Go to file
2019-04-19 01:21:52 -07:00
.ipynb_checkpoints merged 2019-02-17 18:42:09 -08:00
build/lib/gradio 0.5.0 2019-04-10 14:02:06 -07:00
dist 0.5.0 2019-04-10 14:02:06 -07:00
examples removed buttons besides flag 2019-03-06 22:09:49 -08:00
gradio fixed sharing 2019-04-19 01:21:52 -07:00
gradio.egg-info 0.5.0 2019-04-10 14:02:06 -07:00
screenshots skin benign 2019-02-28 01:41:32 -08:00
test added tests for new outputs 2019-03-18 05:38:10 -07:00
web added loading logo 2019-04-17 12:24:52 -07:00
.gitignore Native reverse forward tunneling + Gradio server API integration 2019-04-18 20:17:16 -07:00
build-interface.py fix all interfaces 2019-04-10 10:50:43 -07:00
Demo Gradio.ipynb added loading logo 2019-04-17 12:24:52 -07:00
Emotional Detector (ImageUpload)-Copy1.ipynb changed API to include action 2019-04-09 21:06:02 -07:00
index.html seperated inputs and outputs, added webcam interface 2019-02-16 20:11:28 -08:00
MANIFEST.in 0.4.4 2019-03-25 13:17:46 -07:00
README.md Update README.md 2019-04-01 16:54:13 -07:00
setup.py 0.5.0 2019-04-10 14:02:06 -07:00
Test Keras MNIST.ipynb added contact page 2019-04-10 16:39:43 -07:00
Test Keras.ipynb fixed sharing 2019-04-19 01:21:52 -07:00
Test Pytorch.ipynb changed API to include action 2019-04-09 21:06:02 -07:00
Test Sklearn.ipynb changed API to include action 2019-04-09 21:06:02 -07:00
Test Tensorflow.ipynb changed API to include action 2019-04-09 21:06:02 -07:00

Gradio

Gradio is a python library that allows you to place input and output interfaces over trained models to make it easy for you to "play around" with your model. Gradio runs entirely locally using your browser.

To get a sense of gradio, take a look at the python notebooks in the examples folder, or read on below! And be sure to visit the gradio website: www.gradio.app.

Installation

pip install gradio

(you may need to replace pip with pip3 if you're running python3).

Usage

Gradio is very easy to use with your existing code. Here is a minimum working example:

import gradio
import tensorflow as tf
image_mdl = tf.keras.applications.inception_v3.InceptionV3()

io = gradio.Interface(inputs="imageupload", outputs="label", model_type="keras", model=image_mdl)
io.launch()

You can supply your own model instead of the pretrained model above, as well as use different kinds of models, not just keras models. Changing the input and output parameters in the Interface face object allow you to create different interfaces, depending on the needs of your model. Take a look at the python notebooks for more examples. The currently supported interfaces are as follows:

Input interfaces:

  • Sketchpad
  • ImageUplaod
  • Webcam
  • Textbox

Output interfaces:

  • Label
  • Textbox

Screenshots

Here are a few screenshots that show examples of gradio interfaces

MNIST Digit Recognition (Input: Sketchpad, Output: Label)

iface = gradio.Interface(input='sketchpad', output='label', model=model, model_type='keras')
iface.launch()

alt text

Facial Emotion Detector (Input: Webcam, Output: Label)

iface = gradio.Interface(inputs='webcam', outputs='label', model=model, model_type='keras')
iface.launch()

alt text

Sentiment Analysis (Input: Textbox, Output: Label)

iface = gradio.Interface(inputs='textbox', outputs='label', model=model, model_type='keras')
iface.launch()

alt text

More Documentation

More detailed and up-to-date documentation can be found on the gradio website: www.gradio.app.