mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-24 10:54:04 +08:00
11379b92f1
* Fix fn used in load when queue is enabled * Respect upstream queue * Fix test * Skip in 3.7 * Update logic to respect if fn does not have queue * Fix impl + test
407 lines
16 KiB
Python
407 lines
16 KiB
Python
import json
|
|
import os
|
|
import pathlib
|
|
import sys
|
|
import textwrap
|
|
import unittest
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
import pytest
|
|
import transformers
|
|
|
|
import gradio
|
|
import gradio as gr
|
|
from gradio import utils
|
|
from gradio.external import (
|
|
TooManyRequestsError,
|
|
cols_to_rows,
|
|
get_pred_from_ws,
|
|
get_tabular_examples,
|
|
use_websocket,
|
|
)
|
|
|
|
"""
|
|
WARNING: These tests have an external dependency: namely that Hugging Face's
|
|
Hub and Space APIs do not change, and they keep their most famous models up.
|
|
So if, e.g. Spaces is down, then these test will not pass.
|
|
|
|
These tests actually test gr.Interface.load() and gr.Blocks.load() but are
|
|
included in a separate file because of the above-mentioned dependency.
|
|
"""
|
|
|
|
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
|
|
|
# Mark the whole module as flaky
|
|
pytestmark = pytest.mark.flaky
|
|
|
|
|
|
class TestLoadInterface(unittest.TestCase):
|
|
def test_audio_to_audio(self):
|
|
model_type = "audio-to-audio"
|
|
interface = gr.Interface.load(
|
|
name="speechbrain/mtl-mimic-voicebank",
|
|
src="models",
|
|
alias=model_type,
|
|
)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Audio)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Audio)
|
|
|
|
def test_question_answering(self):
|
|
model_type = "image-classification"
|
|
interface = gr.Blocks.load(
|
|
name="lysandre/tiny-vit-random", src="models", alias=model_type
|
|
)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Image)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Label)
|
|
|
|
def test_text_generation(self):
|
|
model_type = "text_generation"
|
|
interface = gr.Interface.load("models/gpt2", alias=model_type)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Textbox)
|
|
|
|
def test_summarization(self):
|
|
model_type = "summarization"
|
|
interface = gr.Interface.load(
|
|
"models/facebook/bart-large-cnn", api_key=None, alias=model_type
|
|
)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Textbox)
|
|
|
|
def test_translation(self):
|
|
model_type = "translation"
|
|
interface = gr.Interface.load(
|
|
"models/facebook/bart-large-cnn", api_key=None, alias=model_type
|
|
)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Textbox)
|
|
|
|
def test_text2text_generation(self):
|
|
model_type = "text2text-generation"
|
|
interface = gr.Interface.load(
|
|
"models/sshleifer/tiny-mbart", api_key=None, alias=model_type
|
|
)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Textbox)
|
|
|
|
def test_text_classification(self):
|
|
model_type = "text-classification"
|
|
interface = gr.Interface.load(
|
|
"models/distilbert-base-uncased-finetuned-sst-2-english",
|
|
api_key=None,
|
|
alias=model_type,
|
|
)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Label)
|
|
|
|
def test_fill_mask(self):
|
|
model_type = "fill-mask"
|
|
interface = gr.Interface.load(
|
|
"models/bert-base-uncased", api_key=None, alias=model_type
|
|
)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Label)
|
|
|
|
def test_zero_shot_classification(self):
|
|
model_type = "zero-shot-classification"
|
|
interface = gr.Interface.load(
|
|
"models/facebook/bart-large-mnli", api_key=None, alias=model_type
|
|
)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
|
|
self.assertIsInstance(interface.input_components[1], gr.components.Textbox)
|
|
self.assertIsInstance(interface.input_components[2], gr.components.Checkbox)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Label)
|
|
|
|
def test_automatic_speech_recognition(self):
|
|
model_type = "automatic-speech-recognition"
|
|
interface = gr.Interface.load(
|
|
"models/facebook/wav2vec2-base-960h", api_key=None, alias=model_type
|
|
)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Audio)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Textbox)
|
|
|
|
def test_image_classification(self):
|
|
model_type = "image-classification"
|
|
interface = gr.Interface.load(
|
|
"models/google/vit-base-patch16-224", api_key=None, alias=model_type
|
|
)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Image)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Label)
