hdf5/testpar/t_chunk_alloc.c

758 lines
26 KiB
C
Raw Normal View History

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* This verifies if the storage space allocation methods are compatible between
* serial and parallel modes.
*/
#include "testphdf5.h"
static int mpi_size, mpi_rank;
2020-09-30 22:27:10 +08:00
#define DSET_NAME "ExtendibleArray"
#define CHUNK_SIZE 1000 /* #elements per chunk */
#define CHUNK_FACTOR 200 /* default dataset size in terms of chunks */
2020-09-30 22:27:10 +08:00
#define CLOSE 1
#define NO_CLOSE 0
static MPI_Offset
get_filesize(const char *filename)
{
int mpierr;
2020-09-30 22:27:10 +08:00
MPI_File fd;
MPI_Offset filesize;
2020-09-30 22:27:10 +08:00
mpierr = MPI_File_open(MPI_COMM_SELF, filename, MPI_MODE_RDONLY, MPI_INFO_NULL, &fd);
VRFY((mpierr == MPI_SUCCESS), "");
mpierr = MPI_File_get_size(fd, &filesize);
VRFY((mpierr == MPI_SUCCESS), "");
mpierr = MPI_File_close(&fd);
VRFY((mpierr == MPI_SUCCESS), "");
2020-09-30 22:27:10 +08:00
return (filesize);
}
2020-09-30 22:27:10 +08:00
typedef enum write_pattern { none, sec_last, all } write_type;
2020-09-30 22:27:10 +08:00
typedef enum access_ { write_all, open_only, extend_only } access_type;
/*
* This creates a dataset serially with chunks, each of CHUNK_SIZE
* elements. The allocation time is set to H5D_ALLOC_TIME_EARLY. Another
* routine will open this in parallel for extension test.
*/
static void
create_chunked_dataset(const char *filename, int chunk_factor, write_type write_pattern)
{
2020-09-30 22:27:10 +08:00
hid_t file_id, dataset; /* handles */
hid_t dataspace, memspace;
hid_t cparms;
hsize_t dims[1];
hsize_t maxdims[1] = {H5S_UNLIMITED};
hsize_t chunk_dims[1] = {CHUNK_SIZE};
hsize_t count[1];
hsize_t stride[1];
hsize_t block[1];
hsize_t offset[1]; /* Selection offset within dataspace */
/* Variables used in reading data back */
2020-09-30 22:27:10 +08:00
char buffer[CHUNK_SIZE];
long nchunks;
herr_t hrc;
2020-09-30 22:27:10 +08:00
MPI_Offset filesize, /* actual file size */
est_filesize; /* estimated file size */
/* set up MPI parameters */
2020-09-30 22:27:10 +08:00
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
/* Only MAINPROCESS should create the file. Others just wait. */
2020-09-30 22:27:10 +08:00
if (MAINPROCESS) {
nchunks = chunk_factor * mpi_size;
dims[0] = (hsize_t)(nchunks * CHUNK_SIZE);
/* Create the data space with unlimited dimensions. */
2020-09-30 22:27:10 +08:00
dataspace = H5Screate_simple(1, dims, maxdims);
VRFY((dataspace >= 0), "");
memspace = H5Screate_simple(1, chunk_dims, NULL);
VRFY((memspace >= 0), "");
/* Create a new file. If file exists its contents will be overwritten. */
file_id = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
VRFY((file_id >= 0), "H5Fcreate");
/* Modify dataset creation properties, i.e. enable chunking */
cparms = H5Pcreate(H5P_DATASET_CREATE);
VRFY((cparms >= 0), "");
hrc = H5Pset_alloc_time(cparms, H5D_ALLOC_TIME_EARLY);
VRFY((hrc >= 0), "");
hrc = H5Pset_chunk(cparms, 1, chunk_dims);
