hdf5/test/dt_arith.c

5307 lines
211 KiB
C
Raw Normal View History

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the files COPYING and Copyright.html. COPYING can be found at the root *
* of the source code distribution tree; Copyright.html can be found at the *
* root level of an installed copy of the electronic HDF5 document set and *
* is linked from the top-level documents page. It can also be found at *
* http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have *
* access to either file, you may request a copy from help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Programmer: Robb Matzke <matzke@llnl.gov>
* Tuesday, December 9, 1997
*
* Purpose: Tests the data type interface (H5T)
*/
#include <math.h>
#include <time.h>
#include "h5test.h"
/* Number of elements in each random test */
#define NTESTELEM 10000
/* Epsilon for floating-point comparisons */
#define FP_EPSILON 0.000001
/*
* Offset from alinged memory returned by malloc(). This can be used to test
* that type conversions handle non-aligned buffers correctly.
*/
#define ALIGNMENT 1
/*
* Define if you want to test alignment code on a machine that doesn't
* normally require alignment. When set, all native data types must be aligned
* on a byte boundary equal to the data size.
*/
#define TEST_ALIGNMENT
/* Alignment test stuff */
#ifdef TEST_ALIGNMENT
#define H5T_PACKAGE
#include "H5Tpkg.h"
#endif
#define SET_ALIGNMENT(TYPE,VAL) \
H5T_NATIVE_##TYPE##_ALIGN_g=MAX(H5T_NATIVE_##TYPE##_ALIGN_g, VAL)
const char *FILENAME[] = {
"dt_arith1",
"dt_arith2",
NULL
};
/*
* Count up or down depending on whether the machine is big endian, little
* endian, or VAX (OpenVMS). If local variable `endian' is H5T_ORDER_BE then
* the result will be I, otherwise the result will be Z-(I+1). VAX is printed
* as little endian.
*/
#define ENDIAN(Z,I,E) (H5T_ORDER_BE==E?(I):(Z)-((I)+1))
typedef enum dtype_t {
INT_SCHAR, INT_UCHAR, INT_SHORT, INT_USHORT, INT_INT, INT_UINT,
INT_LONG, INT_ULONG, INT_LLONG, INT_ULLONG, FLT_FLOAT, FLT_DOUBLE,
#if H5_SIZEOF_LONG_DOUBLE !=0
FLT_LDOUBLE,
#endif
OTHER
} dtype_t;
/* Skip overflow tests if non-zero */
static int skip_overflow_tests_g = 0;
/*
* Although we check whether a floating point overflow generates a SIGFPE and
* turn off overflow tests in that case, it might still be possible for an
* overflow condition to occur. Once a SIGFPE is raised the program cannot
* be allowed to continue (cf. Posix signals) so in order to recover from a
* SIGFPE we run tests that might generate one in a child process.
*/
#if defined(H5_HAVE_FORK) && defined(H5_HAVE_WAITPID)
#define HANDLE_SIGFPE
#endif
/* OpenVMS doesn't have this feature. Make sure to disable it*/
#ifdef H5_VMS
#undef HANDLE_SIGFPE
#endif
/*
* Decide what values of floating-point number we want to test. They are
* 1 - normalized; 2 - denormalized; 3 - special.
*/
#define TEST_NOOP 0
#define TEST_NORMAL 1
#define TEST_DENORM 2
#define TEST_SPECIAL 3
/* Don't use hardware conversions if set */
static int without_hardware_g = 0;
/* Allocates memory aligned on a certain boundary. */
#define aligned_malloc(Z) ((void*)((char*)HDmalloc(ALIGNMENT+Z)+ALIGNMENT))
#define aligned_free(M) HDfree((char*)(M)-ALIGNMENT)
/* Initialize source buffer of integer for integer->integer and integer->floating-point conversion test.
* This algorithm is mainly to avoid any casting and comparison between source and destination types
* for compiler, because we're testing conversions. */
#define INIT_INTEGER(TYPE, SRC_MAX, SRC_MIN, SRC_SIZE, DST_SIZE, SRC_PREC, BUF, SAVED, NELMTS) \
{ \
unsigned char *buf_p, *saved_p; \
unsigned int n; \
TYPE value1 = 1; \
TYPE value2 = 0; \
\
/* Allocate buffers */ \
NELMTS=(SRC_PREC-1)*3+1; \
BUF = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
SAVED = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(BUF, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(SAVED, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
\
buf_p = BUF; \
saved_p = SAVED; \
\
/*positive values, ascending order. VALUE1 starts from 00000001, to 00000010, until 10000000*/ \
/*VALUE2 ascends from 00000000, to 00000011, 00000111,..., until 11111111.*/ \
for(n=0; n<SRC_PREC-1; n++) { \
if(value1<=SRC_MAX && value1>=SRC_MIN) { \
memcpy(buf_p, &value1, SRC_SIZE); \
memcpy(saved_p, &value1, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
if(value2<=SRC_MAX && value2>=SRC_MIN) { \
memcpy(buf_p, &value2, SRC_SIZE); \
memcpy(saved_p, &value2, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
\
value1 <<= 1; \
value2 = (value1 - 1) | value1; \
} \
\
/* negative values for signed; descending positive values for unsigned */ \
/* VALUE2 descends from 11111111 to 11111110, 11111100, ..., until 10000000. */ \
for(n=0; n<SRC_PREC; n++) { \
if(value2<=SRC_MAX && value2>=SRC_MIN) { \
memcpy(buf_p, &value2, SRC_SIZE); \
memcpy(saved_p, &value2, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
value2 <<= 1; \
} \
}
/* Change a buffer's byte order from big endian to little endian. It's mainly for library's
* bit operations which handle only little endian order.
*/
#define CHANGE_ORDER(EBUF, EORDER, ESIZE) \
{ \
unsigned int m; \
if (H5T_ORDER_BE==EORDER) { \
unsigned char mediator; \
size_t half_size = ESIZE/2; \
for (m=0; m<half_size; m++) { \
mediator = EBUF[ESIZE-(m+1)]; \
EBUF[ESIZE-(m+1)] = EBUF[m]; \
EBUF[m] = mediator; \
} \
} else if (H5T_ORDER_VAX==EORDER) { \
unsigned char mediator1, mediator2; \
for (m = 0; m < ESIZE; m += 4) { \
mediator1 = EBUF[m]; \
mediator2 = EBUF[m+1]; \
\
EBUF[m] = EBUF[(ESIZE-2)-m]; \
EBUF[m+1] = EBUF[(ESIZE-1)-m]; \
\
EBUF[(ESIZE-2)-m] = mediator1; \
EBUF[(ESIZE-1)-m] = mediator2; \
} \
} \
}
/* Allocate buffer and initialize it with floating-point normalized values.
* It's for conversion test of floating-point as the source.
*/
#define INIT_FP_NORM(TYPE, SRC_MAX, SRC_MIN, SRC_MAX_10_EXP, SRC_MIN_10_EXP, SRC_SIZE, \
DST_SIZE, BUF, SAVED, NELMTS) \
{ \
unsigned char *buf_p, *saved_p; \
size_t num_norm, factor, n; \
TYPE value1, value2; \
TYPE multiply; \
\
/*Determine the number of normalized values and increment pace. The values start from \
*minimal normalized value and are multiplied by MULTIPLY each step until reach to maximal \
*normalized value.*/ \
if(SRC_MAX_10_EXP<100) { /*for float*/ \
factor = 0; \
multiply = 10; \
} else if(SRC_MAX_10_EXP>=100 && SRC_MAX_10_EXP<400) { /*for double*/ \
factor = 2; \
multiply = 10000; \
} else { /*for long double*/ \
factor = 3; \
multiply = 100000000; \
} \
\
/*The number of values if multiplied by 10 for each step.*/ \
num_norm = (SRC_MAX_10_EXP - SRC_MIN_10_EXP); \
/*Reduce the number of values by 2^factor. MULTIPLY=10^(2^factor). Using this algorithm \
*instead of arithmatic operation to avoid any conversion*/ \
num_norm >>= factor; \
\
/*Total number of values*/ \
NELMTS = 2 * /*both positive and negative*/ \
(num_norm + /*number of normalized values*/ \
1); /*maximal normalized value*/ \
\
/* Allocate buffers */ \
BUF = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
SAVED = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(BUF, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(SAVED, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
\
buf_p = BUF; \
saved_p = SAVED; \
\
/*Normalized values*/ \
value1 = SRC_MIN; \
value2 = -SRC_MIN; \
for(n=0; n<num_norm; n++) { \
if(value1<SRC_MAX) { /*positive*/ \
memcpy(buf_p, &value1, SRC_SIZE); \
memcpy(saved_p, &value1, SRC_SIZE); \
value1 *= multiply; \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
if(value2>-SRC_MAX) { /*negative*/ \
memcpy(buf_p, &value2, SRC_SIZE); \
memcpy(saved_p, &value2, SRC_SIZE); \
value2 *= multiply; \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
} \
\
value1 = SRC_MAX; /*maximal value*/ \
memcpy(buf_p, &value1, SRC_SIZE); \
memcpy(saved_p, &value1, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
\
value2 = -SRC_MAX; /*negative value*/ \
memcpy(buf_p, &value2, SRC_SIZE); \
memcpy(saved_p, &value2, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
}
/* Allocate buffer and initialize it with floating-point denormalized values.
* It's for conversion test of floating-point as the source.
*/
#define INIT_FP_DENORM(TYPE, SRC_MANT_DIG, SRC_SIZE, SRC_PREC, SRC_ORDR, DST_SIZE, \
BUF, SAVED, NELMTS) \
{ \
unsigned char *buf_p, *saved_p; \
unsigned char *tmp1, *tmp2; \
size_t n; \
\
/*Total number of values*/ \
NELMTS = 2 * /*both positive and negative*/ \
(SRC_MANT_DIG - 1); /*number of denormalized values*/ \
\
/* Allocate buffers */ \
BUF = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
SAVED = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(BUF, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(SAVED, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
\
tmp1 = (unsigned char*)calloc(1, SRC_SIZE); \
tmp2 = (unsigned char*)calloc(1, SRC_SIZE); \
\
buf_p = BUF; \
saved_p = SAVED; \
\
/*Denormalized values. Exponent is 0. Let mantissa starts from 00000001, 00000011, \
*00000111,..., until 11111111.*/ \
memset(tmp1, 0, SRC_SIZE); \
memset(tmp2, 0, SRC_SIZE); \
H5T_bit_set (tmp2, SRC_PREC-1, 1, TRUE); /*the negative value*/ \
for(n=0; n<SRC_MANT_DIG-1; n++) { \
H5T_bit_set (tmp1, n, 1, TRUE); /*turn on 1 bit each time*/ \
CHANGE_ORDER(tmp1, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \
memcpy(buf_p, tmp1, SRC_SIZE); \
memcpy(saved_p, tmp1, SRC_SIZE); \
CHANGE_ORDER(tmp1, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
\
/*negative values*/ \
H5T_bit_set (tmp2, n, 1, TRUE); \
CHANGE_ORDER(tmp2, SRC_ORDR, SRC_SIZE); \
memcpy(buf_p, tmp2, SRC_SIZE); \
memcpy(saved_p, tmp2, SRC_SIZE); \
CHANGE_ORDER(tmp2, SRC_ORDR, SRC_SIZE); \
buf_p += SRC_SIZE; \
saved_p += SRC_SIZE; \
} \
free(tmp1); \
free(tmp2); \
}
/* Allocate buffer and initialize it with floating-point special values, +/-0, +/-infinity,
* +/-QNaN, +/-SNaN. It's for conversion test of floating-point as the source.
*/
#define INIT_FP_SPECIAL(SRC_SIZE, SRC_PREC, SRC_ORDR, SRC_MANT_DIG, DST_SIZE, \
BUF, SAVED, NELMTS) \
{ \
unsigned char *buf_p; \
unsigned char *value; \
int n; \
\
/*Total number of values*/ \
NELMTS = 2 * /*both positive and negative*/ \
4; /*infinity, SNaN, QNaN */ \
\
/* Allocate buffers */ \
BUF = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
SAVED = (unsigned char*)aligned_malloc( NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(BUF, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
HDmemset(SAVED, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
value = (unsigned char*)calloc(SRC_SIZE, sizeof(unsigned char)); \
\
buf_p = BUF; \
\
/* +0 */ \
H5T_bit_set(value, 0, SRC_PREC, FALSE); \
memcpy(buf_p, value, SRC_SIZE*sizeof(unsigned char)); \
buf_p += SRC_SIZE; \
\
for(n=0; n<2; n++) { \
if(n==1) { \
memset(value, 0, SRC_SIZE*sizeof(unsigned char)); \
/* -0 */ \
H5T_bit_set(value, SRC_PREC-1, 1, TRUE); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE);/*change order for big endian*/ \
memcpy(buf_p, value, SRC_SIZE*sizeof(unsigned char)); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE);/*change back the order for bit operation*/ \
buf_p += SRC_SIZE; \
} \
\
/* +/-infinity */ \
H5T_bit_set(value, SRC_MANT_DIG-1, SRC_PREC-SRC_MANT_DIG, TRUE); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \
memcpy(buf_p, value, SRC_SIZE*sizeof(unsigned char)); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \
buf_p += SRC_SIZE; \
\
/* +/-SNaN */ \
H5T_bit_set(value, 0, 1, TRUE); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \
memcpy(buf_p, value, SRC_SIZE*sizeof(unsigned char)); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \
buf_p += SRC_SIZE; \
\
/* +/-QNaN */ \
H5T_bit_set(value, SRC_MANT_DIG-2, 1, TRUE); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \
memcpy(buf_p, value, SRC_SIZE*sizeof(unsigned char)); \
CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \
buf_p += SRC_SIZE; \
} \
\
memcpy(SAVED, BUF, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \
free(value); \
}
void some_dummy_func(float x);
static hbool_t overflows(unsigned char *origin_bits, hid_t src_id, size_t dst_num_bits);
static int my_isnan(dtype_t type, void *val);
static int my_isinf(int endian, unsigned char *val, size_t size,
size_t mpos, size_t msize, size_t epos, size_t esize);
/*-------------------------------------------------------------------------
* Function: fpe_handler
*
* Purpose: Exit with 255
*
* Return: void
*
* Programmer: Robb Matzke
* Monday, July 6, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
fpe_handler(int UNUSED signo)
{
SKIPPED();
HDputs(" Test skipped due to SIGFPE.");
#ifndef HANDLE_SIGFPE
HDputs(" Remaining tests could not be run.");
HDputs(" Please turn off SIGFPE on overflows and try again.");
#endif
HDexit(255);
}
/*-------------------------------------------------------------------------
* Function: reset_hdf5
*
* Purpose: Reset the hdf5 library. This causes statistics to be printed
* and counters to be reset.
*
* Return: void
*
* Programmer: Robb Matzke
* Monday, November 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
reset_hdf5(void)
{
h5_reset();
if (without_hardware_g) h5_no_hwconv();
#ifdef TEST_ALIGNMENT
SET_ALIGNMENT(SCHAR, H5_SIZEOF_CHAR);
SET_ALIGNMENT(UCHAR, H5_SIZEOF_CHAR);
SET_ALIGNMENT(SHORT, H5_SIZEOF_SHORT);
SET_ALIGNMENT(USHORT, H5_SIZEOF_SHORT);
SET_ALIGNMENT(INT, H5_SIZEOF_INT);
SET_ALIGNMENT(UINT, H5_SIZEOF_INT);
SET_ALIGNMENT(LONG, H5_SIZEOF_LONG);
SET_ALIGNMENT(ULONG, H5_SIZEOF_LONG);
SET_ALIGNMENT(LLONG, H5_SIZEOF_LONG_LONG);
SET_ALIGNMENT(ULLONG, H5_SIZEOF_LONG_LONG);
SET_ALIGNMENT(FLOAT, H5_SIZEOF_FLOAT);
SET_ALIGNMENT(DOUBLE, H5_SIZEOF_DOUBLE);
#if H5_SIZEOF_LONG_DOUBLE !=0
SET_ALIGNMENT(LDOUBLE, H5_SIZEOF_LONG_DOUBLE);
#endif
#endif
}
/*-------------------------------------------------------------------------
* Function: except_func
*
* Purpose: Gets called for all data type conversion exceptions.
*
* Return: H5T_CONV_ABORT: -1
*
* H5T_CONV_UNHANDLED 0
*
* H5T_CONV_HANDLED 1
*
* Programmer: Raymond Lu
* April 19, 2004
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static H5T_conv_ret_t
except_func(H5T_conv_except_t except_type, hid_t UNUSED src_id, hid_t UNUSED dst_id, void UNUSED *src_buf,
void *dst_buf, void *user_data)
{
H5T_conv_ret_t ret = H5T_CONV_HANDLED;
if(except_type == H5T_CONV_EXCEPT_RANGE_HI)
/*only test integer case*/
*(int*)dst_buf = *(int*)user_data;
else if(except_type == H5T_CONV_EXCEPT_RANGE_LOW)
/*only test integer case*/
*(int*)dst_buf = *(int*)user_data;
else if(except_type == H5T_CONV_EXCEPT_TRUNCATE)
ret = H5T_CONV_UNHANDLED;
else if(except_type == H5T_CONV_EXCEPT_PRECISION)
ret = H5T_CONV_UNHANDLED;
else if(except_type == H5T_CONV_EXCEPT_PINF)
/*only test integer case*/
*(int*)dst_buf = *(int*)user_data;
else if(except_type == H5T_CONV_EXCEPT_NINF)
/*only test integer case*/
*(int*)dst_buf = *(int*)user_data;
else if(except_type == H5T_CONV_EXCEPT_NAN)
/*only test integer case*/
*(int*)dst_buf = *(int*)user_data;
return ret;
}
/*-------------------------------------------------------------------------
* Function: some_dummy_func
*
* Purpose: A dummy function to help check for overflow.
*
* Note: DO NOT DECLARE THIS FUNCTION STATIC OR THE COMPILER MIGHT
* PROMOTE ARGUMENT `x' TO DOUBLE AND DEFEAT THE OVERFLOW
* CHECKING.