|
|
|
|
def test_feature_extraction(self):
|
|
model_type = "feature-extraction"
|
|
interface = gr.Interface.load(
|
|
"models/sentence-transformers/distilbert-base-nli-mean-tokens",
|
|
api_key=None,
|
|
alias=model_type,
|
|
)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Dataframe)
|
|
|
|
def test_sentence_similarity(self):
|
|
model_type = "text-to-speech"
|
|
interface = gr.Interface.load(
|
|
"models/julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train",
|
|
api_key=None,
|
|
alias=model_type,
|
|
)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Audio)
|
|
|
|
def test_text_to_speech(self):
|
|
model_type = "text-to-speech"
|
|
interface = gr.Interface.load(
|
|
"models/julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train",
|
|
api_key=None,
|
|
alias=model_type,
|
|
)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Audio)
|
|
|
|
def test_text_to_image(self):
|
|
model_type = "text-to-image"
|
|
interface = gr.Interface.load(
|
|
"models/osanseviero/BigGAN-deep-128", api_key=None, alias=model_type
|
|
)
|
|
self.assertEqual(interface.__name__, model_type)
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Image)
|
|
|
|
def test_english_to_spanish(self):
|
|
interface = gr.Interface.load("spaces/abidlabs/english_to_spanish")
|
|
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
|
|
self.assertIsInstance(interface.output_components[0], gr.components.Textbox)
|
|
|
|
def test_sentiment_model(self):
|
|
io = gr.Interface.load("models/distilbert-base-uncased-finetuned-sst-2-english")
|
|
try:
|
|
output = io("I am happy, I love you")
|
|
assert json.load(open(output))["label"] == "POSITIVE"
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
def test_image_classification_model(self):
|
|
io = gr.Blocks.load(name="models/google/vit-base-patch16-224")
|
|
try:
|
|
output = io("gradio/test_data/lion.jpg")
|
|
assert json.load(open(output))["label"] == "lion"
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
def test_translation_model(self):
|
|
io = gr.Blocks.load(name="models/t5-base")
|
|
try:
|
|
output = io("My name is Sarah and I live in London")
|
|
self.assertEqual(output, "Mein Name ist Sarah und ich lebe in London")
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
def test_numerical_to_label_space(self):
|
|
io = gr.Interface.load("spaces/abidlabs/titanic-survival")
|
|
try:
|
|
output = io("male", 77, 10)
|
|
assert json.load(open(output))["label"] == "Perishes"
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
def test_speech_recognition_model(self):
|
|
io = gr.Interface.load("models/facebook/wav2vec2-base-960h")
|
|
try:
|
|
output = io("gradio/test_data/test_audio.wav")
|
|
self.assertIsNotNone(output)
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
def test_text_to_image_model(self):
|
|
io = gr.Interface.load("models/osanseviero/BigGAN-deep-128")
|
|
try:
|
|
filename = io("chest")
|
|
self.assertTrue(filename.endswith(".jpg") or filename.endswith(".jpeg"))
|
|
except TooManyRequestsError:
|
|
pass
|
|
|
|
|
|
class TestLoadFromPipeline(unittest.TestCase):
|
|
def test_text_to_text_model_from_pipeline(self):
|
|
pipe = transformers.pipeline(model="sshleifer/bart-tiny-random")
|
|
output = pipe("My name is Sylvain and I work at Hugging Face in Brooklyn")
|
|
self.assertIsNotNone(output)
|
|
|
|
|
|
def test_interface_load_cache_examples(tmp_path):
|
|
test_file_dir = pathlib.Path(pathlib.Path(__file__).parent, "test_files")
|
|
with patch("gradio.examples.CACHED_FOLDER", tmp_path):
|
|
gr.Interface.load(
|
|
name="models/google/vit-base-patch16-224",
|
|
examples=[pathlib.Path(test_file_dir, "cheetah1.jpg")],
|
|
cache_examples=True,
|
|
)
|
|
|
|
|
|
def test_get_tabular_examples_replaces_nan_with_str_nan():
|
|
readme = """
|
|
---
|
|
tags:
|
|
- sklearn
|
|
- skops
|
|
- tabular-classification
|
|
widget:
|
|
structuredData:
|
|
attribute_0:
|
|
- material_7
|
|
- material_7
|
|
- material_7
|
|
measurement_2:
|
|
- 14.206
|
|
- 15.094
|
|
- .nan
|
|
---
|
|
"""
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.text = textwrap.dedent(readme)
|
|
|
|
with patch("gradio.external.requests.get", return_value=mock_response):
|
|
examples = get_tabular_examples("foo-model")
|
|
assert examples["measurement_2"] == [14.206, 15.094, "NaN"]
|
|
|
|
|
|
def test_cols_to_rows():
|
|
assert cols_to_rows({"a": [1, 2, "NaN"], "b": [1, "NaN", 3]}) == (
|
|
["a", "b"],