VRFY((hrc >= 0), "");
/* Create a new dataset within the file using cparms creation properties. */
2020-09-30 22:27:10 +08:00
dataset =
H5Dcreate2(file_id, DSET_NAME, H5T_NATIVE_UCHAR, dataspace, H5P_DEFAULT, cparms, H5P_DEFAULT);
VRFY((dataset >= 0), "");
2020-09-30 22:27:10 +08:00
if (write_pattern == sec_last) {
2023-06-30 03:33:46 +08:00
memset(buffer, 100, CHUNK_SIZE);
2020-09-30 22:27:10 +08:00
count[0] = 1;
stride[0] = 1;
2020-09-30 22:27:10 +08:00
block[0] = chunk_dims[0];
offset[0] = (hsize_t)(nchunks - 2) * chunk_dims[0];
hrc = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, stride, count, block);
2020-09-30 22:27:10 +08:00
VRFY((hrc >= 0), "");
/* Write sec_last chunk */
hrc = H5Dwrite(dataset, H5T_NATIVE_UCHAR, memspace, dataspace, H5P_DEFAULT, buffer);
VRFY((hrc >= 0), "H5Dwrite");
} /* end if */
/* Close resources */
2020-09-30 22:27:10 +08:00
hrc = H5Dclose(dataset);
VRFY((hrc >= 0), "");
dataset = -1;
2020-09-30 22:27:10 +08:00
hrc = H5Sclose(dataspace);
VRFY((hrc >= 0), "");
2020-09-30 22:27:10 +08:00
hrc = H5Sclose(memspace);
VRFY((hrc >= 0), "");
2020-09-30 22:27:10 +08:00
hrc = H5Pclose(cparms);
VRFY((hrc >= 0), "");
2020-09-30 22:27:10 +08:00
hrc = H5Fclose(file_id);
VRFY((hrc >= 0), "");
file_id = -1;
/* verify file size */
2020-09-30 22:27:10 +08:00
filesize = get_filesize(filename);
2020-01-24 05:12:00 +08:00
est_filesize = (MPI_Offset)nchunks * (MPI_Offset)CHUNK_SIZE * (MPI_Offset)sizeof(unsigned char);
VRFY((filesize >= est_filesize), "file size check");
}
/* Make sure all processes are done before exiting this routine. Otherwise,
* other tests may start and change the test data file before some processes
* of this test are still accessing the file.
*/
MPI_Barrier(MPI_COMM_WORLD);
}
/*
* This program performs three different types of parallel access. It writes on
* the entire dataset, it extends the dataset to nchunks*CHUNK_SIZE, and it only
* opens the dataset. At the end, it verifies the size of the dataset to be
2009-04-08 01:08:41 +08:00
* consistent with argument 'chunk_factor'.
*/
static void
2020-09-30 22:27:10 +08:00
parallel_access_dataset(const char *filename, int chunk_factor, access_type action, hid_t *file_id,
hid_t *dataset)
{
2020-09-30 22:27:10 +08:00
hid_t memspace, dataspace; /* HDF5 file identifier */
hid_t access_plist; /* HDF5 ID for file access property list */
herr_t hrc; /* HDF5 return code */
hsize_t size[1];
hsize_t chunk_dims[1] = {CHUNK_SIZE};
hsize_t count[1];
hsize_t stride[1];
hsize_t block[1];
hsize_t offset[1]; /* Selection offset within dataspace */
hsize_t dims[1];
hsize_t maxdims[1];
/* Variables used in reading data back */
2020-09-30 22:27:10 +08:00
char buffer[CHUNK_SIZE];
int i;
long nchunks;
/* MPI Gubbins */
2020-09-30 22:27:10 +08:00
MPI_Offset filesize, /* actual file size */
est_filesize; /* estimated file size */
/* Initialize MPI */
2020-09-30 22:27:10 +08:00
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
2020-09-30 22:27:10 +08:00
nchunks = chunk_factor * mpi_size;
