mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-12 10:34:32 +08:00
d82dfb886d
* replace api key with hf_token * removed extra slash * changelog * update notebooks * lint * changelog * changelog * revert demo
491 lines
18 KiB
Python
491 lines
18 KiB
Python
import json
|
|
import os
|
|
import textwrap
|
|
import warnings
|
|
from pathlib import Path
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
import pytest
|
|
from fastapi.testclient import TestClient
|
|
from gradio_client import media_data
|
|
|
|
import gradio as gr
|
|
from gradio.context import Context
|
|
from gradio.exceptions import InvalidApiNameError
|
|
from gradio.external import TooManyRequestsError, cols_to_rows, get_tabular_examples
|
|
|
|
"""
|
|
WARNING: These tests have an external dependency: namely that Hugging Face's
|
|
Hub and Space APIs do not change, and they keep their most famous models up.
|
|
So if, e.g. Spaces is down, then these test will not pass.
|
|
|
|
These tests actually test gr.load() and gr.Blocks.load() but are
|
|
included in a separate file because of the above-mentioned dependency.
|
|
"""
|
|
|
|
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
|
|
|
# Mark the whole module as flaky
|
|
pytestmark = pytest.mark.flaky
|
|
|
|
|
|
class TestLoadInterface:
|
|
def test_audio_to_audio(self):
|
|
model_type = "audio-to-audio"
|
|
interface = gr.load(
|
|
name="speechbrain/mtl-mimic-voicebank",
|
|
src="models",
|
|
alias=model_type,
|
|
)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Audio)
|
|
assert isinstance(interface.output_components[0], gr.Audio)
|
|
|
|
def test_question_answering(self):
|
|
model_type = "image-classification"
|
|
interface = gr.Blocks.load(
|
|
name="lysandre/tiny-vit-random",
|
|
src="models",
|
|
alias=model_type,
|
|
)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Image)
|
|
assert isinstance(interface.output_components[0], gr.Label)
|
|
|
|
def test_text_generation(self):
|
|
model_type = "text_generation"
|
|
interface = gr.load(
|
|
"models/gpt2", alias=model_type, description="This is a test description"
|
|
)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Textbox)
|
|
assert isinstance(interface.output_components[0], gr.Textbox)
|
|
assert any(
|
|
"This is a test description" in d["props"].get("value", "")
|
|
for d in interface.get_config_file()["components"]
|
|
)
|
|
|
|
def test_summarization(self):
|
|
model_type = "summarization"
|
|
interface = gr.load(
|
|
"models/facebook/bart-large-cnn", hf_token=None, alias=model_type
|
|
)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Textbox)
|
|
assert isinstance(interface.output_components[0], gr.Textbox)
|
|
|
|
def test_translation(self):
|
|
model_type = "translation"
|
|
interface = gr.load(
|
|
"models/facebook/bart-large-cnn", hf_token=None, alias=model_type
|
|
)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Textbox)
|
|
assert isinstance(interface.output_components[0], gr.Textbox)
|
|
|
|
def test_text2text_generation(self):
|
|
model_type = "text2text-generation"
|
|
interface = gr.load(
|
|
"models/sshleifer/tiny-mbart", hf_token=None, alias=model_type
|
|
)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Textbox)
|
|
assert isinstance(interface.output_components[0], gr.Textbox)
|
|
|
|
def test_text_classification(self):
|
|
model_type = "text-classification"
|
|
interface = gr.load(
|
|
"models/distilbert-base-uncased-finetuned-sst-2-english",
|
|
hf_token=None,
|
|
alias=model_type,
|
|
)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Textbox)
|
|
assert isinstance(interface.output_components[0], gr.Label)
|
|
|
|
def test_fill_mask(self):
|
|
model_type = "fill-mask"
|
|
interface = gr.load("models/bert-base-uncased", hf_token=None, alias=model_type)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Textbox)
|
|
assert isinstance(interface.output_components[0], gr.Label)
|
|
|
|
def test_zero_shot_classification(self):
|
|
model_type = "zero-shot-classification"
|
|
interface = gr.load(
|
|
"models/facebook/bart-large-mnli", hf_token=None, alias=model_type
|
|
)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Textbox)
|
|
assert isinstance(interface.input_components[1], gr.Textbox)
|
|
assert isinstance(interface.input_components[2], gr.Checkbox)
|
|
assert isinstance(interface.output_components[0], gr.Label)
|
|
|
|
def test_automatic_speech_recognition(self):
|
|
model_type = "automatic-speech-recognition"
|
|
interface = gr.load(
|
|
"models/facebook/wav2vec2-base-960h", hf_token=None, alias=model_type
|
|
)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Audio)
|
|
assert isinstance(interface.output_components[0], gr.Textbox)
|