|
|
[[1, 1], [2, "NaN"], ["NaN", 3]],
|
|
)
|
|
assert cols_to_rows({"a": [1, 2, "NaN", 4], "b": [1, "NaN", 3]}) == (
|
|
["a", "b"],
|
|
[[1, 1], [2, "NaN"], ["NaN", 3], [4, "NaN"]],
|
|
)
|
|
assert cols_to_rows({"a": [1, 2, "NaN"], "b": [1, "NaN", 3, 5]}) == (
|
|
["a", "b"],
|
|
[[1, 1], [2, "NaN"], ["NaN", 3], ["NaN", 5]],
|
|
)
|
|
assert cols_to_rows({"a": None, "b": [1, "NaN", 3, 5]}) == (
|
|
["a", "b"],
|
|
[["NaN", 1], ["NaN", "NaN"], ["NaN", 3], ["NaN", 5]],
|
|
)
|
|
assert cols_to_rows({"a": None, "b": None}) == (["a", "b"], [])
|
|
|
|
|
|
def check_dataframe(config):
|
|
input_df = next(
|
|
c for c in config["components"] if c["props"].get("label", "") == "Input Rows"
|
|
)
|
|
assert input_df["props"]["headers"] == ["a", "b"]
|
|
assert input_df["props"]["row_count"] == (1, "dynamic")
|
|
assert input_df["props"]["col_count"] == (2, "fixed")
|
|
|
|
|
|
def check_dataset(config, readme_examples):
|
|
# No Examples
|
|
if not any(readme_examples.values()):
|
|
assert not any([c for c in config["components"] if c["type"] == "dataset"])
|
|
else:
|
|
dataset = next(c for c in config["components"] if c["type"] == "dataset")
|
|
assert dataset["props"]["samples"] == [
|
|
[utils.delete_none(cols_to_rows(readme_examples)[1])]
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"hypothetical_readme",
|
|
[
|
|
{"a": [1, 2, "NaN"], "b": [1, "NaN", 3]},
|
|
{"a": [1, 2, "NaN", 4], "b": [1, "NaN", 3]},
|
|
{"a": [1, 2, "NaN"], "b": [1, "NaN", 3, 5]},
|
|
{"a": None, "b": [1, "NaN", 3, 5]},
|
|
{"a": None, "b": None},
|
|
],
|
|
)
|
|
def test_can_load_tabular_model_with_different_widget_data(hypothetical_readme):
|
|
with patch(
|
|
"gradio.external.get_tabular_examples", return_value=hypothetical_readme
|
|
):
|
|
io = gr.Interface.load("models/scikit-learn/tabular-playground")
|
|
check_dataframe(io.config)
|
|
check_dataset(io.config, hypothetical_readme)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"config, dependency, answer",
|
|
[
|
|
({"version": "3.3", "enable_queue": True}, {"queue": True}, True),
|
|
({"version": "3.3", "enable_queue": False}, {"queue": None}, False),
|
|
({"version": "3.3", "enable_queue": True}, {"queue": None}, True),
|
|
({"version": "3.3", "enable_queue": True}, {"queue": False}, False),
|
|
({"enable_queue": True}, {"queue": False}, False),
|
|
({"version": "3.2", "enable_queue": False}, {"queue": None}, False),
|
|
({"version": "3.2", "enable_queue": True}, {"queue": None}, True),
|
|
({"version": "3.2", "enable_queue": True}, {"queue": False}, False),
|
|
({"version": "3.1.3", "enable_queue": True}, {"queue": None}, False),
|
|
({"version": "3.1.3", "enable_queue": False}, {"queue": True}, False),
|
|
],
|
|
)
|
|
def test_use_websocket_after_315(config, dependency, answer):
|
|
assert use_websocket(config, dependency) == answer
|
|
|
|
|
|
class AsyncMock(MagicMock):
|
|
async def __call__(self, *args, **kwargs):
|
|
return super(AsyncMock, self).__call__(*args, **kwargs)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_get_pred_from_ws():
|
|
mock_ws = AsyncMock(name="ws")
|
|
messages = [
|
|
json.dumps({"msg": "estimation"}),
|
|
json.dumps({"msg": "send_data"}),
|
|
json.dumps({"msg": "process_generating"}),
|
|
json.dumps({"msg": "process_completed", "output": {"data": ["result!"]}}),
|
|
]
|
|
mock_ws.recv.side_effect = messages
|
|
data = json.dumps({"data": ["foo"], "fn_index": "foo"})
|
|
output = await get_pred_from_ws(mock_ws, data)
|
|
assert output == {"data": ["result!"]}
|
|
mock_ws.send.assert_called_once_with(data)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_get_pred_from_ws_raises_if_queue_full():
|
|
mock_ws = AsyncMock(name="ws")
|
|
messages = [json.dumps({"msg": "queue_full"})]
|
|
mock_ws.recv.side_effect = messages
|
|
data = json.dumps({"data": ["foo"], "fn_index": "foo"})
|
|
with pytest.raises(gradio.Error, match="Queue is full!"):
|
|
await get_pred_from_ws(mock_ws, data)
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
sys.version_info < (3, 8),
|
|
reason="Mocks of async context manager don't work for 3.7",
|
|
)
|
|
def test_respect_queue_when_load_from_config():
|
|
with unittest.mock.patch("websockets.connect"):
|
|
with unittest.mock.patch(
|
|
"gradio.external.get_pred_from_ws", return_value={"data": ["foo"]}
|
|
):
|
|
interface = gr.Interface.load("spaces/freddyaboulton/saymyname")
|
|
assert interface("bob") == "foo"
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|