mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-06 10:25:17 +08:00
32 lines
22 KiB
Python
32 lines
22 KiB
Python
import unittest
|
|
import os
|
|
from gradio import inputs
|
|
|
|
BASE64_IMG = ""
|
|
BASE64_SKETCH = ""
|
|
RAND_STRING = "2wBDAAYEBQYFBAYGBQYHBwYIC"
|
|
PACKAGE_NAME = 'gradio'
|
|
|
|
# Where to find the static resources associated with each template.
|
|
BASE_INPUT_INTERFACE_JS_PATH = 'static/js/interfaces/input/{}.js'
|
|
|
|
|
|
class TestImage(unittest.TestCase):
|
|
def test_preprocessing(self):
|
|
inp = inputs.Image(shape=(20, 20))
|
|
array = inp.preprocess(BASE64_SKETCH)
|
|
self.assertEqual(array.shape, (20, 20, 3))
|
|
inp2 = inputs.Image(shape=(20, 20), image_mode="L")
|
|
array2 = inp2.preprocess(BASE64_SKETCH)
|
|
self.assertEqual(array2.shape, (20, 20))
|
|
|
|
|
|
class TestTextbox(unittest.TestCase):
|
|
def test_preprocessing(self):
|
|
inp = inputs.Textbox()
|
|
string = inp.preprocess(RAND_STRING)
|
|
self.assertEqual(string, RAND_STRING)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main() |