mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-06 10:25:17 +08:00
0493c66303
* Split test/test_components.py into test/components/test_*.py * Remove test/components/conftest.py because what it configures is already defined in pyproject.toml
319 lines
11 KiB
Python
319 lines
11 KiB
Python
import numpy as np
|
|
import pandas as pd
|
|
import pytest
|
|
|
|
import gradio as gr
|
|
from gradio.components.dataframe import DataframeData
|
|
|
|
|
|
class TestDataframe:
|
|
def test_component_functions(self):
|
|
"""
|
|
Preprocess, serialize, get_config
|
|
"""
|
|
x_data = {
|
|
"data": [["Tim", 12, False], ["Jan", 24, True]],
|
|
"headers": ["Name", "Age", "Member"],
|
|
"metadata": None,
|
|
}
|
|
x_payload = DataframeData(**x_data)
|
|
dataframe_input = gr.Dataframe(headers=["Name", "Age", "Member"])
|
|
output = dataframe_input.preprocess(x_payload)
|
|
assert output["Age"][1] == 24
|
|
assert not output["Member"][0]
|
|
assert dataframe_input.postprocess(output) == x_payload
|
|
|
|
dataframe_input = gr.Dataframe(
|
|
headers=["Name", "Age", "Member"], label="Dataframe Input"
|
|
)
|
|
assert dataframe_input.get_config() == {
|
|
"value": {
|
|
"headers": ["Name", "Age", "Member"],
|
|
"data": [["", "", ""]],
|
|
"metadata": None,
|
|
},
|
|
"_selectable": False,
|
|
"key": None,
|
|
"headers": ["Name", "Age", "Member"],
|
|
"row_count": (1, "dynamic"),
|
|
"col_count": (3, "dynamic"),
|
|
"datatype": "str",
|
|
"type": "pandas",
|
|
"label": "Dataframe Input",
|
|
"show_label": True,
|
|
"scale": None,
|
|
"min_width": 160,
|
|
"interactive": None,
|
|
"visible": True,
|
|
"elem_id": None,
|
|
"elem_classes": [],
|
|
"wrap": False,
|
|
"proxy_url": None,
|
|
"name": "dataframe",
|
|
"height": 500,
|
|
"latex_delimiters": [{"display": True, "left": "$$", "right": "$$"}],
|
|
"line_breaks": True,
|
|
"column_widths": [],
|
|
}
|
|
dataframe_input = gr.Dataframe()
|
|
output = dataframe_input.preprocess(DataframeData(**x_data))
|
|
assert output["Age"][1] == 24
|
|
|
|
x_data = {
|
|
"data": [["Tim", 12, False], ["Jan", 24, True]],
|
|
"headers": ["Name", "Age", "Member"],
|
|
"metadata": {"display_value": None, "styling": None},
|
|
}
|
|
dataframe_input.preprocess(DataframeData(**x_data))
|
|
|
|
with pytest.raises(ValueError):
|
|
gr.Dataframe(type="unknown")
|
|
|
|
dataframe_output = gr.Dataframe()
|
|
assert dataframe_output.get_config() == {
|
|
"value": {
|
|
"headers": ["1", "2", "3"],
|
|
"data": [["", "", ""]],
|
|
"metadata": None,
|
|
},
|
|
"_selectable": False,
|
|
"key": None,
|
|
"headers": ["1", "2", "3"],
|
|
"row_count": (1, "dynamic"),
|
|
"col_count": (3, "dynamic"),
|
|
"datatype": "str",
|
|
"type": "pandas",
|
|
"label": None,
|
|
"show_label": True,
|
|
"scale": None,
|
|
"min_width": 160,
|
|
"interactive": None,
|
|
"visible": True,
|
|
"elem_id": None,
|
|