|
|
|
def test_image_classification(self):
|
|
model_type = "image-classification"
|
|
interface = gr.load(
|
|
"models/google/vit-base-patch16-224", hf_token=None, alias=model_type
|
|
)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Image)
|
|
assert isinstance(interface.output_components[0], gr.Label)
|
|
|
|
def test_feature_extraction(self):
|
|
model_type = "feature-extraction"
|
|
interface = gr.load(
|
|
"models/sentence-transformers/distilbert-base-nli-mean-tokens",
|
|
hf_token=None,
|
|
alias=model_type,
|
|
)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Textbox)
|
|
assert isinstance(interface.output_components[0], gr.Dataframe)
|
|
|
|
def test_sentence_similarity(self):
|
|
model_type = "text-to-speech"
|
|
interface = gr.load(
|
|
"models/julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train",
|
|
hf_token=None,
|
|
alias=model_type,
|
|
)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Textbox)
|
|
assert isinstance(interface.output_components[0], gr.Audio)
|
|
|
|
def test_text_to_speech(self):
|
|
model_type = "text-to-speech"
|
|
interface = gr.load(
|
|
"models/julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train",
|
|
hf_token=None,
|
|
alias=model_type,
|
|
)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Textbox)
|
|
assert isinstance(interface.output_components[0], gr.Audio)
|
|
|
|
def test_text_to_image(self):
|
|
model_type = "text-to-image"
|
|
interface = gr.load(
|
|
"models/osanseviero/BigGAN-deep-128", hf_token=None, alias=model_type
|
|
)
|
|
assert interface.__name__ == model_type
|
|
assert isinstance(interface.input_components[0], gr.Textbox)
|
|
assert isinstance(interface.output_components[0], gr.Image)
|
|
|
|
def test_english_to_spanish(self):
|
|
with pytest.warns(UserWarning):
|
|
io = gr.load("spaces/abidlabs/english_to_spanish", title="hi")
|
|
assert isinstance(io.input_components[0], gr.Textbox)
|
|
assert isinstance(io.output_components[0], gr.Textbox)
|
|
|
|
def test_sentiment_model(self):
|
|
io = gr.load("models/distilbert-base-uncased-finetuned-sst-2-english")
|
|
try:
|
|
with open(io("I am happy, I love you")) as f:
|
|
assert json.load(f)["label"] == "POSITIVE"
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
def test_image_classification_model(self):
|
|
io = gr.Blocks.load(name="models/google/vit-base-patch16-224")
|
|
try:
|
|
with open(io("gradio/test_data/lion.jpg")) as f:
|
|
assert json.load(f)["label"] == "lion"
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
def test_translation_model(self):
|
|
io = gr.Blocks.load(name="models/t5-base")
|
|
try:
|
|
output = io("My name is Sarah and I live in London")
|
|
assert output == "Mein Name ist Sarah und ich lebe in London"
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
def test_numerical_to_label_space(self):
|
|
io = gr.load("spaces/abidlabs/titanic-survival")
|
|
try:
|
|
assert io.theme.name == "soft"
|
|
with open(io("male", 77, 10)) as f:
|
|
assert json.load(f)["label"] == "Perishes"
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
def test_visual_question_answering(self):
|
|
io = gr.load("models/dandelin/vilt-b32-finetuned-vqa")
|
|
try:
|
|
output = io("gradio/test_data/lion.jpg", "What is in the image?")
|
|
assert isinstance(output, str) and output.endswith(".json")
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
def test_image_to_text(self):
|
|
io = gr.load("models/nlpconnect/vit-gpt2-image-captioning")
|
|
try:
|
|
output = io("gradio/test_data/lion.jpg")
|
|
assert isinstance(output, str)
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
def test_conversational(self):
|
|
io = gr.load("models/microsoft/DialoGPT-medium")
|
|
app, _, _ = io.launch(prevent_thread_lock=True)
|
|
client = TestClient(app)
|
|
assert app.state_holder == {}
|
|
response = client.post(
|
|
"/api/predict/",
|
|
json={"session_hash": "foo", "data": ["Hi!", None], "fn_index": 0},
|
|
)
|
|
output = response.json()
|
|
assert isinstance(output["data"], list)
|
|
assert isinstance(output["data"][0], list)
|
|
assert isinstance(app.state_holder["foo"], dict)
|
|
|
|
def test_speech_recognition_model(self):
|
|
io = gr.load("models/facebook/wav2vec2-base-960h")
|
|
try:
|
|
output = io("gradio/test_data/test_audio.wav")
|
|
assert output is not None
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
app, _, _ = io.launch(prevent_thread_lock=True, show_error=True)
|
|
client = TestClient(app)
|
|
resp = client.post(
|
|
"api/predict",
|
|
json={"fn_index": 0, "data": [media_data.BASE64_AUDIO], "name": "sample"},
|
|
)
|
|
try:
|
|
if resp.status_code != 200:
|
|
warnings.warn("Request for speech recognition model failed!")