*
* Return: void
*
* Programmer: Robb Matzke
* Tuesday, July 21, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
void
some_dummy_func(float x)
{
char s[128];
sprintf(s, "%g", x);
}
/*-------------------------------------------------------------------------
* Function: generates_sigfpe
*
* Purpose: Determines if SIGFPE is generated from overflows. We must be
* able to fork() and waitpid() in order for this test to work
* properly. Sets skip_overflow_tests_g to non-zero if they
* would generate SIGBUS, zero otherwise.
*
* Programmer: Robb Matzke
* Tuesday, July 21, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static void
generates_sigfpe(void)
{
#if defined(H5_HAVE_FORK) && defined(H5_HAVE_WAITPID)
pid_t pid;
int status;
size_t i, j;
double d;
unsigned char *dp = (unsigned char*)&d;
float f;
HDfflush(stdout);
HDfflush(stderr);
if ((pid=fork())<0) {
HDperror("fork");
HDexit(1);
} else if (0==pid) {
for (i=0; i<2000; i++) {
for (j=0; j<sizeof(double); j++) dp[j] = HDrand();
f = (float)d;
some_dummy_func((float)f);
}
HDexit(0);
}
while (pid!=waitpid(pid, &status, 0))
/*void*/;
if (WIFEXITED(status) && 0==WEXITSTATUS(status)) {
HDputs("Floating-point overflow cases will be tested.");
skip_overflow_tests_g = FALSE;
} else if (WIFSIGNALED(status) && SIGFPE==WTERMSIG(status)) {
HDputs("Floating-point overflow cases cannot be safely tested.");
skip_overflow_tests_g = TRUE;
/* delete the core dump file that SIGFPE may have created */
HDunlink("core");
}
#else
HDputs("Cannot determine if floating-point overflows generate a SIGFPE;");
HDputs("assuming yes.");
HDputs("Overflow cases will not be tested.");
skip_overflow_tests_g = TRUE;
#endif
}
/*-------------------------------------------------------------------------
* Function: test_hard_query
*
* Purpose: Tests H5Tcompiler_conv() for querying whether a conversion is
* a hard one.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Friday, Sept 2, 2005
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_hard_query(void)
{
htri_t ret;
TESTING("query functions of compiler conversion");
/* Verify the conversion from int to float is a hard conversion. */
if((ret = H5Tcompiler_conv(H5T_NATIVE_INT, H5T_NATIVE_FLOAT))!=TRUE) {
H5_FAILED();
printf("Can't query conversion function\n");
goto error;
}
/* Unregister the hard conversion from int to float. Verify the conversion
* is a soft conversion. */
H5Tunregister(H5T_PERS_HARD, NULL, H5T_NATIVE_INT, H5T_NATIVE_FLOAT, H5T_conv_int_float);
if((ret = H5Tcompiler_conv(H5T_NATIVE_INT, H5T_NATIVE_FLOAT))!=FALSE) {
H5_FAILED();
printf("Can't query conversion function\n");
goto error;
}
/* Register the hard conversion from int to float. Verify the conversion
* is a hard conversion. */
H5Tregister(H5T_PERS_HARD, "int_flt", H5T_NATIVE_INT, H5T_NATIVE_FLOAT, H5T_conv_int_float);
if((ret = H5Tcompiler_conv(H5T_NATIVE_INT, H5T_NATIVE_FLOAT))!=TRUE) {
H5_FAILED();
printf("Can't query conversion function\n");
goto error;
}
PASSED();
reset_hdf5();
return 0;
error:
reset_hdf5();
return 1;
}
/*-------------------------------------------------------------------------
* Function: expt_handle
*
* Purpose: Gets called from test_particular_fp_integer() for data type
* conversion exceptions.
*
* Return: H5T_CONV_HANDLED 1
*
* Programmer: Raymond Lu
* Sept 7, 2005
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static H5T_conv_ret_t
expt_handle(H5T_conv_except_t except_type, hid_t UNUSED src_id, hid_t UNUSED dst_id, void UNUSED *src_buf,
void *dst_buf, void *user_data)
{
H5T_conv_ret_t ret = H5T_CONV_HANDLED;
signed char fill_value1 = 7;
int fill_value2 = 13;
if(except_type == H5T_CONV_EXCEPT_RANGE_HI || except_type == H5T_CONV_EXCEPT_RANGE_LOW ||
except_type == H5T_CONV_EXCEPT_TRUNCATE) {
if(*(hbool_t*)user_data)
*(signed char*)dst_buf = fill_value1;
else
*(int*)dst_buf = fill_value2;
}
return ret;
}
/*-------------------------------------------------------------------------
* Function: test_particular_fp_integer
*
* Purpose: Tests hard conversions from floating numbers to integers in
* a special situation when the source is "float" and assigned
* the value of "INT_MAX". A compiler may do roundup making
* this value "INT_MAX+1". When this float value is casted to
* int, overflow happens. This test makes sure the library
* returns exception in this situation.
*
* Also verifies the library handles conversion from double to
* signed char correctly when the value of double is SCHAR_MAX.
* The test makes sure the signed char doesn't overflow.
*
* This test is mainly for netCDF's request.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Sept 7, 2005
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int test_particular_fp_integer(void)
{
hid_t dxpl_id;
hbool_t flag;
double src_d = (double)SCHAR_MAX;
signed char dst_c;
unsigned char *buf1 = NULL, *buf2 = NULL;
unsigned char *saved_buf1 = NULL, *saved_buf2 = NULL;
size_t src_size1, src_size2;
size_t dst_size1, dst_size2;
float src_f = (float)INT_MAX;
int dst_i;
int fill_value = 13;
int endian; /*endianess */
unsigned int fails_this_test = 0;
size_t j;
TESTING("hard particular floating number -> integer conversions");
if((dxpl_id = H5Pcreate(H5P_DATASET_XFER))<0) {
H5_FAILED();
printf("Can't create data transfer property list\n");
goto error;
}
/* Test conversion from double (the value is SCHAR_MAX) to signed char. */
endian = H5Tget_order(H5T_NATIVE_DOUBLE);
src_size1 = H5Tget_size(H5T_NATIVE_DOUBLE);
dst_size1 = H5Tget_size(H5T_NATIVE_SCHAR);
buf1 = (unsigned char*)calloc(1, MAX(src_size1, dst_size1));
saved_buf1 = (unsigned char*)calloc(1, MAX(src_size1, dst_size1));
memcpy(buf1, &src_d, src_size1);
memcpy(saved_buf1, &src_d, src_size1);
/* Register exception handling function and signal the destination is "signed char". */
flag = 1;
if(H5Pset_type_conv_cb(dxpl_id, expt_handle, &flag)<0) {
H5_FAILED();
printf("Can't register conversion callback\n");
goto error;
}
/* Do conversion */
if(H5Tconvert(H5T_NATIVE_DOUBLE, H5T_NATIVE_SCHAR, 1, buf1, NULL, dxpl_id)<0) {
H5_FAILED();
printf("Can't convert data\n");
goto error;
}
memcpy(&dst_c, buf1, dst_size1);
/* Print errors */
if(dst_c != SCHAR_MAX) {
double x;
signed char y;
if(0 == fails_this_test++)
H5_FAILED();
printf(" test double to signed char:\n");
printf(" src = ");
for (j=0; j<src_size1; j++)
printf(" %02x", saved_buf1[ENDIAN(src_size1, j, endian)]);
HDmemcpy(&x, saved_buf1, src_size1);
printf(" %29.20e\n", x);
printf(" dst = ");
for (j=0; j<dst_size1; j++)
printf(" %02x", buf1[ENDIAN(dst_size1, j, endian)]);
HDmemcpy(&y, buf1, dst_size1);
printf(" %29d\n", y);
}
/* Test conversion from float (the value is INT_MAX) to int. */
src_size2 = H5Tget_size(H5T_NATIVE_FLOAT);
dst_size2 = H5Tget_size(H5T_NATIVE_INT);
buf2 = (unsigned char*)calloc(1, MAX(src_size2, dst_size2));
saved_buf2 = (unsigned char*)calloc(1, MAX(src_size2, dst_size2));
memcpy(buf2, &src_f, src_size2);
memcpy(saved_buf2, &src_f, src_size2);
/* signal exception handling function that the destination is "int". */
flag = 0;
/* Do conversion */
if(H5Tconvert(H5T_NATIVE_FLOAT, H5T_NATIVE_INT, 1, buf2, NULL, dxpl_id)<0) {
H5_FAILED();
printf("Can't convert data\n");
goto error;
}
memcpy(&dst_i, buf2, dst_size2);
/* Print errors */
if(dst_i != fill_value) {
float x;
int y;
if(0 == fails_this_test++)
H5_FAILED();
printf(" test float to int:\n");
printf(" src = ");
for (j=0; j<src_size2; j++)
printf(" %02x", saved_buf2[ENDIAN(src_size2, j, endian)]);
HDmemcpy(&x, saved_buf2, src_size2);
printf(" %29.20e\n", x);
printf(" dst = ");
for (j=0; j<dst_size2; j++)
printf(" %02x", buf2[ENDIAN(dst_size2, j, endian)]);
HDmemcpy(&y, buf2, dst_size2);
printf(" %29d\n", y);
}
if(fails_this_test)
goto error;
if(H5Pclose(dxpl_id)<0) {
H5_FAILED();
printf("Can't close property list\n");
goto error;
}
if(buf1)
free(buf1);
if(buf2)
free(buf2);
if(saved_buf1)
free(saved_buf1);
if(saved_buf2)
free(saved_buf2);
PASSED();
return 0;
error:
HDfflush(stdout);
H5E_BEGIN_TRY {
H5Pclose(dxpl_id);
} H5E_END_TRY;
if(buf1)
free(buf1);
if(buf2)
free(buf2);
if(saved_buf1)
free(saved_buf1);
if(saved_buf2)
free(saved_buf2);
reset_hdf5(); /*print statistics*/
return MAX((int)fails_this_test, 1);
}
/*-------------------------------------------------------------------------
* Function: test_derived_flt
*
* Purpose: Tests user-define and query functions of floating-point types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Thursday, Jan 6, 2005
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_derived_flt(void)
{
hid_t file=-1, tid1=-1, tid2=-1;
hid_t dxpl_id=-1;
char filename[1024];
size_t spos, epos, esize, mpos, msize, size;
size_t src_size, dst_size;
unsigned char *buf=NULL, *saved_buf=NULL;
int *aligned=NULL;
int endian; /*endianess */
size_t nelmts = NTESTELEM;
unsigned int fails_this_test = 0;
const size_t max_fails=40; /*max number of failures*/
char str[256]; /*message string */
unsigned int i, j;
TESTING("user-define and query functions of floating-point types");
/* Create File */
h5_fixname(FILENAME[0], H5P_DEFAULT, filename, sizeof filename);
if((file=H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT))<0) {
H5_FAILED();
printf("Can't create file\n");
goto error;
}
if((dxpl_id = H5Pcreate(H5P_DATASET_XFER))<0) {
H5_FAILED();
printf("Can't create data transfer property list\n");
goto error;
}
if((tid1 = H5Tcopy(H5T_IEEE_F64LE))<0) {
H5_FAILED();
printf("Can't copy data type\n");
goto error;
}
if((tid2 = H5Tcopy(H5T_IEEE_F32LE))<0) {
H5_FAILED();
printf("Can't copy data type\n");
goto error;
}
/*------------------------------------------------------------------------
* 1st floating-point type
* size=7 byte, precision=42 bits, offset=3 bits, mantissa size=31 bits,
* mantissa position=3, exponent size=10 bits, exponent position=34,
* exponent bias=511. It can be illustrated in little-endian order as
*
* 6 5 4 3 2 1 0
* ???????? ???SEEEE EEEEEEMM MMMMMMMM MMMMMMMM MMMMMMMM MMMMM???
*
* To create a new floating-point type, the following properties must be
* set in the order of
* set fields -> set offset -> set precision -> set size.
* All these properties must be set before the type can function. Other
* properties can be set anytime. Derived type size cannot be expanded
* bigger than original size but can be decreased. There should be no
* holes among the significant bits. Exponent bias usually is set
* 2^(n-1)-1, where n is the exponent size.
*-----------------------------------------------------------------------*/
if(H5Tset_fields(tid1, 44, 34, 10, 3, 31)<0) {
H5_FAILED();
printf("Can't set fields\n");
goto error;
}
if(H5Tset_offset(tid1, 3)<0) {
H5_FAILED();
printf("Can't set offset\n");
goto error;
}
if(H5Tset_precision(tid1, 42)<0) {
H5_FAILED();
printf("Can't set precision 1\n");
goto error;
}
if(H5Tset_size(tid1, 7)<0) {
H5_FAILED();
printf("Can't set size\n");
goto error;
}
if(H5Tset_ebias(tid1, 511) < 0) {
H5_FAILED();
printf("Can't set exponent bias\n");
goto error;
}
if(H5Tset_pad(tid1, H5T_PAD_ZERO, H5T_PAD_ZERO) < 0) {
H5_FAILED();
printf("Can't set padding\n");
goto error;
}
if(H5Tcommit2(file, "new float type 1", tid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT) < 0) {
H5_FAILED();
printf("Can't set inpad\n");
goto error;
}
if(H5Tclose(tid1) < 0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if((tid1 = H5Topen(file, "new float type 1")) < 0) {
H5_FAILED();
printf("Can't open datatype\n");
goto error;
}
if(H5Tget_fields(tid1, &spos, &epos, &esize, &mpos, &msize)<0) {
H5_FAILED();
printf("Can't get fields\n");
goto error;
}
if(spos!=44 || epos!=34 || esize!=10 || mpos!=3 || msize!=31) {
H5_FAILED();
printf("Wrong field values\n");
goto error;
}
if(H5Tget_precision(tid1)!=42) {
H5_FAILED();
printf("Can't get precision or wrong precision\n");
goto error;
}
if(H5Tget_offset(tid1)!=3) {
H5_FAILED();
printf("Can't get offset or wrong offset\n");
goto error;
}
if((size = H5Tget_size(tid1))!=7) {
H5_FAILED();
printf("Can't get size or wrong size\n");
goto error;
}
if(H5Tget_ebias(tid1)!=511) {
H5_FAILED();
printf("Can't get exponent bias or wrong bias\n");
goto error;
}
/* Convert data from native integer to the 1st derived floating-point type.
* Then convert data from the floating-point type back to native integer.
* Compare the final data with the original data.
*/
src_size = H5Tget_size(H5T_NATIVE_INT);
endian = H5Tget_order(H5T_NATIVE_INT);
buf = (unsigned char*)malloc(nelmts*(MAX(src_size, size)));
saved_buf = (unsigned char*)malloc(nelmts*src_size);
HDmemset(buf, 0, nelmts*MAX(src_size, size));
HDmemset(saved_buf, 0, nelmts*src_size);
aligned = (int*)calloc(1, src_size);
for(i=0; i<nelmts*src_size; i++)
buf[i] = saved_buf[i] = HDrand();
/* Convert data from native integer to derived floating-point type.
* The mantissa is big enough to retain the integer's precision. */
if(H5Tconvert(H5T_NATIVE_INT, tid1, nelmts, buf, NULL, dxpl_id)<0) {
H5_FAILED();
printf("Can't convert data\n");
goto error;
}
/* Convert data from the derived floating-point type back to native integer. */
if(H5Tconvert(tid1, H5T_NATIVE_INT, nelmts, buf, NULL, dxpl_id)<0) {
H5_FAILED();
printf("Can't convert data\n");
goto error;
}
/* Are the values still the same?*/
for(i=0; i<nelmts; i++) {
for(j=0; j<src_size; j++)
if(buf[i*src_size+j]!=saved_buf[i*src_size+j])
break;
if(j==src_size)
continue; /*no error*/
/* Print errors */
if (0==fails_this_test++) {
sprintf(str, "\nTesting random sw derived floating-point -> derived floating-point conversions");
printf("%-70s", str);
HDfflush(stdout);
H5_FAILED();
}
printf(" test %u elmt %u: \n", 1, (unsigned)i);
printf(" src = ");
for (j=0; j<src_size; j++)
printf(" %02x", saved_buf[i*src_size+ENDIAN(src_size, j, endian)]);
HDmemcpy(aligned, saved_buf+i*sizeof(int), sizeof(int));
printf(" %29d\n", *aligned);
printf(" dst = ");
for (j=0; j<src_size; j++)
printf(" %02x", buf[i*src_size+ENDIAN(src_size, j, endian)]);
HDmemcpy(aligned, buf+i*sizeof(int), sizeof(int));
printf(" %29d\n", *aligned);
if (fails_this_test>=max_fails) {
HDputs(" maximum failures reached, aborting test...");
goto error;
}
}
fails_this_test = 0;
if(buf) free(buf);
if(saved_buf) free(saved_buf);
if(aligned) free(aligned);
buf = NULL;
saved_buf = NULL;
aligned = NULL;
/*--------------------------------------------------------------------------
* 2nd floating-point type
* size=3 byte, precision=24 bits, offset=0 bits, mantissa size=16 bits,
* mantissa position=0, exponent size=7 bits, exponent position=16, exponent
* bias=63. It can be illustrated in little-endian order as
*
* 2 1 0
* SEEEEEEE MMMMMMMM MMMMMMMM
*--------------------------------------------------------------------------*/
if(H5Tset_fields(tid2, 23, 16, 7, 0, 16)<0) {
H5_FAILED();
printf("Can't set fields\n");
goto error;
}
if(H5Tset_offset(tid2, 0)<0) {
H5_FAILED();
printf("Can't set offset\n");
goto error;
}
if(H5Tset_precision(tid2, 24)<0) {
H5_FAILED();
printf("Can't set precision 2\n");
goto error;
}
if(H5Tset_size(tid2, 3)<0) {
H5_FAILED();
printf("Can't set size\n");
goto error;
}
if(H5Tset_ebias(tid2, 63) < 0) {
H5_FAILED();
printf("Can't set size\n");
goto error;
}
if(H5Tset_pad(tid2, H5T_PAD_ZERO, H5T_PAD_ZERO) < 0) {
H5_FAILED();
printf("Can't set padding\n");
goto error;
}
if(H5Tcommit2(file, "new float type 2", tid2, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT) < 0) {
H5_FAILED();
printf("Can't set inpad\n");
goto error;
}
if(H5Tclose(tid2) < 0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if((tid2 = H5Topen(file, "new float type 2")) < 0) {
H5_FAILED();
printf("Can't open datatype\n");
goto error;
}
if(H5Tget_fields(tid2, &spos, &epos, &esize, &mpos, &msize)<0) {
H5_FAILED();
printf("Can't get fields\n");
goto error;
}
if(spos!=23 || epos!=16 || esize!=7 || mpos!=0 || msize!=16) {
H5_FAILED();
printf("Wrong field values\n");
goto error;
}
if(H5Tget_precision(tid2)!=24) {
H5_FAILED();
printf("Can't get precision or wrong precision\n");
goto error;
}
if(H5Tget_offset(tid2)!=0) {
H5_FAILED();
printf("Can't get offset or wrong offset\n");
goto error;
}
if((size = H5Tget_size(tid2))!=3) {
H5_FAILED();
printf("Can't get size or wrong size\n");
goto error;
}
if(H5Tget_ebias(tid2)!=63) {
H5_FAILED();
printf("Can't get exponent bias or wrong bias\n");
goto error;
}
/* Convert data from the 2nd to the 1st derived floating-point type.
