mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-18 10:44:33 +08:00
c9b8a0c484
* fixes * remove binaries * doc * changelog * typing * run on windows * cancels * added clarifications
57 lines
1.5 KiB
Python
57 lines
1.5 KiB
Python
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
import gradio as gr
|
|
from torch import nn
|
|
import gdown
|
|
|
|
url = 'https://drive.google.com/uc?id=1dsk2JNZLRDjC-0J4wIQX_FcVurPaXaAZ'
|
|
output = 'pytorch_model.bin'
|
|
gdown.download(url, output, quiet=False)
|
|
|
|
LABELS = Path('class_names.txt').read_text().splitlines()
|
|
|
|
model = nn.Sequential(
|
|
nn.Conv2d(1, 32, 3, padding='same'),
|
|
nn.ReLU(),
|
|
nn.MaxPool2d(2),
|
|
nn.Conv2d(32, 64, 3, padding='same'),
|
|
nn.ReLU(),
|
|
nn.MaxPool2d(2),
|
|
nn.Conv2d(64, 128, 3, padding='same'),
|
|
nn.ReLU(),
|
|
nn.MaxPool2d(2),
|
|
nn.Flatten(),
|
|
nn.Linear(1152, 256),
|
|
nn.ReLU(),
|
|
nn.Linear(256, len(LABELS)),
|
|
)
|
|
state_dict = torch.load('pytorch_model.bin', map_location='cpu')
|
|
model.load_state_dict(state_dict, strict=False)
|
|
model.eval()
|
|
|
|
def predict(im):
|
|
if im is None:
|
|
return None
|
|
im = np.asarray(im.resize((28, 28)))
|
|
|
|
x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
|
|
|
|
with torch.no_grad():
|
|
out = model(x)
|
|
|
|
probabilities = torch.nn.functional.softmax(out[0], dim=0)
|
|
|
|
values, indices = torch.topk(probabilities, 5)
|
|
|
|
return {LABELS[i]: v.item() for i, v in zip(indices, values)}
|
|
|
|
|
|
interface = gr.Interface(predict,
|
|
inputs=gr.Sketchpad(label="Draw Here", brush_radius=5, type="pil", shape=(120, 120)),
|
|
outputs=gr.Label(label="Guess"),
|
|
live=True)
|
|
|
|
interface.queue().launch()
|