|
|
if (
|
|
"Could not complete request to HuggingFace API"
|
|
in resp.json()["error"]
|
|
):
|
|
pass
|
|
else:
|
|
raise AssertionError()
|
|
else:
|
|
assert resp.json()["data"] is not None
|
|
finally:
|
|
io.close()
|
|
|
|
def test_text_to_image_model(self):
|
|
io = gr.load("models/osanseviero/BigGAN-deep-128")
|
|
try:
|
|
filename = io("chest")
|
|
assert filename.endswith(".jpg") or filename.endswith(".jpeg")
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
def test_private_space(self):
|
|
hf_token = "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" # Intentionally revealing this key for testing purposes
|
|
io = gr.load(
|
|
"spaces/gradio-tests/not-actually-private-space", hf_token=hf_token
|
|
)
|
|
try:
|
|
output = io("abc")
|
|
assert output == "abc"
|
|
assert io.theme.name == "gradio/monochrome"
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
def test_private_space_audio(self):
|
|
hf_token = "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" # Intentionally revealing this key for testing purposes
|
|
io = gr.load(
|
|
"spaces/gradio-tests/not-actually-private-space-audio", hf_token=hf_token
|
|
)
|
|
try:
|
|
output = io(media_data.BASE64_AUDIO["name"])
|
|
assert output.endswith(".wav")
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
def test_multiple_spaces_one_private(self):
|
|
hf_token = "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" # Intentionally revealing this key for testing purposes
|
|
with gr.Blocks():
|
|
gr.load("spaces/gradio-tests/not-actually-private-space", hf_token=hf_token)
|
|
gr.load(
|
|
"spaces/gradio/test-loading-examples",
|
|
)
|
|
assert Context.hf_token == hf_token
|
|
|
|
def test_loading_files_via_proxy_works(self):
|
|
hf_token = "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" # Intentionally revealing this key for testing purposes
|
|
io = gr.load(
|
|
"spaces/gradio-tests/test-loading-examples-private", hf_token=hf_token
|
|
)
|
|
assert io.theme.name == "default"
|
|
app, _, _ = io.launch(prevent_thread_lock=True)
|
|
test_client = TestClient(app)
|
|
r = test_client.get(
|
|
"/proxy=https://gradio-tests-test-loading-examples-private.hf.space/file=Bunny.obj"
|
|
)
|
|
assert r.status_code == 200
|
|
|
|
|
|
class TestLoadInterfaceWithExamples:
|
|
def test_interface_load_examples(self, tmp_path):
|
|
test_file_dir = Path(Path(__file__).parent, "test_files")
|
|
with patch("gradio.helpers.CACHED_FOLDER", tmp_path):
|
|
gr.load(
|
|
name="models/google/vit-base-patch16-224",
|
|
examples=[Path(test_file_dir, "cheetah1.jpg")],
|
|
cache_examples=False,
|
|
)
|
|
|
|
def test_interface_load_cache_examples(self, tmp_path):
|
|
test_file_dir = Path(Path(__file__).parent, "test_files")
|
|
with patch("gradio.helpers.CACHED_FOLDER", tmp_path):
|
|
gr.load(
|
|
name="models/google/vit-base-patch16-224",
|
|
examples=[Path(test_file_dir, "cheetah1.jpg")],
|
|
cache_examples=True,
|
|
)
|
|
|
|
def test_root_url(self):
|
|
demo = gr.load("spaces/gradio/test-loading-examples")
|
|
assert all(
|
|
c["props"]["root_url"] == "https://gradio-test-loading-examples.hf.space/"
|
|
for c in demo.get_config_file()["components"]
|
|
)
|
|
|
|
def test_root_url_deserialization(self):
|
|
demo = gr.load("spaces/gradio/simple_gallery")
|
|
path_to_files = demo("test")
|
|
assert (Path(path_to_files) / "captions.json").exists()
|
|
|
|
def test_interface_with_examples(self):
|
|
# This demo has the "fake_event" correctly removed
|
|
demo = gr.load("spaces/freddyaboulton/calculator")
|
|
assert demo(2, "add", 3) == 5
|
|
|
|
# This demo still has the "fake_event". both should work
|
|
demo = gr.load("spaces/abidlabs/test-calculator-2")
|
|
assert demo(2, "add", 4) == 6
|
|
|
|
|
|
