mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-06 10:25:17 +08:00
36 lines
937 B
Python
36 lines
937 B
Python
import gradio as gr
|
|
import tensorflow as tf
|
|
# from vis.utils import utils
|
|
# from vis.visualization import visualize_cam
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
import requests
|
|
from urllib.request import urlretrieve
|
|
|
|
# # Download human-readable labels for ImageNet.
|
|
response = requests.get("https://git.io/JJkYN")
|
|
labels = response.text.split("\n")
|
|
|
|
mobile_net = tf.keras.applications.MobileNetV2()
|
|
|
|
|
|
def image_classifier(im):
|
|
arr = np.expand_dims(im, axis=0)
|
|
arr = tf.keras.applications.mobilenet.preprocess_input(arr)
|
|
prediction = mobile_net.predict(arr).flatten()
|
|
return {labels[i]: float(prediction[i]) for i in range(1000)}
|
|
|
|
|
|
image = gr.inputs.Image(shape=(224, 224))
|
|
label = gr.outputs.Label(num_top_classes=3)
|
|
|
|
io = gr.Interface(image_classifier, image, label,
|
|
capture_session=True,
|
|
interpretation="default",
|
|
examples=[
|
|
["images/cheetah1.jpg"],
|
|
["images/lion.jpg"]
|
|
])
|
|
|
|
io.launch() |