gradio/test/test_external.py
Abubakar Abid 88e9c19c27
Cleaning up the way data is processed for components (#1967)
* remove preprocess_example

* removing methods

* added path support for images

* fixes

* video

* formatting

* fixing preprocess

* fixes

* removed from audio

* fixed file

* formatting

* serialization

* foramtting

* formatting

* removed save flag / restore flag

* formatting

* removed flagging

* removed

* load value

* fixing typing

* fixes, typing

* fixes

* file

* handling images

* formatting

* fixed serializing for flagging

* formatting

* json

* temp file

* removed processing

* changed processing

* fixed temp FINALLY

* flagging works

* fix examples test

* formatting

* async examples

* working on mix

* comment out failing test

* fixed interface problem

* fix kitchen sink deprecation warning

* gallery examples

* fixes

* fixes to serialization

* fixing label serializing

* fixed file serialization

* kitchen sink restored

* outbreak forecast updated

* formatting

* formatting and api mode

* fix 1 test :/

* fixing tests

* fixed components tests

* remvoed test files

* formatting

* fixed examples

* fixes

* formatting

* restored certain files

* added encryption

* fixed syntax mistake

* formatting

* fixed 1 test

* clean up interface

* formatting

* fixed route tests

* more fixes

* formatting

* formatting

* fixing pipeline

* format frontend

* format backend

* tweaks

* fix

* fix final test?

* merged

* Sanitize for CSV (#2017)

* sanitize for csv

* added sanitization logic

* fixed examples

* turn cache off

* fixed example caching with optional inputs

* fixed review problems

* fixed Interface.load

* updating the tests

* updating the tests

* fix

* fixed seriailizing

* testing

* rewrite run prediction

* formatting

* await

* fixes

* formatting

* finally fixed mix

* fixed tests

* formatting

* formatting

* deserialize fix

* formatting

* fixes

* fixes

* fix

* fix tests

* fixes

Co-authored-by: Freddy Boulton <alfonsoboulton@gmail.com>
2022-08-23 08:31:04 -07:00

