gradio/demo/pictionary/run.py
Abubakar Abid c9b8a0c484
A few small fixes to docs / demos (#3611)
* fixes

* remove binaries

* doc

* changelog

* typing

* run on windows

* cancels

* added clarifications
2023-03-24 16:28:38 -07:00

57 lines
1.5 KiB
Python

from pathlib import Path
import numpy as np
import torch
import gradio as gr
from torch import nn
import gdown
url = 'https://drive.google.com/uc?id=1dsk2JNZLRDjC-0J4wIQX_FcVurPaXaAZ'
output = 'pytorch_model.bin'
gdown.download(url, output, quiet=False)
LABELS = Path('class_names.txt').read_text().splitlines()
model = nn.Sequential(
nn.Conv2d(1, 32, 3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, 3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1152, 256),
nn.ReLU(),
nn.Linear(256, len(LABELS)),
)
state_dict = torch.load('pytorch_model.bin', map_location='cpu')
model.load_state_dict(state_dict, strict=False)
model.eval()
def predict(im):
if im is None:
return None
im = np.asarray(im.resize((28, 28)))
x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
with torch.no_grad():
out = model(x)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
values, indices = torch.topk(probabilities, 5)
return {LABELS[i]: v.item() for i, v in zip(indices, values)}
interface = gr.Interface(predict,
inputs=gr.Sketchpad(label="Draw Here", brush_radius=5, type="pil", shape=(120, 120)),
outputs=gr.Label(label="Guess"),
live=True)
interface.queue().launch()