mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-24 10:54:04 +08:00
cc0cff893f
- black formatting - isort formatting
98 lines
3.4 KiB
Python
98 lines
3.4 KiB
Python
from __future__ import absolute_import, division, print_function
|
|
|
|
import collections
|
|
import logging
|
|
import math
|
|
|
|
import numpy as np
|
|
import torch
|
|
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
|
|
BertForQuestionAnswering, BertTokenizer)
|
|
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset
|
|
from utils import (get_answer, input_to_squad_example,
|
|
squad_examples_to_features, to_list)
|
|
|
|
RawResult = collections.namedtuple(
|
|
"RawResult", ["unique_id", "start_logits", "end_logits"]
|
|
)
|
|
|
|
|
|
class QA:
|
|
def __init__(self, model_path: str):
|
|
self.max_seq_length = 384
|
|
self.doc_stride = 128
|
|
self.do_lower_case = True
|
|
self.max_query_length = 64
|
|
self.n_best_size = 20
|
|
self.max_answer_length = 30
|
|
self.model, self.tokenizer = self.load_model(model_path)
|
|
if torch.cuda.is_available():
|
|
self.device = "cuda"
|
|
else:
|
|
self.device = "cpu"
|
|
self.model.to(self.device)
|
|
self.model.eval()
|
|
|
|
def load_model(self, model_path: str, do_lower_case=False):
|
|
config = BertConfig.from_pretrained(model_path + "/bert_config.json")
|
|
tokenizer = BertTokenizer.from_pretrained(
|
|
model_path, do_lower_case=do_lower_case
|
|
)
|
|
model = BertForQuestionAnswering.from_pretrained(
|
|
model_path, from_tf=False, config=config
|
|
)
|
|
return model, tokenizer
|
|
|
|
def predict(self, passage: str, question: str):
|
|
example = input_to_squad_example(passage, question)
|
|
features = squad_examples_to_features(
|
|
example,
|
|
self.tokenizer,
|
|
self.max_seq_length,
|
|
self.doc_stride,
|
|
self.max_query_length,
|
|
)
|
|
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
|
|
all_input_mask = torch.tensor(
|
|
[f.input_mask for f in features], dtype=torch.long
|
|
)
|
|
all_segment_ids = torch.tensor(
|
|
[f.segment_ids for f in features], dtype=torch.long
|
|
)
|
|
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
|
|
dataset = TensorDataset(
|
|
all_input_ids, all_input_mask, all_segment_ids, all_example_index
|
|
)
|
|
eval_sampler = SequentialSampler(dataset)
|
|
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=1)
|
|
all_results = []
|
|
for batch in eval_dataloader:
|
|
batch = tuple(t.to(self.device) for t in batch)
|
|
with torch.no_grad():
|
|
inputs = {
|
|
"input_ids": batch[0],
|
|
"attention_mask": batch[1],
|
|
"token_type_ids": batch[2],
|
|
}
|
|
example_indices = batch[3]
|
|
outputs = self.model(**inputs)
|
|
|
|
for i, example_index in enumerate(example_indices):
|
|
eval_feature = features[example_index.item()]
|
|
unique_id = int(eval_feature.unique_id)
|
|
result = RawResult(
|
|
unique_id=unique_id,
|
|
start_logits=to_list(outputs[0][i]),
|
|
end_logits=to_list(outputs[1][i]),
|
|
)
|
|
all_results.append(result)
|
|
answer = get_answer(
|
|
example,
|
|
features,
|
|
all_results,
|
|
self.n_best_size,
|
|
self.max_answer_length,
|
|
self.do_lower_case,
|
|
)
|
|
return answer
|