gradio/demo/image_classifier_2/run.py
aliabid94 b4d9825409
Website: WIP (#328)
Ported gradio website into gradio repository, now launched as a docker service from gradio/website
2021-12-13 22:02:19 -08:00

23 lines
736 B
Python

import torch
import requests
import gradio as gr
from PIL import Image
from torchvision import transforms
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")
def predict(inp):
inp = Image.fromarray(inp.astype('uint8'), 'RGB')
inp = transforms.ToTensor()(inp).unsqueeze(0)
with torch.no_grad():
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
return {labels[i]: float(prediction[i]) for i in range(1000)}
inputs = gr.inputs.Image()
outputs = gr.outputs.Label(num_top_classes=3)
gr.Interface(fn=predict, inputs=inputs, outputs=outputs).launch()