def test_get_tabular_examples_replaces_nan_with_str_nan():
|
|
readme = """
|
|
---
|
|
tags:
|
|
- sklearn
|
|
- skops
|
|
- tabular-classification
|
|
widget:
|
|
structuredData:
|
|
attribute_0:
|
|
- material_7
|
|
- material_7
|
|
- material_7
|
|
measurement_2:
|
|
- 14.206
|
|
- 15.094
|
|
- .nan
|
|
---
|
|
"""
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.text = textwrap.dedent(readme)
|
|
|
|
with patch("gradio.external.requests.get", return_value=mock_response):
|
|
examples = get_tabular_examples("foo-model")
|
|
assert examples["measurement_2"] == [14.206, 15.094, "NaN"]
|
|
|
|
|
|
def test_cols_to_rows():
|
|
assert cols_to_rows({"a": [1, 2, "NaN"], "b": [1, "NaN", 3]}) == (
|
|
["a", "b"],
|
|
[[1, 1], [2, "NaN"], ["NaN", 3]],
|
|
)
|
|
assert cols_to_rows({"a": [1, 2, "NaN", 4], "b": [1, "NaN", 3]}) == (
|
|
["a", "b"],
|
|
[[1, 1], [2, "NaN"], ["NaN", 3], [4, "NaN"]],
|
|
)
|
|
assert cols_to_rows({"a": [1, 2, "NaN"], "b": [1, "NaN", 3, 5]}) == (
|
|
["a", "b"],
|
|
[[1, 1], [2, "NaN"], ["NaN", 3], ["NaN", 5]],
|
|
)
|
|
assert cols_to_rows({"a": None, "b": [1, "NaN", 3, 5]}) == (
|
|
["a", "b"],
|
|
[["NaN", 1], ["NaN", "NaN"], ["NaN", 3], ["NaN", 5]],
|
|
)
|
|
assert cols_to_rows({"a": None, "b": None}) == (["a", "b"], [])
|
|
|
|
|
|
def check_dataframe(config):
|
|
input_df = next(
|
|
c for c in config["components"] if c["props"].get("label", "") == "Input Rows"
|
|
)
|
|
assert input_df["props"]["headers"] == ["a", "b"]
|
|
assert input_df["props"]["row_count"] == (1, "dynamic")
|
|
assert input_df["props"]["col_count"] == (2, "fixed")
|
|
|
|
|
|
def check_dataset(config, readme_examples):
|
|
# No Examples
|
|
if not any(readme_examples.values()):
|
|
assert not any(c for c in config["components"] if c["type"] == "dataset")
|
|
else:
|
|
dataset = next(c for c in config["components"] if c["type"] == "dataset")
|
|
assert dataset["props"]["samples"] == [[cols_to_rows(readme_examples)[1]]]
|
|
|
|
|
|
def test_load_blocks_with_default_values():
|
|
io = gr.load("spaces/abidlabs/min-dalle")
|
|
assert isinstance(io.get_config_file()["components"][0]["props"]["value"], list)
|
|
|
|
io = gr.load("spaces/abidlabs/min-dalle-later")
|
|
assert isinstance(io.get_config_file()["components"][0]["props"]["value"], list)
|
|
|
|
io = gr.load("spaces/freddyaboulton/dataframe_load")
|
|
assert io.get_config_file()["components"][0]["props"]["value"] == {
|
|
"headers": ["a", "b"],
|
|
"data": [[1, 4], [2, 5], [3, 6]],
|
|
}
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"hypothetical_readme",
|
|
[
|
|
{"a": [1, 2, "NaN"], "b": [1, "NaN", 3]},
|
|
{"a": [1, 2, "NaN", 4], "b": [1, "NaN", 3]},
|
|
{"a": [1, 2, "NaN"], "b": [1, "NaN", 3, 5]},
|
|
{"a": None, "b": [1, "NaN", 3, 5]},
|
|
{"a": None, "b": None},
|
|
],
|
|
)
|
|
def test_can_load_tabular_model_with_different_widget_data(hypothetical_readme):
|
|
with patch(
|
|
"gradio.external.get_tabular_examples", return_value=hypothetical_readme
|
|
):
|
|
io = gr.load("models/scikit-learn/tabular-playground")
|
|
check_dataframe(io.config)
|
|
check_dataset(io.config, hypothetical_readme)
|
|
|
|
|
|
def test_raise_value_error_when_api_name_invalid():
|
|
with pytest.raises(InvalidApiNameError):
|
|
demo = gr.Blocks.load(name="spaces/gradio/hello_world")
|
|
demo("freddy", api_name="route does not exist")
|
|
|
|
|
|
def test_use_api_name_in_call_method():
|
|
# Interface
|
|
demo = gr.Blocks.load(name="spaces/gradio/hello_world")
|
|
assert demo("freddy", api_name="predict") == "Hello freddy!"
|
|
|
|
# Blocks demo with multiple functions
|
|
app = gr.Blocks.load(name="spaces/gradio/multiple-api-name-test")
|
|
assert app(15, api_name="minus_one") == 14
|
|
assert app(4, api_name="double") == 8
|