* Then convert data from the 1st type back to the 2nd type.
* Compare the final data with the original data.
*/
src_size = H5Tget_size(tid2);
dst_size = H5Tget_size(tid1);
endian = H5Tget_order(tid2);
buf = (unsigned char*)malloc(nelmts*(MAX(src_size, dst_size)));
saved_buf = (unsigned char*)malloc(nelmts*src_size);
HDmemset(buf, 0, nelmts*MAX(src_size, dst_size));
HDmemset(saved_buf, 0, nelmts*src_size);
for(i=0; i<nelmts*src_size; i++)
buf[i] = saved_buf[i] = HDrand();
/* Convert data from the 2nd to the 1st derived floating-point type.
* The mantissa and exponent of the 2nd type are big enough to retain
* the precision and exponent power. */
if(H5Tconvert(tid2, tid1, nelmts, buf, NULL, dxpl_id)<0) {
H5_FAILED();
printf("Can't convert data\n");
goto error;
}
/* Convert data from the 1st back to the 2nd derived floating-point type. */
if(H5Tconvert(tid1, tid2, nelmts, buf, NULL, dxpl_id)<0) {
H5_FAILED();
printf("Can't convert data\n");
goto error;
}
/* Are the values still the same?*/
for(i=0; i<nelmts; i++) {
for(j=0; j<src_size; j++)
if(buf[i*src_size+j]!=saved_buf[i*src_size+j])
break;
if(j==src_size)
continue; /*no error*/
/* If original value is NaN(exponent bits are all ones, 11..11),
* the library simply sets all mantissa bits to ones. So don't
* compare values in this case.
*/
if((buf[i*src_size+2]==0x7f && saved_buf[i*src_size+2]==0x7f) ||
(buf[i*src_size+2]==0xff && saved_buf[i*src_size+2]==0xff))
continue;
/* Print errors */
if (0==fails_this_test++) {
sprintf(str, "\nTesting random sw derived floating-point -> derived floating-point conversions");
printf("%-70s", str);
HDfflush(stdout);
H5_FAILED();
}
printf(" test %u elmt %u: \n", 1, (unsigned)i);
printf(" src = ");
for (j=0; j<src_size; j++)
printf(" %02x", saved_buf[i*src_size+ENDIAN(src_size, j, endian)]);
printf("\n");
printf(" dst = ");
for (j=0; j<src_size; j++)
printf(" %02x", buf[i*src_size+ENDIAN(src_size, j, endian)]);
printf("\n");
if (fails_this_test>=max_fails) {
HDputs(" maximum failures reached, aborting test...");
goto error;
}
}
if (buf) free(buf);
if (saved_buf) free(saved_buf);
if(H5Tclose(tid1)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if(H5Tclose(tid2)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if(H5Pclose(dxpl_id)<0) {
H5_FAILED();
printf("Can't close property list\n");
goto error;
}
if(H5Fclose(file)<0) {
H5_FAILED();
printf("Can't close file\n");
goto error;
} /* end if */
PASSED();
reset_hdf5(); /*print statistics*/
return 0;
error:
if (buf) free(buf);
if (saved_buf) free(saved_buf);
if (aligned) free(aligned);
HDfflush(stdout);
H5E_BEGIN_TRY {
H5Tclose (tid1);
H5Tclose (tid2);
H5Pclose (dxpl_id);
H5Fclose (file);
} H5E_END_TRY;
reset_hdf5(); /*print statistics*/
return MAX((int)fails_this_test, 1);
}
/*-------------------------------------------------------------------------
* Function: test_derived_integer
*
* Purpose: Tests user-define and query functions of integer types.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Saturday, Jan 29, 2005
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_derived_integer(void)
{
hid_t file=-1, tid1=-1, tid2=-1;
hid_t dxpl_id=-1;
char filename[1024];
size_t src_size, dst_size;
unsigned char *buf=NULL, *saved_buf=NULL;
int *aligned=NULL;
int endian; /*endianess */
size_t nelmts = NTESTELEM;
unsigned int fails_this_test = 0;
const size_t max_fails=40; /*max number of failures*/
char str[256]; /*message string */
unsigned int i, j;
TESTING("user-define and query functions of integer types");
/* Create File */
h5_fixname(FILENAME[1], H5P_DEFAULT, filename, sizeof filename);
if((file=H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT))<0) {
H5_FAILED();
printf("Can't create file\n");
goto error;
}
if((dxpl_id = H5Pcreate(H5P_DATASET_XFER))<0) {
H5_FAILED();
printf("Can't create data transfer property list\n");
goto error;
}
if((tid1 = H5Tcopy(H5T_STD_I32LE))<0) {
H5_FAILED();
printf("Can't copy data type\n");
goto error;
}
if((tid2 = H5Tcopy(H5T_STD_U64LE))<0) {
H5_FAILED();
printf("Can't copy data type\n");
goto error;
}
/*--------------------------------------------------------------------------
* 1st integer type
* size=3 byte, precision=24 bits, offset=0 bits, order=big endian.
* It can be illustrated in big-endian order as
*
* 0 1 2
* SIIIIIII IIIIIIII IIIIIIII
*
* There's no specific order for these functions to define the attributes
* of a new integer type, H5Tset_precision, H5Tset_offset, H5Tset_size,
* H5Tset_order, H5Tset_pad, H5Tset_sign.
*--------------------------------------------------------------------------*/
if(H5Tset_offset(tid1,0)<0) {
H5_FAILED();
printf("Can't set offset\n");
goto error;
}
if(H5Tset_size(tid1, 3)<0) {
H5_FAILED();
printf("Can't set size\n");
goto error;
}
if(H5Tset_precision(tid1, 24) < 0) {
H5_FAILED();
printf("Can't set precision\n");
goto error;
}
if(H5Tset_order(tid1, H5T_ORDER_BE) < 0) {
H5_FAILED();
printf("Can't set order\n");
goto error;
}
if(H5Tcommit2(file, "new integer type 1", tid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT) < 0) {
H5_FAILED();
printf("Can't commit data type\n");
goto error;
}
if(H5Tclose(tid1) < 0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if((tid1 = H5Topen(file, "new integer type 1")) < 0) {
H5_FAILED();
printf("Can't open datatype\n");
goto error;
}
if(H5Tget_precision(tid1)!=24) {
H5_FAILED();
printf("Can't get precision or wrong precision\n");
goto error;
}
if(H5Tget_offset(tid1)!=0) {
H5_FAILED();
printf("Can't get offset or wrong offset\n");
goto error;
}
if(H5Tget_size(tid1)!=3) {
H5_FAILED();
printf("Can't get size or wrong size\n");
goto error;
}
if(H5Tget_order(tid1)!=H5T_ORDER_BE) {
H5_FAILED();
printf("Can't get order or wrong order\n");
goto error;
}
/*--------------------------------------------------------------------------
* 2nd integer type
* size=8 byte, precision=48 bits, offset=10 bits, order=little endian.
* It can be illustrated in little-endian order as
*
* 7 6 5 4 3 2 1 0
* ??????SI IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIII?? ????????
*--------------------------------------------------------------------------*/
if(H5Tset_precision(tid2,48)<0) {
H5_FAILED();
printf("Can't set precision\n");
goto error;
}
if(H5Tset_offset(tid2, 10) < 0) {
H5_FAILED();
printf("Can't set offset\n");
goto error;
}
if(H5Tset_sign(tid2, H5T_SGN_2) < 0) {
H5_FAILED();
printf("Can't set offset\n");
goto error;
}
if(H5Tcommit2(file, "new integer type 2", tid2, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT) < 0) {
H5_FAILED();
printf("Can't commit data type\n");
goto error;
}
if(H5Tclose(tid2) < 0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if((tid2 = H5Topen(file, "new integer type 2")) < 0) {
H5_FAILED();
printf("Can't open datatype\n");
goto error;
}
if(H5Tget_precision(tid2)!=48) {
H5_FAILED();
printf("Can't get precision or wrong precision\n");
goto error;
}
if(H5Tget_offset(tid2)!=10) {
H5_FAILED();
printf("Can't get offset or wrong offset\n");
goto error;
}
if(H5Tget_size(tid2)!=8) {
H5_FAILED();
printf("Can't get size or wrong size\n");
goto error;
}
if(H5Tget_sign(tid2)!=H5T_SGN_2) {
H5_FAILED();
printf("Can't get sign or wrong sign\n");
goto error;
}
/* Convert data from the 1st to the 2nd derived integer type.
* Then convert data from the 2nd type back to the 1st type.
* Compare the final data with the original data.
*/
src_size = H5Tget_size(tid1);
dst_size = H5Tget_size(tid2);
endian = H5Tget_order(tid1);
buf = (unsigned char*)HDmalloc(nelmts*(MAX(src_size, dst_size)));
saved_buf = (unsigned char*)HDmalloc(nelmts*src_size);
HDmemset(buf, 0, nelmts*MAX(src_size, dst_size));
HDmemset(saved_buf, 0, nelmts*src_size);
for(i=0; i<nelmts*src_size; i++)
buf[i] = saved_buf[i] = HDrand();
/* Convert data from the 1st to the 2nd derived integer type.
* The precision of the 2nd type are big enough to retain
* the 1st type's precision. */
if(H5Tconvert(tid1, tid2, nelmts, buf, NULL, dxpl_id)<0) {
H5_FAILED();
printf("Can't convert data\n");
goto error;
}
/* Convert data from the 2nd back to the 1st derived integer type. */
if(H5Tconvert(tid2, tid1, nelmts, buf, NULL, dxpl_id)<0) {
H5_FAILED();
printf("Can't convert data\n");
goto error;
}
/* Are the values still the same?*/
for(i=0; i<nelmts; i++) {
for(j=0; j<src_size; j++)
if(buf[i*src_size+j]!=saved_buf[i*src_size+j])
break;
if(j==src_size)
continue; /*no error*/
/* Print errors */
if (0==fails_this_test++) {
sprintf(str, "\nTesting random sw derived integer -> derived integer conversions");
printf("%-70s", str);
HDfflush(stdout);
H5_FAILED();
}
printf(" test %u elmt %u: \n", 1, (unsigned)i);
printf(" src = ");
for (j=0; j<src_size; j++)
printf(" %02x", saved_buf[i*src_size+ENDIAN(src_size, j, endian)]);
printf("\n");
printf(" dst = ");
for (j=0; j<src_size; j++)
printf(" %02x", buf[i*src_size+ENDIAN(src_size, j, endian)]);
printf("\n");
if (fails_this_test>=max_fails) {
HDputs(" maximum failures reached, aborting test...");
goto error;
}
}
if(H5Tclose(tid1)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if(H5Tclose(tid2)<0) {
H5_FAILED();
printf("Can't close datatype\n");
goto error;
}
if(H5Pclose(dxpl_id)<0) {
H5_FAILED();
printf("Can't close property list\n");
goto error;
}
if(H5Fclose(file)<0) {
H5_FAILED();
printf("Can't close file\n");
goto error;
} /* end if */
PASSED();
reset_hdf5(); /*print statistics*/
return 0;
error:
if (buf) free(buf);
if (saved_buf) free(saved_buf);
if (aligned) free(aligned);
HDfflush(stdout);
H5E_BEGIN_TRY {
H5Tclose (tid1);
H5Tclose (tid2);
H5Pclose (dxpl_id);
H5Fclose (file);
} H5E_END_TRY;
reset_hdf5(); /*print statistics*/
return MAX((int)fails_this_test, 1);
}
/*-------------------------------------------------------------------------
* Function: test_conv_int_1
*
* Purpose: Test conversion of integer values from SRC to DST.
* These types should be any combination of:
*
* H5T_NATIVE_SCHAR H5T_NATIVE_UCHAR
* H5T_NATIVE_SHORT H5T_NATIVE_USHORT
* H5T_NATIVE_INT H5T_NATIVE_UINT
* H5T_NATIVE_LONG H5T_NATIVE_ULONG
* H5T_NATIVE_LLONG H5T_NATIVE_ULLONG
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Monday, November 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int_1(const char *name, hid_t src, hid_t dst)
{
size_t nelmts=0; /*num values per test */
const size_t max_fails=8; /*max number of failures*/
size_t fails_all_tests=0; /*number of failures */
size_t fails_this_test; /*fails for this test */
char str[256]; /*hello string */
dtype_t src_type, dst_type; /*data types */
const char *src_type_name=NULL; /*source type name */
const char *dst_type_name=NULL; /*destination type name */
int endian; /*machine endianess */
size_t src_size, dst_size; /*type sizes */
unsigned char *buf=NULL; /*buffer for conversion */
unsigned char *saved=NULL; /*original values */
size_t j, k; /*counters */
unsigned char *hw=NULL; /*hardware conv result */
unsigned char src_bits[32]; /*src value in LE order */
unsigned char dst_bits[32]; /*dest value in LE order*/
size_t src_nbits; /*source length in bits */
size_t dst_nbits; /*dst length in bits */
H5T_sign_t src_sign; /*source sign type */
H5T_sign_t dst_sign; /*dst sign type */
void *aligned=NULL; /*aligned temp buffer */
signed char hw_char;
unsigned char hw_uchar;
short hw_short;
unsigned short hw_ushort;
int hw_int;
unsigned hw_uint;
long hw_long;
unsigned long hw_ulong;
long_long hw_llong;
unsigned long_long hw_ullong;
/* What are the names of the source and destination types */
if (H5Tequal(src, H5T_NATIVE_SCHAR)) {
src_type_name = "signed char";
src_type = INT_SCHAR;
} else if (H5Tequal(src, H5T_NATIVE_UCHAR)) {
src_type_name = "unsigned char";
src_type = INT_UCHAR;
} else if (H5Tequal(src, H5T_NATIVE_SHORT)) {
src_type_name = "short";
src_type = INT_SHORT;
} else if (H5Tequal(src, H5T_NATIVE_USHORT)) {
src_type_name = "unsigned short";
src_type = INT_USHORT;
} else if (H5Tequal(src, H5T_NATIVE_INT)) {
src_type_name = "int";
src_type = INT_INT;
} else if (H5Tequal(src, H5T_NATIVE_UINT)) {
src_type_name = "unsigned int";
src_type = INT_UINT;
} else if (H5Tequal(src, H5T_NATIVE_LONG)) {
src_type_name = "long";
src_type = INT_LONG;
} else if (H5Tequal(src, H5T_NATIVE_ULONG)) {
src_type_name = "unsigned long";
src_type = INT_ULONG;
} else if (H5Tequal(src, H5T_NATIVE_LLONG)) {
src_type_name = "long long";
src_type = INT_LLONG;
} else if (H5Tequal(src, H5T_NATIVE_ULLONG)) {
src_type_name = "unsigned long long";
src_type = INT_ULLONG;
} else {
src_type_name = "UNKNOWN";
src_type = OTHER;
}
if (H5Tequal(dst, H5T_NATIVE_SCHAR)) {
dst_type_name = "signed char";
dst_type = INT_SCHAR;
} else if (H5Tequal(dst, H5T_NATIVE_UCHAR)) {
dst_type_name = "unsigned char";
dst_type = INT_UCHAR;
} else if (H5Tequal(dst, H5T_NATIVE_SHORT)) {
dst_type_name = "short";
dst_type = INT_SHORT;
} else if (H5Tequal(dst, H5T_NATIVE_USHORT)) {
dst_type_name = "unsigned short";
dst_type = INT_USHORT;
} else if (H5Tequal(dst, H5T_NATIVE_INT)) {
dst_type_name = "int";
dst_type = INT_INT;
} else if (H5Tequal(dst, H5T_NATIVE_UINT)) {
dst_type_name = "unsigned int";
dst_type = INT_UINT;
} else if (H5Tequal(dst, H5T_NATIVE_LONG)) {
dst_type_name = "long";
dst_type = INT_LONG;
} else if (H5Tequal(dst, H5T_NATIVE_ULONG)) {
dst_type_name = "unsigned long";
dst_type = INT_ULONG;
} else if (H5Tequal(dst, H5T_NATIVE_LLONG)) {
dst_type_name = "long long";
dst_type = INT_LLONG;
} else if (H5Tequal(dst, H5T_NATIVE_ULLONG)) {
dst_type_name = "unsigned long long";
dst_type = INT_ULLONG;
} else {
dst_type_name = "UNKNOWN";
dst_type = OTHER;
}
/* Sanity checks */
if (OTHER==src_type || OTHER==dst_type) {
sprintf(str, "Testing %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
H5_FAILED();
HDputs(" Unknown data type.");
goto error;
} else {
sprintf(str, "Testing %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
HDfflush(stdout);
fails_this_test=0;
}
/* Some information about datatypes */
endian = H5Tget_order(H5T_NATIVE_INT);
src_size = H5Tget_size(src);
dst_size = H5Tget_size(dst);
src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */
dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */
src_sign = H5Tget_sign(src);
dst_sign = H5Tget_sign(dst);
aligned = HDcalloc(1, sizeof(long_long));
/* Allocate and initialize the source buffer through macro INIT_INTEGER. The BUF
* will be used for the conversion while the SAVED buffer will be
* used for the comparison later.