/* Set up MPIO file access property lists */
2020-09-30 22:27:10 +08:00
access_plist = H5Pcreate(H5P_FILE_ACCESS);
VRFY((access_plist >= 0), "");
hrc = H5Pset_fapl_mpio(access_plist, MPI_COMM_WORLD, MPI_INFO_NULL);
VRFY((hrc >= 0), "");
/* Open the file */
2020-09-30 22:27:10 +08:00
if (*file_id < 0) {
*file_id = H5Fopen(filename, H5F_ACC_RDWR, access_plist);
VRFY((*file_id >= 0), "");
}
/* Open dataset*/
2020-09-30 22:27:10 +08:00
if (*dataset < 0) {
*dataset = H5Dopen2(*file_id, DSET_NAME, H5P_DEFAULT);
VRFY((*dataset >= 0), "");
}
memspace = H5Screate_simple(1, chunk_dims, NULL);
VRFY((memspace >= 0), "");
dataspace = H5Dget_space(*dataset);
VRFY((dataspace >= 0), "");
2020-09-30 22:27:10 +08:00
size[0] = (hsize_t)nchunks * CHUNK_SIZE;
switch (action) {
/* all chunks are written by all the processes in an interleaved way*/
case write_all:
2023-06-30 03:33:46 +08:00
memset(buffer, mpi_rank + 1, CHUNK_SIZE);
2020-09-30 22:27:10 +08:00
count[0] = 1;
stride[0] = 1;
2020-09-30 22:27:10 +08:00
block[0] = chunk_dims[0];
for (i = 0; i < nchunks / mpi_size; i++) {
offset[0] = (hsize_t)(i * mpi_size + mpi_rank) * chunk_dims[0];
hrc = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, stride, count, block);
VRFY((hrc >= 0), "");
/* Write the buffer out */
hrc = H5Dwrite(*dataset, H5T_NATIVE_UCHAR, memspace, dataspace, H5P_DEFAULT, buffer);
VRFY((hrc >= 0), "H5Dwrite");
}
break;
/* only extends the dataset */
case extend_only:
/* check if new size is larger than old size */
hrc = H5Sget_simple_extent_dims(dataspace, dims, maxdims);
VRFY((hrc >= 0), "");
/* Extend dataset*/
if (size[0] > dims[0]) {
hrc = H5Dset_extent(*dataset, size);
VRFY((hrc >= 0), "");
}
break;
/* only opens the *dataset */
case open_only:
break;
default:
assert(0);
}
/* Close up */
hrc = H5Dclose(*dataset);
VRFY((hrc >= 0), "");
*dataset = -1;
2020-09-30 22:27:10 +08:00
hrc = H5Sclose(dataspace);
VRFY((hrc >= 0), "");
2020-09-30 22:27:10 +08:00
hrc = H5Sclose(memspace);
VRFY((hrc >= 0), "");
hrc = H5Fclose(*file_id);
VRFY((hrc >= 0), "");
*file_id = -1;
/* verify file size */
2020-09-30 22:27:10 +08:00
filesize = get_filesize(filename);
est_filesize = (MPI_Offset)nchunks * (MPI_Offset)CHUNK_SIZE * (MPI_Offset)sizeof(unsigned char);
VRFY((filesize >= est_filesize), "file size check");
/* Can close some plists */
hrc = H5Pclose(access_plist);
VRFY((hrc >= 0), "");
/* Make sure all processes are done before exiting this routine. Otherwise,
* other tests may start and change the test data file before some processes
* of this test are still accessing the file.
*/
MPI_Barrier(MPI_COMM_WORLD);
}
/*
* This routine verifies the data written in the dataset. It does one of the
* three cases according to the value of parameter `write_pattern'.
* 1. it returns correct fill values though the dataset has not been written;
* 2. it still returns correct fill values though only a small part is written;
* 3. it returns correct values when the whole dataset has been written in an
* interleaved pattern.
