support.
* The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1.
* Each process controls only a slab of size dim0 x dim1 within each
* dataset.
*/
void
extend_writeInd(void)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t sid; /* Dataspace ID */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2; /* Dataset ID */
hbool_t use_gpfs = FALSE; /* Use GPFS hints */
const char *filename;
hsize_t dims[RANK]; /* dataset dim sizes */
hsize_t max_dims[RANK] =
{H5S_UNLIMITED, H5S_UNLIMITED}; /* dataset maximum dim sizes */
DATATYPE *data_array1 = NULL; /* data buffer */
hsize_t chunk_dims[RANK]; /* chunk sizes */
hid_t dataset_pl; /* dataset create prop. list */
hsize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK]; /* for hyperslab setting */
hsize_t stride[RANK]; /* for hyperslab setting */
hsize_t block[RANK]; /* for hyperslab setting */
herr_t ret; /* Generic return value */
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
filename = GetTestParameters();
if(VERBOSE_MED)
printf("Extend independent write test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* setup chunk-size. Make sure sizes are > 0 */
chunk_dims[0] = chunkdim0;
chunk_dims[1] = chunkdim1;
/* allocate memory for data buffer */
data_array1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE));
VRFY((data_array1 != NULL), "data_array1 malloc succeeded");
/* -------------------
* START AN HDF5 FILE
* -------------------*/
/* setup file access template */
acc_tpl = create_faccess_plist(comm, info, facc_type, use_gpfs);
VRFY((acc_tpl >= 0), "");
/* Reduce the number of metadata cache slots, so that there are cache
* collisions during the raw data I/O on the chunked dataset. This stresses
* the metadata cache and tests for cache bugs. -QAK
*/
{
int mdc_nelmts;
size_t rdcc_nelmts;
size_t rdcc_nbytes;
double rdcc_w0;
ret = H5Pget_cache(acc_tpl,&mdc_nelmts,&rdcc_nelmts,&rdcc_nbytes,&rdcc_w0);
VRFY((ret >= 0), "H5Pget_cache succeeded");
mdc_nelmts=4;
ret = H5Pset_cache(acc_tpl,mdc_nelmts,rdcc_nelmts,rdcc_nbytes,rdcc_w0);
VRFY((ret >= 0), "H5Pset_cache succeeded");
}
/* create the file collectively */
fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
VRFY((fid >= 0), "H5Fcreate succeeded");
/* Release file-access template */
ret = H5Pclose(acc_tpl);
VRFY((ret >= 0), "");
/* --------------------------------------------------------------
* Define the dimensions of the overall datasets and create them.
* ------------------------------------------------------------- */
/* set up dataset storage chunk sizes and creation property list */
if(VERBOSE_MED)
printf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]);
dataset_pl = H5Pcreate(H5P_DATASET_CREATE);
VRFY((dataset_pl >= 0), "H5Pcreate succeeded");
ret = H5Pset_chunk(dataset_pl, RANK, chunk_dims);
VRFY((ret >= 0), "H5Pset_chunk succeeded");
/* setup dimensionality object */
/* start out with no rows, extend it later. */
dims[0] = dims[1] = 0;
sid = H5Screate_simple (RANK, dims, max_dims);
VRFY((sid >= 0), "H5Screate_simple succeeded");
/* create an extendible dataset collectively */
dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT);
VRFY((dataset1 >= 0), "H5Dcreate2 succeeded");
/* create another extendible dataset collectively */
dataset2 = H5Dcreate2(fid, DATASETNAME2, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT);
VRFY((dataset2 >= 0), "H5Dcreate2 succeeded");
/* release resource */
H5Sclose(sid);
H5Pclose(dataset_pl);
/* -------------------------
* Test writing to dataset1
* -------------------------*/
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW);
/* put some trivial data in the data_array */
dataset_fill(start, block, data_array1);
MESG("data_array initialized");
if(VERBOSE_MED) {
MESG("data_array created");
dataset_print(start, block, data_array1);
}
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* Extend its current dim sizes before writing */
dims[0] = dim0;
dims[1] = dim1;
ret = H5Dset_extent(dataset1, dims);
VRFY((ret >= 0), "H5Dset_extent succeeded");
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* write data independently */
ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret >= 0), "H5Dwrite succeeded");
/* release resource */
H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
/* -------------------------
* Test writing to dataset2
* -------------------------*/
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL);
/* put some trivial data in the data_array */
dataset_fill(start, block, data_array1);
MESG("data_array initialized");
if(VERBOSE_MED){
MESG("data_array created");
dataset_print(start, block, data_array1);
}
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* Try write to dataset2 beyond its current dim sizes. Should fail. */
/* Temporary turn off auto error reporting */
H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data);
H5Eset_auto2(H5E_DEFAULT, NULL, NULL);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset2);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* write data independently. Should fail. */
ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret < 0), "H5Dwrite failed as expected");
/* restore auto error reporting */
H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data);
H5Sclose(file_dataspace);
/* Extend dataset2 and try again. Should succeed. */
dims[0] = dim0;
dims[1] = dim1;
ret = H5Dset_extent(dataset2, dims);
VRFY((ret >= 0), "H5Dset_extent succeeded");
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset2);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* write data independently */
ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret >= 0), "H5Dwrite succeeded");
/* release resource */
ret = H5Sclose(file_dataspace);
VRFY((ret >= 0), "H5Sclose succeeded");
ret = H5Sclose(mem_dataspace);
VRFY((ret >= 0), "H5Sclose succeeded");
/* close dataset collectively */
ret = H5Dclose(dataset1);
VRFY((ret >= 0), "H5Dclose1 succeeded");
ret = H5Dclose(dataset2);
VRFY((ret >= 0), "H5Dclose2 succeeded");
/* close the file collectively */
H5Fclose(fid);
/* release data buffers */
if(data_array1) free(data_array1);
}
/*
* Example of using the parallel HDF5 library to create an extendable dataset
* and perform I/O on it in a way that verifies that the chunk cache is
* bypassed for parallel I/O.
