mirror of
https://github.com/gradio-app/gradio.git
synced 2024-12-21 02:19:59 +08:00
33ef309451
* changes * css changes * updated PyPi version to 2.9b24 * Revert "updated PyPi version to 2.9b24" This reverts commit48f678f491
. * Revert "css changes" This reverts commitd31cd525a4
. * Revert "changes" This reverts commitfadcb12ffe
. * reverting * reverting * changes * changs * Revert "changs" This reverts commit49d815f6fe
. * Revert "changes" This reverts commit481d7c21c4
. * changes * format * changes * format * test fix * test fix * test fix * fix tests Co-authored-by: Ali Abid <aliabid94@gmail.com>
86 lines
2.6 KiB
Python
86 lines
2.6 KiB
Python
import asyncio
|
|
import random
|
|
import time
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
import gradio as gr
|
|
from gradio.routes import PredictBody
|
|
from gradio.test_data.blocks_configs import XRAY_CONFIG
|
|
|
|
pytest_plugins = ("pytest_asyncio",)
|
|
|
|
|
|
class TestBlocks(unittest.TestCase):
|
|
def test_xray(self):
|
|
def fake_func():
|
|
return "Hello There"
|
|
|
|
xray_model = lambda diseases, img: {
|
|
disease: random.random() for disease in diseases
|
|
}
|
|
ct_model = lambda diseases, img: {disease: 0.1 for disease in diseases}
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.components.Markdown(
|
|
"""
|
|
# Detect Disease From Scan
|
|
With this model you can lorem ipsum
|
|
- ipsum 1
|
|
- ipsum 2
|
|
"""
|
|
)
|
|
disease = gr.components.CheckboxGroup(
|
|
choices=["Covid", "Malaria", "Lung Cancer"], label="Disease to Scan For"
|
|
)
|
|
|
|
with gr.Tabs():
|
|
with gr.TabItem("X-ray"):
|
|
with gr.Row():
|
|
xray_scan = gr.components.Image()
|
|
xray_results = gr.components.JSON()
|
|
xray_run = gr.Button(
|
|
"Run",
|
|
css={"background-color": "red", "--hover-color": "orange"},
|
|
)
|
|
xray_run.click(
|
|
xray_model, inputs=[disease, xray_scan], outputs=xray_results
|
|
)
|
|
|
|
with gr.TabItem("CT Scan"):
|
|
with gr.Row():
|
|
ct_scan = gr.components.Image()
|
|
ct_results = gr.components.JSON()
|
|
ct_run = gr.Button("Run")
|
|
ct_run.click(
|
|
ct_model, inputs=[disease, ct_scan], outputs=ct_results
|
|
)
|
|
textbox = gr.components.Textbox()
|
|
demo.load(fake_func, [], [textbox])
|
|
print(demo.get_config_file())
|
|
self.assertEqual(XRAY_CONFIG, demo.get_config_file())
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_function(self):
|
|
async def wait():
|
|
await asyncio.sleep(0.01)
|
|
return True
|
|
|
|
with gr.Blocks() as demo:
|
|
text = gr.components.Textbox()
|
|
button = gr.components.Button()
|
|
button.click(wait, [text], [text])
|
|
|
|
body = PredictBody(data=1, fn_index=0)
|
|
start = time.time()
|
|
result = await demo.process_api(body)
|
|
end = time.time()
|
|
difference = end - start
|
|
assert difference >= 0.01
|
|
assert result
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|