*/
static void
2020-09-30 22:27:10 +08:00
verify_data(const char *filename, int chunk_factor, write_type write_pattern, int vclose, hid_t *file_id,
hid_t *dataset)
{
2020-09-30 22:27:10 +08:00
hid_t dataspace, memspace; /* HDF5 file identifier */
hid_t access_plist; /* HDF5 ID for file access property list */
herr_t hrc; /* HDF5 return code */
hsize_t chunk_dims[1] = {CHUNK_SIZE};
hsize_t count[1];
hsize_t stride[1];
hsize_t block[1];
hsize_t offset[1]; /* Selection offset within dataspace */
/* Variables used in reading data back */
2020-09-30 22:27:10 +08:00
char buffer[CHUNK_SIZE];
int value, i;
int index_l;
long nchunks;
/* Initialize MPI */
2020-09-30 22:27:10 +08:00
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
2020-09-30 22:27:10 +08:00
nchunks = chunk_factor * mpi_size;
/* Set up MPIO file access property lists */
2020-09-30 22:27:10 +08:00
access_plist = H5Pcreate(H5P_FILE_ACCESS);
VRFY((access_plist >= 0), "");
hrc = H5Pset_fapl_mpio(access_plist, MPI_COMM_WORLD, MPI_INFO_NULL);
VRFY((hrc >= 0), "");
/* Open the file */
2020-09-30 22:27:10 +08:00
if (*file_id < 0) {
*file_id = H5Fopen(filename, H5F_ACC_RDWR, access_plist);
VRFY((*file_id >= 0), "");
}
/* Open dataset*/
2020-09-30 22:27:10 +08:00
if (*dataset < 0) {
*dataset = H5Dopen2(*file_id, DSET_NAME, H5P_DEFAULT);
VRFY((*dataset >= 0), "");
}
memspace = H5Screate_simple(1, chunk_dims, NULL);
VRFY((memspace >= 0), "");
dataspace = H5Dget_space(*dataset);
VRFY((dataspace >= 0), "");
/* all processes check all chunks. */
2020-09-30 22:27:10 +08:00
count[0] = 1;
stride[0] = 1;
2020-09-30 22:27:10 +08:00
block[0] = chunk_dims[0];
for (i = 0; i < nchunks; i++) {
/* reset buffer values */
2023-06-30 03:33:46 +08:00
memset(buffer, -1, CHUNK_SIZE);
2020-09-30 22:27:10 +08:00
offset[0] = (hsize_t)i * chunk_dims[0];
hrc = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, stride, count, block);
VRFY((hrc >= 0), "");
/* Read the chunk */
hrc = H5Dread(*dataset, H5T_NATIVE_UCHAR, memspace, dataspace, H5P_DEFAULT, buffer);
VRFY((hrc >= 0), "H5Dread");
/* set expected value according the write pattern */
switch (write_pattern) {
case all:
2020-09-30 22:27:10 +08:00
value = i % mpi_size + 1;
break;
case none:
value = 0;
break;
case sec_last:
2020-09-30 22:27:10 +08:00
if (i == nchunks - 2)
value = 100;
else
value = 0;
break;
default:
assert(0);
}
/* verify content of the chunk */
for (index_l = 0; index_l < CHUNK_SIZE; index_l++)
VRFY((buffer[index_l] == value), "data verification");
}
2020-09-30 22:27:10 +08:00
hrc = H5Sclose(dataspace);
VRFY((hrc >= 0), "");
2020-09-30 22:27:10 +08:00
hrc = H5Sclose(memspace);
VRFY((hrc >= 0), "");
/* Can close some plists */
hrc = H5Pclose(access_plist);
VRFY((hrc >= 0), "");
/* Close up */
2020-09-30 22:27:10 +08:00
if (vclose) {
hrc = H5Dclose(*dataset);
VRFY((hrc >= 0), "");
*dataset = -1;
hrc = H5Fclose(*file_id);
VRFY((hrc >= 0), "");
*file_id = -1;
}
/* Make sure all processes are done before exiting this routine. Otherwise,
* other tests may start and change the test data file before some processes
* of this test are still accessing the file.
*/
MPI_Barrier(MPI_COMM_WORLD);
}
/*
* Test following possible scenarios,
* Case 1:
* Sequential create a file and dataset with H5D_ALLOC_TIME_EARLY and large
* size, no write, close, reopen in parallel, read to verify all return
* the fill value.
* Case 2:
* Sequential create a file and dataset with H5D_ALLOC_TIME_EARLY but small
* size, no write, close, reopen in parallel, extend to large size, then close,
* then reopen in parallel and read to verify all return the fill value.
* Case 3:
* Sequential create a file and dataset with H5D_ALLOC_TIME_EARLY and large
* size, write just a small part of the dataset (second to the last), close,
* then reopen in parallel, read to verify all return the fill value except
* those small portion that has been written. Without closing it, writes
* all parts of the dataset in a interleave pattern, close it, and reopen
* it, read to verify all data are as written.