*/
void
extend_writeInd2(void)
{
const char *filename;
hid_t fid; /* HDF5 file ID */
hid_t fapl; /* File access templates */
hid_t fs; /* File dataspace ID */
hid_t ms; /* Memory dataspace ID */
hid_t dataset; /* Dataset ID */
hbool_t use_gpfs = FALSE; /* Use GPFS hints */
hsize_t orig_size=10; /* Original dataset dim size */
hsize_t new_size=20; /* Extended dataset dim size */
hsize_t one=1;
hsize_t max_size = H5S_UNLIMITED; /* dataset maximum dim size */
hsize_t chunk_size = 16384; /* chunk size */
hid_t dcpl; /* dataset create prop. list */
int written[10], /* Data to write */
retrieved[10]; /* Data read in */
int mpi_size, mpi_rank; /* MPI settings */
int i; /* Local index variable */
herr_t ret; /* Generic return value */
filename = GetTestParameters();
if(VERBOSE_MED)
printf("Extend independent write test #2 on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* -------------------
* START AN HDF5 FILE
* -------------------*/
/* setup file access template */
fapl = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type, use_gpfs);
VRFY((fapl >= 0), "create_faccess_plist succeeded");
/* create the file collectively */
fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
VRFY((fid >= 0), "H5Fcreate succeeded");
/* Release file-access template */
ret = H5Pclose(fapl);
VRFY((ret >= 0), "H5Pclose succeeded");
/* --------------------------------------------------------------
* Define the dimensions of the overall datasets and create them.
* ------------------------------------------------------------- */
/* set up dataset storage chunk sizes and creation property list */
dcpl = H5Pcreate(H5P_DATASET_CREATE);
VRFY((dcpl >= 0), "H5Pcreate succeeded");
ret = H5Pset_chunk(dcpl, 1, &chunk_size);
VRFY((ret >= 0), "H5Pset_chunk succeeded");
/* setup dimensionality object */
fs = H5Screate_simple (1, &orig_size, &max_size);
VRFY((fs >= 0), "H5Screate_simple succeeded");
/* create an extendible dataset collectively */
dataset = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, fs, H5P_DEFAULT, dcpl, H5P_DEFAULT);
VRFY((dataset >= 0), "H5Dcreat2e succeeded");
/* release resource */
ret = H5Pclose(dcpl);
VRFY((ret >= 0), "H5Pclose succeeded");
/* -------------------------
* Test writing to dataset
* -------------------------*/
/* create a memory dataspace independently */
ms = H5Screate_simple(1, &orig_size, &max_size);
VRFY((ms >= 0), "H5Screate_simple succeeded");
/* put some trivial data in the data_array */
for(i = 0; i < (int)orig_size; i++)
written[i] = i;
MESG("data array initialized");
if(VERBOSE_MED) {
MESG("writing at offset zero: ");
for(i = 0; i < (int)orig_size; i++)
printf("%s%d", i?", ":"", written[i]);
printf("\n");
}
ret = H5Dwrite(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, written);
VRFY((ret >= 0), "H5Dwrite succeeded");
/* -------------------------
* Read initial data from dataset.
