gradio/demo/image_classifier.py
2020-09-22 11:16:46 -07:00

36 lines
937 B
Python

import gradio as gr
import tensorflow as tf
# from vis.utils import utils
# from vis.visualization import visualize_cam
import numpy as np
from PIL import Image
import requests
from urllib.request import urlretrieve
# # Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")
mobile_net = tf.keras.applications.MobileNetV2()
def image_classifier(im):
arr = np.expand_dims(im, axis=0)
arr = tf.keras.applications.mobilenet.preprocess_input(arr)
prediction = mobile_net.predict(arr).flatten()
return {labels[i]: float(prediction[i]) for i in range(1000)}
image = gr.inputs.Image(shape=(224, 224))
label = gr.outputs.Label(num_top_classes=3)
io = gr.Interface(image_classifier, image, label,
capture_session=True,
interpretation="default",
examples=[
["images/cheetah1.jpg"],
["images/lion.jpg"]
])
io.launch()