*/
void
test_chunk_alloc(void)
{
const char *filename;
2020-09-30 22:27:10 +08:00
hid_t file_id, dataset;
file_id = dataset = -1;
/* Initialize MPI */
2020-09-30 22:27:10 +08:00
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
2020-09-30 22:27:10 +08:00
filename = (const char *)GetTestParameters();
if (VERBOSE_MED)
printf("Extend Chunked allocation test on file %s\n", filename);
/* Case 1 */
/* Create chunked dataset without writing anything.*/
create_chunked_dataset(filename, CHUNK_FACTOR, none);
/* reopen dataset in parallel and check for file size */
parallel_access_dataset(filename, CHUNK_FACTOR, open_only, &file_id, &dataset);
/* reopen dataset in parallel, read and verify the data */
verify_data(filename, CHUNK_FACTOR, none, CLOSE, &file_id, &dataset);
/* Case 2 */
/* Create chunked dataset without writing anything */
create_chunked_dataset(filename, 20, none);
/* reopen dataset in parallel and only extend it */
parallel_access_dataset(filename, CHUNK_FACTOR, extend_only, &file_id, &dataset);
/* reopen dataset in parallel, read and verify the data */
verify_data(filename, CHUNK_FACTOR, none, CLOSE, &file_id, &dataset);
/* Case 3 */
/* Create chunked dataset and write in the second to last chunk */
create_chunked_dataset(filename, CHUNK_FACTOR, sec_last);
/* Reopen dataset in parallel, read and verify the data. The file and dataset are not closed*/
verify_data(filename, CHUNK_FACTOR, sec_last, NO_CLOSE, &file_id, &dataset);
/* All processes write in all the chunks in a interleaved way */
parallel_access_dataset(filename, CHUNK_FACTOR, write_all, &file_id, &dataset);
/* reopen dataset in parallel, read and verify the data */
verify_data(filename, CHUNK_FACTOR, all, CLOSE, &file_id, &dataset);
}
/*
* A test to verify the following:
*
* - That the library forces allocation of all space in the file
* for a chunked dataset opened with parallel file access when
* that dataset:
*
* - was created with serial file access
* - was created with the default incremental file space
* allocation time
* - has no filters applied to it
*
* In this case, the library has to ensure that all the file
* space for the dataset is allocated so that the MPI processes
* can write to chunks independently of each other and still have
* a consistent view of the file.
*
* - That the library DOES NOT force allocation of all space in
* the file for a chunked dataset opened with parallel file access
* when that dataset:
*
* - was created with serial file access
* - was created with the default incremental file space
* allocation time
* - has filters applied to it
*
* In this case, writes to the dataset are required to be collective,
* so file space can be allocated incrementally in a coordinated
* fashion.
*/
void
test_chunk_alloc_incr_ser_to_par(void)
{
H5D_space_status_t space_status;
const char *filename;
hsize_t dset_dims[1];
hsize_t start[1];
hsize_t stride[1];
hsize_t count[1];
hsize_t block[1];
hsize_t alloc_size;
size_t nchunks;
herr_t ret;
hid_t fid = H5I_INVALID_HID;
hid_t fapl_id = H5I_INVALID_HID;
hid_t dset_id = H5I_INVALID_HID;
hid_t fspace_id = H5I_INVALID_HID;
hid_t dxpl_id = H5I_INVALID_HID;
int *data = NULL;
int *correct_data = NULL;
int *read_data = NULL;
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
filename = (const char *)GetTestParameters();
if (MAINPROCESS && VERBOSE_MED)
printf("Chunked dataset incremental file space allocation serial to parallel test on file %s\n",
filename);