* -------------------------*/
ret = H5Dread(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, retrieved);
VRFY((ret >= 0), "H5Dread succeeded");
for (i=0; i<(int)orig_size; i++)
if(written[i]!=retrieved[i]) {
printf("Line #%d: written!=retrieved: written[%d]=%d, retrieved[%d]=%d\n",__LINE__,
i,written[i], i,retrieved[i]);
nerrors++;
}
if(VERBOSE_MED){
MESG("read at offset zero: ");
for (i=0; i<(int)orig_size; i++)
printf("%s%d", i?", ":"", retrieved[i]);
printf("\n");
}
/* -------------------------
* Extend the dataset & retrieve new dataspace
* -------------------------*/
ret = H5Dset_extent(dataset, &new_size);
VRFY((ret >= 0), "H5Dset_extent succeeded");
ret = H5Sclose(fs);
VRFY((ret >= 0), "H5Sclose succeeded");
fs = H5Dget_space(dataset);
VRFY((fs >= 0), "H5Dget_space succeeded");
/* -------------------------
* Write to the second half of the dataset
* -------------------------*/
for (i=0; i<(int)orig_size; i++)
written[i] = orig_size + i;
MESG("data array re-initialized");
if(VERBOSE_MED) {
MESG("writing at offset 10: ");
for (i=0; i<(int)orig_size; i++)
printf("%s%d", i?", ":"", written[i]);
printf("\n");
}
ret = H5Sselect_hyperslab(fs, H5S_SELECT_SET, &orig_size, NULL, &one, &orig_size);
VRFY((ret >= 0), "H5Sselect_hyperslab succeeded");
ret = H5Dwrite(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, written);
VRFY((ret >= 0), "H5Dwrite succeeded");
/* -------------------------
* Read the new data
* -------------------------*/
ret = H5Dread(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, retrieved);
VRFY((ret >= 0), "H5Dread succeeded");
for (i=0; i<(int)orig_size; i++)
if(written[i]!=retrieved[i]) {
printf("Line #%d: written!=retrieved: written[%d]=%d, retrieved[%d]=%d\n",__LINE__,
i,written[i], i,retrieved[i]);
nerrors++;
}
if(VERBOSE_MED){
MESG("read at offset 10: ");
for (i=0; i<(int)orig_size; i++)
printf("%s%d", i?", ":"", retrieved[i]);
printf("\n");
}
/* Close dataset collectively */
ret = H5Dclose(dataset);
VRFY((ret >= 0), "H5Dclose succeeded");
/* Close the file collectively */
ret = H5Fclose(fid);
VRFY((ret >= 0), "H5Fclose succeeded");
}
/* Example of using the parallel HDF5 library to read an extendible dataset */
void
extend_readInd(void)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2; /* Dataset ID */
hbool_t use_gpfs = FALSE; /* Use GPFS hints */
hsize_t dims[RANK]; /* dataset dim sizes */
DATATYPE *data_array1 = NULL; /* data buffer */
DATATYPE *data_array2 = NULL; /* data buffer */
DATATYPE *data_origin1 = NULL; /* expected data buffer */
const char *filename;
hsize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
hsize_t block[RANK]; /* for hyperslab setting */
herr_t ret; /* Generic return value */
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
filename = GetTestParameters();
if(VERBOSE_MED)
printf("Extend independent read test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* allocate memory for data buffer */
data_array1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE));
VRFY((data_array1 != NULL), "data_array1 malloc succeeded");
data_array2 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE));
VRFY((data_array2 != NULL), "data_array2 malloc succeeded");
data_origin1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE));
VRFY((data_origin1 != NULL), "data_origin1 malloc succeeded");
/* -------------------
* OPEN AN HDF5 FILE
* -------------------*/
/* setup file access template */
acc_tpl = create_faccess_plist(comm, info, facc_type, use_gpfs);
VRFY((acc_tpl >= 0), "");
/* open the file collectively */
fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl);
VRFY((fid >= 0), "");
/* Release file-access template */
ret = H5Pclose(acc_tpl);
VRFY((ret >= 0), "");
/* open the dataset1 collectively */
dataset1 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT);
VRFY((dataset1 >= 0), "");
/* open another dataset collectively */
dataset2 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT);
VRFY((dataset2 >= 0), "");
/* Try extend dataset1 which is open RDONLY. Should fail. */
/* first turn off auto error reporting */
H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data);
H5Eset_auto2(H5E_DEFAULT, NULL, NULL);
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
ret = H5Sget_simple_extent_dims(file_dataspace, dims, NULL);
VRFY((ret > 0), "H5Sget_simple_extent_dims succeeded");
dims[0]++;
ret = H5Dset_extent(dataset1, dims);
VRFY((ret < 0), "H5Dset_extent failed as expected");
/* restore auto error reporting */
H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data);
H5Sclose(file_dataspace);
/* Read dataset1 using BYROW pattern */
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace >= 0), "");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* fill dataset with test data */
dataset_fill(start, block, data_origin1);
if(VERBOSE_MED){
MESG("data_array created");
dataset_print(start, block, data_array1);
}
/* read data independently */
ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret >= 0), "H5Dread succeeded");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1);
VRFY((ret == 0), "dataset1 read verified correct");
if(ret) nerrors++;
H5Sclose(mem_dataspace);
H5Sclose(file_dataspace);
/* Read dataset2 using BYCOL pattern */
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset2);
VRFY((file_dataspace >= 0), "");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* fill dataset with test data */
dataset_fill(start, block, data_origin1);
if(VERBOSE_MED){
MESG("data_array created");
dataset_print(start, block, data_array1);
}
/* read data independently */
ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret >= 0), "H5Dread succeeded");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1);
VRFY((ret == 0), "dataset2 read verified correct");
if(ret) nerrors++;
H5Sclose(mem_dataspace);
H5Sclose(file_dataspace);
/* close dataset collectively */
ret = H5Dclose(dataset1);
VRFY((ret >= 0), "");
ret = H5Dclose(dataset2);
VRFY((ret >= 0), "");
/* close the file collectively */
H5Fclose(fid);
/* release data buffers */
if(data_array1) free(data_array1);
if(data_array2) free(data_array2);
if(data_origin1) free(data_origin1);
}
/*
* Part 3--Collective read/write for extendible datasets.