*/
if(src_type == INT_SCHAR) {
INIT_INTEGER(signed char, SCHAR_MAX, SCHAR_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_UCHAR) {
INIT_INTEGER(unsigned char, UCHAR_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_SHORT) {
INIT_INTEGER(short, SHRT_MAX, SHRT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_USHORT) {
INIT_INTEGER(unsigned short, USHRT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_INT) {
INIT_INTEGER(int, INT_MAX, INT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_UINT) {
INIT_INTEGER(unsigned int, UINT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_LONG) {
INIT_INTEGER(long, LONG_MAX, LONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_ULONG) {
INIT_INTEGER(unsigned long, ULONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_LLONG) {
INIT_INTEGER(long_long, LLONG_MAX, LLONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_ULLONG) {
INIT_INTEGER(unsigned long_long, ULLONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else
goto error;
/* Perform the conversion */
if (H5Tconvert(src, dst, nelmts, buf, NULL, H5P_DEFAULT)<0)
goto error;
/* Check the results from the library against hardware */
for (j=0; j<nelmts; j++) {
if (INT_SCHAR==dst_type) {
hw = (unsigned char*)&hw_char;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
hw_char = (signed char)(*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_char = (signed char)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_char = (signed char)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_char = (signed char)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_char = (signed char)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_char = (signed char)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_char = (signed char)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_char = (signed char)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_char = (signed char)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_char = (signed char)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_UCHAR==dst_type) {
hw = (unsigned char*)&hw_uchar;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
hw_uchar = (unsigned char)(*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_uchar = (unsigned char)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_uchar = (unsigned char)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_uchar = (unsigned char)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_uchar = (unsigned char)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_uchar = (unsigned char)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_uchar = (unsigned char)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_uchar = (unsigned char)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_uchar = (unsigned char)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_uchar = (unsigned char)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_SHORT==dst_type) {
hw = (unsigned char*)&hw_short;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_short = (short)(*((char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_short = (short)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_short = (short)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_short = (short)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_short = (short)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_short = (short)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_short = (short)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_short = (short)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_short = (short)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_short = (short)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_USHORT==dst_type) {
hw = (unsigned char*)&hw_ushort;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
hw_ushort = (unsigned short)(*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_ushort = (unsigned short)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_ushort = (unsigned short)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_ushort = (unsigned short)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_ushort = (unsigned short)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_ushort = (unsigned short)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_ushort = (unsigned short)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_ushort = (unsigned short)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_ushort = (unsigned short)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_ushort = (unsigned short)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_INT==dst_type) {
hw = (unsigned char*)&hw_int;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
hw_int = (int)(*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_int = (int)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_int = (int)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_int = (int)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_int = (int)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_int = (int)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_int = (int)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_int = (int)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_int = (int)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_int = (int)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_UINT==dst_type) {
hw = (unsigned char*)&hw_uint;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
hw_uint = (unsigned int)(*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_uint = (unsigned int)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_uint = (unsigned int)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_uint = (unsigned int)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_uint = (unsigned int)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_uint = (unsigned int)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_uint = (unsigned int)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_uint = (unsigned int)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_uint = (unsigned int)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_uint = (unsigned int)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_LONG==dst_type) {
hw = (unsigned char*)&hw_long;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
hw_long = (long int)(*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_long = (long int)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_long = (long int)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_long = (long int)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_long = (long int)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_long = (long int)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_long = (long int)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_long = (long int)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_long = (long int)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_long = (long int)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_ULONG==dst_type) {
hw = (unsigned char*)&hw_ulong;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
hw_ulong = (unsigned long)(*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_ulong = (unsigned long)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_ulong = (unsigned long)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_ulong = (unsigned long)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_ulong = (unsigned long)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_ulong = (unsigned long)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_ulong = (unsigned long)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_ulong = (unsigned long)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_ulong = (unsigned long)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_ulong = (unsigned long)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_LLONG==dst_type) {
hw = (unsigned char*)&hw_llong;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
hw_llong = (long_long)(*((char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_llong = (long_long)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_llong = (long_long)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_llong = (long_long)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_llong = (long_long)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_llong = (long_long)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_llong = (long_long)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_llong = (long_long)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_llong = (long_long)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_llong = (long_long)(*((unsigned long_long*)aligned));
break;
default:
break;
}
} else if (INT_ULLONG==dst_type) {
hw = (unsigned char*)&hw_ullong;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
hw_ullong = (unsigned long_long)(*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_ullong = (unsigned long_long)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_ullong = (unsigned long_long)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_ullong = (unsigned long_long)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_ullong = (unsigned long_long)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_ullong = (unsigned long_long)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_ullong = (unsigned long_long)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_ullong = (unsigned long_long)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_ullong = (unsigned long_long)(*((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_ullong = (unsigned long_long)(*((unsigned long_long*)aligned));
break;
default:
break;
}
}
/* Make certain that there isn't some weird number of destination bits */
assert(dst_nbits%8==0);
/* Are the two results the same? */
for (k=(dst_size-(dst_nbits/8)); k<dst_size; k++)
if (buf[j*dst_size+k]!=hw[k])
break;
if (k==dst_size)
continue; /*no error*/
/*
* Convert the source and destination values to little endian
* order so we can use the HDF5 bit vector operations to test
* certain things. These routines have already been tested by
* the `bittests' program.
*/
for (k=0; k<src_size; k++)
src_bits[src_size-(k+1)] = saved[j*src_size+ENDIAN(src_size, k, endian)];
for (k=0; k<dst_size; k++)
dst_bits[dst_size-(k+1)] = buf[j*dst_size+ENDIAN(dst_size, k, endian)];
/*
* Hardware usually doesn't handle overflows too gracefully. The
* hardware conversion result during overflows is usually garbage
* so we must handle those cases differetly when checking results.
*/
if (H5T_SGN_2==src_sign && H5T_SGN_2==dst_sign) {
if (src_nbits>dst_nbits) {
if(0==H5T_bit_get_d(src_bits, src_nbits-1, 1) &&
H5T_bit_find(src_bits, dst_nbits-1, (src_nbits-dst_nbits),
H5T_BIT_MSB, 1)>=0) {
/*
* Source is positive and the magnitude is too large for
* the destination. The destination should be set to the
* maximum possible value: 0x7f...f
*/
if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 0)<0)
continue; /*no error*/
} else if (1==H5T_bit_get_d(src_bits, src_nbits-1, 1) &&
H5T_bit_find(src_bits, 0, src_nbits-1, H5T_BIT_MSB,
0)+1>=(ssize_t)dst_nbits) {
/*
* Source is negative but the magnitude is too large for
* the destination. The destination should be set to the
* smallest possible value: 0x80...0
*/
if (1==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 1)<0)
continue; /*no error*/
}
} else if(src_nbits<dst_nbits) {
/* Source is smaller than the destination */
if(0==H5T_bit_get_d(src_bits, src_nbits-1, 1)) {
/*
* Source is positive, so the excess bits in the
* destination should be set to 0's.
*/
if (0==H5T_bit_get_d(dst_bits, src_nbits-1, 1) &&
H5T_bit_find(dst_bits, src_nbits, dst_nbits-src_nbits, H5T_BIT_LSB, 1)<0)
continue; /*no error*/
} else {
/*
* Source is negative, so the excess bits in the
* destination should be set to 1's.
*/
if (1==H5T_bit_get_d(dst_bits, src_nbits-1, 1) &&
H5T_bit_find(dst_bits, src_nbits, dst_nbits-src_nbits, H5T_BIT_LSB, 0)<0)
continue; /*no error*/
}
}
} else if (H5T_SGN_2==src_sign && H5T_SGN_NONE==dst_sign) {
if (H5T_bit_get_d(src_bits, src_nbits-1, 1)) {
/*
* The source is negative so the result should be zero.
* The source is negative if the most significant bit is
* set. The destination is zero if all bits are zero.
*/
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 1)<0)
continue; /*no error*/
} else if (src_nbits>dst_nbits &&
H5T_bit_find(src_bits, dst_nbits-1,
src_nbits-dst_nbits, H5T_BIT_LSB, 1)>=0) {
/*
* The source is a value with a magnitude too large for
* the destination. The destination should be the
* largest possible value: 0xff...f
*/
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0)
continue; /*no error*/
}
} else if (H5T_SGN_NONE==src_sign && H5T_SGN_2==dst_sign) {
if (src_nbits>=dst_nbits &&
H5T_bit_find(src_bits, dst_nbits-1, (src_nbits-dst_nbits)+1,
H5T_BIT_LSB, 1)>=0) {
/*
* The source value has a magnitude that is larger than
* the destination can handle. The destination should be
* set to the largest possible positive value: 0x7f...f
*/
if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 0)<0)
continue; /*no error*/
}
} else {
if (src_nbits>dst_nbits &&
H5T_bit_find(src_bits, dst_nbits, src_nbits-dst_nbits,
H5T_BIT_LSB, 1)>=0) {
/*
* The unsigned source has a value which is too large for
* the unsigned destination. The destination should be
* set to the largest possible value: 0xff...f
*/
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0)
continue; /*no error*/
}
}
/* Print errors */
if (0==fails_this_test++)
H5_FAILED();
printf(" elmt %u\n", (unsigned)j);
printf(" src = ");
for (k=0; k<src_size; k++)
printf(" %02x", saved[j*src_size+ENDIAN(src_size, k, endian)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)), "");
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
printf(" %29d\n", (int)*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
printf(" %29u\n", (unsigned)*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
printf(" %29hd\n", *((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
printf(" %29hu\n", *((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
printf(" %29d\n", *((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
printf(" %29u\n", *((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
printf(" %29ld\n", *((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
printf(" %29lu\n", *((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)aligned));
break;
default:
break;
}
printf(" dst = ");
for (k=0; k<dst_size; k++)
printf(" %02x", buf[j*dst_size+ENDIAN(dst_size, k, endian)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), "");
switch (dst_type) {
case INT_SCHAR:
HDmemcpy(aligned, buf+j*sizeof(signed char), sizeof(signed char));
printf(" %29d\n", (int)*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, buf+j*sizeof(unsigned char), sizeof(unsigned char));
printf(" %29u\n", (unsigned)*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, buf+j*sizeof(short), sizeof(short));
printf(" %29hd\n", *((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, buf+j*sizeof(unsigned short), sizeof(unsigned short));
printf(" %29hu\n", *((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, buf+j*sizeof(int), sizeof(int));
printf(" %29d\n", *((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, buf+j*sizeof(unsigned), sizeof(unsigned));
printf(" %29u\n", *((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, buf+j*sizeof(long), sizeof(long));
printf(" %29ld\n", *((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, buf+j*sizeof(unsigned long), sizeof(unsigned long));
printf(" %29lu\n", *((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, buf+j*sizeof(long_long), sizeof(long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, buf+j*sizeof(long_long), sizeof(unsigned long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)aligned));
break;
default:
break;
}
printf(" ans = ");
for (k=0; k<dst_size; k++)
printf(" %02x", hw[ENDIAN(dst_size, k, endian)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), "");
switch (dst_type) {
case INT_SCHAR:
printf(" %29d\n", (int)*((signed char*)hw));
break;
case INT_UCHAR:
printf(" %29u\n", (unsigned)*((unsigned char*)hw));
break;
case INT_SHORT:
printf(" %29hd\n", *((short*)hw));
break;
case INT_USHORT:
printf(" %29hu\n", *((unsigned short*)hw));
break;
case INT_INT:
printf(" %29d\n", *((int*)hw));
break;
case INT_UINT:
printf(" %29u\n", *((unsigned*)hw));
break;
case INT_LONG:
printf(" %29ld\n", *((long*)hw));
break;
case INT_ULONG:
printf(" %29lu\n", *((unsigned long*)hw));
break;
case INT_LLONG:
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)hw));
break;
case INT_ULLONG:
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)hw));
break;
default:
break;
}
if (++fails_all_tests>=max_fails) {
HDputs(" maximum failures reached, aborting test...");
goto done;
}
}
PASSED();
done:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) HDfree(aligned);
HDfflush(stdout);
reset_hdf5(); /*print statistics*/
return (int)fails_all_tests;
error:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) HDfree(aligned);
HDfflush(stdout);
reset_hdf5(); /*print statistics*/
return MAX((int)fails_all_tests, 1);
}
/*-------------------------------------------------------------------------
* Function: test_conv_int_2
*
* Purpose: Tests overlap calculates in H5T_conv_i_i(), which should be
* the same as for H5T_conv_f_f() and H5T_conv_s_s().
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Friday, April 30, 1999
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int_2(void)
{
int i, j;
hid_t src_type, dst_type;
char buf[32*100];
printf("%-70s", "Testing overlap calculations");
HDfflush(stdout);
HDmemset(buf, 0, sizeof buf);
for (i=1; i<=32; i++) {
for (j=1; j<=32; j++) {
/* Source type */
src_type = H5Tcopy(H5T_NATIVE_CHAR);
H5Tset_size(src_type, (size_t)i);
/* Destination type */
dst_type = H5Tcopy(H5T_NATIVE_CHAR);
H5Tset_size(dst_type, (size_t)j);
/*
* Conversion. If overlap calculations aren't right then an
* assertion will fail in H5T_conv_i_i()
*/
H5Tconvert(src_type, dst_type, 100, buf, NULL, H5P_DEFAULT);
H5Tclose(src_type);
H5Tclose(dst_type);
}
}
PASSED();
return 0;
}
/*-------------------------------------------------------------------------
* Function: my_isnan
*
* Purpose: Determines whether VAL points to NaN.
*
* Return: TRUE or FALSE
*
* Programmer: Robb Matzke
* Monday, July 6, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
my_isnan(dtype_t type, void *val)
{
int retval = 0;
char s[256];
if (FLT_FLOAT==type) {
float x;
HDmemcpy(&x, val, sizeof(float));
retval = (x!=x);
} else if (FLT_DOUBLE==type) {
double x;
HDmemcpy(&x, val, sizeof(double));
retval = (x!=x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0
} else if (FLT_LDOUBLE==type) {
long double x;
HDmemcpy(&x, val, sizeof(long double));
retval = (x!=x);
#endif
} else {
return 0;
}
/*
* Sometimes NaN==NaN (e.g., DEC Alpha) so we try to print it and see if
* the result contains a NaN string.
*/
if (!retval) {
if (FLT_FLOAT==type) {
float x;
HDmemcpy(&x, val, sizeof(float));
sprintf(s, "%g", x);
} else if (FLT_DOUBLE==type) {
double x;
HDmemcpy(&x, val, sizeof(double));
sprintf(s, "%g", x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0
} else if (FLT_LDOUBLE==type) {
long double x;
HDmemcpy(&x, val, sizeof(long double));
sprintf(s, "%Lg", x);
#endif
} else {
return 0;
}
if (HDstrstr(s, "NaN") || HDstrstr(s, "NAN") || HDstrstr(s, "nan"))
retval = 1;
}
#ifdef H5_VMS
/* For "float" and "double" on OpenVMS/Alpha, NaN is
* actually a valid value of maximal value.*/
if(!retval) {
if (FLT_FLOAT==type) {
float x;
HDmemcpy(&x, val, sizeof(float));
retval = (x==FLT_MAX || x==-FLT_MAX);
} else if (FLT_DOUBLE==type) {
double x;
HDmemcpy(&x, val, sizeof(double));
retval = (x==DBL_MAX || x==-DBL_MAX);
} else {
return 0;
}
}
#endif /*H5_VMS*/
return retval;
}
/*-------------------------------------------------------------------------
* Function: my_isinf
*
* Purpose: Determines whether VAL points to +/-infinity.
*
* Return: TRUE or FALSE
*
* Programmer: Raymond Lu
* Monday, June 20, 2005
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
my_isinf(int endian, unsigned char *val, size_t size,
size_t mpos, size_t msize, size_t epos, size_t esize)
{
unsigned char *bits;
int retval = 0;
size_t i;
ssize_t ret1=0, ret2=0;
bits = (unsigned char*)calloc(1, size);
#ifdef H5_VMS
if(H5T_ORDER_VAX==endian) {
for (i = 0; i < size; i += 4) {
bits[i] = val[(size-2)-i];
bits[i+1] = val[(size-1)-i];
bits[(size-2)-i] = val[i];
bits[(size-1)-i] = val[i+1];
}
} else {
for (i=0; i<size; i++)
bits[size-(i+1)] = *(val + ENDIAN(size,i,endian));
}
#else /*H5_VMS*/
for (i=0; i<size; i++)
bits[size-(i+1)] = *(val + ENDIAN(size, i, endian));
#endif /*H5_VMS*/
if((ret1=H5T_bit_find(bits, mpos, msize, H5T_BIT_LSB, 1))<0 &&
(ret2=H5T_bit_find(bits, epos, esize, H5T_BIT_LSB, 0))<0)
retval = 1;
free(bits);
return retval;
}
/*-------------------------------------------------------------------------
* Function: test_conv_flt_1
*
* Purpose: Test conversion of floating point values from SRC to
* DST. These types should be H5T_NATIVE_FLOAT,
* H5T_NATIVE_DOUBLE, or H5T_NATIVE_LDOUBLE.
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Robb Matzke
* Tuesday, June 23, 1998
*
* Modifications:
* Albert Cheng, Apr 16, 2004
* Check for underflow condition. If the src number is
* smaller than the dst MIN float number, consider it okay
* if the converted sw and hw dst are both less than or
* equal to the dst MIN float number.