nchunks = (size_t)(CHUNK_FACTOR * mpi_size);
dset_dims[0] = (hsize_t)(nchunks * CHUNK_SIZE);
if (mpi_rank == 0) {
hsize_t chunk_dims[1] = {CHUNK_SIZE};
hid_t space_id = H5I_INVALID_HID;
hid_t dcpl_id = H5I_INVALID_HID;
fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
VRFY((fid >= 0), "H5Fcreate");
dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
VRFY((dcpl_id >= 0), "H5Pcreate");
ret = H5Pset_chunk(dcpl_id, 1, chunk_dims);
VRFY((ret == SUCCEED), "H5Pset_chunk");
ret = H5Pset_alloc_time(dcpl_id, H5D_ALLOC_TIME_INCR);
VRFY((ret == SUCCEED), "H5Pset_alloc_time");
space_id = H5Screate_simple(1, dset_dims, NULL);
VRFY((space_id >= 0), "H5Screate_simple");
/* Create a chunked dataset without a filter applied to it */
dset_id =
H5Dcreate2(fid, "dset_no_filter", H5T_NATIVE_INT, space_id, H5P_DEFAULT, dcpl_id, H5P_DEFAULT);
VRFY((dset_id >= 0), "H5Dcreate2");
ret = H5Dclose(dset_id);
VRFY((ret == SUCCEED), "H5Dclose");
/* Create a chunked dataset with a filter applied to it */
ret = H5Pset_shuffle(dcpl_id);
VRFY((ret == SUCCEED), "H5Pset_shuffle");
dset_id = H5Dcreate2(fid, "dset_filter", H5T_NATIVE_INT, space_id, H5P_DEFAULT, dcpl_id, H5P_DEFAULT);
VRFY((dset_id >= 0), "H5Dcreate2");
ret = H5Dclose(dset_id);
VRFY((ret == SUCCEED), "H5Dclose");
ret = H5Pclose(dcpl_id);
VRFY((ret == SUCCEED), "H5Pclose");
ret = H5Sclose(space_id);
VRFY((ret == SUCCEED), "H5Sclose");
ret = H5Fclose(fid);
VRFY((ret == SUCCEED), "H5Fclose");
}
MPI_Barrier(MPI_COMM_WORLD);
fapl_id = H5Pcreate(H5P_FILE_ACCESS);
VRFY((fapl_id >= 0), "H5Pcreate");
ret = H5Pset_fapl_mpio(fapl_id, MPI_COMM_WORLD, MPI_INFO_NULL);
VRFY((ret == SUCCEED), "H5Pset_fapl_mpio");
fid = H5Fopen(filename, H5F_ACC_RDWR, fapl_id);
VRFY((fid >= 0), "H5Fopen");
data = malloc((dset_dims[0] / (hsize_t)mpi_size) * sizeof(int));
VRFY(data, "malloc");
read_data = malloc(dset_dims[0] * sizeof(int));
VRFY(read_data, "malloc");
correct_data = malloc(dset_dims[0] * sizeof(int));
VRFY(correct_data, "malloc");
/*
* Check the file space allocation status/size and dataset
* data before and after writing to the dataset without a
* filter
*/
dset_id = H5Dopen2(fid, "dset_no_filter", H5P_DEFAULT);
VRFY((dset_id >= 0), "H5Dopen2");
ret = H5Dget_space_status(dset_id, &space_status);
VRFY((ret == SUCCEED), "H5Dread");
VRFY((space_status == H5D_SPACE_STATUS_ALLOCATED), "file space allocation status verification succeeded");
alloc_size = H5Dget_storage_size(dset_id);
VRFY(((dset_dims[0] * sizeof(int)) == alloc_size), "file space allocation size verification succeeded");
memset(read_data, 255, dset_dims[0] * sizeof(int));
memset(correct_data, 0, dset_dims[0] * sizeof(int));
ret = H5Dread(dset_id, H5T_NATIVE_INT, H5S_BLOCK, H5S_ALL, H5P_DEFAULT, read_data);
VRFY((ret == SUCCEED), "H5Dread");
MPI_Barrier(MPI_COMM_WORLD);
VRFY((0 == memcmp(read_data, correct_data, dset_dims[0] * sizeof(int))), "data verification succeeded");
fspace_id = H5Dget_space(dset_id);
VRFY((ret == SUCCEED), "H5Dget_space");
start[0] = ((hsize_t)mpi_rank * (dset_dims[0] / (hsize_t)mpi_size));
stride[0] = 1;
count[0] = (dset_dims[0] / (hsize_t)mpi_size);
block[0] = 1;
ret = H5Sselect_hyperslab(fspace_id, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret == SUCCEED), "H5Sselect_hyperslab");
memset(data, 255, (dset_dims[0] / (hsize_t)mpi_size) * sizeof(int));
ret = H5Dwrite(dset_id, H5T_NATIVE_INT, H5S_BLOCK, fspace_id, H5P_DEFAULT, data);
VRFY((ret == SUCCEED), "H5Dwrite");