*/
/*
* Example of using the parallel HDF5 library to create two extendible
* datasets in one HDF5 file with collective parallel MPIO access support.
* The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1.
* Each process controls only a slab of size dim0 x dim1 within each
* dataset.
*/
void
extend_writeAll(void)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t xfer_plist; /* Dataset transfer properties list */
hid_t sid; /* Dataspace ID */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2; /* Dataset ID */
hbool_t use_gpfs = FALSE; /* Use GPFS hints */
const char *filename;
hsize_t dims[RANK]; /* dataset dim sizes */
hsize_t max_dims[RANK] =
{H5S_UNLIMITED, H5S_UNLIMITED}; /* dataset maximum dim sizes */
DATATYPE *data_array1 = NULL; /* data buffer */
hsize_t chunk_dims[RANK]; /* chunk sizes */
hid_t dataset_pl; /* dataset create prop. list */
hsize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK]; /* for hyperslab setting */
hsize_t stride[RANK]; /* for hyperslab setting */
hsize_t block[RANK]; /* for hyperslab setting */
herr_t ret; /* Generic return value */
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
filename = GetTestParameters();
if(VERBOSE_MED)
printf("Extend independent write test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* setup chunk-size. Make sure sizes are > 0 */
chunk_dims[0] = chunkdim0;
chunk_dims[1] = chunkdim1;
/* allocate memory for data buffer */
data_array1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE));
VRFY((data_array1 != NULL), "data_array1 malloc succeeded");
/* -------------------
* START AN HDF5 FILE
* -------------------*/
/* setup file access template */
acc_tpl = create_faccess_plist(comm, info, facc_type, use_gpfs);
VRFY((acc_tpl >= 0), "");
/* Reduce the number of metadata cache slots, so that there are cache
* collisions during the raw data I/O on the chunked dataset. This stresses
* the metadata cache and tests for cache bugs. -QAK
*/
{
int mdc_nelmts;
size_t rdcc_nelmts;
size_t rdcc_nbytes;
double rdcc_w0;
ret = H5Pget_cache(acc_tpl,&mdc_nelmts,&rdcc_nelmts,&rdcc_nbytes,&rdcc_w0);
VRFY((ret >= 0), "H5Pget_cache succeeded");
mdc_nelmts=4;
ret = H5Pset_cache(acc_tpl,mdc_nelmts,rdcc_nelmts,rdcc_nbytes,rdcc_w0);
VRFY((ret >= 0), "H5Pset_cache succeeded");
}
/* create the file collectively */
fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
VRFY((fid >= 0), "H5Fcreate succeeded");
/* Release file-access template */
ret = H5Pclose(acc_tpl);
VRFY((ret >= 0), "");
/* --------------------------------------------------------------
* Define the dimensions of the overall datasets and create them.