*
*-------------------------------------------------------------------------
*/
static int
test_conv_flt_1 (const char *name, int run_test, hid_t src, hid_t dst)
{
dtype_t src_type, dst_type; /*data types */
size_t nelmts=0; /*num values per test */
const size_t max_fails=8; /*max number of failures*/
size_t fails_all_tests=0; /*number of failures */
size_t fails_this_test; /*fails for this test */
const char *src_type_name = NULL; /*source type name */
const char *dst_type_name = NULL; /*destination type name */
size_t src_size, dst_size; /*type sizes */
unsigned char *buf = NULL; /*buffer for conversion */
unsigned char *saved = NULL; /*original values */
char str[256]; /*hello string */
void *aligned=NULL; /*aligned buffer */
float hw_f; /*hardware-converted */
double hw_d; /*hardware-converted */
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
long double hw_ld; /*hardware-converted */
#endif
unsigned char *hw=NULL; /*ptr to hardware-conv'd*/
int underflow; /*underflow occurred */
int overflow; /*overflow occurred */
#ifdef H5_VMS
int maximal; /*maximal value occurred, for VMS only. */
#endif /* H5_VMS */
int uflow=0; /*underflow debug counters*/
size_t j, k; /*counters */
int sendian; /* source type endianess */
int dendian; /* Destination type endianess */
size_t dst_ebias; /* Destination type's exponent bias */
size_t src_epos; /* Source type's exponent position */
size_t src_esize; /* Source type's exponent size */
size_t dst_epos; /* Destination type's exponent position */
size_t dst_esize; /* Destination type's exponent size */
size_t dst_mpos; /* Destination type's mantissa position */
size_t dst_msize; /* Destination type's mantissa size */
size_t src_nbits; /* source length in bits */
size_t dst_nbits; /* dst length in bits */
#ifdef HANDLE_SIGFPE
pid_t child_pid; /*process ID of child */
int status; /*child exit status */
/*
* Some systems generage SIGFPE during floating point overflow and we
* cannot assume that we can continue from such a signal. Therefore, we
* fork here and let the child run the test and return the number of
* failures with the exit status.
*/
HDfflush(stdout);
HDfflush(stderr);
if ((child_pid=fork())<0) {
HDperror("fork");
return 1;
} else if (child_pid>0) {
while (child_pid!=waitpid(child_pid, &status, 0)) /*void*/;
if (WIFEXITED(status) && 255==WEXITSTATUS(status)) {
return 0; /*child exit after catching SIGFPE*/
} else if (WIFEXITED(status)) {
return WEXITSTATUS(status);
} else {
HDputs(" Child didn't exit normally.");
return 1;
}
}
#endif
/*
* The remainder of this function is executed only by the child if
* HANDLE_SIGFPE is defined.
*/
#ifndef H5_VMS
HDsignal(SIGFPE,fpe_handler);
#endif
/* What are the names of the source and destination types */
if (H5Tequal(src, H5T_NATIVE_FLOAT)) {
src_type_name = "float";
src_type = FLT_FLOAT;
} else if (H5Tequal(src, H5T_NATIVE_DOUBLE)) {
src_type_name = "double";
src_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0
} else if (H5Tequal(src, H5T_NATIVE_LDOUBLE)) {
src_type_name = "long double";
src_type = FLT_LDOUBLE;
#endif
} else {
src_type_name = "UNKNOWN";
src_type = OTHER;
}
if (H5Tequal(dst, H5T_NATIVE_FLOAT)) {
dst_type_name = "float";
dst_type = FLT_FLOAT;
} else if (H5Tequal(dst, H5T_NATIVE_DOUBLE)) {
dst_type_name = "double";
dst_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0
} else if (H5Tequal(dst, H5T_NATIVE_LDOUBLE)) {
dst_type_name = "long double";
dst_type = FLT_LDOUBLE;
#endif
} else {
dst_type_name = "UNKNOWN";
dst_type = OTHER;
}
/* Sanity checks */
if(sizeof(float)==sizeof(double))
HDputs("Sizeof(float)==sizeof(double) - some tests may not be sensible.");
if (OTHER==src_type || OTHER==dst_type) {
if(!strcmp(name, "noop"))
sprintf(str, "Testing %s %s -> %s conversions",
name, src_type_name, dst_type_name);
else if(run_test==TEST_SPECIAL)
sprintf(str, "Testing %s special %s -> %s conversions",
name, src_type_name, dst_type_name);
else if(run_test==TEST_NORMAL)
sprintf(str, "Testing %s normalized %s -> %s conversions",
name, src_type_name, dst_type_name);
else if(run_test==TEST_DENORM)
sprintf(str, "Testing %s denormalized %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
H5_FAILED();
HDputs(" Unknown data type.");
goto error;
} else {
if(!strcmp(name, "noop"))
sprintf(str, "Testing %s %s -> %s conversions",
name, src_type_name, dst_type_name);
else if(run_test==TEST_SPECIAL)
sprintf(str, "Testing %s special %s -> %s conversions",
name, src_type_name, dst_type_name);
else if(run_test==TEST_NORMAL)
sprintf(str, "Testing %s normalized %s -> %s conversions",
name, src_type_name, dst_type_name);
else if(run_test==TEST_DENORM)
sprintf(str, "Testing %s denormalized %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
HDfflush(stdout);
fails_this_test = 0;
}
/* Get "interesting" values */
src_size = H5Tget_size(src);
dst_size = H5Tget_size(dst);
src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */
dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */
dst_ebias=H5Tget_ebias(dst);
H5Tget_fields(src,NULL,&src_epos,&src_esize,NULL,NULL);
H5Tget_fields(dst,NULL,&dst_epos,&dst_esize,&dst_mpos,&dst_msize);
sendian = H5Tget_order(src);
dendian = H5Tget_order(dst);
/* Allocate buffers */
aligned = HDcalloc(1, MAX(sizeof(long double), sizeof(double)));
/* Allocate and initialize the source buffer through macro INIT_FP_NORM or INIT_FP_SPECIAL.
* The BUF will be used for the conversion while the SAVED buffer will be used for
* the comparison later. INIT_FP_NORM will fill in the buffer with regular values like
* normalized and denormalized values; INIT_FP_SPECIAL will fill with special values
* like infinity, NaN.
*/
switch (run_test) {
case TEST_NOOP:
case TEST_NORMAL:
#ifdef H5_VMS
if(src_type == FLT_FLOAT) {
INIT_FP_NORM(float, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP,
src_size, dst_size, buf, saved, nelmts);
} else if(src_type == FLT_DOUBLE && dst_type == FLT_FLOAT) {
/*Temporary solution for VMS. Cap double values between maximal and minimal
*destination values because VMS return exception when overflows or underflows.
*Same below.*/
INIT_FP_NORM(double, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP,
src_size, dst_size, buf, saved, nelmts);
} else if(src_type == FLT_DOUBLE) {
INIT_FP_NORM(double, DBL_MAX, DBL_MIN, DBL_MAX_10_EXP, DBL_MIN_10_EXP,
src_size, dst_size, buf, saved, nelmts);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0
} else if(src_type == FLT_LDOUBLE && dst_type == FLT_FLOAT) {
INIT_FP_NORM(long double, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP,
src_size, dst_size, buf, saved, nelmts);
} else if(src_type == FLT_LDOUBLE && dst_type == FLT_DOUBLE) {
INIT_FP_NORM(long double, DBL_MAX, DBL_MIN, DBL_MAX_10_EXP, DBL_MIN_10_EXP,
src_size, dst_size, buf, saved, nelmts);
} else if(src_type == FLT_LDOUBLE) {
INIT_FP_NORM(long double, LDBL_MAX, LDBL_MIN, LDBL_MAX_10_EXP, LDBL_MIN_10_EXP,
src_size, dst_size, buf, saved, nelmts);
#endif
} else
goto error;
#else /*H5_VMS*/
if(src_type == FLT_FLOAT) {
INIT_FP_NORM(float, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP,
src_size, dst_size, buf, saved, nelmts);
} else if(src_type == FLT_DOUBLE) {
INIT_FP_NORM(double, DBL_MAX, DBL_MIN, DBL_MAX_10_EXP, DBL_MIN_10_EXP,
src_size, dst_size, buf, saved, nelmts);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0
} else if(src_type == FLT_LDOUBLE) {
INIT_FP_NORM(long double, LDBL_MAX, LDBL_MIN, LDBL_MAX_10_EXP, LDBL_MIN_10_EXP,
src_size, dst_size, buf, saved, nelmts);
#endif
} else
goto error;
#endif /*H5_VMS*/
break;
case TEST_DENORM:
if(src_type == FLT_FLOAT) {
INIT_FP_DENORM(float, FLT_MANT_DIG, src_size, src_nbits, sendian, dst_size,
buf, saved, nelmts);
} else if(src_type == FLT_DOUBLE) {
INIT_FP_DENORM(double, DBL_MANT_DIG, src_size, src_nbits, sendian, dst_size,
buf, saved, nelmts);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0
} else if(src_type == FLT_LDOUBLE) {
INIT_FP_DENORM(long double, LDBL_MANT_DIG, src_size, src_nbits, sendian, dst_size,
buf, saved, nelmts);
#endif
} else
goto error;
break;
case TEST_SPECIAL:
if(src_type == FLT_FLOAT) {
INIT_FP_SPECIAL(src_size, src_nbits, sendian, FLT_MANT_DIG, dst_size,
buf, saved, nelmts);
} else if(src_type == FLT_DOUBLE) {
INIT_FP_SPECIAL(src_size, src_nbits, sendian, DBL_MANT_DIG, dst_size,
buf, saved, nelmts);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0
} else if(src_type == FLT_LDOUBLE) {
INIT_FP_SPECIAL(src_size, src_nbits, sendian, LDBL_MANT_DIG, dst_size,
buf, saved, nelmts);
#endif
} else
goto error;
break;
default:
goto error;
}
/* Perform the conversion in software */
if (H5Tconvert(src, dst, nelmts, buf, NULL, H5P_DEFAULT)<0)
goto error;
/* Check the software results against the hardware */
for (j=0; j<nelmts; j++) {
underflow = 0;
hw_f = 911.0;
hw_d = 911.0;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
hw_ld = 911.0;
#endif
/* The hardware conversion */
/* Check for underflow when src is a "larger" float than dst.*/
if (FLT_FLOAT==src_type) {
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
if (FLT_FLOAT==dst_type) {
hw_f = *((float*)aligned);
hw = (unsigned char*)&hw_f;
} else if (FLT_DOUBLE==dst_type) {
hw_d = *((float*)aligned);
hw = (unsigned char*)&hw_d;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
hw_ld = *((float*)aligned);
hw = (unsigned char*)&hw_ld;
#endif
}
} else if (FLT_DOUBLE==src_type) {
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
if (FLT_FLOAT==dst_type) {
hw_f = (float)(*((double*)aligned));
hw = (unsigned char*)&hw_f;
underflow = HDfabs(*((double*)aligned)) < FLT_MIN;
overflow = HDfabs(*((double*)aligned)) > FLT_MAX;
#ifdef H5_VMS
maximal = HDfabs(*((double*)aligned)) == FLT_MAX;
#endif
} else if (FLT_DOUBLE==dst_type) {
hw_d = *((double*)aligned);
hw = (unsigned char*)&hw_d;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
hw_ld = *((double*)aligned);
hw = (unsigned char*)&hw_ld;
#endif
}
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
if (FLT_FLOAT==dst_type) {
hw_f = *((long double*)aligned);
hw = (unsigned char*)&hw_f;
underflow = HDfabsl(*((long double*)aligned)) < FLT_MIN;
overflow = HDfabsl(*((long double*)aligned)) > FLT_MAX;
#ifdef H5_VMS
maximal = HDfabs(*((long double*)aligned)) == FLT_MAX;
#endif
} else if (FLT_DOUBLE==dst_type) {
hw_d = *((long double*)aligned);
hw = (unsigned char*)&hw_d;
underflow = HDfabsl(*((long double*)aligned)) < DBL_MIN;
overflow = HDfabsl(*((long double*)aligned)) > DBL_MAX;
#ifdef H5_VMS
maximal = HDfabs(*((long double*)aligned)) == DBL_MAX;
#endif
} else {
hw_ld = *((long double*)aligned);
hw = (unsigned char*)&hw_ld;
}
#endif
}
if (underflow){
uflow++;
}
/* For Intel machines, the size of "long double" is 12 bytes, precision
* is 80 bits; for Intel IA64 and AMD processors, the size of "long double"
* is 16 bytes, precision is 80 bits. During hardware conversion, the
* last few unused bytes may have garbage in them. Clean them out with
* 0s before compare the values.
*/
#if H5_SIZEOF_LONG_DOUBLE !=0
if(sendian==H5T_ORDER_LE && dst_type==FLT_LDOUBLE) {
unsigned int q;
for(q=dst_nbits/8; q<dst_size; q++) {
buf[j*dst_size+q] = 0x00;
hw[q] = 0x00;
}
}
#endif
/* Are the two results the same? */
for (k=(dst_size-(dst_nbits/8)); k<dst_size; k++)
if (buf[j*dst_size+k]!=hw[k])
break;
if (k==dst_size)
continue; /*no error*/
#ifdef H5_VMS
/* For "float" and "double" on OpenVMS/Alpha, NaN is
* a valid value of maximal value.*/
if (FLT_FLOAT==src_type &&
my_isnan(src_type, saved+j*sizeof(float))) {
continue;
} else if (FLT_DOUBLE==src_type &&
my_isnan(src_type, saved+j*sizeof(double))) {
continue;
}
#endif /*H5_VMS*/
/*
* Assume same if both results are NaN. There are many NaN bit
* patterns and the software doesn't attemt to emulate the
* hardware in this regard. Instead, software uses a single bit
* pattern for NaN by setting the significand to all ones.
*/
if (FLT_FLOAT==dst_type &&
my_isnan(dst_type, buf+j*sizeof(float)) &&
my_isnan(dst_type, hw)) {
continue;
} else if (FLT_DOUBLE==dst_type &&
my_isnan(dst_type, buf+j*sizeof(double)) &&
my_isnan(dst_type, hw)) {
continue;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0
} else if (FLT_LDOUBLE==dst_type &&
my_isnan(dst_type, buf+j*sizeof(long double)) &&
my_isnan(dst_type, hw)) {
continue;
#endif
}
/*
* Assume same if hardware result is NaN. This is because the
* hardware conversions on some machines return NaN instead of
* overflowing to +Inf or -Inf or underflowing to +0 or -0.
*/
if (my_isnan(dst_type, hw))
continue;
/*
* Instead of matching down to the bit, just make sure the
* exponents are the same and the mantissa is the same to a
* certain precision. This is needed on machines that don't
* round as expected.
* If the src number is smaller than the dst MIN float number,
* consider it okay if the converted sw and hw dst are both
* less than or equal to the dst MIN float number.
* If overflow happens when the src value is greater than
* the maximum dst value, the library assign INFINITY to dst.
* This might be different from what the compiler does, i.e.
* the SGI compiler assigns the dst's maximal value.