MPI_Barrier(MPI_COMM_WORLD);
ret = H5Dget_space_status(dset_id, &space_status);
VRFY((ret == SUCCEED), "H5Dread");
VRFY((space_status == H5D_SPACE_STATUS_ALLOCATED), "file space allocation status verification succeeded");
alloc_size = H5Dget_storage_size(dset_id);
VRFY(((dset_dims[0] * sizeof(int)) == alloc_size), "file space allocation size verification succeeded");
memset(read_data, 0, dset_dims[0] * sizeof(int));
memset(correct_data, 255, dset_dims[0] * sizeof(int));
ret = H5Dread(dset_id, H5T_NATIVE_INT, H5S_BLOCK, H5S_ALL, H5P_DEFAULT, read_data);
VRFY((ret == SUCCEED), "H5Dread");
MPI_Barrier(MPI_COMM_WORLD);
VRFY((0 == memcmp(read_data, correct_data, dset_dims[0] * sizeof(int))), "data verification succeeded");
ret = H5Sclose(fspace_id);
VRFY((ret == SUCCEED), "H5Sclose");
ret = H5Dclose(dset_id);
VRFY((ret == SUCCEED), "H5Dclose");
/*
* Check the file space allocation status/size and dataset
* data before and after writing to the dataset with a
* filter
*/
dset_id = H5Dopen2(fid, "dset_filter", H5P_DEFAULT);
VRFY((dset_id >= 0), "H5Dopen2");
ret = H5Dget_space_status(dset_id, &space_status);
VRFY((ret == SUCCEED), "H5Dread");
VRFY((space_status == H5D_SPACE_STATUS_NOT_ALLOCATED),
"file space allocation status verification succeeded");
alloc_size = H5Dget_storage_size(dset_id);
VRFY((0 == alloc_size), "file space allocation size verification succeeded");
memset(read_data, 255, dset_dims[0] * sizeof(int));
memset(correct_data, 0, dset_dims[0] * sizeof(int));
ret = H5Dread(dset_id, H5T_NATIVE_INT, H5S_BLOCK, H5S_ALL, H5P_DEFAULT, read_data);
VRFY((ret == SUCCEED), "H5Dread");
MPI_Barrier(MPI_COMM_WORLD);
VRFY((0 == memcmp(read_data, correct_data, dset_dims[0] * sizeof(int))), "data verification succeeded");
fspace_id = H5Dget_space(dset_id);
VRFY((ret == SUCCEED), "H5Dget_space");
start[0] = ((hsize_t)mpi_rank * (dset_dims[0] / (hsize_t)mpi_size));
stride[0] = 1;
count[0] = (dset_dims[0] / (hsize_t)mpi_size);
block[0] = 1;
ret = H5Sselect_hyperslab(fspace_id, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret == SUCCEED), "H5Sselect_hyperslab");
memset(data, 255, (dset_dims[0] / (hsize_t)mpi_size) * sizeof(int));
dxpl_id = H5Pcreate(H5P_DATASET_XFER);
VRFY((dxpl_id >= 0), "H5Pcreate");
ret = H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE);
VRFY((ret == SUCCEED), "H5Pset_dxpl_mpio");
ret = H5Dwrite(dset_id, H5T_NATIVE_INT, H5S_BLOCK, fspace_id, dxpl_id, data);
VRFY((ret == SUCCEED), "H5Dwrite");
MPI_Barrier(MPI_COMM_WORLD);
ret = H5Dget_space_status(dset_id, &space_status);
VRFY((ret == SUCCEED), "H5Dread");
VRFY((space_status == H5D_SPACE_STATUS_ALLOCATED), "file space allocation status verification succeeded");
alloc_size = H5Dget_storage_size(dset_id);
VRFY(((dset_dims[0] * sizeof(int)) == alloc_size), "file space allocation size verification succeeded");
memset(read_data, 0, dset_dims[0] * sizeof(int));
memset(correct_data, 255, dset_dims[0] * sizeof(int));
ret = H5Dread(dset_id, H5T_NATIVE_INT, H5S_BLOCK, H5S_ALL, H5P_DEFAULT, read_data);
VRFY((ret == SUCCEED), "H5Dread");
MPI_Barrier(MPI_COMM_WORLD);
VRFY((0 == memcmp(read_data, correct_data, dset_dims[0] * sizeof(int))), "data verification succeeded");
ret = H5Pclose(dxpl_id);
VRFY((ret == SUCCEED), "H5Pclose");
ret = H5Sclose(fspace_id);
VRFY((ret == SUCCEED), "H5Sclose");
ret = H5Dclose(dset_id);
VRFY((ret == SUCCEED), "H5Dclose");
free(correct_data);
free(read_data);
free(data);
H5Pclose(fapl_id);
H5Fclose(fid);
}