* ------------------------------------------------------------- */
/* set up dataset storage chunk sizes and creation property list */
if(VERBOSE_MED)
printf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]);
dataset_pl = H5Pcreate(H5P_DATASET_CREATE);
VRFY((dataset_pl >= 0), "H5Pcreate succeeded");
ret = H5Pset_chunk(dataset_pl, RANK, chunk_dims);
VRFY((ret >= 0), "H5Pset_chunk succeeded");
/* setup dimensionality object */
/* start out with no rows, extend it later. */
dims[0] = dims[1] = 0;
sid = H5Screate_simple (RANK, dims, max_dims);
VRFY((sid >= 0), "H5Screate_simple succeeded");
/* create an extendible dataset collectively */
dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT);
VRFY((dataset1 >= 0), "H5Dcreate2 succeeded");
/* create another extendible dataset collectively */
dataset2 = H5Dcreate2(fid, DATASETNAME2, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT);
VRFY((dataset2 >= 0), "H5Dcreate2 succeeded");
/* release resource */
H5Sclose(sid);
H5Pclose(dataset_pl);
/* -------------------------
* Test writing to dataset1
* -------------------------*/
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW);
/* put some trivial data in the data_array */
dataset_fill(start, block, data_array1);
MESG("data_array initialized");
if(VERBOSE_MED) {
MESG("data_array created");
dataset_print(start, block, data_array1);
}
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* Extend its current dim sizes before writing */
dims[0] = dim0;
dims[1] = dim1;
ret = H5Dset_extent(dataset1, dims);
VRFY((ret >= 0), "H5Dset_extent succeeded");
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded");
ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
if(dxfer_coll_type == DXFER_INDEPENDENT_IO) {
ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO);
VRFY((ret>= 0),"set independent IO collectively succeeded");
}
/* write data collectively */
ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dwrite succeeded");
/* release resource */
H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
H5Pclose(xfer_plist);
/* -------------------------
* Test writing to dataset2
* -------------------------*/
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL);
/* put some trivial data in the data_array */
dataset_fill(start, block, data_array1);
MESG("data_array initialized");
if(VERBOSE_MED){
MESG("data_array created");
dataset_print(start, block, data_array1);
}
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded");
ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
if(dxfer_coll_type == DXFER_INDEPENDENT_IO) {
ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO);
VRFY((ret>= 0),"set independent IO collectively succeeded");
}
/* Try write to dataset2 beyond its current dim sizes. Should fail. */
/* Temporary turn off auto error reporting */
H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data);
H5Eset_auto2(H5E_DEFAULT, NULL, NULL);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset2);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* write data independently. Should fail. */
ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret < 0), "H5Dwrite failed as expected");
/* restore auto error reporting */
H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data);
H5Sclose(file_dataspace);
/* Extend dataset2 and try again. Should succeed. */
dims[0] = dim0;
dims[1] = dim1;
ret = H5Dset_extent(dataset2, dims);
VRFY((ret >= 0), "H5Dset_extent succeeded");
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset2);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* write data independently */
ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dwrite succeeded");
/* release resource */
ret = H5Sclose(file_dataspace);
VRFY((ret >= 0), "H5Sclose succeeded");
ret = H5Sclose(mem_dataspace);
VRFY((ret >= 0), "H5Sclose succeeded");
ret = H5Pclose(xfer_plist);
VRFY((ret >= 0), "H5Pclose succeeded");
/* close dataset collectively */
ret = H5Dclose(dataset1);
VRFY((ret >= 0), "H5Dclose1 succeeded");
ret = H5Dclose(dataset2);
VRFY((ret >= 0), "H5Dclose2 succeeded");
/* close the file collectively */
H5Fclose(fid);
/* release data buffers */
if(data_array1) free(data_array1);
}
/* Example of using the parallel HDF5 library to read an extendible dataset */
void
extend_readAll(void)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t xfer_plist; /* Dataset transfer properties list */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2; /* Dataset ID */
hbool_t use_gpfs = FALSE; /* Use GPFS hints */
const char *filename;
hsize_t dims[RANK]; /* dataset dim sizes */
DATATYPE *data_array1 = NULL; /* data buffer */
DATATYPE *data_array2 = NULL; /* data buffer */
DATATYPE *data_origin1 = NULL; /* expected data buffer */
hsize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
hsize_t block[RANK]; /* for hyperslab setting */
herr_t ret; /* Generic return value */
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
filename = GetTestParameters();
if(VERBOSE_MED)
printf("Extend independent read test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* allocate memory for data buffer */
data_array1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE));
VRFY((data_array1 != NULL), "data_array1 malloc succeeded");
