mirror of
https://github.com/gradio-app/gradio.git
synced 2024-12-27 02:30:17 +08:00
ef3862e075
* Sort requirements.in * Switch flake8 + isort to ruff * Apply ruff import order fixes * Fix ruff complaints in demo/ * Fix ruff complaints in test/ * Use `x is not y`, not `not x is y` * Remove unused listdir from website generator * Clean up duplicate dict keys * Add changelog entry * Clean up unused imports (except in gradio/__init__.py) * add space --------- Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
94 lines
2.8 KiB
Python
94 lines
2.8 KiB
Python
import gradio as gr
|
|
import xyzservices.providers as xyz
|
|
from bokeh.tile_providers import get_provider
|
|
from bokeh.models import ColumnDataSource, Whisker
|
|
from bokeh.plotting import figure
|
|
from bokeh.sampledata.autompg2 import autompg2 as df
|
|
from bokeh.sampledata.penguins import data
|
|
from bokeh.transform import factor_cmap, jitter, factor_mark
|
|
|
|
|
|
def get_plot(plot_type):
|
|
if plot_type == "map":
|
|
tile_provider = get_provider(xyz.OpenStreetMap.Mapnik)
|
|
plot = figure(
|
|
x_range=(-2000000, 6000000),
|
|
y_range=(-1000000, 7000000),
|
|
x_axis_type="mercator",
|
|
y_axis_type="mercator",
|
|
)
|
|
plot.add_tile(tile_provider)
|
|
return plot
|
|
elif plot_type == "whisker":
|
|
classes = list(sorted(df["class"].unique()))
|
|
|
|
p = figure(
|
|
height=400,
|
|
x_range=classes,
|
|
background_fill_color="#efefef",
|
|
title="Car class vs HWY mpg with quintile ranges",
|
|
)
|
|
p.xgrid.grid_line_color = None
|
|
|
|
g = df.groupby("class")
|
|
upper = g.hwy.quantile(0.80)
|
|
lower = g.hwy.quantile(0.20)
|
|
source = ColumnDataSource(data=dict(base=classes, upper=upper, lower=lower))
|
|
|
|
error = Whisker(
|
|
base="base",
|
|
upper="upper",
|
|
lower="lower",
|
|
source=source,
|
|
level="annotation",
|
|
line_width=2,
|
|
)
|
|
error.upper_head.size = 20
|
|
error.lower_head.size = 20
|
|
p.add_layout(error)
|
|
|
|
p.circle(
|
|
jitter("class", 0.3, range=p.x_range),
|
|
"hwy",
|
|
source=df,
|
|
alpha=0.5,
|
|
size=13,
|
|
line_color="white",
|
|
color=factor_cmap("class", "Light6", classes),
|
|
)
|
|
return p
|
|
elif plot_type == "scatter":
|
|
|
|
SPECIES = sorted(data.species.unique())
|
|
MARKERS = ["hex", "circle_x", "triangle"]
|
|
|
|
p = figure(title="Penguin size", background_fill_color="#fafafa")
|
|
p.xaxis.axis_label = "Flipper Length (mm)"
|
|
p.yaxis.axis_label = "Body Mass (g)"
|
|
|
|
p.scatter(
|
|
"flipper_length_mm",
|
|
"body_mass_g",
|
|
source=data,
|
|
legend_group="species",
|
|
fill_alpha=0.4,
|
|
size=12,
|
|
marker=factor_mark("species", MARKERS, SPECIES),
|
|
color=factor_cmap("species", "Category10_3", SPECIES),
|
|
)
|
|
|
|
p.legend.location = "top_left"
|
|
p.legend.title = "Species"
|
|
return p
|
|
|
|
with gr.Blocks() as demo:
|
|
with gr.Row():
|
|
plot_type = gr.Radio(value="scatter", choices=["scatter", "whisker", "map"])
|
|
plot = gr.Plot()
|
|
plot_type.change(get_plot, inputs=[plot_type], outputs=[plot])
|
|
demo.load(get_plot, inputs=[plot_type], outputs=[plot])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch()
|