*/
{
double check_mant[2];
int check_expo[2];
if (FLT_FLOAT==dst_type) {
float x;
HDmemcpy(&x, &buf[j*dst_size], sizeof(float));
if (underflow &&
HDfabsf(x) <= FLT_MIN && HDfabsf(hw_f) <= FLT_MIN)
continue; /* all underflowed, no error */
if (overflow && my_isinf(dendian, buf+j*sizeof(float),
dst_size, dst_mpos, dst_msize, dst_epos, dst_esize))
continue; /* all overflowed, no error */
#ifdef H5_VMS
if (maximal && my_isinf(dendian, buf+j*sizeof(float),
dst_size, dst_mpos, dst_msize, dst_epos, dst_esize))
continue; /* maximal value, no error */
#endif /*H5_VMS*/
check_mant[0] = HDfrexpf(x, check_expo+0);
check_mant[1] = HDfrexpf(hw_f, check_expo+1);
} else if (FLT_DOUBLE==dst_type) {
double x;
HDmemcpy(&x, &buf[j*dst_size], sizeof(double));
if (underflow &&
HDfabs(x) <= DBL_MIN && HDfabs(hw_d) <= DBL_MIN)
continue; /* all underflowed, no error */
if (overflow && my_isinf(dendian, buf+j*sizeof(double),
dst_size, dst_mpos, dst_msize, dst_epos, dst_esize))
continue; /* all overflowed, no error */
#ifdef H5_VMS
if (maximal && my_isinf(dendian, buf+j*sizeof(double),
dst_size, dst_mpos, dst_msize, dst_epos, dst_esize))
continue; /* maximal value, no error */
#endif /*H5_VMS*/
check_mant[0] = HDfrexp(x, check_expo+0);
check_mant[1] = HDfrexp(hw_d, check_expo+1);
#if H5_SIZEOF_LONG_DOUBLE !=0 && (H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE)
} else {
long double x;
HDmemcpy(&x, &buf[j*dst_size], sizeof(long double));
/* dst is largest float, no need to check underflow. */
check_mant[0] = HDfrexpl(x, check_expo+0);
check_mant[1] = HDfrexpl(hw_ld, check_expo+1);
#endif
}
#ifdef H5_CONVERT_DENORMAL_FLOAT
/* Special check for denormalized values */
if(check_expo[0]<(-(int)dst_ebias) || check_expo[1]<(-(int)dst_ebias)) {
int expo_diff=check_expo[0]-check_expo[1];
int valid_bits=(int)((dst_ebias+dst_msize)+MIN(check_expo[0],check_expo[1]))-1;
double epsilon=1.0;
/* Re-scale the mantissas based on any exponent difference */
if(expo_diff!=0)
check_mant[0] = HDldexp(check_mant[0],expo_diff);
/* Compute the proper epsilon */
epsilon=HDldexp(epsilon,-valid_bits);
/* Check for "close enough" fit with scaled epsilon value */
if (HDfabs(check_mant[0]-check_mant[1])<=epsilon)
continue;
} /* end if */
else {
if (check_expo[0]==check_expo[1] &&
HDfabs(check_mant[0]-check_mant[1])<FP_EPSILON)
continue;
} /* end else */
#else /* H5_CONVERT_DENORMAL_FLOAT */
{
hssize_t expo; /*exponent */
uint8_t tmp[32];
assert(src_size<=sizeof(tmp));
if(sendian==H5T_ORDER_LE)
HDmemcpy(tmp,&saved[j*src_size],src_size);
else if(sendian==H5T_ORDER_BE)
for (k=0; k<src_size; k++)
tmp[k]=saved[j*src_size+(src_size-(k+1))];
else {
for (k = 0; k < src_size; k += 4) {
tmp[k] = saved[j*src_size+(src_size-2)-k];
tmp[k+1] = saved[j*src_size+(src_size-1)-k];
tmp[(src_size-2)-k] = saved[j*src_size+k];
tmp[(src_size-1)-k] = saved[j*src_size+k+1];
}
}
expo = H5T_bit_get_d(tmp, src_epos, src_esize);
if(expo==0)
continue; /* Denormalized floating-point value detected */
else {
assert(dst_size<=sizeof(tmp));
if(sendian==H5T_ORDER_LE)
HDmemcpy(tmp,&buf[j*dst_size],dst_size);
else if(sendian==H5T_ORDER_BE)
for (k=0; k<dst_size; k++)
tmp[k]=buf[j*dst_size+(dst_size-(k+1))];
else {
for (k = 0; k < src_size; k += 4) {
tmp[k] = buf[j*dst_size+(dst_size-2)-k];
tmp[k+1] = buf[j*dst_size+(dst_size-1)-k];
tmp[(dst_size-2)-k] = buf[j*dst_size+k];
tmp[(dst_size-1)-k] = buf[j*dst_size+k+1];
}
}
expo = H5T_bit_get_d(tmp, dst_epos, dst_esize);
if(expo==0)
continue; /* Denormalized floating-point value detected */
else {
if (check_expo[0]==check_expo[1] &&
HDfabs(check_mant[0]-check_mant[1])<FP_EPSILON)
continue;
} /* end else */
} /* end else */
}
#endif /* H5_CONVERT_DENORMAL_FLOAT */
}
if (0==fails_this_test++) {
if(run_test==TEST_NOOP || run_test==TEST_NORMAL) {
H5_FAILED();
} else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL) {
H5_WARNING();
}
}
printf(" elmt %u\n", (unsigned)j);
printf(" src =");
for (k=0; k<src_size; k++)
printf(" %02x", saved[j*src_size+ENDIAN(src_size,k,sendian)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)), "");
if (FLT_FLOAT==src_type) {
float x;
HDmemcpy(&x, &saved[j*src_size], sizeof(float));
printf(" %29.20e\n", x);
} else if (FLT_DOUBLE==src_type) {
double x;
HDmemcpy(&x, &saved[j*src_size], sizeof(double));
printf(" %29.20e\n", x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
long double x;
HDmemcpy(&x, &saved[j*src_size], sizeof(long double));
HDfprintf(stdout," %29.20Le\n", x);
#endif
}
printf(" dst =");
for (k=0; k<dst_size; k++)
printf(" %02x", buf[j*dst_size+ENDIAN(dst_size,k,dendian)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), "");
if (FLT_FLOAT==dst_type) {
float x;
HDmemcpy(&x, &buf[j*dst_size], sizeof(float));
printf(" %29.20e\n", x);
} else if (FLT_DOUBLE==dst_type) {
double x;
HDmemcpy(&x, &buf[j*dst_size], sizeof(double));
printf(" %29.20e\n", x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
} else {
long double x;
HDmemcpy(&x, &buf[j*dst_size], sizeof(long double));
HDfprintf(stdout," %29.20Le\n", x);
#endif
}
printf(" ans =");
for (k=0; k<dst_size; k++)
printf(" %02x", hw[ENDIAN(dst_size,k,dendian)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), "");
if (FLT_FLOAT==dst_type)
printf(" %29.20e\n", hw_f);
else if (FLT_DOUBLE==dst_type)
printf(" %29.20e\n", hw_d);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
else
HDfprintf(stdout," %29.20Le\n", hw_ld);
#endif
/* If the source is normalized values, print out error message; if it is
* denormalized or special values, print out warning message.*/
if (++fails_all_tests>=max_fails) {
if(run_test==TEST_NORMAL)
HDputs(" maximum failures reached, aborting test...");
else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL)
HDputs(" maximum warnings reached, aborting test...");
goto done;
}
}
if(!fails_all_tests)
PASSED();
done:
#ifdef AKCDEBUG
printf("uflow=%d, fails_all_tests=%d\n", uflow, fails_all_tests);
#endif
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) HDfree(aligned);
HDfflush(stdout);
#ifdef HANDLE_SIGFPE
if(run_test==TEST_NOOP || run_test==TEST_NORMAL)
HDexit(MIN((int)fails_all_tests, 254));
else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL)
HDexit(0);
#else
reset_hdf5();
/* If the source is normalized values, treat the failures as error;
* if it is denormalized or special values, treat the failure as warning.*/
if(run_test==TEST_NOOP || run_test==TEST_NORMAL)
return (int)fails_all_tests;
else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL)
return 0;
#endif
error:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) HDfree(aligned);
HDfflush(stdout);
#ifdef HANDLE_SIGFPE
if(run_test==TEST_NOOP || run_test==TEST_NORMAL)
HDexit(MIN(MAX((int)fails_all_tests, 1), 254));
else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL)
HDexit(1);
#else
reset_hdf5();
if(run_test==TEST_NOOP || run_test==TEST_NORMAL)
return MAX((int)fails_all_tests, 1);
else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL)
return 1;
#endif
}
/*-------------------------------------------------------------------------
* Function: test_conv_int_fp
*
* Purpose: Test conversion between integer and float values
* from SRC to DST. These types should be any combination of:
*
* H5T_NATIVE_SCHAR H5T_NATIVE_FLOAT
* H5T_NATIVE_SHORT H5T_NATIVE_DOUBLE
* H5T_NATIVE_INT H5T_NATIVE_LDOUBLE
* H5T_NATIVE_LONG
* H5T_NATIVE_LLONG
*
* Return: Success: 0
*
* Failure: number of errors
*
* Programmer: Raymond Lu
* Thursday, November 6, 2003
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
test_conv_int_fp(const char *name, int run_test, hid_t src, hid_t dst)
{
hid_t dxpl_id; /*dataset transfer property list*/
int fill_value=9; /*fill value for conversion exception*/
H5T_conv_except_func_t op; /*returned callback function for conversion exception*/
void *user_data; /*returned pointer to user data passed in to the callback*/
hbool_t except_set = FALSE; /*whether user's exception handling is set*/
size_t nelmts=0; /*num values per test */
const size_t max_fails=40; /*max number of failures*/
size_t fails_all_tests=0; /*number of failures */
size_t fails_this_test; /*fails for this test */
char str[256]; /*hello string */
dtype_t src_type; /*data types */
dtype_t dst_type; /*data types */
const char *src_type_name=NULL; /*source type name */
const char *dst_type_name=NULL; /*destination type name */
int sendian; /*source endianess */
int dendian; /*destination endianess */
size_t src_size, dst_size; /*type sizes */
unsigned char *buf=NULL; /*buffer for conversion */
unsigned char *saved=NULL; /*original values */
size_t j, k; /*counters */
unsigned char *hw=NULL; /*hardware conv result */
unsigned char src_bits[32]; /*src value in LE order */
unsigned char dst_bits[32]; /*dest value in LE order*/
size_t src_nbits; /*source length in bits */
size_t dst_nbits; /*dst length in bits */
void *aligned=NULL; /*aligned temp buffer */
float hw_float=0;
double hw_double=0;
long double hw_ldouble=0;
signed char hw_schar=0;
unsigned char hw_uchar=0;
short hw_short=0;
unsigned short hw_ushort=0;
int hw_int=0;
unsigned hw_uint=0;
long hw_long=0;
unsigned long hw_ulong=0;
long_long hw_llong=0;
unsigned long_long hw_ullong=0;
/* What is the name of the source type */
if (H5Tequal(src, H5T_NATIVE_SCHAR)) {
src_type_name = "signed char";
src_type = INT_SCHAR;
} else if (H5Tequal(src, H5T_NATIVE_UCHAR)) {
src_type_name = "unsigned char";
src_type = INT_UCHAR;
} else if (H5Tequal(src, H5T_NATIVE_SHORT)) {
src_type_name = "short";
src_type = INT_SHORT;
} else if (H5Tequal(src, H5T_NATIVE_USHORT)) {
src_type_name = "unsigned short";
src_type = INT_USHORT;
} else if (H5Tequal(src, H5T_NATIVE_INT)) {
src_type_name = "int";
src_type = INT_INT;
} else if (H5Tequal(src, H5T_NATIVE_UINT)) {
src_type_name = "unsigned int";
src_type = INT_UINT;
} else if (H5Tequal(src, H5T_NATIVE_LONG)) {
src_type_name = "long";
src_type = INT_LONG;
} else if (H5Tequal(src, H5T_NATIVE_ULONG)) {
src_type_name = "unsigned long";
src_type = INT_ULONG;
} else if (H5Tequal(src, H5T_NATIVE_LLONG)) {
src_type_name = "long long";
src_type = INT_LLONG;
} else if (H5Tequal(src, H5T_NATIVE_ULLONG)) {
src_type_name = "unsigned long long";
src_type = INT_ULLONG;
} else if (H5Tequal(src, H5T_NATIVE_FLOAT)) {
src_type_name = "float";
src_type = FLT_FLOAT;
} else if (H5Tequal(src, H5T_NATIVE_DOUBLE)) {
src_type_name = "double";
src_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0
} else if (H5Tequal(src, H5T_NATIVE_LDOUBLE)) {
src_type_name = "long double";
src_type = FLT_LDOUBLE;
#endif
} else {
src_type_name = "UNKNOWN";
src_type = OTHER;
}
/* What is the name of the destination type */
if (H5Tequal(dst, H5T_NATIVE_SCHAR)) {
dst_type_name = "signed char";
dst_type = INT_SCHAR;
} else if (H5Tequal(dst, H5T_NATIVE_UCHAR)) {
dst_type_name = "unsigned char";
dst_type = INT_UCHAR;
} else if (H5Tequal(dst, H5T_NATIVE_SHORT)) {
dst_type_name = "short";
dst_type = INT_SHORT;
} else if (H5Tequal(dst, H5T_NATIVE_USHORT)) {
dst_type_name = "unsigned short";
dst_type = INT_USHORT;
} else if (H5Tequal(dst, H5T_NATIVE_INT)) {
dst_type_name = "int";
dst_type = INT_INT;
} else if (H5Tequal(dst, H5T_NATIVE_UINT)) {
dst_type_name = "unsigned int";
dst_type = INT_UINT;
} else if (H5Tequal(dst, H5T_NATIVE_LONG)) {
dst_type_name = "long";
dst_type = INT_LONG;
} else if (H5Tequal(dst, H5T_NATIVE_ULONG)) {
dst_type_name = "unsigned long";
dst_type = INT_ULONG;
} else if (H5Tequal(dst, H5T_NATIVE_LLONG)) {
dst_type_name = "long long";
dst_type = INT_LLONG;
} else if (H5Tequal(dst, H5T_NATIVE_ULLONG)) {
dst_type_name = "unsigned long long";
dst_type = INT_ULLONG;
} else if (H5Tequal(dst, H5T_NATIVE_FLOAT)) {
dst_type_name = "float";
dst_type = FLT_FLOAT;
} else if (H5Tequal(dst, H5T_NATIVE_DOUBLE)) {
dst_type_name = "double";
dst_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0
} else if (H5Tequal(dst, H5T_NATIVE_LDOUBLE)) {
dst_type_name = "long double";
dst_type = FLT_LDOUBLE;
#endif
} else {
dst_type_name = "UNKNOWN";
dst_type = OTHER;
}
/* Sanity checks */
if (OTHER==src_type || OTHER==dst_type) {
sprintf(str, "Testing %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
H5_FAILED();
HDputs(" Unknown data type.");
goto error;
}
if ((INT_SCHAR==src_type || INT_UCHAR==src_type || INT_SHORT==src_type ||
INT_USHORT==src_type || INT_INT==src_type || INT_UINT==src_type ||
INT_LONG==src_type || INT_ULONG==src_type || INT_LLONG==src_type ||
INT_ULLONG==src_type) &&
(FLT_FLOAT!=dst_type && FLT_DOUBLE!=dst_type
#if H5_SIZEOF_LONG_DOUBLE !=0
&& FLT_LDOUBLE!=dst_type
#endif
)) {
sprintf(str, "Testing %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
H5_FAILED();
HDputs(" 1. Not an integer-float conversion.");
goto error;
}
if ((FLT_FLOAT==src_type || FLT_DOUBLE==src_type
#if H5_SIZEOF_LONG_DOUBLE !=0
|| FLT_LDOUBLE==src_type
#endif
)
&& (INT_SCHAR!=dst_type && INT_UCHAR!=dst_type && INT_SHORT!=dst_type
&& INT_USHORT!=dst_type && INT_INT!=dst_type && INT_UINT!=dst_type
&& INT_LONG!=dst_type && INT_ULONG!=dst_type && INT_LLONG!=dst_type
&& INT_ULLONG!=dst_type)) {
sprintf(str, "Testing %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
H5_FAILED();
HDputs(" 2. Not a float-integer conversion.");
goto error;
}
if (INT_SCHAR==src_type || INT_UCHAR==src_type || INT_SHORT==src_type ||
INT_USHORT==src_type || INT_INT==src_type || INT_UINT==src_type ||
INT_LONG==src_type || INT_ULONG==src_type || INT_LLONG==src_type ||
INT_ULLONG==src_type) {
sprintf(str, "Testing %s %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
HDfflush(stdout);
fails_this_test=0;
} else {
if(run_test==TEST_NORMAL)
sprintf(str, "Testing %s normalized %s -> %s conversions",
name, src_type_name, dst_type_name);
else if(run_test==TEST_DENORM)
sprintf(str, "Testing %s denormalized %s -> %s conversions",
name, src_type_name, dst_type_name);
else
sprintf(str, "Testing %s special %s -> %s conversions",
name, src_type_name, dst_type_name);
printf("%-70s", str);
HDfflush(stdout);
fails_this_test=0;
}
/* Some information about datatypes */
sendian = H5Tget_order(src);
dendian = H5Tget_order(dst);
src_size = H5Tget_size(src);
dst_size = H5Tget_size(dst);
src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */
dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */
aligned = HDcalloc(1, MAX(sizeof(long double), sizeof(long_long)));
#ifdef SHOW_OVERFLOWS
noverflows_g = 0;
#endif
/* This is for some Linux systems where long double has the size
* 12 bytes but precision is 10 bytes. The 2 unused bytes may
* have garbage causing wrong value comparison.
*/
HDmemset(&hw_ldouble, 0, sizeof(long double));
/* Create a dataset transfer property list and datatype conversion
* exception handler function and pass in fill value. This is mainly
* for NetCDF compatibility, which requests fill in fill value when
* conversion exception happens. We only test (unsigned) int - float
* and float - (unsigned) int conversions, which should cover more cases.
*/
if((dxpl_id = H5Pcreate(H5P_DATASET_XFER))<0)
goto error;
if((src_type == INT_INT && dst_type == FLT_FLOAT) ||
(src_type == INT_UINT && dst_type == FLT_FLOAT) ||
(src_type == FLT_FLOAT && dst_type == INT_UINT) ||
(src_type == FLT_FLOAT && dst_type == INT_INT)) {
if(H5Pset_type_conv_cb(dxpl_id, except_func, &fill_value)<0)
goto error;
else
except_set = TRUE;
if(H5Pget_type_conv_cb(dxpl_id, &op, &user_data)<0)
goto error;
if(op != except_func || *(int*)user_data != fill_value)
goto error;
}
/* Allocate and initialize the source buffer through macro INIT_INTEGER if the source is integer,
* INIT_FP_NORM if floating-point. The BUF will be used for the conversion while the SAVED buffer will be
* used for the comparison later.