"elem_classes": [],
|
|
"wrap": False,
|
|
"proxy_url": None,
|
|
"name": "dataframe",
|
|
"height": 500,
|
|
"latex_delimiters": [{"display": True, "left": "$$", "right": "$$"}],
|
|
"line_breaks": True,
|
|
"column_widths": [],
|
|
}
|
|
|
|
dataframe_input = gr.Dataframe(column_widths=["100px", 200, "50%"])
|
|
assert dataframe_input.get_config()["column_widths"] == [
|
|
"100px",
|
|
"200px",
|
|
"50%",
|
|
]
|
|
|
|
def test_postprocess(self):
|
|
"""
|
|
postprocess
|
|
"""
|
|
dataframe_output = gr.Dataframe()
|
|
output = dataframe_output.postprocess([]).model_dump()
|
|
assert output == {"data": [[]], "headers": ["1", "2", "3"], "metadata": None}
|
|
output = dataframe_output.postprocess(np.zeros((2, 2))).model_dump()
|
|
assert output == {
|
|
"data": [[0, 0], [0, 0]],
|
|
"headers": ["1", "2"],
|
|
"metadata": None,
|
|
}
|
|
output = dataframe_output.postprocess([[1, 3, 5]]).model_dump()
|
|
assert output == {
|
|
"data": [[1, 3, 5]],
|
|
"headers": ["1", "2", "3"],
|
|
"metadata": None,
|
|
}
|
|
output = dataframe_output.postprocess(
|
|
pd.DataFrame([[2, True], [3, True], [4, False]], columns=["num", "prime"])
|
|
).model_dump()
|
|
assert output == {
|
|
"headers": ["num", "prime"],
|
|
"data": [[2, True], [3, True], [4, False]],
|
|
"metadata": None,
|
|
}
|
|
with pytest.raises(ValueError):
|
|
gr.Dataframe(type="unknown")
|
|
|
|
# When the headers don't match the data
|
|
dataframe_output = gr.Dataframe(headers=["one", "two", "three"])
|
|
output = dataframe_output.postprocess([[2, True], [3, True]]).model_dump()
|
|
assert output == {
|
|
"headers": ["one", "two"],
|
|
"data": [[2, True], [3, True]],
|
|
"metadata": None,
|
|
}
|
|
dataframe_output = gr.Dataframe(headers=["one", "two", "three"])
|
|
output = dataframe_output.postprocess(
|
|
[[2, True, "ab", 4], [3, True, "cd", 5]]
|
|
).model_dump()
|
|
assert output == {
|
|
"headers": ["one", "two", "three", "4"],
|
|
"data": [[2, True, "ab", 4], [3, True, "cd", 5]],
|
|
"metadata": None,
|
|
}
|
|
|
|
def test_dataframe_postprocess_all_types(self):
|
|
df = pd.DataFrame(
|
|
{
|
|
"date_1": pd.date_range("2021-01-01", periods=2),
|
|
"date_2": pd.date_range("2022-02-15", periods=2).strftime(
|
|
"%B %d, %Y, %r"
|
|
),
|
|
"number": np.array([0.2233, 0.57281]),
|
|
"number_2": np.array([84, 23]).astype(np.int64),
|
|
"bool": [True, False],
|
|
"markdown": ["# Hello", "# Goodbye"],
|
|
}
|
|
)
|
|
component = gr.Dataframe(
|
|
datatype=["date", "date", "number", "number", "bool", "markdown"]
|
|
)
|
|
output = component.postprocess(df).model_dump()
|
|
assert output == {
|
|
"headers": list(df.columns),
|
|
"data": [
|
|
[
|
|
pd.Timestamp("2021-01-01 00:00:00"),
|
|
"February 15, 2022, 12:00:00 AM",
|
|
0.2233,
|
|
84,
|
|
True,
|
|
"# Hello",
|
|
],
|
|
[
|
|
pd.Timestamp("2021-01-02 00:00:00"),
|
|
"February 16, 2022, 12:00:00 AM",