data_array2 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE));
VRFY((data_array2 != NULL), "data_array2 malloc succeeded");
data_origin1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE));
VRFY((data_origin1 != NULL), "data_origin1 malloc succeeded");
/* -------------------
* OPEN AN HDF5 FILE
* -------------------*/
/* setup file access template */
acc_tpl = create_faccess_plist(comm, info, facc_type, use_gpfs);
VRFY((acc_tpl >= 0), "");
/* open the file collectively */
fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl);
VRFY((fid >= 0), "");
/* Release file-access template */
ret = H5Pclose(acc_tpl);
VRFY((ret >= 0), "");
/* open the dataset1 collectively */
dataset1 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT);
VRFY((dataset1 >= 0), "");
/* open another dataset collectively */
dataset2 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT);
VRFY((dataset2 >= 0), "");
/* Try extend dataset1 which is open RDONLY. Should fail. */
/* first turn off auto error reporting */
H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data);
H5Eset_auto2(H5E_DEFAULT, NULL, NULL);
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
ret = H5Sget_simple_extent_dims(file_dataspace, dims, NULL);
VRFY((ret > 0), "H5Sget_simple_extent_dims succeeded");
dims[0]++;
ret = H5Dset_extent(dataset1, dims);
VRFY((ret < 0), "H5Dset_extent failed as expected");
/* restore auto error reporting */
H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data);
H5Sclose(file_dataspace);
/* Read dataset1 using BYROW pattern */
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace >= 0), "");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* fill dataset with test data */
dataset_fill(start, block, data_origin1);
if(VERBOSE_MED){
MESG("data_array created");
dataset_print(start, block, data_array1);
}
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded");
ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
if(dxfer_coll_type == DXFER_INDEPENDENT_IO) {
ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO);
VRFY((ret>= 0),"set independent IO collectively succeeded");
}
/* read data collectively */
ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dread succeeded");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1);
VRFY((ret == 0), "dataset1 read verified correct");
if(ret) nerrors++;
H5Sclose(mem_dataspace);
H5Sclose(file_dataspace);
H5Pclose(xfer_plist);
/* Read dataset2 using BYCOL pattern */
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset2);
VRFY((file_dataspace >= 0), "");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* fill dataset with test data */
dataset_fill(start, block, data_origin1);
if(VERBOSE_MED){
MESG("data_array created");
dataset_print(start, block, data_array1);
}
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded");
ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
if(dxfer_coll_type == DXFER_INDEPENDENT_IO) {
ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO);
VRFY((ret>= 0),"set independent IO collectively succeeded");
}
/* read data collectively */
ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret >= 0), "H5Dread succeeded");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1);
VRFY((ret == 0), "dataset2 read verified correct");
if(ret) nerrors++;
H5Sclose(mem_dataspace);
H5Sclose(file_dataspace);
H5Pclose(xfer_plist);
/* close dataset collectively */
ret = H5Dclose(dataset1);
VRFY((ret >= 0), "");
ret = H5Dclose(dataset2);
VRFY((ret >= 0), "");
/* close the file collectively */
H5Fclose(fid);
/* release data buffers */
if(data_array1) free(data_array1);
if(data_array2) free(data_array2);
if(data_origin1) free(data_origin1);
}
/*
* Example of using the parallel HDF5 library to read a compressed
* dataset in an HDF5 file with collective parallel access support.
*/
#ifdef H5_HAVE_FILTER_DEFLATE
void
compress_readAll(void)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t dcpl; /* Dataset creation property list */
hid_t xfer_plist; /* Dataset transfer properties list */
hid_t dataspace; /* Dataspace ID */
hid_t dataset; /* Dataset ID */
int rank=1; /* Dataspace rank */
hsize_t dim=dim0; /* Dataspace dimensions */
unsigned u; /* Local index variable */
hbool_t use_gpfs = FALSE; /* Use GPFS hints */
DATATYPE *data_read = NULL; /* data buffer */
DATATYPE *data_orig = NULL; /* expected data buffer */
const char *filename;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
int mpi_size, mpi_rank;
herr_t ret; /* Generic return value */
filename = GetTestParameters();
if(VERBOSE_MED)
printf("Collective chunked dataset read test on file %s\n", filename);
/* Retrieve MPI parameters */
MPI_Comm_size(comm,&mpi_size);
MPI_Comm_rank(comm,&mpi_rank);
/* Allocate data buffer */
data_orig = (DATATYPE *)HDmalloc((size_t)dim*sizeof(DATATYPE));
VRFY((data_orig != NULL), "data_origin1 malloc succeeded");
data_read = (DATATYPE *)HDmalloc((size_t)dim*sizeof(DATATYPE));
VRFY((data_read != NULL), "data_array1 malloc succeeded");
/* Initialize data buffers */
for(u=0; u<dim;u++)
data_orig[u]=u;
/* Process zero creates the file with a compressed, chunked dataset */
if(mpi_rank==0) {
hsize_t chunk_dim; /* Chunk dimensions */
/* Create the file */
fid = H5Fcreate(h5_rmprefix(filename), H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