*/
if(src_type == INT_SCHAR) {
INIT_INTEGER(signed char, SCHAR_MAX, SCHAR_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_UCHAR) {
INIT_INTEGER(unsigned char, UCHAR_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_SHORT) {
INIT_INTEGER(short, SHRT_MAX, SHRT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_USHORT) {
INIT_INTEGER(unsigned short, USHRT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_INT) {
INIT_INTEGER(int, INT_MAX, INT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_UINT) {
INIT_INTEGER(unsigned int, UINT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_LONG) {
INIT_INTEGER(long, LONG_MAX, LONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_ULONG) {
INIT_INTEGER(unsigned long, ULONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_LLONG) {
INIT_INTEGER(long_long, LLONG_MAX, LLONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == INT_ULLONG) {
INIT_INTEGER(unsigned long_long, ULLONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts);
} else if(src_type == FLT_FLOAT) {
if(run_test==TEST_NORMAL) {
INIT_FP_NORM(float, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP,
src_size, dst_size, buf, saved, nelmts);
} else if(run_test==TEST_DENORM) {
INIT_FP_DENORM(float, FLT_MANT_DIG, src_size, src_nbits, sendian, dst_size,
buf, saved, nelmts);
} else {
INIT_FP_SPECIAL(src_size, src_nbits, sendian, FLT_MANT_DIG, dst_size, buf, saved, nelmts);
}
} else if(src_type == FLT_DOUBLE) {
if(run_test==TEST_NORMAL) {
INIT_FP_NORM(double, DBL_MAX, DBL_MIN, DBL_MAX_10_EXP, DBL_MIN_10_EXP,
src_size, dst_size, buf, saved, nelmts);
} else if(run_test==TEST_DENORM) {
INIT_FP_DENORM(double, DBL_MANT_DIG, src_size, src_nbits, sendian, dst_size,
buf, saved, nelmts);
} else {
INIT_FP_SPECIAL(src_size, src_nbits, sendian, DBL_MANT_DIG, dst_size, buf, saved, nelmts);
}
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0
} else if(src_type == FLT_LDOUBLE) {
if(run_test==TEST_NORMAL) {
INIT_FP_NORM(long double, LDBL_MAX, LDBL_MIN, LDBL_MAX_10_EXP, LDBL_MIN_10_EXP,
src_size, dst_size, buf, saved, nelmts);
} else if(run_test==TEST_DENORM) {
INIT_FP_DENORM(long double, LDBL_MANT_DIG, src_size, src_nbits, sendian, dst_size,
buf, saved, nelmts);
} else {
INIT_FP_SPECIAL(src_size, src_nbits, sendian, LDBL_MANT_DIG, dst_size, buf, saved, nelmts);
}
#endif
} else
goto error;
/* Perform the conversion */
if (H5Tconvert(src, dst, nelmts, buf, NULL, dxpl_id)<0)
goto error;
/* Check the results from the library against hardware */
for (j=0; j<nelmts; j++) {
if(FLT_FLOAT==src_type || FLT_DOUBLE==src_type
#if H5_SIZEOF_LONG_DOUBLE !=0
|| FLT_LDOUBLE==src_type
#endif
)
if(my_isnan(src_type, saved+j*src_size))
continue;
if (FLT_FLOAT==dst_type) {
hw = (unsigned char*)&hw_float;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
hw_float = (float)(*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_float = (float)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_float = (float)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_float = (float)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_float = (float)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_float = (float)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_float = (float)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_float = (float)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_float = (float)(*((long_long*)aligned));
break;
#ifdef H5_ULLONG_TO_FP_CAST_WORKS
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_float = (float)(*((unsigned long_long*)aligned));
break;
#endif /* H5_ULLONG_TO_FP_CAST_WORKS */
default:
break;
}
} else if (FLT_DOUBLE==dst_type) {
hw = (unsigned char*)&hw_double;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
hw_double = (double)(*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_double = (double)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_double = (double)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_double = (double)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_double = (double)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_double = (double)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_double = (double)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_double = (double)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_double = (double)(*((long_long*)aligned));
break;
#ifdef H5_ULLONG_TO_FP_CAST_WORKS
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_double = (double)(*((unsigned long_long*)aligned));
break;
#endif /* H5_ULLONG_TO_FP_CAST_WORKS */
default:
break;
}
#if H5_SIZEOF_LONG_DOUBLE !=0
} else if (FLT_LDOUBLE==dst_type) {
hw = (unsigned char*)&hw_ldouble;
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
hw_ldouble = (long double)(*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
hw_ldouble = (long double)(*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
hw_ldouble = (long double)(*((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
hw_ldouble = (long double)(*((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
hw_ldouble = (long double)(*((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
hw_ldouble = (long double)(*((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
hw_ldouble = (long double)(*((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
hw_ldouble = (long double)(*((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
hw_ldouble = (long double)(*((long_long*)aligned));
break;
#ifdef H5_ULLONG_TO_FP_CAST_WORKS
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
hw_ldouble = (long double)(*((unsigned long_long*)aligned));
break;
#endif /* H5_ULLONG_TO_FP_CAST_WORKS */
default:
break;
}
#endif
} else if (INT_SCHAR==dst_type) {
hw = (unsigned char*)&hw_schar;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_schar = (signed char)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_schar = (signed char)(*((double*)aligned));
break;
#if H5_SIZEOF_LONG_DOUBLE !=0
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_schar = (signed char)(*((long double*)aligned));
break;
#endif
default:
break;
}
} else if (INT_UCHAR==dst_type) {
hw = (unsigned char*)&hw_uchar;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_uchar = (unsigned char)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_uchar = (unsigned char)(*((double*)aligned));
break;
#if H5_SIZEOF_LONG_DOUBLE !=0
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_uchar = (unsigned char)(*((long double*)aligned));
break;
#endif
default:
break;
}
} else if (INT_SHORT==dst_type) {
hw = (unsigned char*)&hw_short;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_short = (short)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_short = (short)(*((double*)aligned));
break;
#if H5_SIZEOF_LONG_DOUBLE !=0
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_short = (short)(*((long double*)aligned));
break;
#endif
default:
break;
}
} else if (INT_USHORT==dst_type) {
hw = (unsigned char*)&hw_ushort;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_ushort = (unsigned short)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_ushort = (unsigned short)(*((double*)aligned));
break;
#if H5_SIZEOF_LONG_DOUBLE !=0
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_ushort = (unsigned short)(*((long double*)aligned));
break;
#endif
default:
break;
}
} else if (INT_INT==dst_type) {
hw = (unsigned char*)&hw_int;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_int = (int)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_int = (int)(*((double*)aligned));
break;
#if H5_SIZEOF_LONG_DOUBLE !=0
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_int = (int)(*((long double*)aligned));
break;
#endif
default:
break;
}
} else if (INT_UINT==dst_type) {
hw = (unsigned char*)&hw_uint;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_uint = (unsigned int)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_uint = (unsigned int)(*((double*)aligned));
break;
#if H5_SIZEOF_LONG_DOUBLE !=0
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_uint = (unsigned int)(*((long double*)aligned));
break;
#endif
default:
break;
}
} else if (INT_LONG==dst_type) {
hw = (unsigned char*)&hw_long;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_long = (long)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_long = (long)(*((double*)aligned));
break;
#if H5_SIZEOF_LONG_DOUBLE !=0
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_long = (long)(*((long double*)aligned));
break;
#endif
default:
break;
}
} else if (INT_ULONG==dst_type) {
hw = (unsigned char*)&hw_ulong;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_ulong = (unsigned long)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_ulong = (unsigned long)(*((double*)aligned));
break;
#if H5_SIZEOF_LONG_DOUBLE !=0
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_ulong = (unsigned long)(*((long double*)aligned));
break;
#endif
default:
break;
}
} else if (INT_LLONG==dst_type) {
hw = (unsigned char*)&hw_llong;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_llong = (long_long)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_llong = (long_long)(*((double*)aligned));
break;
#if H5_SIZEOF_LONG_DOUBLE !=0
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_llong = (long_long)(*((long double*)aligned));
break;
#endif
default:
break;
}
} else if (INT_ULLONG==dst_type) {
hw = (unsigned char*)&hw_ullong;
switch (src_type) {
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
hw_ullong = (unsigned long_long)(*((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
hw_ullong = (unsigned long_long)(*((double*)aligned));
break;
#if H5_SIZEOF_LONG_DOUBLE !=0
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
hw_ullong = (unsigned long_long)(*((long double*)aligned));
break;
#endif
default:
break;
}
}
/* Make certain that there isn't some weird number of destination bits */
assert(dst_nbits%8==0);
/* For Intel machines, the size of "long double" is 12 bytes, precision
* is 80 bits; for AMD processors, the size of "long double" is 16 bytes,
* precision is 80 bits. During hardware conversion, the last few unused
* bytes may have garbage in them. Clean them out with 0s before compare
* the values.
*/
#if H5_SIZEOF_LONG_DOUBLE !=0
if(dendian==H5T_ORDER_LE && dst_type==FLT_LDOUBLE) {
unsigned int q;
for(q=dst_nbits/8; q<dst_size; q++) {
buf[j*dst_size+q] = 0x00;
}
}
#endif
/* Are the two results the same? */
for (k=(dst_size-(dst_nbits/8)); k<dst_size; k++)
if (buf[j*dst_size+k]!=hw[k])
break;
if (k==dst_size)
continue; /*no error*/
/*
* Convert the source and destination values to little endian
* order so we can use the HDF5 bit vector operations to test
* certain things. These routines have already been tested by
* the `bittests' program.
*/
if ((FLT_FLOAT==src_type || FLT_DOUBLE==src_type) && sendian==H5T_ORDER_VAX) {
for (k = 0; k < src_size; k += 2) {
src_bits[k] = saved[j*src_size + (src_size - 2) - k];
src_bits[k + 1] = saved[j*src_size + (src_size - 1) - k];
}
} else {
for (k=0; k<src_size; k++)
src_bits[src_size-(k+1)] = saved[j*src_size+ENDIAN(src_size, k, sendian)];
}
for (k=0; k<dst_size; k++)
dst_bits[dst_size-(k+1)] = buf[j*dst_size+ENDIAN(dst_size, k, dendian)];
/* Test library's default overflow handling:
* Hardware usually doesn't handle overflows too gracefully. The
* hardware conversion result during overflows is usually garbage
* so we must handle those cases differetly when checking results.
*
* Test user's exception handler when overflows:
* Try to follow the except_func callback function to check if the
* desired value was set.
*/
if ((FLT_FLOAT==src_type || FLT_DOUBLE==src_type
#if H5_SIZEOF_LONG_DOUBLE !=0
|| FLT_LDOUBLE==src_type
#endif
)
&& (INT_SCHAR==dst_type || INT_SHORT==dst_type || INT_INT==dst_type
|| INT_LONG==dst_type || INT_LLONG==dst_type)) {
if(0==H5T_bit_get_d(src_bits, src_nbits-1, 1) &&
overflows(src_bits, src, dst_nbits-1)) {
/*
* Source is positive and the magnitude is too large for
* the destination. The destination should be set to the
* maximum possible value: 0x7f...f
*/
if(!except_set) {
if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 0)<0)
continue; /*no error*/
} else {
/* fill_value is small so we know only the 1st byte is set */
if (dst_bits[0] == fill_value)
continue; /*no error*/
}
} else if (1==H5T_bit_get_d(src_bits, src_nbits-1, 1) &&
overflows(src_bits, src, dst_nbits-1)) {
/*
* Source is negative but the magnitude is too large for
* the destination. The destination should be set to the
* smallest possible value: 0x80...0
*/
if(!except_set) {
if (1==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 1)<0)
continue; /*no error*/
} else {
if (dst_bits[0] == fill_value)
continue; /*no error*/
}
}
}
if ((FLT_FLOAT==src_type || FLT_DOUBLE==src_type
#if H5_SIZEOF_LONG_DOUBLE !=0
|| FLT_LDOUBLE==src_type
#endif
)
&& (INT_UCHAR==dst_type || INT_USHORT==dst_type || INT_UINT==dst_type
|| INT_ULONG==dst_type || INT_ULLONG==dst_type)) {
if (H5T_bit_get_d(src_bits, src_nbits-1, 1)) {
/*
* The source is negative so the result should be zero.
* The source is negative if the most significant bit is
* set. The destination is zero if all bits are zero.
*/
if(!except_set) {
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 1)<0)
continue; /*no error*/
} else {
if (dst_bits[0] == fill_value)
continue; /*no error*/
}
} else if (overflows(src_bits, src, dst_nbits)) {
/*
* The source is a value with a magnitude too large for
* the destination. The destination should be the
* largest possible value: 0xff...f
*/
if(!except_set) {
if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0)
continue; /*no error*/
} else {
if (dst_bits[0] == fill_value)
continue; /*no error*/
}
}
}
/* On some machines (notably the SGI and Solaris 64-bit machines) unsigned long
* values are not converted to float or double values correctly, they are
* consistently off by the lowest bit being rounded oppositely to our
* software conversion routines output. So, on those machines, we allow
* the converted value to be +/- 1 from the machine's value. -QAK
*/
#ifndef H5_SW_ULONG_TO_FP_BOTTOM_BIT_WORKS
if(dst_size==sizeof(unsigned)) {
unsigned tmp_s, tmp_h;
HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(unsigned));
HDmemcpy(&tmp_h,&hw[0],sizeof(unsigned));
if((tmp_s+1)==tmp_h || (tmp_s-1)==tmp_h)
continue; /*no error*/
} /* end if */
else if (dst_size==sizeof(unsigned long)) {
unsigned long tmp_s, tmp_h;
HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(unsigned long));
HDmemcpy(&tmp_h,&hw[0],sizeof(unsigned long));
if((tmp_s+1)==tmp_h || (tmp_s-1)==tmp_h)
continue; /*no error*/
} /* end if */
else if (dst_size==sizeof(unsigned long_long)) {
unsigned long_long tmp_s, tmp_h;
HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(unsigned long_long));
HDmemcpy(&tmp_h,&hw[0],sizeof(unsigned long_long));
if((tmp_s+1)==tmp_h || (tmp_s-1)==tmp_h)
continue; /*no error*/
} /* end if */
#endif /* end H5_ULONG_FP_BOTTOM_BIT_WORKS */
/* For PGI compiler on Linux, during conversion from 'float' or 'double' to
* 'unsigned long long', round-up happens when the fraction of float-point
* value is greater than 0.5. So we allow the converted value to be off by 1.
*/
#ifndef H5_FP_TO_ULLONG_BOTTOM_BIT_WORKS
if((src_type==FLT_FLOAT || src_type==FLT_DOUBLE) && dst_type==INT_ULLONG) {
unsigned long_long tmp_s, tmp_h;
HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(unsigned long_long));
HDmemcpy(&tmp_h,&hw[0],sizeof(unsigned long_long));
if((tmp_s+1)==tmp_h)
continue; /*no error*/
}
#endif /*end H5_FP_TO_ULLONG_BOTTOM_BIT_WORKS*/
/* For GNU compilers on FreeBSD(sleipnir), during conversion from 'unsigned long long'
* to 'long double', the last 2 bytes of mantissa are lost. But this loss seems
* acceptable. We allow it to go through instead of fail it. Sometimes, there's roundup
* to the 3rd last byte of mantissa. So we only try to compare all but the last 3 bytes.
*/
#ifndef H5_ULLONG_TO_LDOUBLE_PRECISION
#if H5_SIZEOF_LONG_DOUBLE !=0
if(src_type==INT_ULLONG && dst_type==FLT_LDOUBLE) {
long double tmp_s, tmp_h;
HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(long double));
HDmemcpy(&tmp_h,&hw[0],sizeof(long double));
/*Don't compare the last 3 bytes of mantissa*/
if(!HDmemcmp(&tmp_s+4, &tmp_h+4, sizeof(long double)-4))
continue; /*no error*/
}
#endif
#endif /*end H5_ULLONG_TO_LDOUBLE_PRECISION*/
/* Print errors */
if (0==fails_this_test++) {
if(run_test==TEST_NORMAL) {
H5_FAILED();
} else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL) {
H5_WARNING();
}
}
printf(" elmt %u: \n", (unsigned)j);
printf(" src = ");
for (k=0; k<src_size; k++)
printf(" %02x", saved[j*src_size+ENDIAN(src_size, k, sendian)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)), "");
switch (src_type) {
case INT_SCHAR:
HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char));
printf(" %29d\n", (int)*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char));
printf(" %29u\n", (unsigned)*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
printf(" %29hd\n", *((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short));
printf(" %29hu\n", *((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
printf(" %29d\n", *((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
printf(" %29u\n", *((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
printf(" %29ld\n", *((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long));
printf(" %29lu\n", *((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)aligned));
break;
case FLT_FLOAT:
HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
printf(" %29f\n", *((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
printf(" %29f\n", *((double*)aligned));
break;
#if H5_SIZEOF_LONG_DOUBLE !=0
case FLT_LDOUBLE:
HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double));
printf(" %29Lf\n", *((long double*)aligned));
break;
#endif
case OTHER:
break;
}
printf(" dst = ");
for (k=0; k<dst_size; k++)
printf(" %02x", buf[j*dst_size+ENDIAN(dst_size, k, dendian)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), "");
switch (dst_type) {
case INT_SCHAR:
HDmemcpy(aligned, buf+j*sizeof(signed char), sizeof(signed char));
printf(" %29d\n", (int)*((signed char*)aligned));
break;
case INT_UCHAR:
HDmemcpy(aligned, buf+j*sizeof(unsigned char), sizeof(unsigned char));
printf(" %29u\n", (unsigned)*((unsigned char*)aligned));
break;
case INT_SHORT:
HDmemcpy(aligned, buf+j*sizeof(short), sizeof(short));
printf(" %29hd\n", *((short*)aligned));
break;
case INT_USHORT:
HDmemcpy(aligned, buf+j*sizeof(unsigned short), sizeof(unsigned short));
printf(" %29hu\n", *((unsigned short*)aligned));
break;
case INT_INT:
HDmemcpy(aligned, buf+j*sizeof(int), sizeof(int));
printf(" %29d\n", *((int*)aligned));
break;
case INT_UINT:
HDmemcpy(aligned, buf+j*sizeof(unsigned), sizeof(unsigned));
printf(" %29u\n", *((unsigned*)aligned));
break;
case INT_LONG:
HDmemcpy(aligned, buf+j*sizeof(long), sizeof(long));
printf(" %29ld\n", *((long*)aligned));
break;
case INT_ULONG:
HDmemcpy(aligned, buf+j*sizeof(unsigned long), sizeof(unsigned long));
printf(" %29lu\n", *((unsigned long*)aligned));
break;
case INT_LLONG:
HDmemcpy(aligned, buf+j*sizeof(long_long), sizeof(long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned));
break;
case INT_ULLONG:
HDmemcpy(aligned, buf+j*sizeof(unsigned long_long), sizeof(unsigned long_long));
HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)aligned));
break;
case FLT_FLOAT:
HDmemcpy(aligned, buf+j*sizeof(float), sizeof(float));
printf(" %29f\n", *((float*)aligned));
break;
case FLT_DOUBLE:
HDmemcpy(aligned, buf+j*sizeof(double), sizeof(double));
printf(" %29f\n", *((double*)aligned));
break;
#if H5_SIZEOF_LONG_DOUBLE !=0
case FLT_LDOUBLE:
HDmemcpy(aligned, buf+j*sizeof(long double), sizeof(long double));
printf(" %29Lf\n", *((long double*)aligned));
break;
#endif
case OTHER:
break;
}
printf(" ans = ");
for (k=0; k<dst_size; k++)
printf(" %02x", hw[ENDIAN(dst_size, k, dendian)]);
printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), "");
switch (dst_type) {
case INT_SCHAR:
printf(" %29d\n", (int)*((signed char*)hw));
break;
case INT_UCHAR:
printf(" %29u\n", (unsigned)*((unsigned char*)hw));
break;
case INT_SHORT:
printf(" %29hd\n", *((short*)hw));
break;
case INT_USHORT:
printf(" %29hu\n", *((unsigned short*)hw));
break;
case INT_INT:
printf(" %29d\n", *((int*)hw));
break;
case INT_UINT:
printf(" %29u\n", *((unsigned int*)hw));
break;
case INT_LONG:
printf(" %29ld\n", *((long*)hw));
break;
case INT_ULONG:
printf(" %29lu\n", *((unsigned long*)hw));
break;
case INT_LLONG:
printf(" %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)hw));
break;
case INT_ULLONG:
printf(" %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)hw));
break;
case FLT_FLOAT:
printf(" %29f\n", *((float*)hw));
break;
case FLT_DOUBLE:
printf(" %29f\n", *((double*)hw));
break;
#if H5_SIZEOF_LONG_DOUBLE !=0
case FLT_LDOUBLE:
printf(" %29Lf\n", *((long double*)hw));
break;
#endif
case OTHER:
break;
}
/* If the source is normalized values, print out error message; if it is
* denormalized or special values, print out warning message.*/
if (++fails_all_tests>=max_fails) {
if(run_test==TEST_NORMAL)
HDputs(" maximum failures reached, aborting test...");
else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL)
HDputs(" maximum warnings reached, aborting test...");
goto done;
}
}
if(!fails_all_tests)
PASSED();
done:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) HDfree(aligned);
HDfflush(stdout);
reset_hdf5(); /*print statistics*/
/* If the source is normalized floating values, treat the failures as error;
* if it is denormalized or special floating values, treat the failure as warning.*/
if(run_test==TEST_NORMAL)
return (int)fails_all_tests;
else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL)
return 0;
error:
if (buf) aligned_free(buf);
if (saved) aligned_free(saved);
if (aligned) HDfree(aligned);
HDfflush(stdout);
reset_hdf5(); /*print statistics*/
if(run_test==TEST_NORMAL)
return MAX((int)fails_all_tests, 1);
else {
HDassert(run_test==TEST_DENORM || run_test==TEST_SPECIAL);
return 1;
}
}
/*-------------------------------------------------------------------------
* Function: overflows
*
* Purpose: When convert from float or double to any integer type,
* check if overflow occurs.