|
|
0.57281,
|
|
23,
|
|
False,
|
|
"# Goodbye",
|
|
],
|
|
],
|
|
"metadata": None,
|
|
}
|
|
|
|
def test_dataframe_postprocess_only_dates(self):
|
|
df = pd.DataFrame(
|
|
{
|
|
"date_1": pd.date_range("2021-01-01", periods=2),
|
|
"date_2": pd.date_range("2022-02-15", periods=2),
|
|
}
|
|
)
|
|
component = gr.Dataframe(datatype=["date", "date"])
|
|
output = component.postprocess(df).model_dump()
|
|
assert output == {
|
|
"headers": list(df.columns),
|
|
"data": [
|
|
[
|
|
pd.Timestamp("2021-01-01 00:00:00"),
|
|
pd.Timestamp("2022-02-15 00:00:00"),
|
|
],
|
|
[
|
|
pd.Timestamp("2021-01-02 00:00:00"),
|
|
pd.Timestamp("2022-02-16 00:00:00"),
|
|
],
|
|
],
|
|
"metadata": None,
|
|
}
|
|
|
|
def test_dataframe_postprocess_styler(self):
|
|
component = gr.Dataframe()
|
|
df = pd.DataFrame(
|
|
{
|
|
"name": ["Adam", "Mike"] * 4,
|
|
"gpa": [1.1, 1.12] * 4,
|
|
"sat": [800, 800] * 4,
|
|
}
|
|
)
|
|
s = df.style.format(precision=1, decimal=",")
|
|
output = component.postprocess(s).model_dump()
|
|
assert output == {
|
|
"data": [
|
|
["Adam", 1.1, 800],
|
|
["Mike", 1.12, 800],
|
|
["Adam", 1.1, 800],
|
|
["Mike", 1.12, 800],
|
|
["Adam", 1.1, 800],
|
|
["Mike", 1.12, 800],
|
|
["Adam", 1.1, 800],
|
|
["Mike", 1.12, 800],
|
|
],
|
|
"headers": ["name", "gpa", "sat"],
|
|
"metadata": {
|
|
"display_value": [
|
|
["Adam", "1,1", "800"],
|
|
["Mike", "1,1", "800"],
|
|
["Adam", "1,1", "800"],
|
|
["Mike", "1,1", "800"],
|
|
["Adam", "1,1", "800"],
|
|
["Mike", "1,1", "800"],
|
|
["Adam", "1,1", "800"],
|
|
["Mike", "1,1", "800"],
|
|
],
|
|
"styling": [
|
|
["", "", ""],
|
|
["", "", ""],
|
|
["", "", ""],
|
|
["", "", ""],
|
|
["", "", ""],
|
|
["", "", ""],
|
|
["", "", ""],
|
|
["", "", ""],
|
|
],
|
|
},
|
|
}
|
|
|
|
df = pd.DataFrame(
|
|
{
|
|
"A": [14, 4, 5, 4, 1],
|
|
"B": [5, 2, 54, 3, 2],
|
|
"C": [20, 20, 7, 3, 8],
|
|
"D": [14, 3, 6, 2, 6],
|
|
"E": [23, 45, 64, 32, 23],
|
|
}
|
|
)
|
|
|
|
t = df.style.highlight_max(color="lightgreen", axis=0)
|
|
output = component.postprocess(t).model_dump()
|
|
assert output == {
|
|
"data": [
|
|
[14, 5, 20, 14, 23],
|
|
[4, 2, 20, 3, 45],
|
|
[5, 54, 7, 6, 64],
|
|
[4, 3, 3, 2, 32],
|
|
[1, 2, 8, 6, 23],
|
|
],
|
|
"headers": ["A", "B", "C", "D", "E"],
|
|
"metadata": {
|
|
"display_value": [
|
|
["14", "5", "20", "14", "23"],
|
|
["4", "2", "20", "3", "45"],
|
|
["5", "54", "7", "6", "64"],
|
|
["4", "3", "3", "2", "32"],
|
|
["1", "2", "8", "6", "23"],
|
|
],
|
|
"styling": [
|
|
[
|
|
"background-color: lightgreen",
|
|
"",
|
|
"background-color: lightgreen",
|
|
"background-color: lightgreen",
|
|
"",
|
|
],
|
|
["", "", "background-color: lightgreen", "", ""],
|
|
[
|
|
"",
|
|
"background-color: lightgreen",
|
|
"",
|
|
"",
|
|
"background-color: lightgreen",
|
|
],
|
|
["", "", "", "", ""],
|
|
["", "", "", "", ""],
|
|
],
|
|
},
|
|
}
|