VRFY((fid > 0), "H5Fcreate succeeded");
/* Create property list for chunking and compression */
dcpl = H5Pcreate(H5P_DATASET_CREATE);
VRFY((dcpl > 0), "H5Pcreate succeeded");
ret = H5Pset_layout(dcpl, H5D_CHUNKED);
VRFY((ret >= 0), "H5Pset_layout succeeded");
/* Use eight chunks */
chunk_dim = dim / 8;
ret = H5Pset_chunk(dcpl, rank, &chunk_dim);
VRFY((ret >= 0), "H5Pset_chunk succeeded");
ret = H5Pset_deflate(dcpl, 9);
VRFY((ret >= 0), "H5Pset_deflate succeeded");
/* Create dataspace */
dataspace = H5Screate_simple(rank, &dim, NULL);
VRFY((dataspace > 0), "H5Screate_simple succeeded");
/* Create dataset */
dataset = H5Dcreate2(fid, "compressed_data", H5T_NATIVE_INT, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT);
VRFY((dataset > 0), "H5Dcreate2 succeeded");
/* Write compressed data */
ret = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_orig);
VRFY((ret >= 0), "H5Dwrite succeeded");
/* Close objects */
ret = H5Pclose(dcpl);
VRFY((ret >= 0), "H5Pclose succeeded");
ret = H5Sclose(dataspace);
VRFY((ret >= 0), "H5Sclose succeeded");
ret = H5Dclose(dataset);
VRFY((ret >= 0), "H5Dclose succeeded");
ret = H5Fclose(fid);
VRFY((ret >= 0), "H5Fclose succeeded");
}
/* Wait for file to be created */
MPI_Barrier(comm);
/* -------------------
* OPEN AN HDF5 FILE
* -------------------*/
/* setup file access template */
acc_tpl = create_faccess_plist(comm, info, facc_type, use_gpfs);
VRFY((acc_tpl >= 0), "");
/* open the file collectively */
fid=H5Fopen(filename,H5F_ACC_RDWR,acc_tpl);
VRFY((fid > 0), "H5Fopen succeeded");
/* Release file-access template */
ret = H5Pclose(acc_tpl);
VRFY((ret >= 0), "H5Pclose succeeded");
/* Open dataset with compressed chunks */
dataset = H5Dopen2(fid, "compressed_data", H5P_DEFAULT);
VRFY((dataset > 0), "H5Dopen2 succeeded");
/* Try reading & writing data */
if(dataset>0) {
/* Create dataset transfer property list */
xfer_plist = H5Pcreate(H5P_DATASET_XFER);
VRFY((xfer_plist > 0), "H5Pcreate succeeded");
ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
if(dxfer_coll_type == DXFER_INDEPENDENT_IO) {
ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO);
VRFY((ret>= 0),"set independent IO collectively succeeded");
}
/* Try reading the data */
ret = H5Dread(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, xfer_plist, data_read);
VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
/* Verify data read */
for(u=0; u<dim; u++)
if(data_orig[u]!=data_read[u]) {
printf("Line #%d: written!=retrieved: data_orig[%u]=%d, data_read[%u]=%d\n",__LINE__,
(unsigned)u,data_orig[u],(unsigned)u,data_read[u]);
nerrors++;
}
/* Writing to the compressed, chunked dataset in parallel should fail */
H5E_BEGIN_TRY {
ret = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, xfer_plist, data_read);
} H5E_END_TRY;
VRFY((ret < 0), "H5Dwrite failed");
ret = H5Pclose(xfer_plist);
VRFY((ret >= 0), "H5Pclose succeeded");
ret = H5Dclose(dataset);
VRFY((ret >= 0), "H5Dclose succeeded");
} /* end if */
ret = H5Fclose(fid);
VRFY((ret >= 0), "H5Fclose succeeded");
/* release data buffers */
if(data_read) HDfree(data_read);
if(data_orig) HDfree(data_orig);
}
#endif /* H5_HAVE_FILTER_DEFLATE */
/*
* Part 4--Non-selection for chunked dataset
*/
/*
* Example of using the parallel HDF5 library to create chunked
* dataset in one HDF5 file with collective and independent parallel
* MPIO access support. The Datasets are of sizes dim0 x dim1.
* Each process controls only a slab of size dim0 x dim1 within the
* dataset with the exception that one processor selects no element.
*/
void
none_selection_chunk(void)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t xfer_plist; /* Dataset transfer properties list */
hid_t sid; /* Dataspace ID */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2; /* Dataset ID */
hbool_t use_gpfs = FALSE; /* Use GPFS hints */
const char *filename;
hsize_t dims[RANK]; /* dataset dim sizes */
DATATYPE *data_origin = NULL; /* data buffer */
DATATYPE *data_array = NULL; /* data buffer */
hsize_t chunk_dims[RANK]; /* chunk sizes */
hid_t dataset_pl; /* dataset create prop. list */
hsize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK]; /* for hyperslab setting */
hsize_t stride[RANK]; /* for hyperslab setting */
hsize_t block[RANK]; /* for hyperslab setting */
hsize_t mstart[RANK]; /* for data buffer in memory */
herr_t ret; /* Generic return value */
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
filename = GetTestParameters();
if(VERBOSE_MED)
printf("Extend independent write test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* setup chunk-size. Make sure sizes are > 0 */
chunk_dims[0] = chunkdim0;
chunk_dims[1] = chunkdim1;
/* -------------------
* START AN HDF5 FILE
* -------------------*/
/* setup file access template */
acc_tpl = create_faccess_plist(comm, info, facc_type, use_gpfs);
VRFY((acc_tpl >= 0), "");
/* create the file collectively */
fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
VRFY((fid >= 0), "H5Fcreate succeeded");
/* Release file-access template */
ret = H5Pclose(acc_tpl);
VRFY((ret >= 0), "");
/* --------------------------------------------------------------
* Define the dimensions of the overall datasets and create them.
