gradio/demo/scatter_plot/run.py
aliabid94 da05e59a53
Removing .update and get_config, attempt 2 (#5240)
* changes

* add changeset

* changes

* changes

* Update many-tips-create.md

* notebooks

* chanegs

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changew

* changes

* changes

* changes

* changes

* chanegs

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* Revert "changes"

This reverts commit 0868c25c56.

* changes

* changes

* changes

* changes

* changes

* changes

* change

* changes

* chaneges

* changes

* chagnes

* changes

* changes

* changes

* changes

* changes

* fix typing

* changes

---------

Co-authored-by: gradio-pr-bot <gradio-pr-bot@users.noreply.github.com>
Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
Co-authored-by: Ali Abdalla <ali.si3luwa@gmail.com>
2023-09-18 21:17:06 -07:00

70 lines
2.0 KiB
Python

import gradio as gr
from vega_datasets import data
cars = data.cars()
iris = data.iris()
# # Or generate your own fake data
# import pandas as pd
# import random
# cars_data = {
# "Name": ["car name " + f" {int(i/10)}" for i in range(400)],
# "Miles_per_Gallon": [random.randint(10, 30) for _ in range(400)],
# "Origin": [random.choice(["USA", "Europe", "Japan"]) for _ in range(400)],
# "Horsepower": [random.randint(50, 250) for _ in range(400)],
# }
# iris_data = {
# "petalWidth": [round(random.uniform(0, 2.5), 2) for _ in range(150)],
# "petalLength": [round(random.uniform(0, 7), 2) for _ in range(150)],
# "species": [
# random.choice(["setosa", "versicolor", "virginica"]) for _ in range(150)
# ],
# }
# cars = pd.DataFrame(cars_data)
# iris = pd.DataFrame(iris_data)
def scatter_plot_fn(dataset):
if dataset == "iris":
return gr.ScatterPlot(
value=iris,
x="petalWidth",
y="petalLength",
color="species",
title="Iris Dataset",
color_legend_title="Species",
x_title="Petal Width",
y_title="Petal Length",
tooltip=["petalWidth", "petalLength", "species"],
caption="",
)
else:
return gr.ScatterPlot(
value=cars,
x="Horsepower",
y="Miles_per_Gallon",
color="Origin",
tooltip="Name",
title="Car Data",
y_title="Miles per Gallon",
color_legend_title="Origin of Car",
caption="MPG vs Horsepower of various cars",
)
with gr.Blocks() as scatter_plot:
with gr.Row():
with gr.Column():
dataset = gr.Dropdown(choices=["cars", "iris"], value="cars")
with gr.Column():
plot = gr.ScatterPlot()
dataset.change(scatter_plot_fn, inputs=dataset, outputs=plot)
scatter_plot.load(fn=scatter_plot_fn, inputs=dataset, outputs=plot)
if __name__ == "__main__":
scatter_plot.launch()