247 lines
10 KiB
Python

import json
import os
import pathlib
import unittest
from unittest.mock import patch
import pytest
import transformers
import gradio as gr
from gradio.external import TooManyRequestsError
"""
WARNING: These tests have an external dependency: namely that Hugging Face's
Hub and Space APIs do not change, and they keep their most famous models up.
So if, e.g. Spaces is down, then these test will not pass.
These tests actually test gr.Interface.load() and gr.Blocks.load() but are
included in a separate file because of the above-mentioned dependency.
"""
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
# Mark the whole module as flaky
pytestmark = pytest.mark.flaky
class TestLoadInterface(unittest.TestCase):
def test_audio_to_audio(self):
model_type = "audio-to-audio"
interface = gr.Interface.load(
name="speechbrain/mtl-mimic-voicebank",
src="models",
alias=model_type,
)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Audio)
self.assertIsInstance(interface.output_components[0], gr.components.Audio)
def test_question_answering(self):
model_type = "image-classification"
interface = gr.Blocks.load(
name="lysandre/tiny-vit-random", src="models", alias=model_type
)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Image)
self.assertIsInstance(interface.output_components[0], gr.components.Label)
def test_text_generation(self):
model_type = "text_generation"
interface = gr.Interface.load("models/gpt2", alias=model_type)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
self.assertIsInstance(interface.output_components[0], gr.components.Textbox)
def test_summarization(self):
model_type = "summarization"
interface = gr.Interface.load(
"models/facebook/bart-large-cnn", api_key=None, alias=model_type
)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
self.assertIsInstance(interface.output_components[0], gr.components.Textbox)
def test_translation(self):
model_type = "translation"
interface = gr.Interface.load(
"models/facebook/bart-large-cnn", api_key=None, alias=model_type
)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
self.assertIsInstance(interface.output_components[0], gr.components.Textbox)
def test_text2text_generation(self):
model_type = "text2text-generation"
interface = gr.Interface.load(
"models/sshleifer/tiny-mbart", api_key=None, alias=model_type
)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
self.assertIsInstance(interface.output_components[0], gr.components.Textbox)
def test_text_classification(self):
model_type = "text-classification"
interface = gr.Interface.load(
"models/distilbert-base-uncased-finetuned-sst-2-english",
api_key=None,
alias=model_type,
)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
self.assertIsInstance(interface.output_components[0], gr.components.Label)
def test_fill_mask(self):
model_type = "fill-mask"
interface = gr.Interface.load(
"models/bert-base-uncased", api_key=None, alias=model_type
)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
self.assertIsInstance(interface.output_components[0], gr.components.Label)
def test_zero_shot_classification(self):
model_type = "zero-shot-classification"
interface = gr.Interface.load(
"models/facebook/bart-large-mnli", api_key=None, alias=model_type
)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
self.assertIsInstance(interface.input_components[1], gr.components.Textbox)
self.assertIsInstance(interface.input_components[2], gr.components.Checkbox)
self.assertIsInstance(interface.output_components[0], gr.components.Label)
def test_automatic_speech_recognition(self):
model_type = "automatic-speech-recognition"
interface = gr.Interface.load(
"models/facebook/wav2vec2-base-960h", api_key=None, alias=model_type
)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Audio)
self.assertIsInstance(interface.output_components[0], gr.components.Textbox)
def test_image_classification(self):
model_type = "image-classification"
interface = gr.Interface.load(
"models/google/vit-base-patch16-224", api_key=None, alias=model_type
)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Image)
self.assertIsInstance(interface.output_components[0], gr.components.Label)
def test_feature_extraction(self):
model_type = "feature-extraction"
interface = gr.Interface.load(
"models/sentence-transformers/distilbert-base-nli-mean-tokens",
api_key=None,
alias=model_type,
)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
self.assertIsInstance(interface.output_components[0], gr.components.Dataframe)
def test_sentence_similarity(self):
model_type = "text-to-speech"
interface = gr.Interface.load(
"models/julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train",
api_key=None,
alias=model_type,
)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
self.assertIsInstance(interface.output_components[0], gr.components.Audio)
def test_text_to_speech(self):
model_type = "text-to-speech"
interface = gr.Interface.load(
"models/julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train",
api_key=None,
alias=model_type,
)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
self.assertIsInstance(interface.output_components[0], gr.components.Audio)
def test_text_to_image(self):
model_type = "text-to-image"
interface = gr.Interface.load(
"models/osanseviero/BigGAN-deep-128", api_key=None, alias=model_type
)
self.assertEqual(interface.__name__, model_type)
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
self.assertIsInstance(interface.output_components[0], gr.components.Image)
def test_english_to_spanish(self):
interface = gr.Interface.load("spaces/abidlabs/english_to_spanish")
self.assertIsInstance(interface.input_components[0], gr.components.Textbox)
self.assertIsInstance(interface.output_components[0], gr.components.Textbox)
def test_sentiment_model(self):
io = gr.Interface.load("models/distilbert-base-uncased-finetuned-sst-2-english")
try:
output = io("I am happy, I love you")
assert json.load(open(output))["label"] == "POSITIVE"
except TooManyRequestsError:
pass
def test_image_classification_model(self):
io = gr.Blocks.load(name="models/google/vit-base-patch16-224")
try:
output = io("gradio/test_data/lion.jpg")
assert json.load(open(output))["label"] == "lion"
except TooManyRequestsError:
pass
def test_translation_model(self):
io = gr.Blocks.load(name="models/t5-base")
try:
output = io("My name is Sarah and I live in London")
self.assertEqual(output, "Mein Name ist Sarah und ich lebe in London")
except TooManyRequestsError:
pass
def test_numerical_to_label_space(self):
io = gr.Interface.load("spaces/abidlabs/titanic-survival")
try:
output = io("male", 77, 10)
assert json.load(open(output))["label"] == "Perishes"
except TooManyRequestsError:
pass
def test_speech_recognition_model(self):
io = gr.Interface.load("models/facebook/wav2vec2-base-960h")
try:
output = io("gradio/test_data/test_audio.wav")
self.assertIsNotNone(output)
except TooManyRequestsError:
pass
def test_text_to_image_model(self):
io = gr.Interface.load("models/osanseviero/BigGAN-deep-128")
try:
filename = io("chest")
self.assertTrue(filename.endswith(".jpg") or filename.endswith(".jpeg"))
except TooManyRequestsError:
pass
class TestLoadFromPipeline(unittest.TestCase):
def test_text_to_text_model_from_pipeline(self):
pipe = transformers.pipeline(model="sshleifer/bart-tiny-random")
output = pipe("My name is Sylvain and I work at Hugging Face in Brooklyn")
self.assertIsNotNone(output)
def test_interface_load_cache_examples(tmp_path):
test_file_dir = pathlib.Path(pathlib.Path(__file__).parent, "test_files")
with patch("gradio.examples.CACHED_FOLDER", tmp_path):
gr.Interface.load(
name="models/google/vit-base-patch16-224",
examples=[pathlib.Path(test_file_dir, "cheetah1.jpg")],
cache_examples=True,
)
if __name__ == "__main__":
unittest.main()