* ------------------------------------------------------------- */
/* set up dataset storage chunk sizes and creation property list */
if(VERBOSE_MED)
printf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]);
dataset_pl = H5Pcreate(H5P_DATASET_CREATE);
VRFY((dataset_pl >= 0), "H5Pcreate succeeded");
ret = H5Pset_chunk(dataset_pl, RANK, chunk_dims);
VRFY((ret >= 0), "H5Pset_chunk succeeded");
/* setup dimensionality object */
dims[0] = dim0;
dims[1] = dim1;
sid = H5Screate_simple(RANK, dims, NULL);
VRFY((sid >= 0), "H5Screate_simple succeeded");
/* create an extendible dataset collectively */
dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT);
VRFY((dataset1 >= 0), "H5Dcreate2 succeeded");
/* create another extendible dataset collectively */
dataset2 = H5Dcreate2(fid, DATASETNAME2, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT);
VRFY((dataset2 >= 0), "H5Dcreate2 succeeded");
/* release resource */
H5Sclose(sid);
H5Pclose(dataset_pl);
/* -------------------------
* Test collective writing to dataset1
* -------------------------*/
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW);
/* allocate memory for data buffer. Only allocate enough buffer for
* each processor's data. */
if(mpi_rank) {
data_origin = (DATATYPE *)malloc(block[0]*block[1]*sizeof(DATATYPE));
VRFY((data_origin != NULL), "data_origin malloc succeeded");
data_array = (DATATYPE *)malloc(block[0]*block[1]*sizeof(DATATYPE));
VRFY((data_array != NULL), "data_array malloc succeeded");
/* put some trivial data in the data_array */
mstart[0] = mstart[1] = 0;
dataset_fill(mstart, block, data_origin);
MESG("data_array initialized");
if(VERBOSE_MED){
MESG("data_array created");
dataset_print(mstart, block, data_origin);
}
}
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, block, NULL);
VRFY((mem_dataspace >= 0), "");
/* Process 0 has no selection */
if(!mpi_rank) {
ret = H5Sselect_none(mem_dataspace);
VRFY((ret >= 0), "H5Sselect_none succeeded");
}
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace >= 0), "H5Dget_space succeeded");
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0), "H5Sset_hyperslab succeeded");
/* Process 0 has no selection */
if(!mpi_rank) {
ret = H5Sselect_none(file_dataspace);
VRFY((ret >= 0), "H5Sselect_none succeeded");
}
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded");
ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
/* write data collectively */
ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_origin);
VRFY((ret >= 0), "H5Dwrite succeeded");
/* read data independently */
ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array);
VRFY((ret >= 0), "");
/* verify the read data with original expected data */
if(mpi_rank) {
ret = dataset_vrfy(mstart, count, stride, block, data_array, data_origin);
if(ret) nerrors++;
}
/* -------------------------
* Test independent writing to dataset2
* -------------------------*/
ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_INDEPENDENT);
VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
/* write data collectively */
ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_origin);
VRFY((ret >= 0), "H5Dwrite succeeded");
/* read data independently */
ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array);
VRFY((ret >= 0), "");
/* verify the read data with original expected data */
if(mpi_rank) {
ret = dataset_vrfy(mstart, count, stride, block, data_array, data_origin);
if(ret) nerrors++;
}
/* release resource */
ret = H5Sclose(file_dataspace);
VRFY((ret >= 0), "H5Sclose succeeded");
ret = H5Sclose(mem_dataspace);
VRFY((ret >= 0), "H5Sclose succeeded");
ret = H5Pclose(xfer_plist);
VRFY((ret >= 0), "H5Pclose succeeded");
/* close dataset collectively */
ret = H5Dclose(dataset1);
VRFY((ret >= 0), "H5Dclose1 succeeded");
ret = H5Dclose(dataset2);
VRFY((ret >= 0), "H5Dclose2 succeeded");
/* close the file collectively */
H5Fclose(fid);
/* release data buffers */
if(data_origin) free(data_origin);
if(data_array) free(data_array);
}