*
*
* Return: TRUE: overflow happens
*
* FALSE: no overflow
*
* Programmer: Raymond Lu
* Monday, Nov 17, 2003
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static hbool_t
overflows(unsigned char *origin_bits, hid_t src_id, size_t dst_num_bits)
{
hbool_t ret_value=FALSE;
hsize_t expt;
size_t mant_digits=0, expt_digits=0, bias=0;
size_t epos, mpos;
size_t src_prec=0; /*source type precision in bits*/
H5T_norm_t norm;
ssize_t indx;
unsigned char bits[32], mant_bits[32];
HDmemset(bits, 0, 32);
HDmemset(mant_bits, 0, 32);
/*
* Sometimes, type size isn't equal to the precision like Linux's "long
* double", where size is 96 bits and precision is 80 bits.
*/
src_prec = H5Tget_precision(src_id);
H5Tget_fields(src_id, NULL, &epos, &expt_digits, &mpos, &mant_digits);
bias = H5Tget_ebias(src_id);
norm = H5Tget_norm(src_id);
HDmemcpy(bits, origin_bits, src_prec/8+1);
/*Check for special cases: +Inf, -Inf*/
if (H5T_bit_find (bits, mpos, mant_digits, H5T_BIT_LSB, TRUE)<0) {
if (H5T_bit_find (bits, epos, expt_digits, H5T_BIT_LSB, FALSE)<0) {
ret_value=TRUE;
goto done;
}
} else if (H5T_NORM_NONE==norm && H5T_bit_find (bits, mpos, mant_digits-1,
H5T_BIT_LSB, TRUE)<0 && H5T_bit_find (bits, epos, expt_digits,
H5T_BIT_LSB, FALSE)<0) {
/*This is a special case for the source of no implied mantissa bit.
*If the exponent bits are all 1s and only the 1st bit of mantissa
*is set to 1. It's infinity. The Intel-Linux "long double" is this case.*/
ret_value=TRUE;
goto done;
}
/* get exponent */
expt = H5T_bit_get_d(bits, mant_digits, expt_digits) - bias;
if(expt>=(dst_num_bits-1)) {
ret_value=TRUE;
goto done;
}
/* get significand */
H5T_bit_copy (mant_bits, 0, bits, 0, mant_digits);
/* restore implicit bit if normalization is implied*/
if(norm == H5T_NORM_IMPLIED) {
H5T_bit_inc(mant_bits, mant_digits, 1);
mant_digits++;
}
/* shift significand */
H5T_bit_shift (mant_bits, (ssize_t)(expt-expt_digits), 0, 32*8);
indx = H5T_bit_find(mant_bits, 0, 32*8, H5T_BIT_MSB, 1);
if((size_t)indx>=dst_num_bits)
ret_value=TRUE;
done:
return ret_value;
}
/*-------------------------------------------------------------------------
* Function: run_integer_tests
*
* Purpose: Runs all integer tests.
*
* Return: Number of errors
*
* Programmer: Robb Matzke
* Tuesday, November 24, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
run_integer_tests(const char *name)
{
int nerrors = 0;
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULLONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_INT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULLONG);
#endif
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UINT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULONG);
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULLONG);
#endif
#endif
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UINT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LONG);
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LLONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_ULLONG);
#endif
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULLONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_USHORT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_INT);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LONG);
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_ULONG);
#endif
nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LLONG);
#endif
return nerrors;
}
/*-------------------------------------------------------------------------
* Function: run_fp_tests
*
* Purpose: Runs all floating-point tests.
*
* Return: Number of errors
*
* Programmer: Raymond Lu
* Tuesday, March 22, 2005
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
run_fp_tests(const char *name)
{
int nerrors = 0;
if(!strcmp(name, "noop")) {
nerrors += test_conv_flt_1("noop", TEST_NOOP, H5T_NATIVE_FLOAT, H5T_NATIVE_FLOAT);
nerrors += test_conv_flt_1("noop", TEST_NOOP, H5T_NATIVE_DOUBLE, H5T_NATIVE_DOUBLE);
#if H5_SIZEOF_LONG_DOUBLE !=0
nerrors += test_conv_flt_1("noop", TEST_NOOP, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LDOUBLE);
#endif
goto done;
}
/*Test normalized values. TEST_NORMAL indicates normalized values.*/
nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE !=0
nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT);
nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE);
#endif
#ifndef H5_VMS
/*Test denormalized values. TEST_DENORM indicates denormalized values.*/
nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0
nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT);
nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE);
#endif
/*Test special values, +/-0, +/-infinity, +/-QNaN, +/-SNaN.*/
nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0
nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT);
nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE);
#endif
#endif /*H5_VMS*/
done:
return nerrors;
}
/*-------------------------------------------------------------------------
* Function: run_int_fp_conv
*
* Purpose: Runs all integer-float tests.
*
* Return: Number of errors
*
* Programmer: Raymond Lu
* Monday, November 10, 2003
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
run_int_fp_conv(const char *name)
{
int nerrors = 0;
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SCHAR, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SCHAR, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UCHAR, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UCHAR, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SHORT, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SHORT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_USHORT, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_USHORT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_INT, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_INT, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UINT, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UINT, H5T_NATIVE_DOUBLE);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LONG, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LONG, H5T_NATIVE_DOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULONG, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULONG, H5T_NATIVE_DOUBLE);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LLONG, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LLONG, H5T_NATIVE_DOUBLE);
#ifdef H5_ULLONG_TO_FP_CAST_WORKS
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULLONG, H5T_NATIVE_FLOAT);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULLONG, H5T_NATIVE_DOUBLE);
#else /* H5_ULLONG_TO_FP_CAST_WORKS */
{
char str[256]; /*hello string */
sprintf(str, "Testing %s %s -> %s conversions",
name, "unsigned long long", "float");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to compiler not handling conversion.");
sprintf(str, "Testing %s %s -> %s conversions",
name, "unsigned long long", "double");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to compiler not handling conversion.");
}
#endif /* H5_ULLONG_TO_FP_CAST_WORKS */
#endif
#if H5_INTEGER_TO_LDOUBLE_ACCURATE
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SCHAR, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UCHAR, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SHORT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_USHORT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_INT, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UINT, H5T_NATIVE_LDOUBLE);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LONG, H5T_NATIVE_LDOUBLE);
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULONG, H5T_NATIVE_LDOUBLE);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
#if H5_LLONG_TO_LDOUBLE_CORRECT
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LLONG, H5T_NATIVE_LDOUBLE);
#else /* H5_LLONG_TO_LDOUBLE_CORRECT */
{
char str[256]; /*hello string */
sprintf(str, "Testing %s %s -> %s conversions",
name, "long long", "long double");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to compiler error in handling conversion.");
}
#endif /* H5_LLONG_TO_LDOUBLE_CORRECT */
#if H5_ULLONG_TO_FP_CAST_WORKS && H5_ULLONG_TO_LDOUBLE_PRECISION && H5_LLONG_TO_LDOUBLE_CORRECT
nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULLONG, H5T_NATIVE_LDOUBLE);
#else /* H5_ULLONG_TO_FP_CAST_WORKS && H5_ULLONG_TO_LDOUBLE_PRECISION && H5_LLONG_TO_LDOUBLE_CORRECT */
{
char str[256]; /*hello string */
sprintf(str, "Testing %s %s -> %s conversions",
name, "unsigned long long", "long double");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to compiler not handling conversion.");
}
#endif /* H5_ULLONG_TO_FP_CAST_WORKS && H5_ULLONG_TO_LDOUBLE_PRECISION && H5_LLONG_TO_LDOUBLE_CORRECT */
#endif
#endif
#else /*H5_INTEGER_TO_LDOUBLE_ACCURATE*/
{
char str[256]; /*string */
sprintf(str, "Testing %s %s -> %s conversions",
name, "all integers", "long double");
printf("%-70s", str);
SKIPPED();
#if H5_SIZEOF_LONG_DOUBLE !=0
HDputs(" Test skipped due to hardware conversion error.");
#else
HDputs(" Test skipped due to disabled long double.");
#endif
}
#endif /*H5_INTEGER_TO_LDOUBLE_ACCURATE*/
return nerrors;
}
/*-------------------------------------------------------------------------
* Function: run_fp_int_conv
*
* Purpose: Runs all float-integer tests.
*
* Return: Number of errors
*
* Programmer: Raymond Lu
* Monday, November 10, 2003
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static int
run_fp_int_conv(const char *name)
{
int nerrors = 0;
int test_values;
int i;
int run_test = TRUE;
#ifndef H5_FP_TO_INTEGER_OVERFLOW_WORKS
/* For Cray X1, the compiler generates floating exception when the
* conversion overflows. So disable all of the conversions from
* floating-point numbers to integers.
*/
run_test = FALSE;
#endif
#ifdef H5_VMS
run_test = TRUE;
#endif
if(run_test) {
#ifdef H5_VMS
test_values = TEST_NORMAL;
{
#else
for(i=0; i<3; i++) {
if(i==0)
test_values = TEST_NORMAL;
else if(i==1)
test_values = TEST_DENORM;
else
test_values = TEST_SPECIAL;
#endif /*H5_VMS*/
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_SHORT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_SHORT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_USHORT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_USHORT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_INT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_INT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_UINT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_LONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_LONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_ULONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
if(!strcmp(name, "hw")) { /* Hardware conversion */
/* Windows .NET 2003 doesn't work for hardware conversion of this case.
* .NET should define this macro H5_HW_FP_TO_LLONG_NOT_WORKS. */
#ifndef H5_HW_FP_TO_LLONG_NOT_WORKS
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_LLONG);
#endif /*H5_HW_FP_TO_LLONG_NOT_WORKS*/
} else { /* Software conversion */
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_LLONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_LLONG);
}
#ifdef H5_FP_TO_ULLONG_RIGHT_MAXIMUM
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_ULLONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_ULLONG);
#else /*H5_FP_TO_ULLONG_RIGHT_MAXIMUM*/
{
char str[256]; /*hello string */
sprintf(str, "Testing %s %s -> %s conversions",
name, "float", "unsigned long long");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to hardware conversion error.");
sprintf(str, "Testing %s %s -> %s conversions",
name, "double", "unsigned long long");
printf("%-70s", str);
SKIPPED();
HDputs(" Test skipped due to hardware conversion error.");
}
#endif /*H5_FP_TO_ULLONG_RIGHT_MAXIMUM*/
#endif
#if H5_LDOUBLE_TO_INTEGER_WORKS && H5_LDOUBLE_TO_INTEGER_ACCURATE
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_SCHAR);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_UCHAR);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_SHORT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_USHORT);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_INT);
#if H5_LDOUBLE_TO_UINT_ACCURATE
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_UINT);
#else /*H5_LDOUBLE_TO_UINT_ACCURATE*/
{
char str[256]; /*string */
sprintf(str, "Testing %s %s -> %s conversions",
name, "long double", "unsigned int");
printf("%-70s", str);
SKIPPED();
#if H5_SIZEOF_LONG_DOUBLE!=0
HDputs(" Test skipped due to hardware conversion error.");
#else
HDputs(" Test skipped due to disabled long double.");
#endif
}
#endif /*H5_LDOUBLE_TO_UINT_ACCURATE*/
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT && H5_SIZEOF_LONG_DOUBLE!=0
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LONG);
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG && H5_SIZEOF_LONG_DOUBLE!=0
#ifdef H5_LDOUBLE_TO_LLONG_ACCURATE
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LLONG);
#else /*H5_LDOUBLE_TO_LLONG_ACCURATE*/
{
char str[256]; /*string */
sprintf(str, "Testing %s %s -> %s conversions",
name, "long double", "long long");
printf("%-70s", str);
SKIPPED();
#if H5_SIZEOF_LONG_DOUBLE!=0
HDputs(" Test skipped due to hardware conversion error.");
#else
HDputs(" Test skipped due to disabled long double.");
#endif
}
#endif /*H5_LDOUBLE_TO_LLONG_ACCURATE*/
#if defined(H5_FP_TO_ULLONG_RIGHT_MAXIMUM) && defined(H5_LDOUBLE_TO_LLONG_ACCURATE)
nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_ULLONG);
#else /*H5_FP_TO_ULLONG_RIGHT_MAXIMUM && H5_LDOUBLE_TO_LLONG_ACCURATE*/
{
char str[256]; /*string */
sprintf(str, "Testing %s %s -> %s conversions",
name, "long double", "unsigned long long");
printf("%-70s", str);
SKIPPED();
#if H5_SIZEOF_LONG_DOUBLE!=0
HDputs(" Test skipped due to hardware conversion error.");
#else
HDputs(" Test skipped due to disabled long double.");
#endif
}
#endif /*H5_FP_TO_ULLONG_RIGHT_MAXIMUM && H5_LDOUBLE_TO_LLONG_ACCURATE*/
#endif
#endif
#else /*H5_LDOUBLE_TO_INTEGER_WORKS && H5_LDOUBLE_TO_INTEGER_ACCURATE*/
{
char str[256]; /*hello string */
sprintf(str, "Testing %s %s -> %s conversions",
name, "long double", "all integers");
printf("%-70s", str);
SKIPPED();
#if H5_SIZEOF_LONG_DOUBLE!=0
HDputs(" Test skipped due to hardware conversion error.");
#else
HDputs(" Test skipped due to disabled long double.");
#endif
}
#endif /*H5_LDOUBLE_TO_INTEGER_WORKS && H5_LDOUBLE_TO_INTEGER_ACCURATE*/
}
} else {
char str[256]; /*string */
sprintf(str, "Testing %s %s -> %s conversions",
name, "all floating-point numbers", "all integers");
printf("%-70s", str);
SKIPPED();
#if H5_SIZEOF_LONG_DOUBLE!=0
HDputs(" Test skipped due to hardware conversion error.");
#else
HDputs(" Test skipped due to disbaled long double.");
#endif
}
return nerrors;
}
/*-------------------------------------------------------------------------
* Function: main
*
* Purpose: Test the data type(integer and floating-point number).
*
* Return: Success:
*
* Failure:
*
* Programmer: Robb Matzke
* Tuesday, December 9, 1997
*
* Modifications:
* Raymond Lu
* Monday, April 4, 2005
* These tests were split from dtypes.c because dtypes.c
* has grown too big.
*
*-------------------------------------------------------------------------
*/
int
main(void)
{
unsigned long nerrors = 0;
/* Set the random # seed */
HDsrandom((unsigned long)HDtime(NULL));
reset_hdf5();
if (ALIGNMENT)
printf("Testing non-aligned conversions (ALIGNMENT=%d)....\n", ALIGNMENT);
/* Do the tests */
/* Test H5Tcompiler_conv() for querying hard conversion. */
nerrors += test_hard_query();
/* Test user-define, query functions and software conversion
* for user-defined floating-point types */
nerrors += test_derived_flt();
/* Test user-define, query functions and software conversion
* for user-defined integer types */
nerrors += test_derived_integer();
#ifndef H5_VMS
/* Does floating point overflow generate a SIGFPE? */
generates_sigfpe();
#endif
/* Test degenerate cases */
nerrors += run_fp_tests("noop");
/* Test hardware floating-point conversion functions */
nerrors += run_fp_tests("hard");
/* Test hardware integer conversion functions */
nerrors += run_integer_tests("hard");
/* Test hardware integer-float conversion functions */
nerrors += run_int_fp_conv("hard");
/* Test hardware float-integer conversion functions */
nerrors += run_fp_int_conv("hard");
/* Test a few special values for hardware float-integer conversions */
nerrors += test_particular_fp_integer();
/*----------------------------------------------------------------------
* Software tests
*----------------------------------------------------------------------
*/
without_hardware_g = TRUE;
reset_hdf5();
/* Test software floating-point conversion functions */
nerrors += run_fp_tests("soft");
/* Test software integer conversion functions */
nerrors += test_conv_int_2();
nerrors += run_integer_tests("soft");
/* Test software float-integer conversion functions */
nerrors += run_fp_int_conv("soft");
/* Test software integer-float conversion functions */
nerrors += run_int_fp_conv("soft");
reset_hdf5();
if (nerrors) {
printf("***** %lu FAILURE%s! *****\n",
nerrors, 1==nerrors?"":"S");
HDexit(1);
}
printf("All data type tests passed.\n");
return 0;
}